
PV181: Training 6 - Smartcard security aspects
a. Logical attacks – On-card type control
The attack is directed against type control of the JavaCard Virtual Machine, that
allows execution of the untrusted code after off-card type verification. Idea of attack
is pretty simple: to obtain two pointers pointing on the same memory place, but with
the different data type. If second type of pointer is of larger primitive type than
original one, larger memory than originally allocated can be accessed.

Preparation of the attack:
1. Compile project TypeAttackServer with methods typeAttack() and

TypeAttackInterface::typeAttack() with data type of input buffer set to byte[].
2. Compile project TypeAttackClient. This project use interface TypeAttackInterface

with expected data type byte[]. Then convert to JavaCard byte code (*.jar, *.cap).
3. In TypeAttackServer project, change data type of input parameter of methods

typeAttack() and TypeAttackInterface::typeAttack() onto short[]. Compile project
and convert to JavaCard byte code (*.jar, *.cap).

4. Load applets TypeAttackServer and TypeAttackClient onto the same smart card.

Attack execution:
5. Select TypeAttackServer and set parameter m_readPos (index of value to be read

with type short) on requested value. Parameter readPos is set using APDU
command with CLA=0xB0, INS=0x30, DataIn=value_of_m_readPos. Values up
to 130 (can differ slightly with particular smart card type) will point into correctly
allocated memoery of APDU command data array. Higher values up to ~260 will
point after the end of allocated array and should not be readable.

6. Select applet TypeAttackClient and send APDU command with CLA=0xB0,
INS=0x40, DataIn=01 02 03 04 05 06.The method
TypeAttackClient::startAttackMethod() is called and input buffer of APDU
command with data type byte[] is passed to method TypeAttackServer::
typeAttack(), which iterprets input parameter as the array with short[] data type.
We now should have the pointer to array of short[260] (around 520 bytes)
pointing onto array with real length only around 260 bytes! We can then read the
value of short type from position given by m_readPos index parameter (set before
attack by overself) and return back on output. In case, when memory controls are
implemented correctly, then reading ends up with an exception. Otherwise, value
from memory that should not be accessible is returned.

Moral:

• If smartcard performs on-card type control before applet instalation, then type
mismatch should be detected even before the attack applet is installed.

• If smartcard perform runtime type control, than type mismatch should be
detected during array exchange in startAttackMethod() even when subsequent
read is performed in correctly allocated area (m_readPos < 130).

• If smartcard do not perform type controls mentioned above, but use some
other methods to guard array boundaries, than exception should be thrown
when attempt to read/write outside allocated memory is detected (m_readPos
< 130).

Possible modifications:
• Use your own buffer allocated in EEPROM/RAM instead of APDU incoming

data buffer.
• Do not read from array using high-level index access (e.g. short tmp =

buffer[m_readPos];) in step 6, but use low level copy functions like
Util.arrayCopyNonAtomic() or Util.arrayFillNonAtomic(). Check routines for
reading/writing outside allocated memory may not apply for low-level
operations.

In this basic attack, Shareable interface is used to allow uploading two codes with
different data types. No direct modification of the compiled byte code is thus
required. Attack can be extended to “after compilation” modification of byte code to
mismatch data types even in the same applet. However, more obscure way of passing
data pointers, better change to bypass JCVM controls.

b. SCSAT02 measurement board
The laboratory measure device SCSAT02 (further referred as “the board”) has been
developed in the cooperation of FI MUNI and VUT. The board is deployed between
the smartcard and reader (see Figure 1). It is equipped with an oscilloscope to
measure the power consumption of the smart card during the execution of selected
commands with the sampling frequency up to 5MHz. It only has a limited internal
memory (512kB) for local storage of measured data that are later transported to a PC
using the LPT port. Inverse smartcard reader is used to physically connect smart card
to the reader.
The board can be used for power analysis, time analysis, fault induction attacks
(power glitches) and for monitoring the PC-smartcard communication (useful for the
reverse engineering of proprietary protocols).

LPT and COM ports

Tested smartcard

SCSAT02 measurement
board

External power suply Inverse smartcard reader

Figure 1 - SCSAT02 measuring board

c. Time analysis
The basic idea is to obtain some additional information about the smartcard internal
state and the sensitive data processed in the smartcard by monitoring the duration of
the execution [Ko96]. Relies on the assumption, that secret data are processed on the
card and the processing time:

• depends on the value of secret data
• leaks information about secret data
• leakage can be measured (at least as differences)

Defense against the timing attack is simple in theory: algorithm execution lengths
must be independent on the processed data. However this requirement typically
prohibits speed optimizations and requires usage of specially designed algorithms
rather that simple and clear ones.
Note: The execution length of algorithms is typically NOT measured as the time
between the incoming and outgoing APDU, because too much of time noise can be
introduced by intermediate components (smart card reader and PC smart card
subsystem). More often, length of the operation is observed from simple power trace
(see Figure 2 for example).

Examples:
1. PIN verification – Assume, that PIN verification is implemented as per-digit

comparison, that stop directly after the first non-matching digit in the PIN to be
verified. Rejection of the PIN with first two correct digits will take longer time
than rejection of a PIN with the incorrect digit as the first one.

2. Exponentiation – Assume that md is implemented using Montgomery algorithm,
where d is the secret value maintained by the card. The algorithm computes square
(shift) of some value S every time and multiplies S by m if the i-th bit of d is equal
to one. Multiplication typically takes much longer time than simple shift and bits
of d can be thus revealed. This idea can be used to attack naive implementation of
the RSA algorithm.

3. Writing into memory – Assume that an applet on the smartcard wants to hide the
number of bytes that are being written into the memory (e.g. secret logging, where
alert message is much longer than the neutral one). However, writing 65 bytes
requires two invocations of the low level native function for memory
management, as this functions write by 64-byte blocks (see Figure 2).

Figure 2 – Different power trace when writing 64B and 65B into memory

d. Power analysis
The power analysis is based on measuring the dependency of the execution on the
power consumption [Ko99]. As smartcards do not have their own source of energy
and depend on external energy supply, the current consumption of the card can be
measured in a simple way. Assumptions are similar as for the time analysis except
that the variance in power consumption is measured instead of the execution time.
Simple power analysis works directly with the measured power trace without any
utilization of more sophisticated statistical analysis. The differential power analysis
employs more sophisticated statistical analysis techniques to remove noise from the
signal and to discover less obvious dependency of the power consumption on the
processed data.

Simple power analysis (SPA)
(Simple power analysis) can be used for revealing the secret data handled by the
smartcard, reverse-engineering of smartcard code (PIN verification procedure),
determining the position of sensitive operations (for subsequent use in the DPA) and
others.

Reveling secret key
Most commonly exploited dependency between the consumption and the data is the
hamming weight (number of bits equal to one in an operand) or the hamming distance
(number of different bits between two operands). Attacks are based on the assumption
that simple operations like XOR or writing into memory will consume more energy if
the hamming distance of arguments is higher as more transitions of transistors from 0
to 1 and from 1 to 0 is required. See Figure 3 for an example of the leakage in the case
of 8-bits operands.
If an attacker knows the Hamming weight of each of the k n-bit words of a secret key,
then the brute-force search is reduced from 2kn to

The probability that a random n-bit key will have the hamming weight equal to m is
(n over m)/2n. If we know that the hamming weight of the key is equal to m, we must
search (n over m) possible keys. The expected number of searched keys is thus the
number of keys with the weight m weighted by probability, that random key will have
weight m for all possible values m = 0…n.
DES example: 256 keys reduced to 240 (n = 8, k = 7).

Figure 3 - Hamming weight or distance leakage, source [Slo02]

Reverse engineering
Cryptographic smartcards are often expected to offer protection not only of the
cryptographic keys, but also of the executed code. In contrast to Kerkhoff‘s
principles, designers might think that the smartcard environment can offer a
protection against disclosure of some details of the implemented code. However,
different operations have different power consumptions which can be exploited to
reverse-engineer the executed code (see Figure 4).

Figure 4 - Reverse-engineering of Javacard applet

Brute-forcing correct PIN value
An example of the importance of the reverse-engineering can be the PIN verification
procedure. As the typical PIN consists of four digits only, the number of allowed
attempts to verify the PIN must be limited to prevent brute-force search over all
10000 possible values. The typical number of allowed attempts is 3-5. The power
analysis can reveal the way how the PIN verification procedure is implemented. The
correct implementation of the PIN verification procedure is:

1. Decrease the retry counter
2. Verify PIN
3. Increase retry counter, if correct PIN was supplied.

Initial counter decrease is important against an attacker who is able to turn the power
supply off before the result of PIN verification is stored in the memory (in the retry

counter). See Figure 5 for the correct implementation and Figure 6 for an incorrect
implementation.

Figure 5 - Correct implementation of the PIN verification procedure

Figure 6 - Incorrect implementation of the PIN verification procedure

Differential power analysis (DPA)
The differential power analysis is described in [Ko99]. The basic DPA algorithm can
be viewed as a clever way of averaging traces of an encryption with different
plaintexts in such a way that a part of the secret key can be revealed. See Figure 7 for
the algorithm overview.

Figure 7 - Basic DPA algorithm, source [Slo02]

The DPA algorithm against DES-like ciphers works as follows:
1. Random input plaintext Pi is sent to the card for encryption
2. Power consumption of Pi

k ⊕ SecretKeyk is measured => Si(n)
3. Steps 1, 2 are repeated multiple times (103

 - 105) resulting in pairs [Pi, Si(n)]

4. Choose suitable partitioning function D (e.g. Hamming weight here)
5. For all possible values of SecretKeyk do

a. For all pairs [Pi, Si(n)] compute w = HamWeight(Pi
k ⊕ SecretKeyk)

and apply partitioning function D
i. if w > k / 2 then add Si(n) to group S0

ii. if w < k / 2 then add Si(n) to group S1
b. Compute average from S0 => A0 and S1 => A1
c. Compute difference bias T(n) = A1(n) – A0(n)
d. Display T(n) (see example on Figure 8)

6. Correct key guess from step 5 should display most significant spikes in 5d.

Note: Pi

k
 stands for the k-bit block of the i-th plaintext. SecretKeyk stands for the k-bit

block of the (expanded) secret key. Size of the block k (in bits) depends on the
attacker‘s choice (denoted as k-bit DPA), typically between 1 to 8 bits. Lower size of
the block results in faster execution of the DPA algorithm in the step 5, but requires
more power traces in step 1.

significant spikes as difference between A0 and A1

Figure 8 - DPA bias traces for correct and incorrect key guess

Power analysis countermeasures
Protection techniques against the power analysis must deal with a limited area of the
smartcard chip and should not decrease the performance of the execution
significantly. Countermeasures can be done both on hardware and software level:

Hardware countermeasures:

• Noise generator – Additional circuit that does nothing else than consuming
random amount of energy is used and thus random noise is introduced into the
power consumption. Advantages: relative simple design; it can be effective.
Disadvantages: can be expensive to implement (consume chip area), might be
disabled through tampering, not energy efficient (contactless cards), signal
still present.

• Power signal filtering – Passive: Additional capacitators that straighten out
the power trace. Active: Compensation techniques that react on actual power
consumption. Disadvantages: might be disabled by tapering, passive are
limited by chip size, active are likely to lag behind power supply changes.

• Novel chip design – Battery on chip, detachable power signals (two
capacitators, one is powered from an external source, second one is used by

the chip – external power is never connected directly to the chip), special types
of logics (dual rails) etc. Disadvantages: not always practical for legacy
systems, signals can leak in other ways.

Software countermeasures:

• Time randomization – Insert random NOPs, random execution ordering.
Advatages: easy and cheap to implement without modification of the existing
hardware. Disadvatages: susceptible to advanced signal analysis (re-
synchronization).

• Masking techniques – Random value is applied (xored) to original argument,
original operations are performed with masked argument. Later, result is
unmasked. Advatages: eliminate thread of 1st order DPA. Disadvantages:
some crypto functions are difficult to mask, susceptible to 2nd order DPA.

Homework (choose one from following):
1. Modify applets TypeAttackServer and TypeAttackClient to include all proposed

modifications of the basic attack (your own array in RAM and EEPROM,
Util.arrayCopyNonAtomic and Util.arrayFillNonAtomic for read and write
instead of high level buffer[index]).

2. Write a code (in C, Java or Matlab) that will detect the power trace of the
verification of an incorrect PIN and trigger before the counter is decreased. Use
the supplied traces of the correct and incorrect PIN verifications. Your program
should be able to distinct between the correct and incorrect trace online, without
“looking ahead”, so if you start process value by value from begining, than you
should say ‘stop power’ before power trace falls down from the big peak in the
middle of the Figure 6.

3. Program a code (in C, Java or Matlab) that performs DPA on the supplied power
traces and guesses the correct key. Use 4-bit DPA with Hamming weight decision
rule to model dependency of power consumption on processed data. See
‘!Readme_dpa.txt’ inside a zipped file for more information.

References
[Ko96] P.Kocher, "Timing attacks on implementations of Diffie-Hellman, RSA,

DSS, and other systems", at
www.cryptography.com/resources/whitepapers/TimingAttacks.pdf

[Ko99] P. Kocher, J. Jaffe, B. Jun, "Differential Power Analysis," at
http://www.cryptography.com/resources/whitepapers/DPA.pdf

[Slo02] R. Sloan et. al: „Smart-Card Security under the Threat of Power
Analysis Attacks“ at http://www.cs.uic.edu/~sloan/my-papers/ieee-
messerges-proof.pdf

[AO00] M. Aigner, E. Oswald: Power Analysis Tutorial
http://www.iaik.tugraz.at/aboutus/people/oswald/papers/dpa_tutorial.pdf

http://www.cryptography.com/resources/whitepapers/TimingAttacks.pdf
http://www.cryptography.com/resources/whitepapers/DPA.pdf
http://www.cs.uic.edu/%7Esloan/my-papers/ieee-messerges-proof.pdf
http://www.cs.uic.edu/%7Esloan/my-papers/ieee-messerges-proof.pdf

	PV181: Training 6 - Smartcard security aspects
	a. Logical attacks – On-card type control
	b. SCSAT02 measurement board
	c. Time analysis
	d. Power analysis
	Simple power analysis (SPA)
	Reverse engineering

	
	Differential power analysis (DPA)
	Power analysis countermeasures

	References

