Logical Analysis of Czech Sentence with TIL

Aleš Horák

Faculty of Informatics, Masaryk University

Botanická 68a, CZ-602 00 Brno, Czech Republic

E-mail: hales@fi.muni.cz

http://www.fi.muni.cz/~hales/disert/

Outline

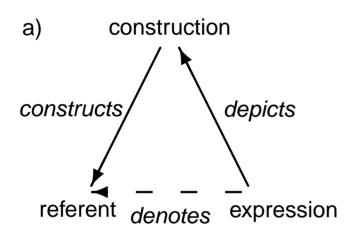
- logical analysis, TIL
- Expression-Meaning Relationship, Concept
- Logical Analysis of NL Sentences
- conclusions

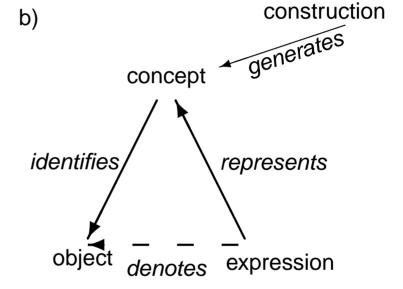
Logical Analysis in TIL (NTA₂)

- based on *compositionality principle*
- aim: prepare input for *TIL Inference Machine*
- description of *Knowledge Base Representation*
- in cooperation with Leo hadacz

TIL — Transparent Intensional Logic

Tichý, P., The Foundations of Frege's Logic, de Gruyter, Berlin, New York, 1988.


- logical system suitable as a meaning surrogate (intensions, possible worlds, temporal and modal variability)
- parallel to Montague's logic, TIL has greater expressivity
- ullet typed λ -calculus logic with particular epistemic framework
- basic types = $\{\iota, o, \tau, \omega\}$, (individuals, truth values, real numbers or time moments and possible worlds); other types: functions or higher rank types ($\iota_{\tau\omega}$ individual role, $(o\iota)_{\tau\omega}$ class of individuals or property, $(o\alpha\beta)_{\tau\omega}$ intensional relation between object of types α and β , $*_n$ class of constructions of order n,\ldots)
- \bullet constructions λ -calculus formulae with specific modes of constructions (trivialization).
- inference rules for TIL are well defined
- Normal Translation Algorithm (NTA)


- logical analysis, TIL
- ⇒ Expression-Meaning Relationship, Concept
 - Logical Analysis of NL Sentences
 - conclusions

Aleš Horák 4/30

Expression-Meaning Relationship in TIL

a) the expression-meaning relation in TIL and b) with Materna's conceptual approach.

enhancements:

- construction normal form
- new definition of concept

Concept

concept motivations:

- (a) when constructing a higher-order object (e.g. a propositional attitude), we cannot make a difference between quasi-identical constructions in place of the argument.
- (b) the meaning sustainer must follow the Functionality Principle
 - (Materna's) CONCEPT class of closed quasi-identical constructions (generated by one of them, a CONCEPT*)
 - concept normal form represents class of α and β -equivalent constructions of an object
 - Claim: normal forms of CONCEPTS* are isomorphic with CONCEPTS
 - newly defined concept normal form of an CONCEPT* (which points to the concept)

Aleš Horák 6/30

- logical analysis, TIL
- Expression-Meaning Relationship, Concept
- ⇒ Logical Analysis of NL Sentences
 - conclusions

Aleš Horák 7/30

Logical Analysis of NL Sentences

- Verb Phrase
- Noun Phrase
- Sentence Building
- Folding of Constituents
- Special Compound
- Questions and Imperatives

Aleš Horák 8/30

Attributive and Episodic Verbs

verbs:

1. attributive — ascribe a property to the subject, timeless

'Radnice stojí na náměstí.' ('The town hall stands in the square.')

 $\lambda w \lambda t [ext{stojící_na_náměstí}_{wt} ext{radnice}]$

- 2. episodic express actions (episodes)
 - \bullet event conjunction of basic propositions (primary properties) and a time proposition . . . π
 - episode class of events that are pairwise variants (differ in time proposition) . . . $(o\pi)$. Episode can have a *protagonist by*-relation individual is in *does*-relation to a class of episodes if the individual currently takes leading role in one of the episodes

'Petr zpívá.' ('Peter sings.')

 $\lambda w \lambda t [{\sf Does}_{wt} {\sf Petr} \, {\sf zpívá}_w]$

Episodic Verbs — Verbal Object and Verb

- verbal object world-dependent linkage between a *labour episode* and an *upshot episode* . . . $(o(o\pi)(o\pi))_{\omega}$
 - 1. achievement verbs labour episode and upshot episode are disjoint ('zabít králíka' or 'uvařit oběd' ('to kill a rabbit', 'to make a dinner'))
 - 2. performance verbs labour episode does not differ from upshot episode ('zpívat Ódu na radost' or 'chodit' ('to sing the Ode to Joy', 'to walk'))
- verb function that assigns a verbal object to its arguments

$$\dots (o(o\pi)(o\pi))_\omega \xi_1 \dots \xi_n$$

verb 'zničit' ('to kill off') — zničit $/(o(o\pi)(o\pi))_\omega\iota$

verbal object 'zničit krtka' ('to kill off the mole')

— [zničit Krtek] . . .
$$(o(o\pi)(o\pi))_{\omega}$$
.

Verb Aspect

 $\text{aspect} = \left\{ \begin{array}{l} X \text{ is in } \textit{imperfective} \text{ a. to verb } V - X \text{ is } \textit{engaged} \text{ in } V \text{-ing} \\ X \text{ is in } \textit{perfective} \text{ a. to } V - X \text{ has just } \textit{completed } V \text{-ing} \end{array} \right.$

Imp/Perf — world-dependent operation between instantiated verb and object denoted by the present tense expression

present tense expression 'zpívá' ('sings') ightarrow zpívá $/(o(o\pi))_\omega$

 $\lambda w \lambda t \big[\mathsf{Does}_{wt} \mathsf{Petr} \, [\mathsf{Imp}_w \mathsf{zpívat}_w] \big]$

Verb Tense

present tense

'Petr nakupuje v supermarketu.' ('Peter goes shopping into a supermarket.')

(a) 'Peter is shopping in a supermarket right now.'

$$\lambda w \lambda t \left[\mathsf{Prog}_{wt} \lambda w \lambda t (\exists x) \bigg[\Big[\mathsf{Does}_{wt} \, \mathsf{Petr} \big[\mathsf{Imp}_w [\mathsf{Nv} \, x]_w \big] \Big] \wedge \Big[\mathsf{SM}_{wt} \, x \Big] \bigg] \right]$$

(b) 'Peter has been shopping in a supermarket.'

$$\lambda w \lambda t \Big[extsf{Pf}_t igl[extsf{Onc}_w igl[extsf{Does}_{wt} \dots igr] igr] extsf{Anytime} \Big]$$

• future and past tense — time-dependent relation between $(o(o\tau))$ -objects and $(o\tau)$ -objects (time span belongs to acceptable classes of time moments as obtained by the frequency modification of the proposition's chronology)

$$\mathbf{P}\Big(<$$
frequency adverb $>\Big(<$ proposition $>\Big), <$ reference time span $>\Big)$

13/30

Active and Passive Voice

'Krtek je zničen.' ('The mole is killed off.')

function $\mathsf{K} \leftarrow \lambda x [\mathbf{Perf}_w[\mathbf{zni\check{c}it}\ x]_w]$ that takes individual x to class of all episodes which represent the killing off of x in world w

function Pass that takes (at t) object K to class of individuals that are killed off in w at t.

$$\lambda w \lambda t \bigg[\bigg[\mathrm{Pass}_t \lambda x \big[\mathrm{Perf}_w [\mathrm{zni\check{c}it} \ x]_w \big] \bigg] \ \mathrm{Krtek} \bigg]$$

Adverbial Modification

adverbial phrase:

- 1. *locational* AP property of verbal object
- 2. temporal AP analysed with verb tense
- 3. *modal* AP property of verbal object
- 4. *causal* AP relationship between the proposition containing the AP and another underspecified proposition

$$\ldots (\exists p) \Big[\mathsf{kvull}_{wt} \, p \, \lambda w \lambda t \big[\mathsf{Does}_{wt} \mathsf{Petr} \big[\mathsf{Perf}_w \mathsf{odstẽhovat_se}_w \big] \Big] \, \wedge \\ \\ \wedge \, \Big[\mathsf{About} \, p \, \mathsf{Karel} \big] \Big] \ldots$$

Auxiliary and Modal Verbs

• 'mít', 'být' ('to have' (in the auxiliary meaning usually not translated) and 'to be')

'Petr má chřipku.' ('Peter is ill with influenza.')

$$\lambda w \lambda t [\mathrm{mít_ch\check{r}ipku}_{wt}\mathrm{Petr}]$$

- 'muset', 'smět', 'moci' ('to have to' (must), 'to be allowed to' (may), 'to be able to' (can))
 - relation between an individual (or a class of individuals) and a class of episodes

'Petr musí zničit krtka.' ('Peter must kill off the mole.')

$$\lambda w \lambda t \Big[\mathrm{Must}_{wt} \mathrm{Petr} \big[\mathrm{Perf}_w [\mathrm{zni\check{c}it} \ \mathrm{Krtek}]_w \big] \Big]$$

Verb Valency

levels of verb frame representation:

1. syntactic surface structure:

dávat něco_{non-human.NP, accus., no prep.} někomu_{human.NP, dat., no prep.}

2. semantic function:

dávat Patiens Addressee

3. meaning function:

$$\mathsf{d}\mathsf{a}\mathsf{v}\mathsf{a}\mathsf{t}/(o(o\pi)(o\pi))_\omega\iota\iota$$
 $x\ldots\iota$ $y\ldots\iota:s_{wt}y,s\ldots(o\iota)_{\tau\omega}$

translation from syntactic structure to meaning function

a valency expression: • a noun group

- an adverbial phrase
- a subordinate clause
- an infinitive

Noun Analysis

'pes, člověk' ('dog', 'human')

'prezident' ('president')

'volitelnost' ('eligibility')

'výška' ('height')

'výrok', 'tvrzení' ('statement', 'assertion')

'válka', 'smích', 'zvonění'

('war', 'laughter', 'ringing')

'leden', 'podzim'

('January', 'autumn')

 $x \dots \iota$: $\mathsf{pes}_{wt} x$,

 $\mathrm{pes}/(o\iota)_{\tau\omega}$

prezident $/\iota_{ au\omega}$

volitelnost/

 $(o\iota_{\tau\omega})_{\tau\omega}$

výška $/(au\iota)_{ au\omega}$

 $p \ldots *_{\pi}$: výrok $_{wt}p$,

výrok $/(o*_\pi)_{ au\omega}$

válka $/(o(o\pi))_\omega$

 $\operatorname{leden}/(o(o\tau))$

individual from class of individuals

individual role

property of individual role

a quantity

construction of proposition from the class of constructions of proposition

class of episodes — activity that corresponds to a verb

classes of time moments — time intervals

Logical Analysis with TIL

Adjective Modifier

'červené jablko' ('a red apple')

 $x\ldots\iota:$ jablko $_{wt}x\wedge$ červený $_{wt}x$

'malý slon' ('a small elephant')

 $x \ldots \iota : [\mathsf{mal} \mathsf{\acute{y}}_{wt} \mathsf{slon}] \, x$

'zářivě červené jablko' ('a brightly red apple')

 $x \ldots \iota$: jablko $_{wt} x \wedge [$ zářivě $_{wt}$ červený $_{wt}] \, x$

Prepositional Noun Phrase

$$meaning of PNP = \left\{ \begin{array}{l} part of verbal object \\ as meaning of adverbial phrase \end{array} \right.$$

basic classification — according to the preposition

'Praha' \dots Praha $\dots \iota$

'byt v Praze'' $\dots \dots x \dots \iota$: $\mathbf{byt}_{wt} x \wedge [\mathbf{v}^1_{wt} \mathbf{Praha}]_{wt} x$

'bydlet v Praze'a... $v\ldots(o(o\pi)(o\pi))$: $v\subset \mathsf{bydlet}_w\wedge[\mathsf{v}^2_{wt}\mathsf{Praha}]_wv$

^a'Prague', 'an apartment in Prague', 'to live in Prague'

NP attachment

1. apposition

'chudák matka' ('poor mother')

 $x\ldots\iota$: chudák $_{wt}x\wedge$ matka $_{wt}x$

- 2. prepositional attachment
- 3. *genitive construction* (as argument or property)

ʻvýška'
$$^{\mathsf{a}}$$
..... **výška**... $(au\iota)_{ au\omega}$

'postava'a $\ldots y \ldots \iota$: postava $_{wt}y$

'výška postavy'^a. . . . x : x : x = [\mathbf{v} ýška $_{wt}y$] \wedge $\mathbf{postava}_{wt}y$

ʻdno řeky $^ ext{b}$ \dots x \dots ι : $(\exists y)[\mathsf{dno}_{wt}x \wedge \check{\mathsf{reka}}_{wt}y \wedge \mathsf{Of}_{wt}x\,y]$

a 'height', 'person', 'height of a person'

b'a river bed'

Pronoun and Proper Name

• conception of pragmatic meaning of *pragmatically anchored expressions* (Materna, 1998)

'Já vidím Janu' ('I can see Jane.')

$$\lambda w \lambda t \Big[\mathrm{Does}_{wt} J \acute{a} \big[\mathrm{Imp}_w [\mathrm{vid\check{e}t} \ Jana]_w \big] \Big]$$

 $J\acute{a}, Jana \dots \iota$

- interrogative pronoun questions or relative clauses
- indefinite and negative pronoun existentional quantifier and negation

Numeral and Quantificational Phrase

Deset labutí λx Petr sleduje na obloze x $]^a$ (*a)

Přesně sedm much $\lambda x [$ Honza zabil x jednou ranou $]^{\rm b}$ (**a)

[Honza zabil s jednou ranou] $\wedge s = [přesně sedm much]^c$ (**b)

[Petr sleduje na obloze s] $\wedge s$ = [deset labutí]^d (*b)

Aleš Horák 22/30

^aTen swans λx [Peter watches x overhead]

 $^{^{\}mathrm{b}}$ Exactly seven flies $\lambda x[\mathrm{Jack}\ \mathrm{has}\ \mathrm{killed}\ x$ at a single blow]

 $^{^{\}mathrm{c}}[\mathrm{Jack}\ \mathrm{has}\ \mathrm{killed}\ s\ \mathrm{at}\ \mathrm{a}\ \mathrm{single}\ \mathrm{blow}] \wedge s = [\mathrm{exactly}\ \mathrm{seven}\ \mathrm{flies}]$

^d[Peter watches s overhead] $\wedge s = [\text{ten swans}]$

Compound Constituents

Sentence Building

- subordinate clauses
- coordinate clauses

Folding of Constituents

lists of constituents

Special Compound

• extensions (numbers, date, time, ...)

Aleš Horák 23/30

Questions

match x:C

 $x \dots$ object or variable, C construction both construct (or are) one and the same object

kinds of attitudes to proposition:

Yes/No

Je Petr vyšší než Karel? (Is Peter taller than Charles?)

Petr je vyšší než Karel. (Peter is taller than Charles.)

 $x \dots o : C_{1wt}$

True : C_{1wt}

Questions — cont.

Wh-

Která hora je nevyšší na světě? (Which mountain is the highest in the world?)

Mount Everest je nevyšší hora na světě. (Mount Everest is the highest mountain in the world.)

 $s \dots o \iota : C_{2wt}$

 $\{ \mathsf{Mount_Everest} \} : C_{2wt}$

Expl

Proč je Marie smutná? (Why is Mary sad?)

Marie je smutná, protože je Petr nemocný. (Mary is sad, because Peter is ill.)

 $p \dots \pi : \operatorname{Expl}_{wt} C_3$

 $\lambda w \lambda t [\mathsf{nemocn} \mathbf{\acute{y}}_{wt} \mathsf{Petr}]^{\mathsf{a}} : \mathsf{Expl}_{wt} C_3$

Aleš Horák 25/30

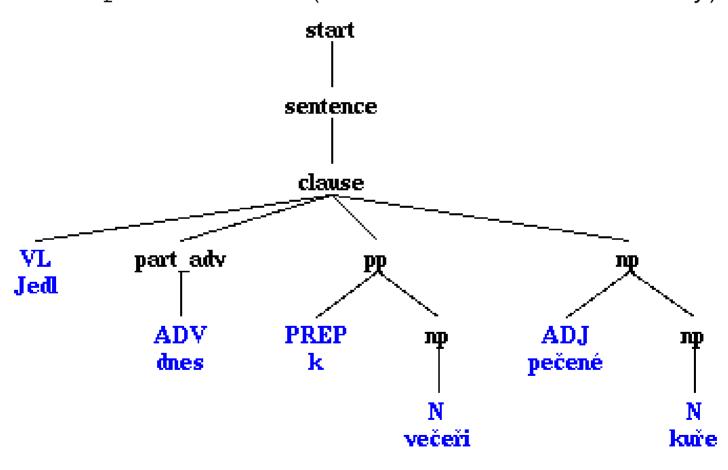
a'ill','Peter'

April 24 2002 Logical Analysis with TIL

Imperatives

Imper

Petře, uvař oběd! (Peter, make lunch!)


Petr uvaří oběd. (Peter will make lunch.)

command (indicative sentence) that makes C_{4wt} to be True.

Aleš Horák 26/30

Example — derivation tree

An example of resulting derivation tree for sentence 'Jedl dnes k večeři pečené kuře.' (He ate a roast chicken for dinner today.)

Aleš Horák 27/30

Example — logical analysis

```
evaluation of rule_schema for np 'pečené kuře'
```

4, 6, -npnl -> .{ left_modif } np .: k1gNnSc145
agree_case_number_gender_and_propagate OK
rule_schema: 2 nterms, 'lwtx(awtx(#1) and awtx(#2))'
And constrs, Abstr and Exi vars are just gathered
1 (1x1) constructions:

 $\lambda w_2 \lambda t_3 \lambda x_4 ([\mathsf{pe\check{c}en\acute{y}}_{w_2t_3}, x_4] \ \wedge \ [\mathsf{ku\check{r}e}_{w_2t_3}, x_4]) \dots (o\iota)_{\tau\omega}$

And constrs: none added

Exi vars: none added

Aleš Horák 28/30

Example — logical analysis (cont.)

evaluation of verb rule schema for the whole clause verb_rule_schema: 3 groups no acceptable subject found: supplying an inexplicit one inexplicit subject: k3xPqMnSc1,k3xPqInSc1: $On...\iota$ Clause valency list: jíst <v>#1:(1)hA-#2:(2)hPTc1, Verb valency list: jist <v>#2:hH-#1:hPTc4ti Matched valency list: jíst <v>#2:(1)hH-#1:(2)hPTc4ti time span: $\lambda t_{12} \mathbf{dnes}_{t t_{12}} \dots (o\tau)$ frequency: Onc... $((o(o\tau))\pi)_{\omega}$ verbal object: $x_{15}...(o(o\pi)(o\pi))$ present tense clause: $\lambda w_{17} \lambda t_{18}(\exists i_{10})(\exists x_{15})(\exists i_{16})([\mathsf{Does}_{w_{17}t_{18}},On,[\mathsf{Imp}_{w_{17}},x_{15}]] \wedge$ $[\text{večeře}_{w_{17}t_{18}}, i_{10}] \ \land \ [\text{pečen\'y}_{w_{17}t_{18}}, i_{16}] \ \land \ [\text{kuře}_{w_{17}t_{18}}, i_{16}] \ \land \ x_{15} = 0$ $[\text{jíst}, i_{16}]_{w_{17}} \wedge [[\text{k}_{w_{17}t_{18}}, i_{10}]_{w_{17}}, x_{15}]) \dots \pi$ clause: $\lambda w_{19}\lambda t_{20}[\mathbf{P}_{t_{20}},[\mathbf{Onc}_{w_{19}},\lambda w_{17}\lambda t_{18}(\exists i_{10})(\exists x_{15})(\exists i_{16})([\mathbf{Does}_{w_{17}t_{18}},On,[\mathbf{Imp}_{w_{17}},x_{15}]]$ $\land \left[\mathsf{ve\check{c}e\check{r}e}_{w_{17}t_{18}}, i_{10} \right] \ \land \ \left[\mathsf{pe\check{c}en\acute{y}}_{w_{17}t_{18}}, i_{16} \right] \ \land \ \left[\mathsf{ku\check{r}e}_{w_{17}t_{18}}, i_{16} \right] \ \land \ x_{15} = 0$ $[\mathsf{jist}, i_{16}]_{w_{17}} \wedge [[\mathsf{k}_{w_{17}t_{18}}, i_{10}]_{w_{17}}, x_{15}])], \lambda t_{12} \mathsf{dnes}_{tt_{12}}] \dots \pi$

Aleš Horák 29/30

Conclusions

- the mettagrammar formalism for syntactic analysis
- implementation of a fully competitive parser for Czech
- comparison of TIL to other semantic representations
- new definition of concept
- Normal Translation Algorithm
 - first exact algorithm of such extent
 - new analysis of most phenoma in Czech