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Abstract. We propose and investigate a new concept for automatic
search for attack strategies and demonstrate its use in the area of wire-
less sensor networks. We exploit mechanisms inspired by the biological
evolution, known as Evolutionary Algorithms and we use a combination
of simulation (or real system execution) with a candidate attacks gener-
ator. Each candidate is evaluated, its success is measured and used as a
guiding input for the next generation of candidates. Evolutionary Algo-
rithms perform well in case they evaluate a large number of candidate
attack strategies, and thus we have focused on applications where quality
can be assessed fast (in order of seconds and optimally less).

1 Introduction

The fundamental asymmetry between the attacker’s and defender’s position is
that an attacker needs to find only one successful attack option where the de-
fender should take care of all possibilities. This asymmetry is similar to the
relation between a guided search without processing the entire search space and
an exhaustive space search. We based our work on the assumption that guided
search for new attacks is possible – at least at the same level as searching for
defenses against attackers. While this in principle is search for attack strategies,
this approach has clear benefits for defenders as well – discovery and study of
new attacks should help the defender to build a better protection.

The advantage of automatic search provides us with the possibility to re-
liably examine all configurations within a constrained search space as formal
verification does (see [Mea03] for an exhaustive review). If we use some form of
guided search instead of brute force search we can search through even larger
spaces (yet without examining all configurations).

So far, automated constructions of attacks were proposed mainly for con-
struction of testbeds for Intrusion Detection Systems (IDSs) or optimization of
parameters for known attacks. Automated construction of attack graphs was
proposed in [SHJ+02], using symbolic model checking algorithms and with an
example application in the area of network security, where a potential violation
of the safety property is constructed from four atomic attacks. And all possible
attack vectors are constructed.

In [MGL+06], a virtual network is used to capture all network traffic with
traces of known attacks from vulnerability databases. These traffic logs can be



later used to test a particular IDS. In principle, recombination of several at-
tacks can be run in parallel to produce more obscured network traffic and more
successful attacks (against a particular IDS) can be found.

Automatic generation and analysis of attacks against IDS systems is pro-
posed in [RJM04]. Formal transition rules are specified to transform the attack
footprint from one known to a particular IDS to one that bypasses the detection.
Soundness property of rules ensures that only valid attacks are derived; therefore
method allow easy evaluation whether the attack was detected or not. Several
significant bugs were found in the well known Snort IDS using this method.

A formal derivation method capable of generating polymorphic blending at-
tacks that use encryption to hide the attack code is proposed in [FL06]. IDSs
are modeled as finite state automata and problem of finding suitable encryption
key that would not trigger IDS detection in an incoming packet is shown to
be NP-complete. A hill climbing heuristic method is used to search through a
potentially large space of possible encryption keys for near optimal solution.

Simulation with discrete event system specification (DEVS) is used to auto-
matically generate attacks by recombination from several groups of shell com-
mands in [LLL+04]. All possible combinations of the commands valid within
given constraints are generated via DEVS and attacks are obtained as a paths
between initial and compromised state.

Inspiration for the proposed concept for automatic generation of attack strate-
gies comes from our previous work on secrecy amplification protocols [vlSM09].
We used Evolutionary Algorithms1to automatically generate candidate proto-
cols and our own network simulator then provides a metric of success in terms
of secured links. The approach was verified on two compromise patterns that
arise from the key infection approach [ACP04,CS05] and probabilistic key pre-
distribution [EG02,CPS03,LN03,SM07a]. For these patterns, all published pro-
tocols we were aware of were rediscovered and a new protocol that outperforms
them was found. The approach was particulary successful when the relative posi-
tions of nodes were included into protocol steps, leading to a secrecy amplification
protocol with only linear instead of exponential increase of necessary messages
making it practical also for dense and battery limited networks. See [SM07b] for
details on automatic protocols design, examples of discovered protocols, their
performance comparison and used settings of Evolutionary Algoritms.

It was an earlier work on the evolutionary design of secrecy amplification
protocols with a suspiciously high fraction of secured links (typically 100%) that
lead us to a deeper inspection of the protocol with such a high performance.
Here we discovered either our program mistake or incomplete specification of
1 Evolutionary Algorithms are stochastic search algorithms inspired by Darwin’s the-

ory of evolution. Instead of working with one solution at a time, these algorithms
operate with the population of candidate solutions (candidate attack strategy in our
case). Every new population is formed by genetically inspired operators such as
crossover (part of strategy instructions are taken from one parent, rest from an-
other one) and mutation (change of instruction type or one of its parameter(s)) and
through a selection pressure via fitness value, which guides the evolution towards
better areas of the search space.



the evaluation function that was exploited by the evolution. Repetition of this
behaviour then lead us farther to the idea of using Evolutionary Algorithms to
search not only for defenses (like the secrecy amplification protocol), but also as
a tool for discovering new attacks (mistakes in code or incomplete specification).

The rest of the paper is organized as follows: The next section discusses rele-
vant issues of proposed schemes for automatic generation of attack strategies in a
combination with a simulator or real execution environment. The following sec-
tion focuses on generation of candidate attacks using Evolutionary Algorithms.
Then the next section demonstrates the usage of this concept in the area of the
Wireless Sensor Networks – automatic generation of eavesdropping pattern, se-
lective node capture and attacks against routing. This is followed by conclusions
summarizing results achieved.

2 Automatic design of attacks

We propose to use an automatic attack strategy generator together with simu-
lated or real execution environment to generate and test large amount of candi-
date attacks. Additionally, we propose to use Evolutionary Algorithms instead
of brute-force or random search over the space of the possible attacks.

We have developed a general concept for automatic design of attacks. It
consists of the following sequence of actions:

1. Execution of the X-th round of candidate attack strategy generator→ attack
strategy in a metalanguage.

2. Translation from the metalanguage into a domain language.
3. Strategy execution (either by a simulation or in a real system).
4. Evaluation of the fitness function (obtaining attack success value).
5. Proceed to the (X+1)-th round.

Details are as follows: Prior to actual generation we have to inspect the
system and define basic methods how an attacker may influence the system
(create/modify/discard messages, capture nodes, predict bits, etc.) and what
constitutes a successful attack. Subsequently we decompose each basic method
into a set of elementary rules and identify its parameters (e.g., modification of
x-th byte in the message, delay a message certain time x, capture a particular
node, ...). These elementary rules serve as basic building blocks of new attack
strategies. Having these blocks, we can start generating the strategies.

1. The candidate strategies are generated from elementary rules using specified
mechanisms like:
– Educated guess – field expert selects combinations of elementary rules

that might work.
– Exhaustive search – all possible combinations of elementary rules are

subsequently examined and evaluated. This becomes very inefficient for
large search spaces.
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Fig. 1. Automatic attack generation process with success evaluation. A new attack
strategy is generated in a metalanguage from elementary rules created for a specific
environment. Based on the used evaluation context, strategy is transcribed from the
metalanguage into actions in the target environment. Statistics about attack are ob-
tained and evaluated using a fitness function to provide guidance for the next generation
of attacks.

– Random search – combination of elementary rules is selected at random.
No information about the quality of the previous selection is used during
the following one.

– Guided search – actual combination of the rules is improved according
to some rating function able to compare between quality of previous
and newly generated candidate strategy. We will use the Evolutionary
Algorithms for this task.

2. Candidate strategy is translated from the metalanguage used for generating
into the domain language, which can be interpreted by the simulator or real
system.

3. Candidate strategy is executed inside simulated or real environment.
4. Impact of the attack is measured by a fitness function.
5. The whole process is repeated until a sufficiently good strategy is found or

the search is stopped.

We propose to use Evolutionary Algorithms as the mechanism for generating
candidate strategies. In contrast to the conventional design, the evolutionary
method is based on the generate&test approach that modifies properties of the
target design in order to obtain the required behavior. The most promising
outcome of this approach is that an artificial evolution can produce intrinsic
designs that lie outside the scope of conventional methods.

The tricky part and key to a successful usage of evolution is specification of a
proper fitness function. The fitness function must fulfill the following conditions:



Capture the progress towards the optimum – the fitness value of can-
didate solutions within relevant properties must capture the relationship
between actual quality of a candidate solution and the intended goal we
would like to achieve.

Sufficient granularity – if the fitness function outputs only two values like
“0% keys compromised” and “100% keys compromised”, there is no potential
for evolution to gradually increase the quality of the solution. Either the
solution for 100% compromised keys is directly found by a chance or the
solution is no closer to optimum than any other 0% solution.
E.g., if we want to identify 100 nodes (carrying overlapping sets of keys) to
compromise in order to capture most keys, replacing one node by another
within this set will probably change the amount of captured keys (progress
towards the optimum) only a little.

Fast to compute – evaluation of a single candidate solution must be fast
enough to evaluate 102 to 106 or more candidates in reasonable time. The
exact time constraint depends heavily on the solved problem, but evaluation
of one candidate should typically be completed in the order of seconds or less.
The faster the evaluation is, the higher is the fraction of examined search
space and the better is the chance to find a satisfactory solution.

3 Evolution of attack strategies

The described concept does not need to generate complete attack strategies
starting from very basic rules. In the simplest case, new attack strategies are
generated only as a recombination of already existing generic elementary at-
tacks (e.g, replay a message, change the IP address in a packet header, capture
a node). Evolutionary Algorithms are searching only for a sequence of such el-
ementary attacks that together lead successful attack. If we give more freedom
to evolution by increasing the granularity of rules, which means we decompose
the generic attacks into more elementary rules (e.g., modification of X-th bit
of message regardless of the structure of message), we get more possibilities.
Results range from improvements of existing attacks by optimization of their
parameters up to finding completely novel attacks. Note that the transition be-
tween recombination-only and novel attacks is not discrete as it depends on the
granularity of the elementary attacks we are using, and the level of freedom we
allow is often relative to the solved problem.

3.1 Re-combination of the existing attacks

Generic attacks are written as a sequence of elementary rules and evolution
creates combinations only at a generic attack level, not on the rule level. Pre-
specified generic attacks also serve as a significant evolution speed-up as it is
not necessary for evolution to develop known attacks from scratch. Example
generic attacks can be replay, reflection or interleave message attacks, forged
IP addresses in a packet header, forged ARP packets, captured packets in a



promiscuous mode or claim fake identity. Generic attacks alone may or may not
be a successful attack strategy alone. E.g., if the target of an attacker is DoS
for a selected computer, then a forged ARP packet alone is often sufficient. In
the case of data traffic exposure, it must be combined with a subsequent packet
capture of the redirected traffic.

3.2 Improvement (optimization) of known attack strategy

In this case, a particular attacker’s strategy is known in advance (e.g., capture
and extract keys from some nodes and use them to compromise communication),
we are only optimizing parameters of the strategy (e.g., which particular nodes
should be captured). This is the most common usage of Evolutionary Algorithms
in other domains – as a tool for parameter optimization.

3.3 Finding novel attack strategies

If we focus on the granularity of elementary rules, we can extend the re-combination
approach to find novel attacks mechanism. If we do not restrict ourselves only
to known attacks and their parameters, but introduce more general rules de-
scribing what else might an attacker be able to observe and manipulate inside
the system, Evolutionary Algorithms might be able to evolve a completely novel
attack. However, as the additional rules also increase the search space, the evo-
lution progress will often be slower than in previous cases and with an uncertain
outcome. But the ability of evolution to come up with unique solutions that
can be beyond human capabilities as was demonstrated in the area of hardware
circuits [Tho98] and may lead to novel attack strategies difficult to be conceived
by a human expert.

3.4 Promising areas

Not all areas have the same potential for automatic search within the described
concept. Systems with straightforward and accurate fitness functions (like the
fraction of compromised messages) are generally more suitable. Evolutionary Al-
gorithms typically work well within systems with complex relations depending
on multiple input variables, where the fitness landscape2 is not discrete but con-
tains local minimums and maximums with gradual transition. In case of attack
strategies, it is important to have a gradual decrease in security after an attack
instead of only “0% or 100% compromised”. In discrete cases, evolution is just
as effective as random search (might be still useful under some circumstances).
Particularly suitable are the environments with already existing partial com-
promise due to security/resources tradeoff that can be unbalanced by a better
attack strategy.

We expect that recombination and optimization of known attacks will provide
the most useful results. But different “way of thinking” of evolution may lead
2 Virtual hyper plane of fitness values for all possible points inside search space.



to unexpected and surprising discoveries of novel attacks. Here, the success rate
will be highly dependent on the proper choice of the elementary rules used to
build up the attack strategy.

4 Applications

Our inspiration for this work came from research on security of Wireless Sensor
Networks (WSNs), and therefore we applied the described concept to search for
attacks mainly in this domain. But the concept is not limited only to WSNs.

4.1 Optimal eavesdropping pattern

Lightweight key distribution presented in [ACP04] requires no pre-distributed
keys as link keys are exchanged directly in plaintext between neighbours “in situ”
with secrecy amplification protocol executed afterwards. Weakened attacker with
limited ability to eavesdrop in the network is assumed, where attacker’s eaves-
dropping nodes are on an equivalent technical level (radio sensitivity) to legiti-
mate nodes of the network owner, but present only in a fraction amount (results
for 1-5% ratio for which a reasonably secure network can be set were originally
presented [ACP04], and then improved up to 20% in [CS05]). The attacker’s
success is influenced by the placement of eavesdropping nodes. Original results
presented in [ACP04,CS05] were based on an assumption that eavesdropping
and legitimate nodes are both deployed in a random fashion. However, placing
nodes in a specific pattern may consistently provide better results than for the
random case. We can increase the number of secured links when evolving the
pattern for legitimate nodes or increase the number of eavesdropped links when
evolving the pattern for eavesdropping nodes.

We performed automatic search of an attacker that can precisely deploy its
nodes (e.g., manually) using our new concept. Our network simulator was used,
and candidate attack strategies were used to encode the eavesdropping deploy-
ment pattern. Square deployment field was assumed for simplicity, divided into
k2 equivalent cells, where k is the number of cells per axis. The same deployment
pattern was used for every cell. A single genome is used for encoding positions
(x and y axis) of nodes within one cell.

The fitness function is based on our simulation result as a fraction of compro-
mised link keys after executing a plaintext key exchange and fixed amplification
protocol (we used the PULL protocol as best performing yet simple amplifi-
cation protocol with a low message overhead). When evolving the pattern for
eavesdropping nodes, a higher fraction of compromised links implies a better
fitness for a given genome.

Two possible scenarios were examined. In the first scenario, actual deploy-
ment of legitimate nodes is random and not known to the attacker in advance.
One of the well performing patterns for this scenario with group of four nodes is
on figure 2. The comparison of the evolved pattern with a näıve grid-like distri-
bution shows only a slightly better result for the evolved pattern and basically
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Fig. 3. Comparison between eavesdrop-
ping nodes placement, grid-like pattern
and evolved patterns with and without
information about position of legitimate
nodes. Eavesdropping to legitimate nodes
ratio = 20%.

minimize the distance of eavesdropping nodes from any point at the deployment
plane.

In the second scenario, the attacker knows the distribution of legitimate
nodes in advance and can place eavesdropping nodes according to this knowledge.
Such scenario fits situations when secrecy amplification is used in later phases
of network lifetime when attacker might be aware of nodes positions. A simple
experiment with a single pattern for the whole (fixed) deployment of white nodes
shows that significantly better results can be obtained (with respect to unknown
deployment). A highly successful pattern of eavesdropping nodes is evolved not
only to cover by eavesdropping an area as large as possible, but also to joint
effort of eavesdropping nodes to cancel an effect of secrecy amplification based
on local positions of legitimate nodes. Such attack would be very successful in
case when legitimate nodes do not start key exchange and amplification right
after their deployment, leaving attacker some time to obtain information about
the network topology and to distribute its limited number of eavesdropping nodes
accordingly.

4.2 Selective node capture

Pre-distribution of the keys is not an easy task in the context of WSNs due to
limited memory, large set of potential neighbours, susceptibility to node cap-
ture and battery-expensive communication. Novel pre-distribution schemes were
proposed, including probabilistic pre-distribution [EG02] and later variations
[CPS04,CPS03,DDHV03,LN03,SM07a] where a random subset of the initial key
pool is assigned to each node (without replacement). Two randomly selected
nodes can find at least one shared key with a surprisingly high probability, but



an attacker can also recover the original key pool by capturing only a fraction of
the deployed nodes. Yet the typical attacker strategy is not to capture as many
keys as possible, but to compromise enough data traffic with least possible ef-
fort. In contrast to the limited eavesdropping model for the previous attack, the
assumption here is that an attacker is able to monitor all transmissions and cap-
ture few selected nodes as well. Different schemes have different node capture
resilience and results presented in original papers typically assume the random
capture of nodes. An optimization algorithm designed only to maximize the
number of captured keys (when identifications of keys carried by every node are
known to the attacker, like in the case of seed-based pre-distribution [PMM03])
might not be an optimal strategy as it is not taking the network topology into
an account.

We used our concept to generate a selective node capture strategy that is
significantly more successful at the whole network level (selective node capture
is an easy task if we want to compromise only selected link(s)). For simplicity, we
used the original probabilistic pre-distribution by Eschenauer and Gligor [EG02]
(will be denoted as EG or 1-EG) or EG that requires at least 3 shared keys to
establish the link key (denoted as 3-EG). The ring size with 200 keys and initial
pool size with 96359 keys and 19393 keys for later variation [CPS04] are used
to maintain probability of connection equal to 33%, same as most common set-
tings used for evaluations in relevant papers [EG02,CPS04,DDHV03]. The same
method can be used for more complicated schemes and we expect comparable
results.

We compare four different results from 1) random node capture, 2) capture
based on a deterministic algorithm maximizing number of extracted keys with
high occurrence inside network, 3) capture based on a deterministic algorithm
maximizing number of keys most commonly used to form link inside network
and 4) nodes selected to capture by our newly proposed concept. For simulation
purposes, network with 1200 nodes was used, with the attacker compromising
a fraction of them (from 30 to 150 nodes). The average density of the network
was 9 neighbours within one’s node transmission range3. Note that in order
to find an optimal node capture using brute force just for 30 nodes requires(
1200
30

) ∼= 6.2 ∗ 1059 enumerations.
Deterministic algorithms for case 2) and 3) is constructed as follows: During

each iteration, frequency of occurrence as a) number of nodes carrying a partic-
ular key in its keyring (maximization of captured key set) or b) number of links
secured with a particular key (maximization of compromised links) is computed
for each key from the original key pool. More common keys have one of the
higher values of occurrence. If a key is already compromised then its value is
set to zero. Significance value for each node is computed as a sum of values of
occurrence for keys carried by this node. For a given iteration of an algorithm,
the node with a highest significance value is selected for capture. No node can

3 Such number of neighbours yields to 3 directly connectable neighbours when predis-
tribution settings 33% probability of sharing key is used



40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of captured nodes

F
ra

ct
io

n 
of

 c
om

pr
om

is
ed

 li
nk

s

Selective node capture with PULL secrecy amplification, 1−EG

 

 

random capture
key set maximization capture
link set maximization capture
evolved capture

Fig. 4. Attacker’s success for different se-
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Fig. 5. Attacker’s success for different se-
lective node capture techniques for EG
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quired for link establishment with initial
pool size 19393 keys and ring size 200 keys
with PULL secrecy amplification protocol.

be selected twice4 as its value decreases to zero in the next iteration due to the
zero value of occurrence assigned to keys compromised from its keyring.

The results for the random case are an average from ten random selections
of nodes. To allow for a fair comparison with automatic design, the result for
random capture should be taken as the best value obtained from a random
selection of subsets of nodes for the same time as was given to the evolution.
We performed such evaluation and the results were only about 10% better than
the average from ten selections only and still lower than the method which
maximizes captured keys. Therefore we did not plot these results into figures for
clarity reasons.

Figure 4 shows results for basic version of EG scheme with different amounts
of captured nodes (50, 100, 150) and PULL secrecy amplification protocol [CS05]
executed at the top of the established links after the key discovery phase. A sig-
nificant improvement with the use of evolution can be seen over random capture
and slightly better results than link capture maximization algorithm as well.
Maximization of captured key set is not an efficient strategy as it does not take
into the account actual distribution of nodes. Figure 5 shows results for the same
settings, but with the 3-EG instead of 1-EG. Here we present results for compro-
mise of 30, 60 and 100 nodes as 3-EG scheme generally provides a better node
capture resilience than 1-EG for a smaller number of compromised nodes (see
[CPS04] for detailed comparison) both having approximately same resilience for
100 nodes (for random capture). Improvement of evolution over deterministic
link maximization algorithm is more significant here (ranging from 30 to 60%)
as the relation between captured keys and compromised links is more complex

4 Until all keys are captured.



here – if all keys used to establish a link key are not compromised together, this
link remains secure.

4.3 Attacks against routing

Search for the optimal eavesdropping pattern and selective node capture attack
demonstrated the ability of our concept to optimize parameters of known at-
tacks. However, the concept can be used to successfully search for completely
novel attacks as well. We employed the Evolutionary Algorithms to search for
attacks on routing algorithms for WSNs. The elementary rules were designed
to maximize attacker’s possibilities. Evolved strategy could involve elementary
instructions like drop message, store message, save message attribute x or
set message attribute x. We assumed that the attacker would have captured
and control a small number of nodes randomly distributed along the network.

We have focused on two insecure routing protocols, Implicit Geographic For-
warding (IGF) [BHSS03] and Minimum Cost Forwarding (MCF) [YCLZ01]. The
aim was to verify whether the evolution is capable of finding the known attacks
on these protocols.

MCF Minimum Cost Forwarding indirectly constructs a minimum spanning
tree rooted at the base station. The routing is based on cost fields (cost of the
optimal path from a node to the base station) established by periodic broadcast
of beacons. The process starts at the base station, which broadcasts its cost field
0. Nodes in the range of the broadcast set their cost field to the sum of their own
cost and the broadcasted cost field. Then they broadcast their cost field. After
some time, all nodes have their cost field equal to the cost of the optimal path
to the base station. Messages then float along these paths to the base station.

Two trivial MCF specific attack strategies were generated. First attack strat-
egy involved impersonation of the base station. Attacker was sending the beacon
packets with cost field equal to 0. In case the impersonation was not allowed,
the attacker kept broadcasting as low cost field as possible. We consider this re-
sult as trivial, because one of the instructions was send beacon with parameter
cost field. However the attacker understood the need of broadcasting the low
cost field to attract traffic. To enable the search for different attacks, we banned
forging the beacon packets by removing the instruction send beacon from the
set of elementary rules.

Without the ability to forge the beacons, evolution generated the replay at-
tack. In order to decrease his own cost field, attacker copied the beacon obtained
from his neighbor and rebroadcasted it without proper modification of the cost
field.

IGF Implicit Geographic Forwarding is a stateless hybrid routing/MAC proto-
col. The next hop is determined at the transmission time, during the MAC-layer
handshake. The IGF is built on the RTS/CTS MAC protocol. The routing proce-
dure starts when a source node broadcasts Open Request To Send (Open RTS).



Nodes, which are supposed to forward the message, set their Clear To Send
(CTS) response timers. The more a node is suitable for forwarding the message,
the shorter time it sets. When the response timer expires, the node sends CTS.
Then the source node sends it the data. Nodes hearing CTS cancel their timers.

Evolutionary Algorithms generated several known attacks on IGF: rushing
attack, selective forwarding, black hole attack and jamming.

By the rushing attack, attacker’s node aims to attract the traffic flowing
through the neighboring nodes. The point is that the node does not respect
the CTS timer and immediately answers the Open RTS. Thus the source node
chooses it as the next hop regardless of the real suitability.

Selective forwarding is a variant of the DoS attack. Malicious node forwards
only chosen messages and drops the rest. The ultimate variant of this attack, in
which the malicious node drops all the messages, is called the black hole attack.
Evolutionary Algorithms has found out several techniques for dropping messages.
The trivial one is using drop message instruction from the set of elementary
rules. Other techniques are more complicated. For example, the attacker does
not forward the message and just stores it into a memory slot. Subsequently he
overwrites the memory slot with another message. This approach is complicated
and unnecessary indeed, but it demonstrates the capabilities of Evolutionary
Algorithms to come up with several different ways to achieve the same goal.

Since IGF is integrated in the RTS/CTS handshake, the set of elementary
rules contains instructions such as send open RTS or send CTS, which enable the
attacker to control access to the medium. Generated attacks thus exploited these
instructions to cause frequent collisions on the medium, which totaly crippled
the neighborhood of the attacker’s node. Another variant of the attack exploited
the node’s limited buffer size for storing incoming messages. Attacker repeatedly
sending data and blocking the medium was able to fill up these buffers. Congested
nodes were then forced to drop subsequent incoming messages.

The primary goal of our search for attacks against routing was to demon-
strate the ability to find novel attack strategies. However, Evolutionary Algo-
rithms have shown their potential for optimization again. In order to extend the
average length of the routing path (this goal was set and evaluated by the fit-
ness function), attacker dropped the messages that traveled short distances. To
improve this attack strategy, we have used fixed network topology and the static
traffic pattern during evolution. The attacker was thus able to learn which mes-
sages to drop to extend the average path. This can be seen as the optimization
of the drop pattern. Figure 6 shows how the traffic pattern variability influences
the attacker’s success. Even small traffic variability significantly decreases the
attacker’s influence on the system as his strategy is optimized on the specific
traffic pattern. Note that the extension of the average length of the routing path
is caused by a massive drop rate of the messages. Thus we cannot consider this
as a successful attack on extending the routing paths, because in fact the paths
remain the same. These results have confirmed the predominating opinion that
evolution algorithms are primarily suitable for optimization problems for this
particular situation.
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network deployments.

5 Conclusions

We have proposed a novel concept for automatic generation of attack strategies
based on combination of Evolutionary Algorithms and a network simulator. The
main advantage of the approach is possibility to test and find well working
attacks in close to real or even real usage.

Usability of the proposed concept was verified on several attack vectors for
wireless sensor networks, but is not limited only to this area. Firstly, well per-
forming pattern for the deployment of eavesdropping nodes was developed as
an attack against Key Infection plaintext key distribution [ACP04] achieving
roughly twice as many compromised links compared to the random deployment.
Secondly, several variations of attacks based on selective node capture were ex-
amined. Approximately 50-70% increase in the number of compromised links was
obtained with respect to the random node capture (for the whole network) or
25-30% decrease in the number of nodes to capture, lowering the cost of attack.
These two groups of attacks are examples of automatic optimization of known
attacks.

Third examined group of attacks demonstrates the ability of our concept to
search for novel attack strategies. Two insecure routing algorithms (Minimal cost
forwarding, Implicit geographic routing) were targets of our attacks. The Evo-
lutionary Algorithms were able to find all known trivial attacks. Furthermore,
they confirmed their usability for optimization of known attacks by finding a
several patterns for dropping messages.
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