
Smart cards – basic principles

a. ISO norms – ISO7816-X

ISO7816-1 specifies the physical characteristics of integrated circuit like the limits to

X-rays, UV, electromagnetic field, ambient temperature etc. Additionally, properties

of smart card in flexion and robustness of contacts are specified. Important mainly for

card manufactures.

ISO 7816-2 defines size, location and function of the card contacts. Vcc – power

supply, RST – card reset, CLK – external clock signal, GND – ground, Vpp –

programming power supply for older types of EEPROM (not used now), I/O – data

communication, 2 contacts reserved for future use.

ISO7816-3 specifies communication protocol between smart card and reader on the

level of the electrical signals.

• Protocol T=0 – byte-oriented protocol. Older than T1, designed for maximal

simplicity and minimal memory requirements. Error detection only on parit

bits level. Used in GSM cards.

• Protocol T=1 – asynchronous, half-duplex, block-oriented. Support layers

separation (transport layer in OSI model).

ISO7816-4 specifies:

• Content of messages, commands and responses as are transported to card and

back.

• Structure and content of historical bytes send as response after RESET

command (ATR).

• Methods for accessing files and data on the card and algorithms offered by

card.

• Methods for the secure messaging.

b. APDU (Application Protocol Data Unit)

APDU is basic logical communication datagram, which allows to carry up to ~260

bytes of data and contains header with possibility to specify target application on

smart card which should process given APDU.

figure 1 - APDU types

CLA – instruction class, INS – instruction number, P1, P2 – optional data, Lc – length

of incoming data, Le – length of the expected output data.

Communication with smart cards

a. PC/SC for Windows, PC/SC-Lite for Linux

The PC/SC Specification builds upon existing industry smart card standards - ISO

7816 and EMV - and compliments them by defining low-level device interfaces and

device-independent application APIs as well as resource management, to allow

multiple applications to share smart card devices attached to a system. See picture

figure 2 for overview.

figure 2 – Windows PC/SC architecture overview

Sending and receiving APDU commands in Windows

There is the Win32 API for communicating with smart cards within Windows

platform in form SCardXXX. Similar implementation for Linux is developed under

Muscle project as PC/SC Lite API. We will work within Windows platform.

Following functions will be used:

• SCardEstablishContext

• SCardListReaders

• SCardConnect

• SCardReconnect

• SCardDisconnect

• SCardReleaseContext

• SCardTransmit

void CardConnect(APDU apdu) {

 SCARDCONTEXT cardContext = NULL;

 SCARDHANDLE hCard; // OPENED SESSION HANDLE
 DWORD scProtocol;

 char* readers = NULL;

 // ESTABLISHING CONTEXT OF CARD DATABASE TO BE SEARCHED WITHIN
 SCardEstablishContext(SCARD_SCOPE_USER,0,0,&cardContext);

 // LIST AVAILABLE READERS (readers NULL SEPARATED ARRAY)
 SCardListReaders(cardContext, NULL, (char *) &readers, &len));

 // … PARSE AND SELECT ONE READER INTO targetCard

 // CONNECT TO CARD WITH NAME targetCard
 SCardConnect(m_cardContext, targetCard, SCARD_SHARE_EXCLUSIVE, SCARD_PROTOCOL_T0 |

 SCARD_PROTOCOL_T1, &hCard, &scProtocol));

 // … WORK WITH CARD

 // RESET CARD (POWER IS TURNED OFF AND THEN ON)

 // CARD IS IN DEFAULT STATE (NO SELECTED APPLETS…)
 SCardReconnect(m_hCard, SCARD_SHARE_EXCLUSIVE, SCARD_PROTOCOL_T0 |

 SCARD_PROTOCOL_T1, SCARD_UNPOWER_CARD, &m_scProtocol));

 // DISCONNECT FROM CARD AND RELEASE CONTEXT

 SCardDisconnect(m_hCard, SCARD_LEAVE_CARD);
 SCardReleaseContext(cardContext);
}

Function CardConnect() establish context, list all available readers, connect to

selected smart card, reconnect and finally release connection to smart card.

High level function ExchangeAPDU() send APDU to smart card and handle situation

when some output data are prepared on smart card and should be received. Specific

APDU with CLA=0x00 and INS=0xC0 is used to obtain response data. Internally,

TransmitAPDU() function is called to directly exchange one single apdu command.

 void ExchangeAPDU(APDU pAPDU) {

 // CLEAR SOFTWARE RETURN STATUS
 pAPDU->sw = SW_NO_ERROR;

 // SEND APDU
 if ((status = TransmitAPDU(pAPDU)) == STAT_OK) {

 // CHECK FOR SOFTWARE ERROR
 if (pAPDU->sw == SW_NO_ERROR) {

 // NO SOFWARE ERROR

 }
 else {

 // CHECK FOR 'RESPONSE DATA AVAILABLE' STATUS
 if ((pAPDU->sw & 0xFF00) == SW_BYTES_REMAINING_00) {

 if (pAPDU->lc == 0x00) {
 // SYSTEM CALL TYPE TO OBTAIN RESPONSE OUTPUT DATA)

 // INSUFFICIENT OUTPUT DATA LENGTH

 BYTE realLen = LOWBYTE(pAPDU->sw);
 pAPDU->le = realLen;

 // NEW APDU WITH REQUIRED OUTPUT DATA LENGTH

 status = ExchangeAPDU(pAPDU);

 }
 else {

 // USER CALL TYPE, OBTAIN RESPONSE DATA
 BYTE realLen = LOWBYTE(pAPDU->sw);

 CARDAPDU apdu;

 // PREPARE SYSTEM APDU FOR RECIEVE RESPONSE OUTPUT DATA

 apdu.cla = 0x00;
 apdu.ins = 0xC0;

 apdu.p1 = 0x00;
 apdu.p2 = 0x00;

 apdu.lc = 0x00;

 apdu.le = realLen;

 if ((status = ExchangeAPDU(&apdu)) == STAT_OK) {
 // COPY RECIEVED APDU

 memcpy(pAPDU->DataOut, apdu.DataOut, apdu.le);

 pAPDU->le = apdu.le;

 }
 }

 }
 else {

 // CHECK FOR 'CORRECT DATA LENGTH' STATUS

 if ((pAPDU->sw & 0xFF00) == SW_CORRECT_LENGTH_00) {
 pAPDU->le = LOWBYTE(pAPDU->sw);

 }
 else {

 // SOFTWARE ERROR OCCURED

 status = TranslateISO7816Error(pAPDU->sw);
 }

 }
 }

 }
 }

 void TransmitAPDU(APDU pAPDU) {

 DWORD outLen = pAPDU->le;

 BYTE sendData[260];
 BYTE responseData[260];

 // CLEAR SEND AND RESPONSE STRUCTURES

 pAPDU->le = 0;
 memset(sendData, 0, sizeof(sendData));

 memset(responseData, 0, sizeof(responseData));

 // TRANSFORM APDU STRUCTURE INTO ARRAY

 sendData[0] = pAPDU->cla;
 sendData[1] = pAPDU->ins;

 sendData[2] = pAPDU->p1;

 sendData[3] = pAPDU->p2;
 sendData[4] = pAPDU->lc;

 memcpy(sendData + 5, pAPDU->DataIn, pAPDU->lc);

 outLen = 4;
 // SEND APDU USING SCardTransmit FUNCTION ACCORDING TO TRANSMISSION PROTOCOL

 switch (m_scProtocol) {

 case SCARD_PROTOCOL_T0: SCardTransmit(m_hCard, SCARD_PCI_T0, sendData, sendData[4] + 5,
 NULL, responseData, &outLen)); break;

 case SCARD_PROTOCOL_T1: SCardTransmit(m_hCard, CARD_PCI_T1,
 sendData, sendData[4] + 5, NULL, responseData, &outLen)); break;

 }

 // COPY SOFTWARE STATUS

 ((BYTE*) &(pAPDU->sw))[0] = responseData[1];
 ((BYTE*) &(pAPDU->sw))[1] = responseData[0];

 // RECEIVE RESPONSE DATA, IF ANY

 if (((pAPDU->sw & 0xFF00) == SW_BYTES_REMAINING_00) ||

 ((pAPDU->sw & 0xFF00) == SW_CORRECT_LENGTH_00)) {
 // GET DATA APDU (FORM SPECIAL APDU FOR RECEIVING DATA)

 sendData[0] = 0xC0;
 sendData[1] = 0xC0;

 sendData[2] = 0x00;

 sendData[3] = 0x00;
 sendData[4] = LOWBYTE(pAPDU->sw);

 outLen = sendData[4] + 2; // DATA OUT + STATUS

 // … SEND APDU (SEE ABOVE)

 // COPY RECEIVED DATA
 memcpy(pAPDU->DataOut, responseData, outLen - 2);

 pAPDU->le = outLen - 2;
 ((BYTE*) &(pAPDU->sw))[0] = responseData[outLen - 1]; // LAST BYTE

 ((BYTE*) &(pAPDU->sw))[1] = responseData[outLen - 2]; // PRE LAST BYTE

 }
}

Homework

The goal of this assigment is to obtain the account number from communication

exchanged between PC (LabakAPDUSecret.exe) and smart card.

When the LabakAPDUSecret.exe is executed alone, it will contact first available

reader in system and try to retrieve account number from smart card in pseudo-secure

way. No block cipher algorithm is use (e.g., DES or AES) and application does not

have any pre-shared secret with smart card.

Hints:

- Copy "fake" winscard.dll library and original one renamed to 'original.dll' into

LabakAPDUSecret.exe directory. After LabakAPDUSecret.exe execution,

winscard.txt will contain the log of communication. Check this out and try to analyze

it and retrieve the account number.

- You may use also other techniques like reverse-engineering of the binary code of

LabakAPDUSecret.exe, LabakSecret.jar etc.

Submit:

- Whole account number and the short description of the process used to retrieve it.

- Description of the apdu commands exchanged between PC and smart card,

especially: what CLA, INS, P1, P2 and LC was used in header, how long are the

payload data and what is its "meaning" (what they are good for) and which sequence

they pass between PC and SC.

- Deadline is 13.10.2008{10 points}

References
[JC221] Java Card specification 2.2.1 http://java.sun.com/products/javacard/

[JPCSC] JPC/SC API

http://www.linuxnet.com/middleware/files/jpcsc-0.8.0-src.zip

