
TACAS
SV-COMP
Artifact

2020
Accepted

Symbiotic 7: Integration of Predator and More�

(Competition Contribution)

Marek Chalupa1��, Tomáš Jašek1, Lukáš Tomovič1,
Martin Hruška2, Veronika Šoková2, Pauĺına Ayaziová1,

Jan Strejček1 , and Tomáš Vojnar2

1 Masaryk University, Brno, Czech Republic
2 Brno University of Technology, FIT,

IT4Innovations Centre of Excellence, CZ, Brno, Czech Republic

Abstract. Symbiotic 7 brings improvements in all parts of the tool.
In particular, we integrated the advanced shape analysis implemented
in Predator to our instrumentation process for memory safety checking.
Further, we extended our slicer to correctly handle non-terminating pro-
grams. This new slicing is applied in termination analysis, where we also
added instrumentation for detection of simple cycles in the program state
space. The witness generation process changed as well.

1 Verification Approach

Symbiotic 7 follows the same basic schema as all previous versions [4,5]: the
program to be verified is first instrumented (if needed), then reduced by static
program slicing, and finally symbolically executed using Klee [2]. We describe
the main modifications since Symbiotic 5 (participating in SV-COMP 2018)
as modifications in Symbiotic 6 (competing in 2019) have not been published.

Memory safety checking improvements Symbiotic uses a static pointer
analysis to detect instructions that can potentially violate memory safety. To
check these instructions, Symbiotic 5 [5,3] instrumented the program with code
that keeps records about allocated memory and uses the records to assert the
validity of potentially misbehaving instructions. Then we sliced the program
with respect to these assertions and called Klee to check assertion validity.

Since Symbiotic 6, we slice the program directly with respect to the poten-
tially misbehaving instructions without inserting any additional code. Then we
call Klee to check memory safety of the sliced program.

Symbiotic 7 newly integrates Predator [6], a static analyzer specialized
on memory safety. We first run Predator in its over-approximating mode and

� M. Chalupa, T. Jašek, P. Ayaziová, and J. Strejček have been supported by the Czech
Science Foundation grant GA18-02177S. M. Hruška, V. Šoková, and T. Vojnar have
been supported by the IT4Innovations Excellence in Science project (LQ1602) and
the FIT BUT internal project FIT-S-20-6427.

�� Jury member and corresponding author: chalupa@fi.muni.cz.

c© The Author(s) 2020
A. Biere and D. Parker (Eds.): TACAS 2020, LNCS 12079, pp. 413–417, 2020.
https://doi.org/10.1007/978-3-030-45237-7_31

http://doi.org/10.5281/zenodo.3678328
http://orcid.org/0000-0001-5873-403X
http://orcid.org/0000-0002-2746-8792
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45237-7_31&domain=pdf

in a configuration that analyses all branches in the given program and tries to
recover from found errors. If Predator says that the program is safe, we simply
answer true. Otherwise, we take bug reports from Predator and combine them
with results of our static pointer analysis to get a more precise (i.e., smaller) set
of potentially misbehaving instructions. Then we proceed like Symbiotic 6.

Symbiotic 7 is also the first version that can distinguish between valid-
memcleanup and valid-memtrack properties. To do this, our clone of Klee now
reconstructs the shape of memory at the program exit if unfreed memory is
found: Klee starts with local and global variables and resolves pointers in these
(if any). Then it resolves pointers in the pointed memory, etc. This way we can
find out if the unfreed memory is reachable via a chain of dereferences or not.

Termination analysis Symbiotic 6 introduced a simple support for termi-
nation property: a call to VERIFIER error is inserted before trivial infinite
loops, e.g., while (true); loops. If the symbolic execution detects that such a
call is reachable, Symbiotic answers false as the program can reach an infinite
loop. If all paths of the program are explored by symbolic execution without
reaching any of these calls, all program executions are clearly terminating and
we answer true (an infinite program path cannot be fully explored by symbolic
execution). Note that program slicing was disabled for non-termination checking
in Symbiotic 6 as the slicer could remove infinite loops in some specific cases.

Symbiotic 7 brings two improvements. First, since we extended our slicer
to correctly handle non-terminating programs [7], we now apply slicing with
slicing criteria set to all exit points (including the instrumented error calls) of the
program. Second, we instrument the program with checks for simple cycles in the
state space. The instrumentation detects non-nested loops with a single entry
for which it can conservatively determine a set {V1, . . . , Vk} that includes all
variables potentially modified by the loop. At the beginning of the loop body, we
insert assignments that store the value of each variable Vi into a new variable V ′

i .
At the end of the loop body, we insert the assertion assert(V1 �= V ′

1 ∨ . . .∨Vk �=
V ′
k) to check a change in the vector of these variables. If this assertion is violated,

the program has a non-terminating execution.

Error path replay Although the slicer in Symbiotic now provides algorithms
that preserve non-termination properties of programs, outside the Termination
category we still use the original non-termination insensitive slicing as it may re-
move more instructions. The price is, however, that Symbiotic may report false
alarms: an unreachable error location situated below an infinite loop may be-
come reachable when the loop is sliced out. To fix this issue, we try to reproduce
each error found by symbolic execution in the original (unsliced) program. If the
error is reproduced, we report it as a real error. Otherwise, we say unknown.

Improved witness generation Symbiotic 5 and 6 generated violation wit-
nesses that describe only the initialization of non-deterministic variables at the

414 M. Chalupa et al.

beginning of the main function. Symbiotic 7, on the other hand, generates vi-
olation witnesses that contain a complete test vector, i.e., the whole sequence
of values returned from VERIFIER nondet * functions during the error path
replay. To get and correctly identify all these values, we have modified our fork
of Klee to support interpretation of VERIFIER nondet * functions (and other
undefined functions in general) internally. Currently, more than 99% of our vio-
lation witnesses (outside the Termination category) are confirmed. Symbiotic 7
still generates trivial correctness witnesses if no error is found.

Other improvements Other improvements in Symbiotic 7 used in SV-
COMP 2020 include a faster data dependence analysis (a part of slicing) and
better handling of assume statements in the slicer. Symbiotic is now also able
to continue in verification if the instrumentation or slicer crashes or exceeds the
time limit. In such a case, Klee is run on the original program which has been
only optimized by standard llvm optimizations. For SV-COMP 2020, we set
the time limit of 400 s on instrumentation and the time limit of 300 s on slicing.

2 Software Architecture

Symbiotic 7 is built on top of llvm 8.0.1 [8]. The tool consists of a set of
modules written in C++ that process llvm bitcode, and Python scripts that
chain these modules according to given configuration.

For use in Symbiotic, we have made several bugfixes in Predator’s llvm
backend and ported it to llvm 8.0.1. Further, we have introduced distinguishing
between safe and possibly erroneous program instructions.

Symbiotic uses its own fork of Klee that contains several modifications
compared to the mainstream Klee. In particular, the fork has been extended
to handle symbolic-sized memory allocations, to process marks delimiting the
lifetime of scoped variables, to check for memory leaks, and to generate violation
witnesses in the SV-COMP format.

3 Strengths and Weaknesses

In SV-COMP 2020 [1], Symbiotic 7 won the SoftwareSystems category and
scored second in the MemSafety category and the FalsificationOverall meta cat-
egory. Overall, Symbiotic ended up on the fourth place.

The main reason for winning SoftwareSystems is having only a few incorrect
answers. Indeed, Symbiotic did not win in the number of correct answers in any
of the SoftwareSystems subcategories. However, we had only 4 incorrect answers
and all of them in the subcategory DeviceDriversLinux64. This subcategory is
huge and these incorrect answers have only a small impact on the weighted score.

In MemSafety, we took the second place after PredatorHP which executes
several instances of the Predator tool with different configurations in parallel.
Symbiotic calls just one of these instances as mentioned above. Additionally,

Symbiotic 7: Integration of Predator and More 415

PredatorHP uses gcc, while we use Predator running on llvm, which is
not as mature as the former. Also, we had a number of new unknown answers
because Klee does not support pointer comparisons, which we incorrectly did
not detect in the previous versions of Symbiotic.

In general, Symbiotic’s results stems from the good performance of Klee
supported by efficient static analysis and slicing: the official results show that
Symbiotic can decide many benchmarks very quickly.

The main weakness of our tool is the inherent complexity of symbolic exe-
cution and the limited possibility of analysing potentially unbounded loops or
infinite paths with this technique. Indeed, as symbolic execution actually fol-
lows all paths in the program, it does not terminate if the program contains an
unbounded loop or an infinite path (unless an error is found). Even when the
number of paths is finite and all the paths are finite, symbolic execution usually
runs out of resources if the number of paths is large. Although this problem
is slightly alleviated by program slicing, our tool still does not scale well on
complex programs.

4 Tool Setup and Configuration

– Download: From the competition archives or via http://doi.org/10.5281/
zenodo.3678328.

– Installation: Unpack the archive.

– Participation Statement: Symbiotic 7 participates in all categories.

– Execution: Run bin/symbiotic --sv-comp OPTS <source>, where avail-
able OPTS include:

• --prp=file, which sets the property specification file to use,

• --witness=file, which sets the output file for the witness,

• --32, which sets the 32-bit environment,

• --help, which shows the full list of possible options.

5 Software Project and Contributors

Symbiotic 6 and 7 have been developed by M. Chalupa, T. Jašek, M. Vitovská,
M. Šimáček, L. Tomovič, and P. Ayaziová under the supervision of J. Strejček.
Predator has been adjusted for the described integration by M. Hruška and
V. Šoková under the supervision of T. Vojnar. Symbiotic and its components
are available under the MIT license. The project is hosted by the Faculty of
Informatics, Masaryk University. Klee, llvm, and Predator are also available
under open-source licenses. Source codes of the project and references to all its
components can be found at:

https://github.com/staticafi/symbiotic

416 M. Chalupa et al.

http://doi.org/10.5281/zenodo.3678328
http://doi.org/10.5281/zenodo.3678328
https://github.com/staticafi/symbiotic

References

1. D. Beyer. Advances in automatic software verification: SV-COMP 2020. In Proc.
TACAS (2), LNCS 12079. Springer, 2020.

2. C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In R. Draves and R. van
Renesse, editors, OSDI, pages 209–224. USENIX Association, 2008.

3. M. Chalupa, J. Strejček, and M. Vitovská. Joint forces for memory safety checking.
In M. Gallardo and P. Merino, editors, SPIN, volume 10869 of LNCS, pages 115–132.
Springer, 2018. https://doi.org/10.1007/978-3-319-94111-0 7.

4. M. Chalupa, M. Vitovská, M. Jonáš, J. Slaby, and J. Strejček. Symbiotic 4: Beyond
reachability (competition contribution). In A. Legay and T. Margaria, editors,
TACAS, volume 10206 of LNCS, pages 385–389. Springer, 2017. https://doi.org/
10.1007/978-3-662-54580-5 28.

5. M. Chalupa, M. Vitovská, and J. Strejček. Symbiotic 5: Boosted instrumenta-
tion (competition contribution). In D. Beyer and M. Huisman, editors, TACAS,
volume 10806 of LNCS, pages 442–446. Springer, 2018. https://doi.org/10.1007/
978-3-319-89963-3 29.

6. K. Dudka, P. Peringer, and T. Vojnar. Predator: A practical tool for checking ma-
nipulation of dynamic data structures using separation logic. In G. Gopalakrishnan
and S. Qadeer, editors, CAV, volume 6806 of LNCS, pages 372–378. Springer, 2011.
https://doi.org/10.1007/978-3-642-36742-7 49.

7. L. Tomovič. Slicing of parallel programs. Master’s thesis, Masaryk University, 2019.
https://is.muni.cz/th/o1s3u/.

8. LLVM. http://llvm.org/.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Symbiotic 7: Integration of Predator and More 417

https://doi.org/10.1007/978-3-319-94111-0_7
https://doi.org/10.1007/978-3-662-54580-5_28
https://doi.org/10.1007/978-3-662-54580-5_28
https://doi.org/10.1007/978-3-319-89963-3_29
https://doi.org/10.1007/978-3-319-89963-3_29
https://doi.org/10.1007/978-3-642-36742-7_49
https://is.muni.cz/th/o1s3u/
http://llvm.org/
http://creativecommons.org/licenses/by/4.0/

	31 Symbiotic 7: Integration of Predator and More* (Competition Contribution)
	1 Verification Approach
	2 Software Architecture
	3 Strengths and Weaknesses
	4 Tool Setup and Configuration
	5 Software Project and Contributors
	References

