Secure Messaging, Key management

Preparation for lecture:
Design your own protocol for mutual authenticataom secure message transmission. You do
not need to actually implement the protocol. Howeyeu have to describe it on very
detailed level (e.g., what mode of cipher is usedy many blocks are encrypted, what
padding is used, when the protocol should aborttdirecorrect values, ...) and you can use
only simple cryptographic primitives available anat card (e.g., you can use DES cipher,
SHA-1 hash function or random generator but noQR&System.getSecurityDomain() secure
messaging object).
You protocol must provide:

* Mutual authentication between smart card and POcapion based on pre-shared

symmetric cryptography secret.

» Secure message exchange after authenticatiorsetEequent commands send to and
from smart card after authentication must be cemfichl and integrity protected.

Few things you should keep in the mind:
» Itis not a good idea to use long-term secretsraxctly protect ordinary
communication.

* Be aware of replay attack.
* What block cipher mode are you using, how the [\vsat type of padding is used.
* How the integrity is protected, is the apdu heade response protected as well?

You have 2 weeks to complete this task. Submit glescription of the protocol (informal
language, but detailed description what primitiwese used, why and what threat are
mitigated by the construction — should be arourtdA4 text) into IS before 9.12. and prepare
short presentation (5 minute max.) for 10.12. (rd4pl12.) lesson. Your design will be
discussed and “attacked” by your classmates.

Global Platform

Publicly available specifications [GP03] for smeatd managements covering issues of smart
card life cycles, installation of applets, remosedcmanagement and secure communication
between smart card and user application.

a. Card Manager and Security domain

The Card Manager is the card component resporfsibbdl card administration and card
system service functions:

Command Dispatch:

- Application selection

- (Optional) Logical channel management
- Command dispatching

Card Content Management
- Content verification
- Content loading

- Content installation
- Content removal

Security Management

- Security Domain locking

- Application locking

- Card locking

- Card termination

- Application privilege usage

- Security Domain privilege usage
- Tracing and event logging

The Issuer Security Domain is card component (rratependent security domains can be
present) that contains keys that the Card Issie=r inssupport of cryptographic operations for
the Card Issuer's Applications. These Security Dosnare privileged applications
established on a GlobalPlatform card to represgpliéation Providers who require a level
of key separation from the Card Issuer.

Security domain is used when some card managerperaton is required after the card
issued to card holder (e.g. upload and installatioapplet, card locking, ...). Keys carried by
this Security domain are used to verify authentiaitd integrity of request (Load File) and to
provide confidentiality of transferred data. A Logite may contain one or more DAP (Data
Authentication Pattern) Blocks that allow an entitizer than the loading entity to verify the
authenticity and the integrity of the Load File B&lock.

b. Smart card life cycles

The smart card passes various logical life cy@eestbetween manufacture and final
destruction. These life cycle states define whigérations can be performed with the card.
The following card Life Cycle States shall apply:

1. OP_READY —card is ready for uploading of key diversificatidata, any application
and issuer specific structures.

2. INITIALIZED - card is fully prepared but not yet issued tadzolder.

3. SECURED- card is issued to card holder. Card managerguassible only throw
Security domain in secure sense (installationgriesil applets etc.).

4. CARD_LOCKED - card is locked due to some security policy amdiata
management can be performed. Card can be lock&&dyrity domain and later unlocked
as well (switch back to SECURED state).

5. TERMINATED - card is logically “destroyed” due to card expoa or detection of
the severe security thread.

The card Life Cycle States OP_READY and INITIALIZEDe intended for use during the
Pre-Issuance phases of the card’s life. The s&E€4JRED, CARD_LOCKED and
TERMINATED are intended for use during the Posti#sse

phase of the card although it is possible to teatainhe card at any point during its life.

c. GP APDU commands
Following APDU commands are defined to manage curdethe smart card:

» DELETE - delete uniquely identifiable object (e.g. JavalCaplet)
« STORE_DATA — upload content of single data object

» GET_DATA - used to retrieve a single data object

» SET_STATUS —set Life Cycle status

» GET_STATUS —return Life Cycle status

* INSTALL — initiate installation, typically (JavaCard) applet

* LOAD - upload file from PC to smart card, e.g. JavaCapdfita

* PUT_KEY - update value of specified key

d. Secure Messaging — Secure channel protocol

Secure messaging stands for the process, whictdslead to mutual authentication of the
smart card and PC and optional creation of theemtittated encrypted tunnel between smart
card and PC. Details of the process are descnib®gpen Platform specifications [GP03].

Mutual authentication and computation of sessigrsl@nsist from two phases (two APDU
commands exchanged with smart card):

1. INITIALIZE UPDATE
2. EXTERNAL AUTHENTICATE

First phase (INITIALIZE UPDATE): PC application s#8-bytes block of random data to
smart card (called host random or host challergmprt card generates its own 8-bytes
random block (card random/challenge). Using hodtaard challenge forms derivation data
and encrypt them using card specific static enaypkey (static ENC key - created during
key diversification process). Result of this opierais the session key (session ENC key).

Card challenge (8 bytes) Host challenge (8 bytes)

. !

Card challenge
(4 bytes right half)

Host challenge
{4 bytes left half)

Card challenge
{4 bytes left half)

Host challenge
(4 bytes right half)

'

'

'

'

Derivation data (16 bytes)

figure 1 Generation of the derivation data [GP03]

Static EMC key
(16 bytes)

v

—P(SDES—ECE)—P

figure 2 Generation of session ENC key [GP03]

Derivation data
(16 bytes)

Session ENC key
(16 bytes)

Session key is used for computation of the autbatincard cryptogram. Cryptogram is
computed using MAC operation. Input data are cartedcard challenge andhost
challenge padded by the block (‘80 00 00 00 00 00 00 00yptogram is send together with
card challenge back to PC.

Second phase (EXTERNAL AUTHENTICATE): PC applicaticheckscard cryptogram
send by card and computes its own cryptogramst Cryptogram). Algorithm for the host
cryptogram computation is again based on 3DES i€ @®de.

Data
MAC

i)

Data Padding | ICV (8 bytes) |4

[I

Far each
8 bytes

XOR J#——————

L J

Session key ED 3ZDES-ECE

figure 3 Algorithm for MAC computation [GP03]

In case of the equivalence of the received and cbecieard cryptograms, host cryptogram
is send back to card together with MAC of whole APEBommand (EXTERNAL
AUTHENTICATE).

Algorithm for host cryptogram is same with swappedt and card challenge.

Session encryption and MAC keys are then usedgaterconfidential authenticated tunnel
between smart card and PC application for all syiset APDU commands.

Secure channel

Secure channel is vital component for the moshefsecurity related applications that
involves smart cards. Basically, it should provedgablishment of robust channel with
confidentiality and integrity between smart cardgjuapplet, Card Manager) and second
entity (typically PC application, server-side apgtion). Various issues should be taken in to
account.

Usage scenario and expected attackers

The general analysis of the system and appropratgerties of the secure channel should be
based on the usage scenario and the abilitieeatpected attackers. Following questions
should be

1. What are the sensitive objects (keys, data, funs}i®

2. What are these sensitive objects used for and iwtlaé data flow of these objects?

3. What are the capabilities of the attackers (fundiagls, knowledge)?

4. What are the points where an attacker can obskevsyistem (dump of exchanged
messages, debugging, ...)?

5. Which parts of the system must be trusted to obstgmired functionality (less the
better)?

Confidentiality and integrity of command data

Data exchanged between smart card and PC canebeepted and modified on binary level
in various levels (USB, PC/SC). Therefore, exchdmdggta should be encrypted and integrity-
protected by cryptographic manners.
* Both incoming and response apdu should be protected
» Integrity should protect also apdu header, not dalg part.
» Key for encryption and MAC computation should bHeaitent otherwise potential
threat from data mismatch exists.
* Header semantics should be protected as well (ssifiddice against traffic analysis).
* Long term secrets should be used only for sessga Herivation and not for
ordinary usage.
* Proper response in case of corruption — when ctedupommand is detected, channel
should be closed and relevant information shouldtbeed into on-card security log.
* Vadenay’s attack against padding should be takaedount — V. attack allows to
decrypt data without knowledge of respective kéythe information about data
correctness from decryption oracle is availablart@ttacker.

Replay attack

Defense against the replay attack is an importa#sure, as an attacker can usually easily
capture, block and replace commands between car@@nTherefore, same apdu command
(on encrypted level) received two times must beatejd and logged. The protection measure
must be able to detect replay a) within actualisas®) between different parallel sessions
and c) from previous sessions. Both incoming asdoase apdu should be protected. The
replay attack can be prevented by the combinatidgheoderivation of unique session keys
and freshness nonce. Both card and PC must cotdtiiio resulting derivation data,
otherwise one party can force session keys toine &g setting same derivation data.
Freshness nonce can be either sequence counpeopbally better) hash stream starting from
derivation data and updated each time a new comiisasehd (both incoming and response).

Atomicity of critical operations

The critical operations should be atomic both odeclevel (e.g., two variables are either
changed both or none of them — use JCSystem.begiraction()) and on logical operations
level (e.g., if command should either encrypt acrgpt mode supplied data with specified

key than mode, key and data should be ideally sétiih same command). When using
transactions, be aware of Rollback attack, wheratt@atker cut power inside the transaction —
all changes are then restored back to originalegincluding the security usage counters —
which might be undesirable.

Robustness against side channel attacks (power analysis, fault attacks)

The side channel attacks prove to be a severet thgainst the security of smart cards. The
threat mitigation involves both the card manufagtcryptographic coprocessor) and

developer of applet. Typically, if the coprocesisditawed and can be attacked by the
assumed attacker (cryptographic keys can be eatfatttan this version of the card should
not be used (even when techniques that are abilait@ttackers success still might exists —
e.g., key derivation technique proposed by Kodlirartation of number of packets encrypted
by the same key etc.). Second layer that can hekaitl is the applet code itself and data that
are manipulated. Typically, single instructiondlu processor can be observed and thus
reverse engineering can be employed by an attaclabtain parts of original code back.

To prevent fault attacks, operation might be exagiivice and results should be compared. If
the results mismatch than nothing should be giveouwput. CRT version of RSA should not
be used as is highly vulnerable by the fault attack

Measures against side channel attacks might be gpécific for given card — therefore the
particular measures should not confuse originaécethe clarity and correctness of the code
before the measures are applied is very impori&inite nice and correct code first and then
add reasonable measures against side channelsattack

Robustness against incorrect attempts

Depending on the usage scenario, data send teeaaved from the card might be corrupted
either by transmission error or by an attacker.imumutual authentication, the challenge
should change next time if the response cryptogsamot correct (do not allow multiple tries
for same challenge). The secure channel shoultbbedwhen unexpected data are received.

Resilience against traffic analysis

Length of commands, frequency etc. can help aclkataa lot when building mental model of
applet/protocol functionality. As the dump of th@amunication between valid card and
application is relatively easy to obtain (USB dump@sC/SC logger, virtual reader),
transcription of the correct communication provitt#sof information about process, even
when the data itself are encrypted.

Following defense measures can be employed:

1. Internal semantics of the commands can be hidderumform structure with
fixed length (maximum length of the command) anties@eader. The
differentiation between logical functions insidepbgi are then given by nested
internal header that is stored in encrypted pa#pofu command (basic apdu
header itself cannot be encrypted). An attackelnaut knowledge of encryption
keys thus sees only the commands with same lemgthhasic header.

2. Still an attacker can induce some knowledge froenattier of the commands. E.g.
he can assume that first two commands provide rhatitbhentication and third
one the “secret” function he likes to attack. Tamer this threat, dummy traffic
must be introduced. Parameter in nested headecavily the information if the
command is valid or dummy one and card will beh@apectively. If an attacker
is able to use power analysis to observe appletseh the dummy command
should induce the same sequence of instructiotiseaglid one — but over the
dummy internal values.

« HMAC or OMAC instead of hash or simple keyed hash
* Include command header into MAC
* Pre-share two keys (encryption, mac) or derive froaster instead of one only

» Use pre-shared keys only to derive session keysi@ekeys are used than to
generate cryptograms tec.

» All parts of resulting session keys must be depetde both contributions from
PC and SC. One party cannot force resulting keyspecific value.

* Replay attack — hash chain better than counter only

» Be aware of impossibility of verification, when diom value is decrypted.

* MAC(ENC(data))

» Close channel on error

» use CBC rather than ECB

* be aware of cut attack in CBC

» be aware of block exchange in ECB mode

* do not use XOR for combination of values — use HMiA§tead

» do not use symmetric protocol messages (PC->SCotéensend SC->PC)

[GPO3] GlobalPlatform,
http://www.globalplatform.org/showpage.asp?codes#ipations

