Check for
updates

SYMBIOTIC-WITCH 2: More Efficient
Algorithm and Witness Refutation™

(Competition Contribution)

Paulina Ayaziova® and Jan Strejéek® ®9

Masaryk University, Brno, Czech Republic
{xayaziov,strejcek}@fi.muni.cz

Abstract. The new version of the witness validator SymBIOoTIC-WITCH
follows more precisely the (fixed version of the) semantics of verifica-
tion witnesses. This makes the tool more efficient as it can benefit from
sink nodes. Further, the tool can now refute a witness. To sum up,
SyMBIOTIC-WITCH 2 can confirm or refute violation witnesses of reach-
ability safety, memory safety, memory cleanup, and overflow properties
of sequential C programs.

1 Witness Validation Approach

The basic principle of the witness validator SYMBIOTIC-WITCH 2 remains the
same as in the previous version of the tool [1], i.e., it symbolically executes [9] the
given program along execution paths specified by the corresponding witness. The
substantial differences were induced by a more precise interpretation of violation
witnesses and by the commmunity decision to support witness refutation.

We originally thought that every node of a witness automaton has an im-
plicit self-loop that can be taken under each program instruction. After SV-
COMP 2022, we learnt that the implicit self-loop of a node ¢ can be used only
by edges of control flow automata (CFA) that are “either

(a) not matched by the source-code guard of any other outgoing transition of ¢
or

(b) are matched by the source-code guard of some other outgoing transition of
q that also matches a successor CFA edge.” [5]

This definition is problematic in particular because it refers to CFA and there
is no standardized translation of C programs to CFA. Especially the case (b)
heavily depends on the granularity of constructed CFA as it refers to adjacent
edges. As the semantics of verification witnesses has to be unambiguous, we
have convinced the community that the case (b) should be removed from the
semantics. Still, the case (a) is viable and it considerably reduces the applicability
of implicit self-loops.

* This work has been supported by the Czech Science Foundation grant GA23-06506S.

© The Author(s) 2023
S. Sankaranarayanan and N. Sharygina (Eds.): TACAS 2023, LNCS 13994, pp. 523-528, 2023.
https://doi.org/10.1007/978-3-031-30820-8 _ 30

https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/
http://orcid.org/0000-0003-1072-8137
http://orcid.org/0000-0001-5873-403X
https://doi.org/10.1007/978-3-031-30820-8_30
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30820-8_30&domain=pdf

524 P. Ayaziova and J. Strejcek

SYMBIOTIC-WITCH 2 works as follows. It reads a given violation witness and
the corresponding program. The program is symbolically executed and every
state of symbolic execution is accompanied by the set of witness automaton
nodes that are reached by the executed program path. Note that these sets are
dramatically smaller than in the previous version of our tool due to the more
precise semantics of implicit self-loops. If the set does not contain any node
except sink nodes, the symbolic execution of the corresponding path is stopped.
This brings a significant speed up compared to the previous version of our tool
where this situation cannot happen.

Another significant difference to the previous version is the handling of state-
space guards of a given witness. Consider a symbolic execution state and the as-
sociated set of witness automata nodes. Further, assume that the next instruction
processed by the symbolic execution matches the source-code guards of some au-
tomata edges leading from the set of nodes. For each state-space guard of these
edges, we create a fork of symbolic execution and restrict the next symbolic exe-
cution state to satisfy the state-space guard. The set of nodes accompanying the
restricted symbolic execution state contains only target nodes of the edges with
the enforced state-space guard. Note that the previous version of our validator
ignores state-space guards unless the witness automaton contains a single path
from the entry node to the violation node.

If the symbolic execution detects a violation of the considered property and
the tracked set of witness automata nodes contains a violation node, the witness
is confirmed. The witness is refuted if

— the symbolic execution ends without finding a property violation represented
by the witness and

— there was no execution path unexplored due to the limitations of the em-
ployed symbolic executor (e.g., our executor based on KLEE [6] cannot han-
dle symbolic floats and thus it instantiates them with a concrete value and
ignores executions with other values) and

— the witness uses only source-code guards supported by our tool (see below).

The witness automata use various attributes to specify source-code guards
(saying which instructions correspond to a given witness automaton edge) and
state-space guards (restrictions on program states). SYMBIOTIC-WITCH 2 sup-
ports only selected attributes for source-code guards, namely the line number
of executed instructions, the information whether true or false branch is taken,
and the information about entering a function or returning from a function.
Regarding the state-space guard, our tool uses only the return values of the
__VERIFIER_nondet_x* functions. The limited support of attributes means that
our tool can misinterpret a given witness automaton, i.e., it can consider some
execution path to be represented by the automaton even if it is not, and vice
versa. In practice, this is not a big issue as many verification tools produce vi-
olation witnesses with only the supported attributes and some other tools use
unsupported attributes to provide additional information (like offset of an in-
struction in the source code) that typically do not change the represented set of
execution paths.

SymBIOTIC-WITCH 2: More Efficient Algorithm and Witness Refutation 525

2 Software Architecture

The tool SYMBIOTIC-WITCH 2 is integrated to the SYMBIOTIC framework [7]
and it can be roughly divided into two components. The first component is a
set of python scripts (many of them shared with other SYMBIOTIC tools) that
preprocess the code. More precisely, they set the options for optimisations and
CLANG sanitizer depending on the considered property, translates the given C
program into LLVM intermediate representation via CLANG, and links necessary
function definitions.

The second component called WITCH-KLEE takes the preprocessed program
and the witness, and it runs the actual witness validation. WITCH-KLEE is de-
rived from the symbolic executor JETKLEE, which is a fork of KLEE [6] used
in the SYMBIOTIC framework. WITCH-KLEE employs RAPIDXML for parsing
witnesses in the GraphML format [5] and Z3 [10] as the SMT solver in symbolic
execution.

Both components of SYMBIOTIC-WITCH 2 run on LLVM 10.0.1.

3 Strengths and Weaknesses

On the positive side, SYMBIOTIC-WITCH 2 can efficiently handle violation wit-
nesses providing return values of __VERIFIER_nondet_* functions as well as
those describing execution paths by taken branches.

Further, if SYMBIOTIC-WITCH 2 confirms a witness containing only attributes
supported by the tool, then the witness is indeed valid. If SymBIOTIC-WITCH 2
confirms a witness with some attributes not supported by the tool, then the
program really violates the considered property and this violation can, but does
not have to be represented by the witness. If SYMBIOTIC-WITCH 2 refutes a wit-
ness, then this witness is indeed invalid. The only exception is the case when the
program contains some inner nondeterminism that is lost by the translation to
LLVM. For example, consider a program that contains a test £(x) < g(x). Due
to the C standard, the functions f (x) and g(x) can be evaluated in any order.
If a violation witness prescribes one order of evaluation and CLANG translates
the program such that the functions are evaluated in the opposite order, then
the witness can be refuted even if it is correct. We can construct such a witness,
but we have not yet come across any of these in practice. We plan to extend our
tool with a check for this kind of inner nondeterminism in order to guarantee
the correctness of refutation answers.

Our tool also has some weaknesses. Some of them come from the fact that
we do not support all possible attributes of witnesses. We decided not to invest
more effort to support other attributes as we expect the witness format to be
revised soon due to detected issues in its semantics. In spite of this, the tool
correctly confirmed 35536 and refuted 3108 violation witnesses of SV-COMP
2023. On the negative side, the tool also confirmed 10 witnesses of memory safety
violation marked as invalid. Nine of these incorrect validation results stem from
two verification tasks where our symbolic executor reported a valid-memtrack
violation while the tasks are marked true for this property.

526 P. Ayaziova and J. Strejcek

SYMBIOTIC-WITCH 2 struggles to evaluate two specific classes of witnesses.
The first class are the witnesses for the programs in the ECA subcategory. These
generated artificial programs are hard to compile and optimize. Thus, our tool
sometimes runs out of time during the code preprocessing phase.

The second class are the witnesses that contain edges describing declarations
and initializations of global variables (e.g., some witnesses produced by Ultimate
Automizer [8]). Our algorithm processes these declarations and initializations in
a separate step and starts the symbolic execution of a given program (and thus
also the witness tracking) in the function main. This means that the witness
tracking cannot pass any witness edge representing instructions that are not
reachable from main. Hence, SYMBIOTIC-WITCH 2 can refute some witnesses of
the second class even if it finds the property violations they represent. This issue
can be seen as another consequence of the fact that the semantics of witnesses
is formulated over CFA and the translation of C programs to CFA is not given.

4 Tool Setup and Configuration

The archive with SYMBIOTIC-WITCH 2 is available in the SV-COMP archives.
To run the validator, use the command

./symbiotic [--prp <prop>] [--32 | --64] --witness-check <witness> <prg>

where <witness> is a violation witness in the GraphML format, <prg> is the
corresponding C program, and <prop> is the considered property. The property
can be supplied as a .prp file or one of the following shortcuts: no-overflow,
valid-memsafety, or valid-memcleanup. The default property is unreachabil-
ity of the function reach_error(). The switches --32 and --64 specify the
considered architecture, 64-bit being the default.

Both components of the tool are also available on GitHub with build instruc-
tions in the respective README . md files. To start validation, build each component
separately, add the path to the built witch-klee executable to $PATH and run
SYMBIOTIC as previously described.

5 Software Project and Contributors

SYMBIOTIC-WITCH 2 has been developed at Faculty of Informatics, Masaryk
University by Paulina Ayaziova under the guidance of Jan Strejéek. The tool is
available under the MIT license and all used tools and libraries (LLvM, KLEE,
73, RapIDXML, SYMBIOTIC) are also available under open-source licenses that
comply with SV-COMP’s policy for the reproduction of results. The source code
of WiTcH-KLEE (the competing version tagged SV-COMP23) can be found at:

https://github.com /ayazip/witch-klee
The source code of the respective version of SYMBIOTIC is available at:

https://github.com /staticafi/symbiotic/tree/witch-klee

https://github.com/ayazip/witch-klee
https://github.com/staticafi/symbiotic/tree/witch-klee

SymBIOTIC-WITCH 2: More Efficient Algorithm and Witness Refutation 527

Data Availability Statement. All data of SV-COMP 2023 are archived as described
in the competition report [3] and available on the competition web site. This includes

the verification tasks, results, witnesses, scripts, and instructions for reproduction. The
version of SYMBIOTIC-WITCH 2 used in the competition is archived together with other
participating tools [4] or separately [2].

References

1.

10.

Ayaziova, P., Chalupa, M., Strej¢ek, J.: Symbiotic-Witch: A Klee-based violation
witness checker (competition contribution). In: Fisman, D., Rosu, G. (eds.) Tools
and Algorithms for the Construction and Analysis of Systems - 28th International
Conference, TACAS 2022, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022,
Proceedings, Part II. Lecture Notes in Computer Science, vol. 13244, pp. 468-473.
Springer (2022), https://doi.org/10.1007/978-3-030-99527-0 33

. Ayaziova, P., Strejéek, J.: Symbiotic-Witch 2. Zenodo (2023). https://doi.org/10.

5281 /zenodo.7630406

Beyer, D.: Competition on software verification and witness validation: SV-COMP
2023. In: Proc. TACAS (2). LNCS , Springer (2023)

Beyer, D.: Verifiers and validators of the 12th Intl. Competition on Software Verifi-
cation (SV-COMP 2023). Zenodo (2023). https://doi.org/10.5281 /zenodo.7627829

. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Lemberger, T., Tautschnig,

M.: Verification witnesses. ACM Trans. Softw. Eng. Methodol. 31(4), 57:1-57:69
(2022). https://doi.org/10.1145/3477579, https://doi.org/10.1145/3477579
Cadar, C., Dunbar, D., Engler, D.R.: KLEE: Unassisted and automatic gener-
ation of high-coverage tests for complex systems programs. In: OSDI. pp. 209-
224. USENIX Association (2008), http://www.usenix.org/events/osdi08/tech/
full_papers/cadar/cadar.pdf

Chalupa, M., Mihalkovi¢, V., Rechtackova, A., Zaoral, L., Strejéek, J.: Symbi-
otic 9: String analysis and backward symbolic execution with loop folding (compe-
tition contribution). In: Fisman, D., Rosu, G. (eds.) Tools and Algorithms for the
Construction and Analysis of Systems - 28th International Conference, TACAS
2022, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part
II. Lecture Notes in Computer Science, vol. 13244, pp. 462-467. Springer (2022),
https://doi.org/10.1007/978-3-030-99527-0 32

Heizmann, M., Chen, Y., Dietsch, D., Greitschus, M., Hoenicke, J., Li, Y., Nutz,
A., Musa, B., Schilling, C., Schindler, T, Podelski, A.: Ultimate Automizer and the
search for perfect interpolants - (competition contribution). In: Beyer, D., Huisman,
M. (eds.) Tools and Algorithms for the Construction and Analysis of Systems - 24th
International Conference, TACAS 2018, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece,
April 14-20, 2018, Proceedings, Part II. Lecture Notes in Computer Science, vol.
10806, pp. 447-451. Springer (2018), https://doi.org/10.1007/978-3-319-89963-3
30

King, J.C.: Symbolic execution and program testing. Communications of ACM
19(7), 385-394 (1976), https://doi.org/10.1145/360248.360252

de Moura, L.M., Bjgrner, N.. Z3: an efficient SMT solver. In: TACAS
2008. LNCS, vol. 4963, pp. 337-340. Springer (2008), https://doi.org/10.1007/
978-3-540-78800-3 24

https://sv-comp.sosy-lab.org/reproduce.php/
https://doi.org/10.1007/978-3-030-99527-0_33
https://doi.org/10.5281/zenodo.7630406
https://doi.org/10.5281/zenodo.7630406
https://doi.org/10.5281/zenodo.7630406
https://doi.org/10.5281/zenodo.7630406
https://doi.org/10.5281/zenodo.7627829
https://doi.org/10.5281/zenodo.7627829
https://doi.org/10.1145/3477579
https://doi.org/10.1145/3477579
https://doi.org/10.1145/3477579
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
https://doi.org/10.1007/978-3-030-99527-0_32
https://doi.org/10.1007/978-3-319-89963-3_30
https://doi.org/10.1007/978-3-319-89963-3_30
https://doi.org/10.1145/360248.360252
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24

528 P. Ayaziova and J. Strejcek

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Symbiotic-Witch 2: More Efficient Algorithm and Witness Refutation
	1 Witness Validation Approach
	2 Software Architecture
	3 Strengths and Weaknesses
	4 Tool Setup and Configuration
	5 Software Project and Contributors
	References

