
Introduction Modeling Specification Algorithms Conclusions

Formal Verification, Model Checking

Radek Pelánek



Introduction Modeling Specification Algorithms Conclusions

Motivation

Formal Methods: Motivation

examples of what can go wrong – first lecture

non-intuitiveness of concurrency (particularly with shared
resources)

mutual exclusion
adding puzzle



Introduction Modeling Specification Algorithms Conclusions

Motivation

Formal Methods

Formal Methods

‘Formal Methods’ refers to mathematically rigorous techniques
and tools for

specification

design

verification

of software and hardware systems.



Introduction Modeling Specification Algorithms Conclusions

Motivation

Formal Verification

Formal Verification

Formal verification is the act of proving or disproving the
correctness of a system with respect to a certain formal
specification or property.



Introduction Modeling Specification Algorithms Conclusions

Motivation

Formal Verification vs Testing

formal verification testing
finding bugs medium good
proving correctness good -
cost high small



Introduction Modeling Specification Algorithms Conclusions

Motivation

Types of Bugs

likely rare
harmless testing not important
catastrophic testing, FV FV



Introduction Modeling Specification Algorithms Conclusions

Motivation

Formal Verification Techniques

manual human tries to produce a proof of correctness

semi-automatic theorem proving

automatic algorithm takes a model (program) and a
property; decides whether the model satisfies
the property

We focus on automatic techniques.



Introduction Modeling Specification Algorithms Conclusions

Motivation

Application Domains of FV

generally safety-critical systems: a system whose failure
can cause death, injury, or big financial loses (e.g.,
aircraft, nuclear station)

particularly embedded systems

often safety critical
reasonably small and thus amenable to formal
verification



Introduction Modeling Specification Algorithms Conclusions

Motivation

Well Known Bugs

Ariane 5 explosion on its first flight; caused by reuse of
some parts of a code from its predecessor without
proper verification

Therac-25 radiation therapy machine; due to a software
error, six people are believed to die because of
overdoses

Pentium FDIV design error in a floating point division unit;
Intel was forced to offer replacement of all flawed
processors



Introduction Modeling Specification Algorithms Conclusions

Motivation

Outlook

this lecture (foundations):

basics of a model checking technique
overview of modeling formalisms, logics
basic algorithms

next lectures (real-time, applications):

theory: timed automata
extensions for practical modeling
verification tool Uppaal
case studies, realistic examples



Introduction Modeling Specification Algorithms Conclusions

Motivation

Goal of the Lecture

goal: to understand the basic principles of model
checking technique

important for efficient use of a model checking tool



Introduction Modeling Specification Algorithms Conclusions

Motivation

Overlap with Other Courses

IV113 Introduction to Validation and Verification

IA159 Formal Verification Methods

IA040 Modal and Temporal Logics for Processes

IA006 Selected topics on automata theory

verification in this course:

foundations only briefly

real-time aspects



Introduction Modeling Specification Algorithms Conclusions

Motivation

Contents

2 Modeling
Guarded Command Language
Finite State Machines
Other Modeling Formalisms

3 Specification
Types of Properties
Temporal Logics
Timed Logics

4 Algorithms
State Space Search
Logic Verification
State Space Explosion



Introduction Modeling Specification Algorithms Conclusions

Model Checking

Model Checking

automatic verification technique

user produces:

a model of a system
a logical formula which describes the desired properties

model checking algorithm:

checks if the model satisfies the formula
if the property is not satisfied, a counterexample is
produced



Introduction Modeling Specification Algorithms Conclusions

Model Checking

Model Checking (cont.)

specification

��

system

��

temporal logic

!)KKKKKKKKKKKKKKKKKK

KKKKKKKKKKKKKKKKKK
formal
model

w� xxxxxxxxxxxxxx

xxxxxxxxxxxxxx

model checking



Introduction Modeling Specification Algorithms Conclusions

Model Checking

State Space

model checking algorithms are based on state space
exploration, i.e., “brute force”

state space describes all possible behaviours of the model

state space ∼ graph:

nodes = states of the system
edges = transitions of the system

in order to construct state space, the model must be
closed, i.e., we need to model environment of the system



Introduction Modeling Specification Algorithms Conclusions

Model Checking

Example: Model and State Space



Introduction Modeling Specification Algorithms Conclusions

Model Checking

Model Checking: Steps

1 modeling: system → model

2 specification: natural language specification → property
in formal logic

3 verification: algorithm for checking whether a model
satisfies a property



Introduction Modeling Specification Algorithms Conclusions

Modeling Formalisms

guarded command language simple low level modeling
language

finite state machines usually extended with variables,
communication

Petri Nets graphical modeling language

process algebra infinite state systems

timed automata focus of the next lecture



Introduction Modeling Specification Algorithms Conclusions

Guarded Command Language

Guarded Command Language

the simplest modeling language

not useful for actual modeling

simple to formalize

we discuss formal syntax and semantics
foundation for later discussion of timed automata



Introduction Modeling Specification Algorithms Conclusions

Guarded Command Language

Guarded Command Language

integer variables

rules:
if condition then update

conditions: boolean expressions over variables

updates: sequences of assignments to variables



Introduction Modeling Specification Algorithms Conclusions

Guarded Command Language

Example

a : if x = 0 then x := 1
b : if y < 2 then y := y + 1
c : if x = 1 ∧ y ≥ 1 then x := 0, z := 1

Notes:

this is an artificial example (does not model anything
meaningful)

a, b, c are names of actions

no control flow

rules executed repeatedly

initial state: x = 0, y = 0, z = 0



Introduction Modeling Specification Algorithms Conclusions

Guarded Command Language

Syntax

let V be a finite set of integer variables

expressions over V are defined using standard boolean
(=, <) and binary (+,−, ·, ...) operations

model is a tuple M = (V ,E )

E = {t1, . . . , tn} is a finite set of transitions, where
ti = (gi , ui):

predicate gi (a boolean expression over V )
update ui (~x) (a sequence of assignments over V )



Introduction Modeling Specification Algorithms Conclusions

Guarded Command Language

Semantics

The semantics of model M is a state space (formally called
Kripke structure) JMK = (S ,→, s0, L) where

states S are valuations of variables, i.e., V → Z
s → s ′ iff there exists (gi , ui) ∈ T such that
s ∈ JgiK, s ′ = ui(s)

semantics JgiK of guards and ui (s) is the natural one

s0 is the zero valuation (∀v ∈ V : s0(v) = 0)



Introduction Modeling Specification Algorithms Conclusions

Guarded Command Language

Example

a : if x = 0 then x := 1
b : if y < 2 then y := y + 1
c : if x = 1 ∧ y ≥ 1 then x := 0, z := 1

Construct the state space.



Introduction Modeling Specification Algorithms Conclusions

Guarded Command Language

Example

a : if x = 0 then x := 1
b : if y < 2 then y := y + 1
c : if x = 1 ∧ y ≥ 1 then x := 0, z := 1



Introduction Modeling Specification Algorithms Conclusions

Guarded Command Language

Application

simple to formalize, powerful (Turing power)

not suitable for “human” use

some simple protocols can be modeled

control flow – variable pc (program counter)



Introduction Modeling Specification Algorithms Conclusions

Guarded Command Language

Example: Ticket Protocol



Introduction Modeling Specification Algorithms Conclusions

Guarded Command Language

Example: Ticket Protocol

pc1 := 0; pc2 := 0;

t := 0; s := 0; a1 := 0; a2 := 0;

pc1 = 0 -> pc1 := 1, a1 := t, t := t + 1;

pc1 = 1 && a1 <= s -> pc1 := 2;

pc1 = 2 -> pc1 := 0, s := s + 1;

pc2 = 0 -> pc2 := 1, a2 := t, t := t + 1;

pc2 = 1 && a2 <= s -> pc2 := 2;

pc2 = 2 -> pc2 := 0, s := s + 1;



Introduction Modeling Specification Algorithms Conclusions

Finite State Machines

Extended Finite State Machines

each process (thread) is modelled as one finite state
machine (machine state = process program counter)

machines are extended with variables:

local computation: guards, updates
shared memory communication

automata can communicate via channels (with value
passing):

handshake (rendezvous, synchronous communication)
asynchronous communication via buffers



Introduction Modeling Specification Algorithms Conclusions

Finite State Machines

Example: Peterson’s Algorithm

flag[0], flag[1] (initialed to false) — meaning I
want to access CS

turn (initialized to 0) — used to resolve conflicts

Process 0:
while (true) {

<noncritical section>;
flag[0] := true;
turn := 1;
while flag[1] and

turn = 1 do { };
<critical section>;
flag[0] := false;

}

Process 1:
while (true) {

<noncritical section>;
flag[1] := true;
turn := 0;
while flag[0] and

turn = 0 do { };
<critical section>;
flag[1] := false;

}



Introduction Modeling Specification Algorithms Conclusions

Finite State Machines

Example: Peterson’s Algorithm

Exercise: create a model of Peterson’s Algorithm using
extended finite state machines, i.e., of the following type:



Introduction Modeling Specification Algorithms Conclusions

Finite State Machines

Example: Peterson’s Algorithm



Introduction Modeling Specification Algorithms Conclusions

Finite State Machines

Art of Modeling

choosing the right level of abstraction

depends on purpose of the model, assumption about the
system, ...

example: if x == 0 then x := x + 1

one atomic transition
two transitions: test, update (allows interleaving)
multiple “assembler level” transitions: if, load, add, store



Introduction Modeling Specification Algorithms Conclusions

Finite State Machines

EFSM: Semantics

formal syntax and semantics defined in similar way as for
guarded command language

just more technical, basic idea is the same

note: state space can be used to reason about the model
– e.g., to prove mutual exclusion requirements (cf.
Assignment 1)



Introduction Modeling Specification Algorithms Conclusions

Finite State Machines

Example: Peterson’s Algorithm



Introduction Modeling Specification Algorithms Conclusions

Finite State Machines

Example: Communication Protocol



Introduction Modeling Specification Algorithms Conclusions

Finite State Machines

Example: Elevator



Introduction Modeling Specification Algorithms Conclusions

Finite State Machines

Example: Elevator



Introduction Modeling Specification Algorithms Conclusions

Finite State Machines

Application: Verification of Link Layer Protocol



Introduction Modeling Specification Algorithms Conclusions

Finite State Machines

Layer Link Protocol of the IEEE-1394

model of the “FireWire” high performance serial bus

n nodes connected by a serial line

protocol consists of three stack layers:

the transaction layer
the link layer
the physical layer

link layer protocol – transmits data packets over an
unreliable medium to a specific node or to all nodes
(broadcast)

transmission can be performed synchronously or
asynchronously



Introduction Modeling Specification Algorithms Conclusions

Finite State Machines



Introduction Modeling Specification Algorithms Conclusions

Finite State Machines

Notes

link layer

main focus of verification
modeled in high detail

transportation layer, physical layer (bus)

“environment” of link layer
modeled only abstractly



Introduction Modeling Specification Algorithms Conclusions

Finite State Machines



Introduction Modeling Specification Algorithms Conclusions

Finite State Machines



Introduction Modeling Specification Algorithms Conclusions

Finite State Machines



Introduction Modeling Specification Algorithms Conclusions

Other Modeling Formalisms

Timed Automata

extension of finite state machines with clocks (continuous
time)

next lecture



Introduction Modeling Specification Algorithms Conclusions

Other Modeling Formalisms

Petri Nets: Small Example

graphical formalism (place, transitions, tokens)



Introduction Modeling Specification Algorithms Conclusions

Other Modeling Formalisms

Petri Nets: Realistic Model



Introduction Modeling Specification Algorithms Conclusions

Other Modeling Formalisms

Process Algebra

A
a−→ XX

X
b−→ A ‖ B

basic process algebra (BPA), basic parallel processes
(BPP)

infinite state system modeling (e.g., recursion)

mainly theoretical research



Introduction Modeling Specification Algorithms Conclusions

Specification of Properties

properties the verified system should satisfy

expressed in a formal logic



Introduction Modeling Specification Algorithms Conclusions

Types of Properties

Safety and Liveness

safety liveness
“nothing bad ever hap-
pens”

“something good eventu-
ally happens”

example: error state is
never reached

example: when a request
is issued, eventually a re-
sponse is generated

verification = reachability
problem, find a run which
violates the property

verification = cycle detec-
tion, find a run in which
the ‘good thing’ is post-
poned indefinitely



Introduction Modeling Specification Algorithms Conclusions

Types of Properties

Examples of Safety Properties

no deadlock

mutual exclusion is satisfied

a corrupted message is never marked as a good one

the wheels are in a ready position during the landing



Introduction Modeling Specification Algorithms Conclusions

Types of Properties

Examples of Liveness Properties

each process can eventually access critical section

each request will be satisfied

a message is eventually transmitted

there will be always another sunrise



Introduction Modeling Specification Algorithms Conclusions

Temporal Logics

Temporal Logic

temporal logic is a formal logic used to reason about
sequences of events

there are many temporal logics (see the course IA040)

the main classification: linear X branching



Introduction Modeling Specification Algorithms Conclusions

Temporal Logics

Linear Temporal Logic (LTL)

X φ neXt

F φ Future

G φ Globally

ψ U φ Until



Introduction Modeling Specification Algorithms Conclusions

Temporal Logics

LTL: Examples

a message is eventually transmitted F transmit
each request will be satisfied G (request ⇒ F response)
there will be always another sunrise G F sunrise
the road will be dry until it rains dry U rains
process waits until it access CS wait U CS



Introduction Modeling Specification Algorithms Conclusions

Temporal Logics

LTL: Examples

What is expressed by these formulas? For each formula draw a
sequence of states such that the formula is a) satisfied, b) not
satisfied.

GFa

FGa

G(a⇒ Fb)

aU(bUc)

(aUb)Uc



Introduction Modeling Specification Algorithms Conclusions

Timed Logics

Timed Logics

classical temporal logics

good for reasoning about sequences of states
may be insufficient for dealing with real time

real time extensions



Introduction Modeling Specification Algorithms Conclusions

Timed Logics

Metric Interval Temporal Logic (MITL)

extension of LTL

temporal operator can be restricted to certain interval

examples:

G(req ⇒ F≤3serv)
any request will be serviced within three time units
dry U[12,14] rains
after lunch it will rain, until that the road will be dry



Introduction Modeling Specification Algorithms Conclusions

Timed Logics

Specification in Practice

timed logics – mainly theoretical research

practical specification of properties:

classical temporal logics
often limited subset or only specific patterns



Introduction Modeling Specification Algorithms Conclusions

State Space Search

State Space Search

construction of the whole state space

verification of simple safety properties (e.g., mutual
exclusion) = basically classical graph traversal
(breadth-first or depth-first search)

graph is represented implicitly = constructed on-demand
from the model (description)



Introduction Modeling Specification Algorithms Conclusions

Logic Verification

Logic Verification

transformation to automata

Buchi automaton: finite automaton over infinite words

a word is accepted if the run of the automaton visits an
accepting state infinitely often (compare with a final state
for finite words)



Introduction Modeling Specification Algorithms Conclusions

Logic Verification

Example

property: G(req ⇒ Fserv)
negation: F(req ∧ G¬serv)



Introduction Modeling Specification Algorithms Conclusions

Logic Verification

Product Automaton

property φ → automaton for the negation of the property
A¬φ

state space of the model S + automaton A¬φ → product
automaton S × A¬φ

product automaton represents erroneous runs



Introduction Modeling Specification Algorithms Conclusions

Logic Verification

Product Automaton: Emptiness Check

model satisfies property ⇔ the language of the product
automaton is empty

verification is reduced to non-emptiness check of product
automaton

Buchi automata: non-emptiness check is performed by
(accepting) cycle detection



Introduction Modeling Specification Algorithms Conclusions

State Space Explosion

State Space Explosion

size of the state space grows very quickly (with respect to
size of the model)

the worst case: exponential increase (next slide)

theory: most interesting model checking problems are
PSPACE-complete

practice: the worst case does not occur, nevertheless
memory/time requirements are very high



Introduction Modeling Specification Algorithms Conclusions

State Space Explosion

Example

For n processes the number of states is 2n + n · 2n−1.



Introduction Modeling Specification Algorithms Conclusions

State Space Explosion

Dealing with State Space Explosion

abstraction

reduction techniques

efficient implementations



Introduction Modeling Specification Algorithms Conclusions

State Space Explosion

Abstraction

data abstraction (e.g., instead of N use {blue, red})
automated abstraction

abstract - model check - refine



Introduction Modeling Specification Algorithms Conclusions

State Space Explosion

Reduction Techniques

symmetry – consider only one of symmetric states

partial order – consider only one of equivalent
interleavings

compositional construction – build the state space in steps



Introduction Modeling Specification Algorithms Conclusions

State Space Explosion

Efficient Implementations

efficient representation of states, sets of states (symbolic
methods — Binary Decision Diagrams)

low level optimizations (e.g. memory management)

distributed algorithms on networks of workstations

randomization, heuristics – guiding toward errors



Introduction Modeling Specification Algorithms Conclusions

Model Checking: History

80’: basic algorithms, automata theory, first simple tools,
small examples

early 90’: reduction techniques, efficient versions of first
tools, applications to protocol verification

late 90’: extensions (timed, probabilistic), first
commercial applications for hardware verification

state of the art: automatic abstraction, combination with
other techniques, research tools for software verification,
hardware verification widely adopted



Introduction Modeling Specification Algorithms Conclusions

Summary

formal verification

model checking: modeling, specification, verification

modeling formalisms: guarded command language, finite
state machines, Petri nets, ...

formal property specification: temporal logics

algorithms: state space search, Buchi automata,
techniques for reducing state space explosion


	Introduction
	Motivation
	Model Checking

	Modeling
	Guarded Command Language
	Finite State Machines
	Other Modeling Formalisms

	Specification
	Types of Properties
	Temporal Logics
	Timed Logics

	Algorithms
	State Space Search
	Logic Verification
	State Space Explosion

	Conclusions

