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Abstract. We present a generalisation of King’s symbolic execution
technique called compact symbolic execution. It proceeds in two steps.
First, we analyse cyclic paths in the control flow graph of a given pro-
gram, independently from the rest of the program. Our goal is to compute
a so called template for each such a cyclic path. A template is a declar-
ative parametric description of all possible program states, which may
leave the analysed cyclic path after any number of iterations along it. In
the second step, we execute the program symbolically with the templates
in hand. The result is a compact symbolic execution tree. A compact tree
always carry the same information in all its leaves as the corresponding
classic symbolic execution tree. Nevertheless, a compact tree is typically
substantially smaller than the corresponding classic tree. There are even
programs for which compact symbolic execution trees are finite while
classic symbolic execution trees are infinite.

1 Introduction

Symbolic execution [16,13] is a program analysis method originally suggested
for enhanced testing. While testing runs a program on selected input values,
symbolic execution runs the program on symbols that represent arbitrary input
values. As a result, symbolic execution explores all execution paths. On one
hand-side, this means that symbolic execution does not miss any error. On the
other hand-side, symbolic execution applied to real programs hardly ever finishes
as programs typically have a huge (or even infinite) number of execution paths.
This weakness of symbolic execution is known as path explosion problem. The
second weakness of symbolic execution comes from the fact that it calls SMT
solvers to decide which program paths are feasible and which are not. The SMT
queries are often formulae of theories that are hard to decide or even undecidable.
Despite the two weaknesses, there are several successful bug-finding tools based
on symbolic execution, for example KLEE [7], EXE [8], PEX [22], or SAGE [11].
This paper introduces the compact symbolic execution that partly solves the
path explosion problem. We build on the observation that one of the main sources
of the problem are program cycles. Indeed, many execution paths differ just in
numbers of iterations along program cycles. Hence, before we start symbolic
execution, we detect cyclic paths in the control flow graph of a given program
and we try to find a template for each such a cyclic path. A template is a
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declarative parametric description (with a single parameter k) of all possible
program states produced by x > 0 iterations along the cyclic path followed by
any execution step leading outside the cyclic path. The target program locations
of such execution steps are called exits of the cyclic path.

The compact symbolic execution proceeds just like the classic symbolic ex-
ecution until we enter a cyclic path for which we have a template. Instead of
executing the cyclic path, we can apply the template to jump directly to exits
of the cyclic path. At each exit, we obtain a program state with a parameter
k. This parametric program state represents all program states reached by ex-
ecution paths composed of a particular path to the cycle, k iterations along
the cycle, and the execution step leading to the exit. Symbolic execution then
continues from these program states in the classic way again.

Hence, compact symbolic execution reduces the path explosion problem as
it explores at once all execution paths that differ only in numbers of iterations
along the cyclic paths for which we have templates. As we will see later, a price
for this reduction comes in deepening the other weakness of symbolic execution:
while SMT queries of standard symbolic execution are always quantifier-free,
each application of a template adds one universal quantifier to the SMT queries
of compact symbolic execution. Although SMT solvers fail to decide quantified
queries significantly more often than queries without quantifiers, our experimen-
tal results show that this trade-off is acceptable as compact symbolic execution
is able to detect more errors in programs than the classic one. Moreover, fu-
ture advances in SMT solving can make the disadvantage of compact symbolic
execution even smaller.

2 Basic Idea

This section presents basic ideas of compact symbolic execution. To illustrate
the ideas, we use a simple program represented by the flowgraph of Figure 1(a).
The program implements a standard linear search algorithm. It returns the least
index i in the array A such that A[i]=x. If x is not in A at all, then the result
is —=1. In both cases the result is saved in the variable r. Before we describe the
compact symbolic execution, we briefly recall the classic symbolic execution [16].

Classic Symbolic Execution Symbolic execution runs a program over sym-
bols representing arbitrary input values. For each input variable v, we denote
a symbol passed to it as v. A program state is a triple ([, 0, ) consisting of a
current program location [ in the flowgraph, a symbolic memory 0, and a path
condition . 0 assigns to each program variable its current symbolic value, i.e. an
expression over the symbols. For example, if the first instruction of a program
is the assignment i:=2#n+x, then 6(i) = 2n + z after its execution. The path
condition ¢ is a quantifier-free first order logic formula representing a necessary
and sufficient condition on symbols to drive the execution along the currently
executed path. ¢ is initially true and it can be updated at program branchings.
For example, in a location with two out-edges labelled by x>n+5 and x<=n+5, we
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Fig.1. (a) A flowgraph linSrch(A,n,x). (b) Classic symbolic execution tree of
linSrch. (¢) Compact symbolic execution tree of linSrch.

instantiate the conditions with use of the current § and we check whether the
current path condition ¢ implies their validity. Namely, we ask for validity of
implications ¢ — 6(x) > 0(n)+5 and ¢ — 6(x) < (n)+5. If the first implication
is valid, the symbolic execution continues along the first branch. If the second
implication is valid, the symbolic execution continues along the second branch.
If none of them is valid, it means that we can follow either of the two branches.
Hence, the symbolic execution forks in order to execute both branches. In this
case, we update the path condition on the first branch to ¢ A 6(x) > 6(n) +5
and the one on the second branch to ¢ A 0(x) < (n) + 5. Note that the whole
program state is forked into two states in this case.

Due to the forks, symbolic execution is traditionally represented by a tree
called classic symbolic execution tree. Nodes of the tree are labelled by program
states computed during the execution. Edges of the tree correspond to transitions
between program states labelling their end nodes. In Figure 1(b), there is a classic
symbolic execution tree of the flowgraph from Figure 1(a). For readability of
symbolic execution tree figures, nodes are marked only with current program
locations instead of full program states. In addition, we label branching edges
by instances of the corresponding branching conditions in the flowgraph. These
labels allow us to reconstruct the path condition for each node in the tree: it is
the conjunction of labels of all edges along the path from the root to the node.
Note that contents of symbolic memories are not depicted in the figure.



Overall Effect of Cyclic Paths If we look at the flowgraph of Figure 1(a),
we immediately see that locations b, ¢,d and edges between them form a cyclic
path highlighted by a grey region. All executions entering the path (at location
b) proceed in the same way: each execution performs k iterations along the cyclic
path (for some x > 0) and continues either along the edge (b, f) or along the edges
(b, ¢) and (¢, e) to leave it. Compact symbolic execution aims to effectively exploit
the uniformity of all executions along this cyclic path. To do so, we need to find
a unified declarative description of the effect of all executions along the cyclic
path on a symbolic memory and a path condition. We analyse the cyclic path,
together with all the edges allowing to leave it, separately from the rest of the
flowgraph. First we introduce symbols for all variables in the isolated part of the
program, since they all are now input variables to the part. In our example, we
introduce symbols n, z, i, A representing the values of the corresponding variables
n,x,1i,A at the entry location b, before the first iteration. We emphasise that the
introduced symbols do not represent inputs to the whole flowgraph, but rather
symbolic values of the corresponding variables at the moment of entering the
cyclic path at the location b via the edge (a,b).

Now we study the effect of k iterations along the cyclic path. One can see that
each iteration increases the value of i by one while values of the other variables
keep unchanged. Hence, after k iterations, the value of i is ¢ + k. Formally, the
effect of k iterations of the cycle on values of all variables is described by the
following parametric symbolic memory 0,[x] with the parameter x:

Further, we formulate a parametric path condition @.[x] representing the
path condition after k iterations along the cyclic path. To perform all these x
iterations along the cyclic path, both conditions i<n and A[i] !=x along the path
have to be valid in each of x iterations. Therefore, the path condition after s
iterations has the form

Adi+(k=1)<n A A(i+ (k= 1)) #z,

where 7-th line, 7 € {0,1,...,xk — 1}, consists of two predicates which are in-
stances of the conditions i<n and A[i] !=x respectively after 7 iterations of the
cyclic path, i.e. during the (7 + 1)-st iteration. Unfortunately, the conjunction
above is not a first order formula as its length depends on the parameter k,
whose value can be arbitrary. The conjunction can be equivalently expressed by
the following universally quantified formula:

Vr(0<T<k—=(i+7<nAAli+7)#z)).



If we now add to the formula above the obvious fact that we cannot iterate the
cyclic path negative number of times (i.e. k > 0), we get the resulting parametric
path condition ¢.[x] as

ei6] = k>0 AVT0<T<K—=(E+T7<n AN Al +7T)#2x)).

Finally, we use 6, [«] and @.[x] to define symbolic memory 6y, [x] and path
condition ¢ys[k] describing the effect of k iterations of the cyclic path fol-
lowed by leaving it through the edge (b, f), and similarly 6..[x], pce[x] with
the analogous information for leaving the cyclic path through the edge (c,e).
As the edges (b, f), (b, ¢), (c,e) do not modify any variable, we immediately get
O[] = Oce[k] = 0.[k]. Further, ou[s] and @c.[x] are conjunctions of ¢, [x]
with the instances of the conditions on the edge (b, f) or on the edges (b, ¢), (¢, €),
respectively. Hence, the path conditions ¢u[K], ¢ce[x] are defined as follows:

ouc] = puk] ANitr>n
Veel] = wu6] AN i+r<n A Ali+k) =2z

The overall effect of the considered cyclic path with its exit edges is now fully
described by a so-called template consisting of the entry location b to the cyclic
path and two triples (f, Oy [k], wor[£]) and (e, Oce[K], pee[k]), one for each exit
edge from the cyclic path. Note that the triples have the same structure and
meaning as program states in classic symbolic execution. The only difference is
that the triples are parametrised by the parameter &.

Compact Symbolic Execution The template is used during compact symbolic
execution of the program. The execution starts at the location a of the flowgraph.
The compact symbolic execution tree initially consists of a single node labelled by
the initial state (a, 0y, true), where 65 is the initial symbolic memory assigning
to each input variable v the corresponding symbol v. Now we execute the in-
struction i:=0 of the flowgraph edge (a,b) using the classic symbolic execution.
The tree is extended with a single successor node, say u, labelled with a program
state (b,0’,¢’). As we have a template for the location b, we can instantiate it
instead of executing the original program. The node u gets one successor for
each triple of the template. The triple (f, 6y [s], pir[£]) generates a successor
node labelled by a program state (f,0;[x].y:[x]). Note that we cannot use
(f, 0o [E], pprk]) directly as Oy [k], pur[x] describe executions starting just at
the entry location b, while 8. [x], ¢}, [x] have to reflect the effect of the execu-
tions starting at a. We create 0y [x], oy [x] by composing O[], pur[£] with
0','. The composition is precisely described in the following section. In our
simple program, €, ¢’ reflect only the effect of assignment i:=0. Thus, agf [x]
and ¢y, [k] equal to Oy [k] and pyr [«] respectively, where ¢ is replaced by 0. The
second triple (e, O..[k], pce[r]) of the template generates the successor node la-
belled with a program state (e, 0. [«], ¢..[x]) computed analogously using the
composition. The symbolic execution then continues from the locations f and e
in parallel using the classic symbolic execution. The resulting compact symbolic



execution tree is depicted in Figure 1(c). Observe that the two nodes introduced
during template instantiation are drawn with different shape than the others.
Moreover, labels of these nodes immediately indicate all paths in the flowgraph
whose execution is replaced by the application of the template.

If we compare trees at Figures 1(b) and 1(c), we immediately see that the
compact tree is much smaller than the classic one. In particular, the infinite
path in the classic tree (highlighted by the grey region) does not appear in the
compact one. However, both trees keep the same information in all their leaves.
For example, the program state of the left leaf of the compact tree contains the
following path condition

o] = kZ20AVT(0<7T<Kk = (T<nANA(T)#2) N k<n A Ak) =z.

Let us mark all leaves on the left-hand side of the classic tree as gg, g1, g2, . . . and
let ©o, 1, @2, ... be the corresponding path conditions (remember, that each ¢;
is the conjunction of labels along the corresponding paths in the tree) and check
that ¢; is equivalent to ¢[i] for each ¢ > 0. For example, for i = 1 we have

p1 = 0<n AN AO0)#z AN 1<n A Al) =z,
e[l] = 1>0AVI(0<7<1 = (T<nANA(T)#z) AN1<n A AQl) =z,

and hence p; = @[1]. Similarly, each symbolic memory of a node g; is an instance
0[i] of the parametrized symbolic memory in the left leaf of the compact tree.
Analogous relations hold for leafs on the right-hand sides of the compact and
the classic symbolic execution trees.

3 Description of the Technique

This section describes the compact symbolic execution in details. For simplicity,
we consider only programs represented by a single flowgraph manipulating in-
teger variables and read-only integer arrays. The technique can be extended to
handle mutable integer arrays, other data types, and function calls.

3.1 Preliminaries

Besides the terms and notation introduced in the previous section, we use also
the following terms and notation.

We write 6[k] to emphasise that k is the set of parameters appearing in
the symbolic memory 6. Similarly, we write ¢[k] to emphasise that & is the
set of parameters with free occurrences in the formula ¢. We also write s[k] or
(1,0, p)[k], if s = (I, 0[], p[K]).

A valuation of parameters is a function v from a finite set of parameters to
non-negative integers. By 8[v], ¢[v], and s[v] we denote a symbolic memory
0[x], a formula p[k], and a program state s[k] respectively, where all free
occurrences of each k € k are replaced by v(k). If kK = {k} is a singleton



and v(k) = v, we simply write 0[], ¢[x], s[x] instead of O[], ¢[k], s[] and
0[v], ¢[v], s[v] instead of [v], ¢[v], s[v].

If 0 is a symbolic memory and ¢ is a formula or a symbolic expression, then
6{p) denotes ¢ where all occurrences of all symbols a are simultaneously replaced
by 6(a), i.e. by the value of the corresponding variable stored in 6.

When 6, and 65 are two symbolic memories, then 61005 is a composed symbolic
memory satisfying (61 ¢ 02)(a) = 61(f2(a)) for each variable a. Intuitively, the
symbolic memory #; ¢ 0> represents an overall effect of a code with effect 6,
followed by a code with effect 65.

We define composition of states s; = (11,01, ¢1) and so = (l2,02,¢2) to be
the state s1 ¢ so = (l2,01 © 02,01 A 01{p2)). The composed state corresponds to
the symbolic state resulting from symbolic execution of the code that produced
s1 immediately followed by the code that produced ss.

We often use a dot-notation to denote elements of a program state s: s.l
denotes its current location, s.6 denotes its symbolic memory, and s.¢ denotes
its path condition. Further, if u is a node of a symbolic execution tree, then w.s
denotes the program state labelling v and we write u.l, u.0, and u.p instead of
(u.s)., (u.s).0, and (u.s).p.

Two program states si, so are equivalent, written s; = sq, if s1.0 = s5.1, the
formula s;.0(a) = s2.0(a) holds for each variable a, and the formulae s;.¢ and
s9.¢ are equivalent in the logical sense.

Considered integer programs operate in undecidable theories (like Peano
arithmetic). We assume that there is a function satisfiable(y) that returns
SAT if it can prove satisfiability of ¢, UNSAT if it can prove unsatisfiability of
¢, and UNKNOWN otherwise.

3.2 Templates and Their Computation

We start with a formal definition of cycle, i.e. a cyclic path with a specified entry
location and exit edges.

Definition 1 (Cycle) Let (u,e) be an edge of a flowgraph P, m = ewe be a
cyclic path in P such that ue is not a suffiz of m and all nodes in we are pairwise
distinct, and let X = {(uy,21),..., (un,2,)} be the set of all edges of P that
do not belong to the path w, but their start nodes wui,...,u, lie on w. Then
C = (m,e,X) is a cycle in P, the path 7 is a core of C, e is an entry location
of C, all edges in X are exit edges of C, and each location x; is called an exit
location of C.

We emphasise that the core of a cycle is a cyclic path in a graph sense.
Note that a program loop can generate more independent cycles, e.g. if the loop
contains interal branching or loop nesting (see [20] for more details).

A template for a cycle (m,e, X) is a pair (e, M), where M is a set containing
one parametric program state for each exit edge of the cycle. A template for
a given cycle can be computed by Algorithm 1. The algorithm uses a function
executePath(P, p) which applies classic symbolic execution to instructions on



Algorithm 1: computeTemplate
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Input: a program P and a cycle (7, e, X)
Output: a template (e, M) or null (if the computation fails)

(e,0,p) +— executePath(P, )
if satisfiable(y) # SAT then return null
Set 0.[x](a) = a for each array variable a
Set 0.[x](a) = L for each integer variable a
repeat
change <— false
foreach integer variable a do
if 0.[x](a) = L then
if 8(a) = a+ ¢ for some constant ¢ then
0.[k](a) «—a+kK-c
change <— true
if f(a) = a-c for some constant ¢ then
0.]x](a) «—a-c”
change <— true
if 6(a) = g for some symbolic expression g such
that 0. [x](b) # L for each symbol b in g then
0.[k](a) «— ite(k > 0,0.[x — 1](g), a)
change <— true
until change = false
if 0.[x](a) = L for some variable a then return null
O[] ¢«— k>0 A VT(0 <7 <k = O.[7]{p))
M<+—0
foreach (u,z) € X do
Let p be the prefix of 7 from e to u
(z,0, ) «— executePath(P, px)
if satisfiable(p) = UNKNOWN then return null
if satisfiable(yp) = SAT then
M +— M U{(z, 0.[c] 00, o[c] AO[c]{®))}
return (e, M)

the path p in the program P and returns the resulting symbolic state (u,8, v),
where u is the last location in p.

The first part of the algorithm (lines 1-20) tries to derive a parametric sym-

bolic memory 6,.[x] and a parametric path condition ¢, [x], which together

de

scribe the symbolic state after k iterations over the core 7 of the cycle C, for

any « > 0. Initially, at line 1, we compute the effect of a single iteration of the
core m and then we check whether the iteration is feasible. If we cannot prove
its feasibility, we stop the template computation and return null.! Otherwise,

1

It is possible that the iteration is feasible and the chosen SMT solver failed to prove

it. However, as parametric path conditions of the resulting template are derived from
®, it is highly probable that any application of the template in compact symbolic
execution would lead to failures of the SMT solver. Such a template is useless.



we get a symbolic state (e, 6, ), whose elements 6 and ¢ form a basis for the
computation of 0,[«] and ¢.[x].

We compute 60,[x] first. As arrays are read-only, we directly set 0, [x](a)
to a for each array variable a. For integer variables, we initialise .[x] to an
undefined value L. Then, in the loop at lines 5-18, we try to define 6, [x] for
as many variables as possible. For each variable a, 6.[x](a) is defined at most
once. Hence, the loop terminates after finite number of iterations. The value of
0.[x](a) is defined according to the content of #(a) and known values of 6, [«].
In particular, the conditions at lines 9 and 12 check if the values of a follow an
arithmetic or a geometric progression during the iterations. If they do, we can
easily express the exact value of a after any x iterations. Note that the case
when the value of a variable is not changed along 7 at all is a special case of an
arithmetic progression (¢ = 0). Obviously, one can add support for other kinds of
progression. The condition at line 15 covers the case when each iteration assigns
to a an expression containing only variables with known values of 6,[x]. The
if-then-else expression ite(k > 0,6.[x — 1]{g), a) assigned to 0,[x](a) says that
the value of a after k > 0 iterations is given by the value of expression g where
each symbol b represents the value of b at the beginning of the last iteration
and thus it must be replaced by 6. [x — 1](b). The value of a after 0 iterations is
obviously unchanged, i.e. a.

Once we get to line 19, we check whether we succeeded to define 6, [x] for all
variables. If we failed for at least one variable, then we fail to compute a template
for C and we return null. Otherwise, at line 20 we compute the formula ¢, [«]
in accordance with the intuition provided in Section 2.

The second part of the algorithm (lines 21-28) computes the set M of the
resulting template. As we already know from Section 2, we try to compute one
element of M for each exit edge (u,z) € X. At line 23 we compute a path p from
the entry location e to u (along 7), where we escape from 7 to the location z. The
path pz is then symbolically executed. If we fail to decide feasibility of the path,
we fail to compute a template. If the path is feasible, we can escape 7 by taking
the exit edge (u, z). Therefore, only in this case we add a new element to M at
line 27. The structure of the element follows the intuition given in Section 2.

One can immediately see that the algorithm always terminates. Now we
formulate a theorem describing properties of the computed template (e, M). The
theorem is crucial for proving soundness and completeness of compact symbolic
execution. Roughly speaking, the theorem says that whenever a node u of the
symbolic execution tree of a program P satisfies u.l = e, then the subtree rooted
in u has the property that each branch to a leaf contains a node w such that w.s
corresponds to the composition of u.s and a suitable instance of some program
state of the template (L1), and vice versa (L2). A proof of the theorem can be
found in the full version of this paper [20].

Theorem 1 (Template Properties) Let T be a classic symbolic execution
tree of P and let (e, {(l1,01[], p1[k]), - ., (In, On[K], on[K])}) be a template for
a cycle (m, e, X) in P produced by Algorithm 1. Then the following two properties
hold:



(L1) For each path m = uw in T leading from a node u satisfying u.l = e to a leaf,
there is a node w of w, an index i € {1,...,n}, and an integer v > 0 such
that w.s = w.s o (I;, 0;[v], pi[V])-

(L2) For each node u of T, an index i € {1,...,n}, and an integer v > 0 such
that u.l = e and (u.o ANu.0{p;[V])) is satisfiable, there is a successor w of u
in T such that w.s = u.s o (I;, 6;[V], pi[V]).

3.3 Compact Symbolic Execution

The compact symbolic execution is formally defined by Algorithm 2. If we ignore
the lines marked by O, then we get the classic symbolic execution. As we focus
on compact symbolic execution, we describe the algorithm with [ lines included.
The algorithm gets a program P and a finite set p of templates resulting from
analyses of some cycles in P. Lines 1-3 create an initial program state, insert it
into a queue @, and create the root of a symbolic execution tree 1" labelled by
the state.

The queue @ keeps all the program states waiting for their processing in
the repeat-until loop (lines 4-26). The key part of the loop’s body begins at
line 9, where we select at most one template of p with entry location matching
the actual program location s.l. Note that there can be more than one template
available at s.l as more cyclic paths can go through the location. We do not put
any constraints in the selection strategy. We may for example choose randomly.
Also note that we may choose none of the templates (i.e. we select null), if
there is no template in p for location s.l or even if there are such templates in
p. If a template t = (s.l, M) is selected, then we get a fresh parameter (line 12)
and replace the original parameter in all tuples of M by the fresh one. This
replacement prevents collisions of parameters of already applied templates. The
foreach loop at lines 14-16 creates a successor state s’ for each program state
in M. If the template selection at line 9 returns null, we proceed to line 18 and
compute successor states of the state s by the classic symbolic execution. The
successor states with provably satisfiable path conditions are inserted into the
queue @ and into the compact symbolic execution tree 1" in the foreach loop at
lines 20—22. The successor states with provably unsatisfiable path conditions are
ignored as they correspond to infeasible paths. The foreach loop at lines 23—
25 handles the successor states with path conditions for which we are unable
to decide satisfiability; these states are inserted into the resulting tree T' as so-
called failed leaves. A presence of a failed leaf in the resulting tree indicates
that applied symbolic execution has failed to explore whole path-space of the
executed program. We do not continue computation from these states as there
is usually a plethora of other states with provably satisfiable path conditions.

We finish this section by soundness and completeness theorems for compact
symbolic execution. We assume that T and T are classic and compact symbolic
execution trees of the program P computed by Algorithm 2 without and with
[O-lines respectively. The theorems hold on assumption that our satisfiable(y)
function never returns UNKNOWN, i.e. neither T nor T’ contains failed leaves.
Proofs of both theorems can be found in the full version of this paper [20].
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Algorithm 2: executeSymbolically
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Input: a program P to be executed

and a finite set p of templates computed for cycles in P

Output: a symbolic execution tree T' of P (compact tree in O-version)

S0 «— (the starting location of P,0;, true)

Let @Q be a queue of states initially containing only so
Insert the root node labelled by so to the empty tree T’
repeat

Extract the first state s from @
if s.l is either an exit from P or an error location then
continue
S+ 0
t <— chooseTemplate(s.l, p)
if ¢ # null then
Let M be the second element of ¢, i.e. t = (s.[, M)
K <— getFreshParam()
Replace all occurrences of the former parameter in M by
foreach (I,0[x], ¢[x]) € M do
s’ +— so (1,0]x], ¢[«])
Insert s’ into S
else /* apply classic symbolic execution step */
S <— computeClassicSuccessors (P, s)
Let u be the leaf of T' whose label is s
foreach state s’ € S such that satisfiable(s’.) = SAT do
Insert s’ at the end of Q
Insert a new node v labelled with s’ and a new edge (u,v) into T
foreach state s’ € S such that satisfiable(s’.p0) = UNKNOWN do
Insert a new node v labelled with s’ and a new edge (u,v) into T
Mark the node v in T as a failed leaf

26 until () becomes empty
27 return T

Theorem 2 (Soundness) For each leaf node e € T there is a leaf node ¢’ € T’

and a valuation v of parameters in €'.s such that e.s = e’.s[V].

Theorem 3 (Completeness) For each leaf node ¢ € T there is a leaf node

e € T and a valuation v of parameters in €'.s such that e.s = e’.s[v].

Note that in both theorems we discuss only the relation between all finite
branches of the trees T and 7”. Some infinite branches of T (like the one in
Figure 1(b)) corresponding to infinite iterations along a cyclic path need not be
present in T”. As symbolic execution is typically used to cover as many reachable
program locations as possible, missing infinite iterations along cyclic paths can

be seen as a feature rather than a drawback.



4 Experimental Results

Implementation We have implemented both classic and compact symbolic
execution in an experimental tool called RUDLA. The tool uses our “library of
libraries” called BUGST available at SOURCEFORGE [3]. The sources of RUDLA
and all benchmarks mentioned below are available in the same repository. The
implementation also uses CLANG 2.9 [4], LLVM 3.1 [5], and Z3 4.3.0 [6].

Evaluation Criteria We would like to empirically evaluate and compare the
effectiveness of the classic and compact symbolic execution in exploration of pro-
gram paths. Unfortunately, we cannot directly compare explored program paths
or nodes in the constructed trees as a path or a node in a compact symbolic exe-
cution tree have a different meaning than a path or a node in a classic symbolic
execution tree. To compare the techniques, we fix an exploration method of the
trees, namely we choose the breadth-first search as indicated in Algorithm 2,
and we measure the time needed by each of the techniques to reach a particu-
lar location in an analysed program. Note that for compact symbolic execution
we also have to fix a strategy for template selection since there can generally
be more than one template related to one program location. We always choose
randomly between candidate templates.

Benchmarks and Results We use two collections of benchmarks. The first
collection contains 13 programs with a marked target location. As our technique
is focused on path explosion caused by loops, all the benchmarks contain typical
program loop constructions. There are sequences of loops, nested loops and also
loops with internal branching. They are designed to produce a huge number of
execution paths. Thus they are challenging for symbolic execution. The target
location is chosen to be difficult to reach. The first ten benchmarks have reach-
able target locations, while the last three do not. For these three benchmarks,
all the execution paths must be explored to give an answer.

Experimental results are presented in Table 1. The high numbers of (often
infeasible) cycles are due to our translation from LLVM (see [20] for details). We
want to highlight the following observations. First, classic symbolic execution
was faster only for benchmarks Hello and decode_packets. Second, the number
of states visited by the compact symbolic execution is often several orders of
magnitude lower than the number of states visited by the classic one. At the
same time we recall that the semantics of a state in classic and compact symbolic
execution are different. Finally, presence of quantifiers in path conditions of
compact symbolic executions puts high requirements on skills of the SMT solver.
This leads to SMT failures, which are not seen in classic symbolic execution.

Algorithm 2 saves SMT failures in the form of failed leaves in the resulting
compact symbolic execution tree. Therefore, we may think about subsequent
analyses for these leaves. For example, in a failed leaf we may instantiate param-
eters k by concrete numbers. The resulting formulae will become quantifier-free
and therefore potentially easier for an SMT solver. This way we might be able



Templates Compact SE SE

Benchmark | Time | Count | Cycles || Time | States | SMTFail || Time | States
hello 12.3 2 126 2.3 187 0 4.5 2262
HW 31.9 4 252 45.4 | 1048 4 T/O | 223823
HWM 48.1 5 336 T/O | 5125 24 T/O | 162535
matrIR 4.2 4 28 82.9 | 1234 6 T/O | 270737
matrIR_dyn 14.8 5 30 240.5 | 2472 13 T/O | 267636
VM 8.6 6 64 T/O | 2274 64 T/O | 205577
VMS 4.2 3 32 5.4 466 0 99.8 | 281263
decode_packets || 18.3 5 26 39.9 | 1276 0 16.3 | 8992
WinDriver 17.8 5 26 59.2 | 1370 1 T/O | 206903
EQCNT 12.2 3 12 10.6 | 345 0 T/O | 179803
EQCNTex 5.8 4 24 T/O | 10581 0 T/O | 251061
OneLoop 0.1 1 2 0.1 41 0 T/O | 38230
TwoLoops 0.3 2 4 0.1 25 0 T/O | 917343
| Total time || 240 I 1800 I 3900 |

Table 1. Experimental results of compact and classic symbolic executions. The com-
pact symbolic execution approach is divided into computation of templates and building
of compact symbolic execution tree. All the times are in seconds, where "T'/O’ identifies
exceeding 5 minutes timeout. ’Count’ represents the number of computed templates,
"Cycles’ shows the number of detected cycles. ’'SMTFail’ represents the number of failed
SMT queries. There was no SMT failure during classic SE of our benchmarks.

H Time ‘ safe ‘ unsafe ‘ timeout | unsupported ‘ points ‘

Compact SE || 300+4920 | 21 25 15 13+5 67
SE 8700 10 27 28 13+1 47

Table 2. Experimental results of compact and classic symbolic executions on 79 SV-
COMP 2013 benchmarks in the category ’loops’. Time is in seconds. For compact SE
we provide template computation time plus execution time. ’safe’ and 'unsafe’ report
the numbers of programs where the tool decides unreachability and reachability of a
marked error location, respectively (all these answers are correct). timeout’ presents
the number of symbolic executions exceeding 5 minutes. 'unsupported’ represents the
number of compilation failures plus failures during an analysis. 'points’ shows the
number of points the tools would get according to the SV-COMP 2013 rules.

to explore paths below the failed leaves. But basically, analyses of failed leaves
are a topic for our further research. Moreover, as SMT solvers are improving
quickly, we may expect that counts of the failures will decrease over time.

The second collection of benchmarks is the whole category "loops’ taken from
SV-COMP 2013 (revision 229) [2]. The results are depicted in Table 2.

All the presented experiments were done on a laptop Acer Aspire 5920G (2
x 2GHz, 2GB) running Windows 7 SP1 64-bit.



5 Related Work

The symbolic execution was introduced by King in 1976 [16]. The original con-
cept was generalised in [14] for programs with heap by introducing lazy initialisa-
tion of dynamically allocated data structures. The lazy initialisation algorithm
was further improved and formally defined in [9]. Another generalisation step
was done in [15], where the authors attempt to avoid symbolic execution of li-
brary code (called from an analysed program), since such code can be assumed
as well defined and properly tested.

In [19,12], the path explosion problem is tackled by focusing on program
loops. The information inferred from a loop allows to talk about multiple pro-
gram paths through that loop. But the goal is to explore classic symbolic
execution tree in some effective manner: more interesting paths sooner. Ap-
proaches [10, 1] share the same goal as the previous ones, but they focus on a
computation of function summaries rather than on program loops.

Our goal is completely different: instead of guiding exploration of paths in a
classic symbolic execution tree, we build a tree that keeps the same information
and contains less nodes. In particular, templates of compact symbolic execution
have a different objective than summarisation used in [10,1,12]. While sum-
marisation basically caches results of some finite part of symbolic execution for
later fast reuse, our templates are supposed to replace potentially infinite parts
of symbolic executions by a single node.

Techniques [17, 18] group paths of classic symbolic execution tree according
to their effect on symbolic values of a priori given output variables, and explore
only one path per group. We consider all program variables and we explore all
program paths (some of them are explored simultaneously using templates).

Finally, in our previous work [21] we compute a non-trivial necessary con-
dition for reaching a given target location in a given program. In other words,
the result of the analysis is a first order logic formula. In the current paper, we
focus on a fast exploration of as many execution paths as possible. The technique
produces a compact symbolic execution tree. Note that, we do not require any
target location, since we do not focus on a program location reachability here.
Nevertheless, to achieve our goal, we adopted a part of a technical stuff intro-
duced in [21]. Namely, lines 4-18 of Algorithm 1 are similar to the computation
of a so-called iterated memory, which is in [21] an over-approximation of the
memory content after several iterations in a program loop. In the current tech-
nique, the memory content must always be absolutely precise. Moreover, here
we analyse flowgraph cycles while [21] summarises program loops.

6 Conclusion

We have introduced a generalisation of classic symbolic execution, called com-
pact symbolic execution. Before building symbolic execution tree, the compact
symbolic execution computes templates for cycles of an analysed program. A
template is a parametric and declarative description of the overall effect of a



related cycle. Our experimental results indicate that the use of templates during
the analysis leads to faster exploration of program paths in comparison with
the exploration speed of classic symbolic execution. Also a number of symbolic
states computed during the program analysis is considerably smaller. On the
other hand, compact symbolic execution constructs path conditions with quan-
tifiers, which leads to more failures of SMT queries.
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