
Symbiotic 2: More Precise Slicing?

(Competition Contribution)

Jiri Slaby and Jan Strejček

Faculty of Informatics, Masaryk University
Botanická 68a, 60200 Brno, Czech Republic

{slaby,strejcek}@fi.muni.cz

Abstract. Symbiotic 2 keeps the concept and the structure of the orig-
inal bug-finding tool Symbiotic, but it uses a more precise slicing based
on a field-sensitive pointer analysis instead of field-insensitive analysis of
the original tool. The paper discusses this improvement and its conse-
quences. We also briefly recall basic principles of the tool, its strong and
weak points, installation, and running instructions. Finally, we comment
the results achieved by Symbiotic 2 in the competition.

1 Verification Approach and Software Architecture

Both Symbiotic [6] and Symbiotic 2 implement our verification approach pro-
posed earlier [4]. The approach combines three standard techniques, namely
code instrumentation, program slicing [7], and symbolic execution [3]. While the
approach was originally designed for the detection of bugs described by state-
machines, Symbiotic 2 still supports only one kind of bugs: reachability of an
ERROR label. Hence, we briefly recall the approach restricted just to this simple
kind of errors. We explain the structure of the tool simultaneously.

1. Code instrumentation inserts assert(0) to each ERROR label. It is performed
by a bash script calling sed. The instrumented code is translated into the
Llvm bitcode by the Clang compiler.

2. Program slicing removes instructions of the instrumented code that do not
affect reachability of the inserted assert(0) statements. This code size re-
duction is crucial for the overall efficiency of Symbiotic 2. The slicer is
implemented in C++ as a plug-in for the Llvm optimizer opt.

3. Symbolic execution either reaches assert(0), or correctly finishes the exe-
cution without reaching assert(0), or it runs out of time or memory etc.
These possibilities correspond to answers FALSE, TRUE, UNKNOWN, respectively.
We use the symbolic executor Klee [2] whose outputs are translated to
TRUE/FALSE/UNKNOWN by a simple bash script.

The whole pipeline is executed stepwise by another bash script.
All improvements of Symbiotic 2 over the tool Symbiotic competing in

SV-COMP 2013 are in the slicer. We have fixed some bugs in the original slicer

? The authors are supported by the Czech Science Foundation grant P202-10-1469.



(invalid treatment of several instructions and functions with variable number
of arguments). While the original fixpoint algorithm for slicing [7] is relatively
simple, it gets more complicated for programs with pointers as one instruction
can influence the following one without any syntactic overlap. We need to use a
pointer analysis (also called points-to analysis) to know which pointers can point
to the same target. Both Symbiotic and Symbiotic 2 use Andersen’s pointer
analysis [1], Symbiotic 2 replaces the original field-insensitive analysis by a
field-sensitive one. This means that every field of a struct is now handled as a
different pointer target. Similarly, we handle the first 64 elements of each array as
distinct targets. The field-sensitive analysis is computationally more demanding.
Thus we have also added some type filters that speed up the pointer analysis and
make its results more accurate. All these improvements of the slicer significantly
reduce the number of incorrect answers produced by Symbiotic 2. For example,
Symbiotic 2 produces only correct answers for the category ProductLines while
Symbiotic produces 131 incorrect answers for the same category.

2 Strengths and Weaknesses

Our tool is applicable to all competition benchmarks satisfying two restrictions:
the studied property is ERROR label reachability and the benchmark code is a
sequential C program. Hence, the results of Symbiotic 2 in the competition
categories MemorySafety and Concurrency should be ignored (we missed the
opt-out deadline). The first restriction can be removed by the implementation
of a more sophisticated code instrumentation. The second restriction comes di-
rectly from the approach as symbolic execution and program slicing are primarily
designed for sequential programs.

We first discuss strong and weak aspects of the approach and then we talk
about additional strong and weak aspects of the tool. Our approach is based
on symbolic execution which should produce only correct answers. On the other
hand, symbolic execution suffers from the path explosion problem and relies on
expensive (and often even undecidable) SMT solving. Hence, application of sym-
bolic execution leads to many UNKNOWN answers, which is also the main weakness
of the approach. To reduce this weakness, we combine symbolic execution with
slicing which is the only theoretical source of incorrect answers (namely false
positives) of our approach. Indeed, slicing can in some cases remove an infinite
loop and a potential unreachable ERROR label located below the cycle thus be-
come reachable. However, this situation is very rare in practice (e.g. it does not
appear in the competition benchmarks) and we do not see it as a problem. An
orthogonal method to reduce the high cost of symbolic execution is to use some
of its variants suppressing the path explosion problem. For example, we plan to
apply compact symbolic execution [5] instead of the classic one.

The strong aspect of the tool is its simple architecture: it is a sequence of
scripts and standalone tools that are easy to replace (for example, if there is a
better symbolic executor for Llvm bitcode, we can deploy it in few minutes). The
main weakness of Symbiotic 2 lies in the incorrect results which are sometimes

2



reported. Even if the number of incorrect results is substantially lower than in
the case of Symbiotic, it is still relatively high. All the incorrect results are due
to imperfection of our implementation.

3 Tool Setup and Configuration

Before using Symbiotic 2, ensure that the target system contains 32-bit libraries
(for 32-bit benchmarks) and Llvm with Clang. Llvm and Clang have to be
in version 3.2 exactly. Then, Symbiotic 2 can be downloaded from http://sf.

net/projects/symbiotic/. Due to a bug in Klee causing absolute paths to be
built in, Klee requires to be run from a pre-defined path. Hence we are obliged
to change the current directory to /opt/ and untar the downloaded Symbiotic
2 archive there. Running the tool is then straightforward. When the current di-
rectory is /opt/symbiotic/, the tool can be invoked for each <benchmark.c>

from the set by ./runme <benchmark.c>. For benchmarks intended for 64-
bit, set MFLAG=-m64 environment variable. The answers provided by Symbi-
otic 2 are as required by the competition rules: TRUE/FALSE/UNKWNOWN. If
the result for <benchmark.c> is FALSE, discovered error paths can be found
in <benchmark.c>-klee-out/.

4 Software Project and Contributors

Symbiotic 2 was contributed mostly by the authors of this paper and Marek
Trt́ık. Jiri Slaby is a contact person. The tool is licensed under the GNU GPLv2
License unless specified otherwise for its parts.

References

1. L. O. Andersen. Program Analysis and Specialization for the C Programming Lan-
guage. PhD thesis, DIKU, University of Copenhagen, 1994.

2. C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In Proceedings of OSDI, pages
209–224. USENIX Association, 2008.

3. J. C. King. Symbolic execution and program testing. Communications of ACM,
19(7):385–394, 1976.

4. J. Slabý, J. Strejček, and M. Trt́ık. Checking properties described by state machines:
On synergy of instrumentation, slicing, and symbolic execution. In Proceedings of
FMICS, volume 7437 of LNCS, pages 207–221. Springer, 2012.

5. J. Slaby, J. Strejček, and M. Trt́ık. Compact symbolic execution. In Proceedings of
ATVA, volume 8172 of LNCS, pages 193–207. Springer, 2013.

6. J. Slaby, J. Strejček, and M. Trt́ık. Symbiotic: Synergy of instrumentation, slicing,
and symbolic execution - (competition contribution). In Proceedings of TACAS,
volume 7795 of LNCS, pages 630–632. Springer, 2013.

7. M. Weiser. Program slicing. In Proceedings of ICSE, pages 439–449. IEEE, 1981.

3

http://sf.net/projects/symbiotic/
http://sf.net/projects/symbiotic/

	Symbiotic 2: More Precise Slicing

