
Solving Quantified Bit-Vector Formulas
Using Binary Decision Diagrams?

Martin Jonáš and Jan Strejček

Faculty of Informatics, Masaryk University, Brno, Czech Republic
{martin.jonas, strejcek}@mail.muni.cz

Abstract. We describe a new approach to deciding satisfiability of quan-
tified bit-vector formulas using binary decision diagrams and approxima-
tions. The approach is motivated by the observation that the binary de-
cision diagram for a quantified formula is typically significantly smaller
than the diagram for the subformula within the quantifier scope. The
suggested approach has been implemented and the experimental results
show that it decides more benchmarks from the SMT-LIB repository
than state-of-the-art SMT solvers for this theory, namely Z3 and CVC4.

1 Introduction

During the last decades, the area of Satisfiability Modulo Theories (SMT) [6]
solving has undergone steep development in both theory and practice. Achieved
advances of SMT solving opened new research directions in program analysis
and verification, where SMT solvers are now seen as standard tools.

Common programming languages provide basic datatypes of fixed size. Pro-
gram variables of these datatypes naturally correspond to variables of the bit-
vector logic, which can easily express bit-wise operations or arithmetic overflows.
In spite of this natural correspondence, most SMT-based program analysis tech-
niques model program variables by variables in the theory of integers. This may
look a bit strange considering the fact that the satisfiability problem for the
theory of integers is undecidable whenever an arbitrary usage of addition and
multiplication is allowed, while the same problem is decidable for the bit-vector
theory. The reasons for using the integer logic instead of the bit-vector logic are
twofold. First, the satisfiability problem is NEXPTIME-complete even for formu-
las of the quantifier-free fragment of the bit-vector logic (QF BV) with binary
encoding of bit-vector sizes [21]. In this paper, we consider formulas with quanti-
fiers and without uninterpreted functions. The precise complexity of the problem
for this logic is an open question: it is known to be NEXPTIME-hard [21] and triv-
ially solvable in EXPSPACE. Second and from the practical point of view more
important, the SMT solvers for the theory of integers are often more efficient
than the solvers for the theory of fixed-size bit-vectors.

While there are several SMT solvers for QF BV formulas, only few of them
can decide the quantified bit-vector (BV) logic. In particular, the logic is sup-
ported by CVC4 [3] and Z3 [16]. Relatively modest support of this logic from

? The research was supported by Czech Science Foundation, grant GBP202/12/G061.

2 Martin Jonáš and Jan Strejček

1 10 103 105

1

10

102

103

104

105

106

Before quantification

A
ft

er
q
u

an
ti

fi
ca

ti
o
n

existential quantifier
universal quantifier

Fig. 1: Comparison of sizes (measured
by the number of BDD nodes) of BDDs
corresponding to all quantified subfor-
mulas in SMT-LIB benchmarks for BV
logic, before and after quantification.

10 102 103 104 105

10

102

103

104

105

Before simplifications

A
ft

er
si

m
p

li
fi

ca
ti

o
n

s

SymDivine
SMT-LIB

Fig. 2: Effect of simplifications on the
number of bit variables in the for-
mulas of the SMT-LIB and SymDi-
vine benchmarks. Formulas simplified
to true or false are not represented.

developers of SMT solvers is definitely not a consequence of a low demand from
potential users. For example, in the program analysis community, BV formulas
are suitable for description of various properties of program loops like loop in-
variants, ranking functions, or loop summaries [22], or to describe properties of
symbolic representations of sets of program states, such as inclusion [7].

While current solvers for BV logic rely on model-based quantifier instan-
tiation [25], we present a new algorithm based on Binary Decision Diagrams
(BDDs) and approximations. BDDs have been previously used to implement sat-
isfiability decision procedures for the propositional logic, however state-of-the-art
CDCL-based solvers usually achieve much better performance. The main disad-
vantage of BDDs is low scalability: the size of a BDD corresponding to a propo-
sitional formula can be exponential in the number of propositional variables, and
when a BDD becomes too large, some operations are very slow. Employment of
BDDs in SMT solving makes more sense when formulas with quantifiers are con-
sidered: quantification usually reduces size of a BDD as it decreases the number
of BDD variables. This can be documented by Figure 1, which compares the
BDD sizes for formulas before and after existential or universal quantification.

There already exist some BDD-based tools deciding validity of quantified
boolean formulas with the performance similar to state-of-the-art solvers for
this problem [2,23].

Our BDD-based algorithm for satisfiability of the BV logic consists of three
main components:

– Formula simplifications, which reduce the number of variables in the formula
and push quantifiers downwards in the syntax tree of the formula (which later
helps to keep intermediate BDDs smaller as they are build in the bottom-up

Solving Quantified Bit-Vector Formulas Using Binary Decision Diagrams 3

manner). Formula simplifications can reduce some formulas to true or false
and thus immediately decide their satisfiability.

– Construction of BDD using a specific variable ordering. The ordering has a
significant influence on the BDD size.

– Formula approximations, which reduce the width of bit-vector variables in
the formula and thus lead to smaller BDDs. Unsatisfiability of a formula
over-approximation implies unsatisfiability of the original formula and an
analogous statement holds for satisfiability of an under-approximation.

We present a minor contribution in each component. The main contribution
of the paper is the fact that the algorithm based on the three parts can com-
pete with leading SMT solvers for the BV logic, which participated in the BV
category of SMT-COMP 2015 [1], namely Z3 and CVC4.

In the next section, we recall the definition of BV logic and BDDs, and
briefly explain the main idea of the model-based quantifier instantiation tech-
nique employed by CVC4 and Z3. The proposed algorithm including the three
main components is presented in Section 3. Section 4 is devoted to the imple-
mentation of the algorithm and to experimental results showing separately the
effect of formula simplification, variable ordering, and approximations. The sec-
tion also provides an experimental comparison of our solver with Z3 and CVC4.
The paper closes with conclusions and intended directions of future work.

2 Preliminaries

2.1 Quantified Bit-Vector Formulas

In what follows, we assume a knowledge of the multi-sorted first-order logic and
the model theory [18,19]. Let N denote the set of positive integers.

The bit-vector logic is a multi-sorted first-order logic with the set of sort
symbols S = {bitveci | i ∈ N}, where bitveci represents the sort of bit-vectors
of length i, the set of function symbols

F = {ci[n] | n, i ∈ N} ∪
⋃
n∈N
{0[n], 1[n], . . . , (2n − 1)[n]} ∪

∪
⋃
n∈N
{not[n], and[n], or[n], shl[n], shr[n],−[n],+[n],×[n], /[n],%[n]} ∪

∪ {concat[m,n] | m,n ∈ N} ∪ {extract[n,i,j] | n, i, j ∈ N, i ≤ j < m},

and the set of the predicate symbols P = {=[n], <[n] | n ∈ N}. Arities of function
and predicate symbols are described in Table 1.

The syntax of bit-vector formulas is defined in the standard way. Every for-
mula can be transformed into the negation normal form (NNF), where negation
is applied only to atomic subformulas and implication is not used at all.

A structure M is said to be a model for formula ϕ, if the formula ϕ is true in
M and if M interprets all function and predicate symbols according to Table 1.

4 Martin Jonáš and Jan Strejček

Symbol Arity Interpretation

0[n], 1[n], . . . bitvecn natural number constants

c1[n], c
2
[n], . . . bitvecn uninterpreted constants

not[n] bitvecn → bitvecn bit-wise negation

and[n], or[n] bitvecn × bitvecn → bitvecn bit-wise and, or

shl[n], shr[n] bitvecn × bitvecn → bitvecn bit-wise shift left, right

−[n] bitvecn → bitvecn two-complement negation

+[n],×[n] bitvecn × bitvecn → bitvecn addition, multiplication

/[n],%[n] bitvecn × bitvecn → bitvecn unsigned division, remainder

concat[m,n] bitvecm × bitvecn → bitvecm+n concatenation

extract[m,i,j] bitvecm → bitvecj−i+1 extraction from i-th to j-th bit

=[n], <[n] bitvecn × bitvecn equality, unsigned less than

Table 1: Function and predicate symbols of the bit-vector logic.

Precise description of function and predicate symbols interpretation can be found
in [4]. A closed formula is said to be satisfiable if it has a model.

We omit subscripts representing the sorts from the function and predicate
symbols if the bit-width can be inferred from the context. If the sort of a
variable or a constant is not specified, it is assumed to be bitvec32. We also
write a, b, c, . . . instead of uninterpreted constants c1, c2, c3, For example,
∀x (x < a) denotes the formula ∀x[32] (x[32] <[32] c

1
[32]). We write ϕ[x1, . . . , xn]

for a formula ϕ, which may contain free variables x1, . . . , xn. If ϕ[x1, . . . , xn] is a
formula and t1, . . . , tn are terms of corresponding sorts, then ϕ[t1, . . . , tn] is the
result of simultaneous substitution of free variables x1, . . . , xn in the formula ϕ
by terms t1, . . . , tn, respectively.

2.2 Model-Based Quantifier Instantiation

Satisfiability of the quantifier-free fragment of the bit-vector logic is traditionally
solved by eager or lazy reduction to a propositional formula (bit-blasting) and
subsequent call of a SAT solver. In the following, we describe the model-based
quantifier instantiation algorithm [25], which is used by existing solvers for the
full bit-vector logic.

Given a closed formula with quantifiers, the first step is to convert the formula
to the negation normal form and apply Skolemization to obtain equisatisfiable
formula of the form

ϕ ∧ ∀x1, x2, . . . , xn (ψ[x1, . . . , xn]),

where ϕ and ψ are quantifier-free formulas. Then the QF BV solver is invoked
to check the satisfiability of the formula ϕ. If ϕ is unsatisfiable, then the entire
formula is unsatisfiable. If ϕ is satisfiable, the QF BV solver returns its model

Solving Quantified Bit-Vector Formulas Using Binary Decision Diagrams 5

M and another call to the QF BV solver is made to determine whether M is also
a model of ∀x1, x2, . . . , xn (ψ). This is achieved by asking the solver whether the

formula ¬ψ̂ is satisfiable, where ψ̂ is the formula ψ with uninterpreted constants
replaced by their corresponding values in M . If ¬ψ̂ is not satisfiable, then the
structure M is indeed a model of the formula ∀x1, x2, . . . , xn (ψ), therefore the

entire formula is satisfiable and M is its model. If ¬ψ̂ is satisfiable, we get values
v1, . . . , vn such that ¬ψ̂[v1, . . . , vn] holds. To rule out M as a model, the instance
ψ[v1, . . . , vn] of the quantified formula is added to the quantifier-free part, i.e. the
formula ϕ is modified to

ϕ′ ≡ ϕ ∧ ψ[v1, . . . , vn],

and the procedure is repeated.

Example 1. Consider the formula 3 < a ∧ ∀x (¬(a = 2×x)). The subformula
3 < a is satisfiable and a = 4 is its model. However, it is not a model of
the formula ∀x (¬(a = 2 × x)), since the QF BV solver called on the formula
¬(¬(4 = 2 × x)) returns x = 2 as a model. The next step is to decide the
satisfiability of the formula 3 < a ∧ ¬(a = 2 × 2). This formula is satisfiable
and a = 5 is its model. Moreover, it is also a model of ∀x (¬(a = 2 × x)) as
¬(¬(5 = 2 × x)) is unsatisfiable. Hence, the input formula is satisfiable and
a = 5 is its model.

This algorithm is trivially terminating, since there is only a finite number of
distinct models M of ϕ. However, in some cases exponentially many such models
have to be ruled out before the solver is able to find a correct model or decide un-
satisfiability of the whole formula. To overcome this issue, state-of-the-art SMT
solvers do not use just instances of the form ψ[v1, . . . , vn] with concrete values,
but employ heuristics such as E-matching [15,17] or symbolic quantifier instan-
tiation [25] to choose instances with ground terms which can potentially rule
out more spurious models and thus significantly reduce the number of iterations
of the algorithm. In practice, suitable ground terms substituted for quantified
variables are selected only from subterms of the input formula. This strategy
brings some drawbacks. For example, the formula

a = 24× b + 24× c ∧ ∀x (¬(a = 24× x))

is unsatisfiable as the subformula ∀x (¬(a = 24× x)) is true precisely when the
value of a is not a multiple of 24, while a = 24× b + 24× c implies that a is a
multiple of 24. The quantifier instantiation can prove the unsatisfiability easily
by using the instance ψ[b+c] of ψ[x] ≡ ¬(a = 24×x). However, the current tools
do not consider this instance as b+c is not a subterm of the formula. As a result,
current tools can not decide satisfiability of this formula within a reasonable time
limits.

2.3 Binary Decision Diagrams

A binary decision diagram (BDD) is a data structure proposed by Bryant [12]
to succinctly represent all satisfying assignments of a boolean formula.

6 Martin Jonáš and Jan Strejček

A BDD is a rooted directed acyclic graph with inner nodes labeled by boolean
variables of the formula and two leaf nodes 0 and 1. Every inner node has two
outgoing edges, one labeled with true and the other with false. Every assignment
of boolean variables determines a path from the root to a leaf: from every inner
node we follow the edge labeled with the truth value assigned to the variable
corresponding to the node. The BDD represents all assignments that determine
paths to leaf 1. Fixing an order in which variables can occur on paths from the
root yields an Ordered Binary Decision Diagram (OBDD) and merging iden-
tical subgraphs of an OBDD and deleting every node whose two children are
identical yields a Reduced Ordered Binary Decision Diagram (ROBDD). The
main advantage of ROBDDs is that for the fixed variable order every set of as-
signments corresponds to a unique ROBDD [12]. In the following, BDD always
stands for ROBDD.

A BDD for a boolean formula can be built from BDDs for atomic subformulas
in a bottom-up manner. Application of negation corresponds to switching the
leaf nodes 0 and 1. For binary operators, there is a function Apply that gets an
operator and two BDDs corresponding to the operands and produces the desired
BDD. Using this function, one can also build a BDD representing a quantified
boolean formula: if B is a BDD representing a formula ϕ, then the BDD for
∀x (ϕ) is obtained by Apply(∧, B[x ← true], B[x ← false]) and the BDD for
∃x (ϕ) by Apply(∨, B[x← true], B[x← false]).

A BDD can also represent a set of all models of a BV formula. It is suffi-
cient to decompose every bit-vector variable and every uninterpreted constant
of bit-width n into n boolean variables and perform operations on individual
bits. For example, all models of the formula ∀x (¬(a = 24× x)) are represented
by the BDD of Figure 3a, where the 32 bits of the uninterpreted constant a are
denoted by boolean variables a0, a1, . . . , a31 in order from the least significant to
the most significant bit. Boolean variables arising from bit-vector variables and
uninterpreted constants are called bit variables henceforth. As usual, instead of
labelling edges as true and false, edges are drawn as solid and dashed, respec-
tively. Note that every unsatisfiable formula is represented by the BDD with the
single node 0. By the BDD size we mean the number of its nodes.

3 Our Approach

This section first describes three main parts of our algorithm, namely formula
simplifications, bit variable ordering for BDD construction, and approximations.
Subsequently, the main algorithm is presented.

3.1 Formula Simplifications

As in most of modern SMT solvers, the first step of deciding satisfiability is
simplification of the input formula. Besides trivial simplifications (e.g. ϕ ∧ ϕ
reduces to ϕ), we apply the following simplification rules.

Solving Quantified Bit-Vector Formulas Using Binary Decision Diagrams 7

a0

a1

a2

a3

01

(a) ∀x (¬(a = 24× x))

a0

b0 b0

a1

b1 b1

01

(b) a[2] = b[2]

a0

a1 a1

b0 b0 b0 b0

b1 b1

01

(c) a[2] = b[2]

Fig. 3: Examples of BDDs representing bit-vector formulas.

Miniscoping. Miniscoping [19] is a technique reducing the scope of universal
quantifier over disjunctions whenever one disjunct has no free occurrences of the
quantified variable, and over conjunctions by distributivity (existential quanti-
fiers are handled analogously). The simplification rules are as follows:

∀x (ϕ[x] ∨ ψ) ∀x (ϕ[x]) ∨ ψ ∀x (ϕ[x] ∧ ψ[x]) ∀x (ϕ[x]) ∧ ∀x (ψ[x])

∃x (ϕ[x] ∧ ψ) ∃x (ϕ[x]) ∧ ψ ∃x (ϕ[x] ∨ ψ[x]) ∃x (ϕ[x]) ∨ ∃x (ψ[x])

Destructive Equality Resolution. Destructive equality resolution (DER) [25] elim-
inates a universally quantified variable x in a formula ∀xQy (¬(x = t) ∨ ϕ[x]),
where t is a term that does not contain the variable x, and Qy is a sequence of
variable quantifications. The formula is equivalent to ∀xQy (x = t → ϕ[x]) and
hence also to Qy (ϕ[t]). The simplification rule is formulated as follows:

∀xQy (¬(x = t) ∨ ϕ[x]) Qy (ϕ[t])

Constructive Equality Resolution. Constructive equality resolution (CER) is a
dual version of DER. As far as we know, it was not considered before as solvers
for quantified formulas typically work with formulas after Skolemization and
thus without any existential quantifiers. CER can be formulated as the following
simplification rule, where t and Qy have the same meaning as above:

∃xQy (x = t ∧ ϕ[x]) Qy (ϕ[t])

Theory-Related Simplifications. We also perform several simplifications related
to the interpretation of the function and predicate symbols in the BV logic.
Examples of such simplifications are reductions a[n] + (−a[n]) 0[n], a[n] ×
0[n] 0[n], a[n] and 0[n] 0[n], or extract[n,i,j](0[n]) 0[j−i+1].

Note that all mentioned simplification rules have no effect on models of the
formula and thus they have no direct effect on the resulting BDD. However, a
simplified formula has simpler subformulas and thus the intermediate BDDs are
often smaller and the computation of the resulting BDD is faster.

8 Martin Jonáš and Jan Strejček

3.2 Bit Variable Ordering

When constructing a BDD, one has to specify an order of BDD variables. In
our case, BDD variables precisely correspond to bit variables. The order of these
variables has a significant effect on the BDD size and its construction time. In
some cases, the size of a BDD for a formula is linear in the number of BDD
variables with one variable ordering, but exponential with another ordering.

For example, consider the formula φ1 ≡ a[n] = b[n] for arbitrary n ∈ N and
let a0, a1, . . . , an−1 be the bits of a and b0, b1, . . . , bn−1 be the bits of b. We define
two orderings:

≤1 All bit variables are ordered according to their significance (from the least
to the most significant) and variables with the same significance are ordered
by the order of the first occurrences of the corresponding bit-vector variables
in the formula. For the considered formula φ1, we get:

a0 ≤1 b0 ≤1 a1 ≤1 b1 ≤1 . . . ≤1 an−1 ≤1 bn−1

≤2 Bit variables are ordered by the order of the first occurrences of the corre-
sponding bit-vector variables in the formula and bit variables corresponding
to the same bit-vector variable are ordered according to their significance
(from the least to the most significant). For the considered formula, we get:

a0 ≤2 a1 ≤2 . . . ≤2 an−1 ≤2 b0 ≤2 b1 ≤2 . . . ≤2 bn−1

The BDD for φ1 using the ordering ≤1 has 3n+ 2 nodes, while the BDD for the
same formula and ≤2 has 3 · 2n − 1 nodes. Figures 3b and 3c show these BDDs
for n = 2 and orderings ≤1 and ≤2, respectively.

These orderings can lead to opposite results with other formulas. For exam-
ple, the size of the BDD for the formula

φ2 ≡ (c1[2] = c2[2] shr 1[2]) ∧ (c3[2] = c4[2] shr 1[2]) ∧ . . . ∧ (c2n−1[2] = c2n[2] shr 1[2])

using the ordering ≤1 is 2n+2 − 1, while it is only 4n + 2 for ≤2. In general,
choosing the optimal variable ordering is an NP-complete problem [10]. In the
following, we introduce an ordering ≤3 combining advantages of ≤1 and ≤2.

Let V be the set of bit-vector variables and uninterpreted constants appearing
in an input formula ϕ. Elements x, y ∈ V are dependent, written x ∼ y, if they
both appear in some atomic subformula of ϕ. Let ' be the equivalence on V
defined as the transitive closure of ∼. Every v ∈ V then defines an equivalence
class [v]' of transitively dependent elements.

≤3 Bit variables are first ordered according to ≤1 within corresponding equiv-
alence classes of ' and the equivalence classes are then ordered by the first
occurrences of BV variables in ϕ. In particular for u 6' v, ui ≤3 vj if there
is a BV variable in [u]', which occurs in ϕ before all BV variables of [v]'.

Note that for both formulas φ1, φ2 mentioned above, ≤3 coincides with the
better of the orderings ≤1 and ≤2.

In addition to the initial variable ordering, there are several techniques that
dynamically reorder the BDD variables to reduce the BDD size. We use sift-
ing [24] as usually the most successful one [20].

Solving Quantified Bit-Vector Formulas Using Binary Decision Diagrams 9

3.3 Approximations

For some BV formulas, e.g. formulas containing non-linear multiplication, the
size of the BDD representation is exponential for every possible variable or-
dering [13]. Fortunately, satisfiability of these formulas can be often decided
using their over-approximations or under-approximations. Given a formula ϕ,
its under-approximation is any formula ϕ that logically entails ϕ, and its over-
approximation is any formula ϕ logically entailed by ϕ. Clearly, every model of
ϕ is also a model of ϕ and if an under-approximation ϕ is satisfiable, so is the
formula ϕ. Similarly, if an over-approximation ϕ is unsatisfiable, so is ϕ.

The model-based quantifier instantiation presented in Section 2.2 can be seen
as a technique based on iterative over-approximation refinement: the formulas
ϕ, ϕ∧ψ[v̄], . . . are over-approximations of ϕ ∧ ∀x̄ (ψ[x̄]). A different concepts of
approximations can be found in SMT solvers for QF BV formulas. For example,
the SMT solver uclid over-approximates a formula in the negation normal form
by replacing some subformulas with fresh uninterpreted constants [14]. Further,
SMT solvers uclid and Boolector under-approximate a formula by restricting
the value of m most significant bits of a bit-vector variable while leaving the
remaining bits unchanged [11,14]. The number of bit variables used to represent
the bit-vector variable or uninterpreted constant is called its effective bit-width.
This approach inspired both over- and under-approximation used in our algo-
rithm.

Let a[n] be a variable or an uninterpreted constant of bit-width n and e ∈ N
be its desired effective bit-width. If e ≥ n, we leave a[n] unchanged. Otherwise,
we consider four different ways to reduce the effective bit-width of a[n] to e:

zero-extension uses the effective bit-width to represent the e least significant
bits and sets the n− e most significant bits to 0.

sign-extension also uses the effective bit-width to represent the e least signif-
icant bits and sets the n − e most significant bits to the value of the e-th
least significant bit.

right zero-extension uses the effective bit-width to represent the e most sig-
nificant bits and sets the n− e least significant bits to 0.

right sign-extension also uses the effective bit-width to represent the e most
significant bits and sets the n − e least significant bits to the value of the
e-th most significant bit.

All considered extensions are illustrated in Figure 4. The first two extensions
are taken directly from [14], while the other two are original. One can easily see
that each extension reduces the domain of a[n] to a different subdomain of size
2e. Another extensions are suggested in [11], e.g. one-extension defined analo-
gously to the zero-extension. Our choice of considered extensions is motivated
by exploration of values near corner cases as well as by reduction of BDD size. In
particular, we do not consider one-extension because it produces only few zero
bits which are desired as they tend to reduce the size of BDDs for multiplication.

In the following, the term extension always refers either to zero-extension, or
to sign-extension. In an over-approximation, we apply a selected reduction to all

10 Martin Jonáš and Jan Strejček

0 0 0 a2 a1 a0 a2 a2 a2 a2 a1 a0 a5 a4 a3 0 0 0 a5 a4 a3 a3 a3 a3

zero-extension sign-extension right zero-extension right sign-extension

Fig. 4: Reductions of a[6] = a5a4a3a2a1a0 to 3 effective bits.

universally quantified variables. Given a formula ϕ and e ∈ N, let ϕe denote the
formula ϕ where the effective bit-width of each universally quantified variable is
reduced to e by the chosen extension. Further, ϕ−e denotes the formula obtained
by application of the right counterpart of the chosen extension.

In an under-approximation, we apply the selected reduction to all existen-
tially quantified variables and uninterpreted constants. Given a formula ϕ and
e ∈ N, let ϕ

e
and ϕ−e denote the formula ϕ where the effective bit-width of

each existentially quantified variable and uninterpreted constant is reduced to e
by the chosen extension or its right counterpart, respectively.

The following theorem establishes that, for each formula ϕ in the nega-
tion normal form, ϕe, ϕ−e are over-approximations (and analogously for under-
approximations). The theorem can be easily proven by an induction on the
structure of the formula ϕ.

Theorem 1. For every formula ϕ in the NNF and any e ∈ N, it holds:

1. If M is a model of ϕ, then M is also a model of ϕe and ϕ−e.
2. If M is a model of ϕ

e
or ϕ−e, then M is also a model of ϕ.

Corollary 1. For every formula ϕ in the NNF and any e ∈ N, it holds:

1. If the formula ϕe or ϕ−e is unsatisfiable, so is the formula ϕ.
2. If the formula ϕ

e
or ϕ−eis satisfiable, so is the formula ϕ.

3.4 The Algorithm

In this section, we present the complete algorithm deciding satisfiability of BV
formulas. In the algorithm, we use a procedure ConvertToBDD which converts a
formula to the corresponding BDD recursively on the formula structure. For a
given input formula ϕ, the algorithm proceeds in the following steps:

1. Simplify the formula ϕ using the rules discussed in Section 3.1 up to the
fix-point and convert it to the negation normal form. If the result is true,
return SAT. If the result is false, return UNSAT.

2. Take the simplified formula in NNF ϕ′ and compute a chosen ordering ≤ as
described in Section 3.2. This ordering will be used as the initial ordering in
the procedure ConvertToBDD.

3. Call ConvertToBDD(ϕ′) to compute the BDD corresponding to ϕ′. If the root
node of the BDD has label 0, return UNSAT. Otherwise return SAT.

4. If the procedure ConvertToBDD called in the previous step has not finished
within 0.1 seconds, additionally run in parallel:

Solving Quantified Bit-Vector Formulas Using Binary Decision Diagrams 11

(a) Under-approximations: Sequentially compute ConvertToBDD(ϕ′
i
) for i =

1,−1, 2,−2, 4,−4, 6,−6, . . . until reaching the greatest bit-width of a bit-
vector variable in ϕ′. If any of the resulting BDDs has a root node distinct
from the leaf 0, return SAT.

(b) Over-approximations: Sequentially compute ConvertToBDD(ϕ′i) for i =
1,−1, 2,−2, 4,−4, 6,−6, . . . until reaching the greatest bit-width of a bit-
vector variable in ϕ′. If any of the produced BDDs has a root node labeled
by 0, return UNSAT.

The algorithm is parametrized by the choice of an ordering and reductions
for approximations. Regardless these parameters, the algorithm is sound and
complete. The decision to start the solvers using approximations after 0.1 second
is based on our experiments. In practice, the procedure ConvertToBDD may need
exponential time and memory and thus the algorithm may not finish within
reasonable limits.

4 Implementation and Experimental Results

We have implemented the presented algorithm in an experimental SMT solver
called Q3B. The implementation is written in C++, relies on the BDD package
BuDDy1, and uses the API of Z3 to parse the input formula in the SMT-
LIB 2.5 format [4] and to perform some formula simplifications. As the BuDDy
package does not support allocation of multiple BDD instances, we run separate
processes for the base solver and for computing over- and under-approximations.
The execution of these three processes is controlled by a Python wrapper.

We have evaluated our solver on two sets of BV formulas. The first set
consists of all 191 formulas in the category BV of the SMT-LIB benchmark
repository [5]. The second set contains 5 461 formulas generated by the model
checker SymDivine [7] when run on verification tasks from SV-COMP [8]. These
formulas correspond to checking equivalence of two symbolic states of the verified
program. In total, SymDivine generated 1 462 500 formulas. For tasks with more
than 25 generated formulas, we randomly picked 25 formulas to keep the number
of formulas reasonable.

All experiments were performed on a Debian machine with two six-core Intel
Xeon E5-2620 2.00GHz processors and 128 GB of RAM. Each benchmark run
was limited to use 3 processor cores, 4 GB of RAM and 20 minutes of CPU time
(if not stated otherwise). All measured times are CPU times. For reliable bench-
marking we employed BenchExec [9], a tool that allocates specified resources
for a program execution and measures their use precisely.

All used benchmarks and detailed experimental results are available at http:
//www.fi.muni.cz/~xstrejc/sat2016.tar.gz. Q3B is available under the MIT
License and hosted at GitHub: https://github.com/martinjonas/Q3B.

In the following, we demonstrate the effect of formula simplifications on the
formulas and the effect of various algorithm parameters on its efficiency. At the
end, we compare our solver with the best parameters against CVC4 and Z3.

1 http://sourceforge.net/projects/buddy

http://www.fi.muni.cz/~xstrejc/sat2016.tar.gz
http://www.fi.muni.cz/~xstrejc/sat2016.tar.gz
https://github.com/martinjonas/Q3B
http://sourceforge.net/projects/buddy

12 Martin Jonáš and Jan Strejček

0 20 40 60 80 120
0.01

0.1

1

10

100

Solved SMT-LIB benchmarks

C
P
U

ti
m
e
(s
)

≤1 +sifting
≤2 +sifting
≤3 +sifting

0 2000 4000 6000
Solved SymDivine benchmarks

≤1 +sifting
≤2 +sifting
≤3 +sifting

Fig. 5: Quantile plot of the number of solved benchmarks for each of three de-
scribed initial variable orderings.

Formula Simplifications. Considered formula simplifications reduced 108 of 191
SMT-LIB benchmarks and 300 of 5 461 SymDivine benchmarks to true or false.
Additionally, 1 276 SymDivine benchmarks were reduced to a quantifier-free
formulas, which is not the case for any SMT-LIB benchmark. Figure 2 shows
the number of bit variables (i.e. the sum of bit-widths of all bit-vector variables
and uninterpreted constants in the formula) of each formula before and after
simplification.

Variable Ordering. To compare the effect of BDD variable orderings ≤1, ≤2, and
≤3 defined in Section 3.2, we run our tool with each of these initial orderings
on all considered benchmarks. Recall that sifting method is used for dynamic
variable reordering. The solver has been executed without approximations (to
ensure that approximations will not hide the effect of the initial ordering) and
with CPU time limited to 3 minutes. The results are shown in Figure 5.

When SMT-LIB are considered, the worst performing initial ordering is ≤2.
The results for ≤1 and ≤3 are almost identical as nearly all bit-vector variables in
these benchmarks are mutually transitively dependent. For SymDivine bench-
marks, initial ordering ≤1 performs the worst. The results for ≤2 and ≤3 are
very similar, as SymDivine formulas usually contain a large number of mutually
independent groups of variables. The solver using ≤3 decided 3 more formulas
than the solver using ≤2. To sum up, since now we always use the ordering ≤3

as it provides better overall performance than ≤1 and ≤2.
Note that the solver runs usually faster when executed without sifting, as the

dynamic reordering causes some computational overhead. However, with sifting
it decides 2 more SMT-LIB benchmarks and 9 more SymDivine benchmarks.

Approximations. To compare the effect of the considered effective bit-width
reductions, we run the solver once with approximations based on (right) zero-
extension, and again with approximations based on (right) sign-extension. Quan-
tile plots in Figure 6 show results for zero-extension and sign-extension on SMT-
LIB benchmarks. The results are presented separately for satisfiable and unsat-

Solving Quantified Bit-Vector Formulas Using Binary Decision Diagrams 13

0 20 40 60 80 100
0.01

0.1

1

10

100

Solved SAT benchmarks

C
P
U

ti
m
e
(s
)

zero-ext.
sign-ext.

0 20 40 60 80 100
Solved UNSAT benchmarks

zero-ext.
sign-ext.

Fig. 6: Quantile plot of the number of solved SMT-LIB benchmarks using ap-
proximation via sign-extension and zero-extension compared by the CPU time.

0 40 80 120 160 200
0.01

0.1

1

10

100

Solved SMT-LIB benchmarks

C
P
U

ti
m
e
(s
)

approx.
no approx.

0 2000 4000 6000
Solved SymDivine benchmarks

approx.
no approx.

Fig. 7: Quantile plot of the number of solved benchmarks with and without
approximations compared by the CPU time.

isfiable formulas. On satisfiable formulas, approximation using zero-extension
performs better and can decide 3 more satisfiable formulas. On the contrary, on
unsatisfiable formulas sign-extension performs better and can decide 5 formu-
las more. Corresponding plots for SymDivine formulas are not presented, since
the difference in CPU times was insignificant. Based on this observation and
the fact that satisfiability can be decided by an under-approximation and un-
satisfiability by an over-approximation, the default bit-width reduction method
in our solver is zero-extension for under-approximations and sign-extension for
over-approximations.

Further, to show the contribution of approximations, we compare the solver
using the proposed algorithm as described in the section 3.4 against the same
algorithm without approximations. Figure 7 shows quantile plots corresponding
to measured CPU times. With approximations, the solver was able to decide
54 more SMT-LIB formulas. The difference is less significant when SymDivine
formulas are considered, as they mostly do not contain difficult arithmetic; only
15 more of SymDivine formulas were decided using approximations.

14 Martin Jonáš and Jan Strejček

0 40 80 120 160 200
0.001

0.01

0.1

1

10

100

Solved SMT-LIB benchmarks

C
P
U

ti
m
e
(s
)

CVC4
Z3
Q3B

0 2000 4000 6000
Solved SymDivine benchmarks

CVC4
Z3
Q3B

Fig. 8: Quantile plot of the number of benchmarks which CVC4, Q3B, and Z3
solved compared by the CPU time.

Comparison. Finally, we compare our solver (with the parameters selected
by the previous experiments) to the current stable versions of leading SMT
solvers for BV logic, namely to the version 4.4.1 of Z3 [16] and the version 1.4
of CVC4 [3]. We also tested the latest development version of CVC4 (2016-02-
25), but it decided some SymDivine benchmarks incorrectly. The solver Z3 was
executed with the default settings, CVC4 was executed with settings supplied
for the SMT-competition, where the benchmarks from the SMT-LIB benchmark
repository are used.

Table 2 shows summary results of the solvers CVC4, Z3, and Q3B on the
two benchmark sets. Additionally, Table 3 shows for each pair of solvers the
number of formulas which were decided by one solver, but not by the other
one. Out of the 191 SMT-LIB benchmarks, CVC4 solves 84 benchmarks, Z3
decides 164 benchmarks, and our solver can decide 188 benchmarks. Out of
the 5 461 SymDivine benchmarks, CVC4 decides 4 969 benchmarks, Z3 solves
5 297 benchmarks, and our solver Q3B decides 5 339 benchmarks. To sum up,
in the number of decided benchmarks Q3B outperforms both CVC4 and Z3.
Moreover, only 1 of all considered formulas was solved by Z3 and not by Q3B,
and no formula was solved by CVC4 and not by Q3B.

Further, quantile plots of Figure 8 show numbers of input formulas each of
the solvers was able to decide within different CPU time limits. Note that the
y axis has the logarithmic scale. On the easy instances, our experimental solver
can not compete with highly optimized solvers as CVC4 and Z3. The initial
delay of Q3B is caused by an overhead of a process creation within the Python
wrapper. However, as the instances become harder, the difference in solving
times decreases. In particular, Q3B solves more SMT-LIB benchmarks than
CVC4 whenever the CPU time limit is longer than 0.05 s and more than Z3 for
any CPU time limit over 0.39 s. For SymDivine benchmarks, these thresholds
are 0.08 s for CVC4 and 8.72 s for Z3. Note that Q3B uses 3 parallel processes
and hence its wall times are usually three times shorter than presented CPU
times, while wall times are the same as CPU times for Z3 and CVC4.

Solving Quantified Bit-Vector Formulas Using Binary Decision Diagrams 15

SMT-LIB SymDivine

sat unsat unknown timeout sat unsat unknown timeout

CVC4 29 55 32 75 1 124 3 845 2 490

Z3 71 93 5 22 1 135 4 162 22 142

Q3B 94 94 0 3 1 137 4 202 0 122

Table 2: For each benchmark set and each solver, the table provides the numbers
of formulas decided as satisfiable (sat), unsatisfiable (unsat), or undecided with
the result unknown or because of an error (unknown), or a timeout.

SMT-LIB SymDivine

CVC4 Z3 Q3B CVC4 Z3 Q3B

CVC4 – 0 0 – 21 0

Z3 80 – 1 349 – 0

Q3B 104 25 – 370 42 –

Table 3: For each pair of solvers, the table shows the number of benchmarks,
which were solved by the solver in the corresponding row, but not by the solver
in the corresponding column.

5 Conclusions

We presented a new SMT solving algorithm for quantified bit-vector formulas.
While current SMT solvers for this logic typically rely on model-based quanti-
fier instantiation and an SMT solver for quantifier-free bit-vector formulas, our
algorithm is based on BDDs (with a specific initial variable ordering) and approx-
imations. We have implemented the algorithm and experimental results indicate
that our approach can compete with state-of-the-art SMT solvers CVC4 and
Z3. In fact, it decides more formulas than the mentioned solvers.

We plan to further develop the algorithm and the tool. In particular, we plan
to add a support for arrays and uninterpreted functions as these are useful for
modelling some features of computer programs. We would also like to investigate
possible approximations of bit-vector operations and predicates, or to develop
some fine-grained methods for a targeted approximation refinement.

16 Martin Jonáš and Jan Strejček

References

1. The 10th International Satisfiability Modulo Theories Competition (SMT-COMP
2015). http://smtcomp.sourceforge.net/2015/. 2015.

2. Gilles Audemard and Lakhdar Sais. SAT based BDD solver for quantified boolean
formulas. In 16th IEEE International Conference on Tools with Artificial Intelli-
gence, ICTAI 2004, pages 82–89, 2004.

3. Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan
Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4. In Proceedings
of the 23rd International Conference on Computer Aided Verification, CAV 2011,
volume 6806 of LNCS, pages 171–177. Springer, 2011.

4. Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Standard: Ver-
sion 2.5. Technical report, Department of Computer Science, The University of
Iowa, 2015. Available at www.SMT-LIB.org.

5. Clark Barrett, Aaron Stump, and Cesare Tinelli. The Satisfiability Modulo Theo-
ries Library (SMT-LIB). www.SMT-LIB.org, 2010.

6. Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. Satis-
fiability modulo theories. In Handbook of Satisfiability, pages 825–885. 2009.

7. Petr Bauch, Vojtěch Havel, and Jǐŕı Barnat. LTL Model Checking of LLVM Bit-
code with Symbolic Data. In MEMICS 2014, volume 8934 of LNCS, pages 47–59.
Springer, 2014.

8. Dirk Beyer. Software verification and verifiable witnesses - (report on SV-COMP
2015). In Tools and Algorithms for the Construction and Analysis of Systems -
21st International Conference, TACAS 2015, volume 9035 of LNCS, pages 401–
416. Springer, 2015.

9. Dirk Beyer, Stefan Löwe, and Philipp Wendler. Benchmarking and resource mea-
surement. In Model Checking Software - 22nd International Symposium, SPIN
2015, Proceedings, pages 160–178, 2015.

10. Beate Bollig and Ingo Wegener. Improving the Variable Ordering of OBDDs Is
NP-Complete. Computers, IEEE Transactions on, 45(9):993–1002, 1996.

11. Robert Brummayer and Armin Biere. Effective Bit-Width and Under-
Approximation. In Computer Aided Systems Theory, EUROCAST 2009, volume
5717 of LNCS, pages 304–311. Springer, 2009.

12. Randal E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation.
IEEE Trans. Comput., 35(8):677–691, 1986.

13. Randal E. Bryant. On the Complexity of VLSI Implementations and Graph Repre-
sentations of Boolean Functions with Application to Integer Multiplication. IEEE
Trans. Comput., 40(2):205–213, 1991.

14. Randal E. Bryant, Daniel Kroening, Joël Ouaknine, Sanjit A. Seshia, Ofer Strich-
man, and Bryan Brady. Deciding Bit-Vector Arithmetic with Abstraction. In
Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2007,
volume 4424 of LNCS, pages 358–372. Springer, 2007.

15. Leonardo de Moura and Nikolaj Bjørner. Efficient E-Matching for SMT Solvers. In
Automated Deduction, CADE-21, volume 4603 of LNCS, pages 183–198. Springer,
2007.

16. Leonardo de Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver. In 14th In-
ternational Conference on Tools and Algorithms for the Construction and Analysis
of Systems, TACAS 2008, volume 4963 of LNCS, pages 337–340. Springer, 2008.

17. David Detlefs, Greg Nelson, and James B. Saxe. Simplify: A Theorem Prover for
Program Checking. J. ACM, 52(3):365–473, 2005.

http://smtcomp.sourceforge.net/2015/

Solving Quantified Bit-Vector Formulas Using Binary Decision Diagrams 17

18. Herbert B. Enderton. A Mathematical Introduction to Logic. Harcourt/Academic
Press, 2001.

19. John Harrison. Handbook of Practical Logic and Automated Reasoning. Cambridge
University Press, 1st edition, 2009.

20. Donald E. Knuth. The Art of Computer Programming, Volume 4, Fascicle 1:
Bitwise Tricks & Techniques; Binary Decision Diagrams. Addison-Wesley Profes-
sional, 12th edition, 2009.

21. Gergely Kovásznai, Andreas Fröhlich, and Armin Biere. Complexity of Fixed-Size
Bit-Vector Logics. Theory of Computing Systems, 7913:1–54, 2015.

22. Daniel Kroening, Matt Lewis, and Georg Weissenbacher. Under-approximating
loops in C programs for fast counterexample detection. In Computer Aided Veri-
fication - 25th International Conference, CAV 2013, volume 8044 of LNCS, pages
381–396. Springer, 2013.

23. Oswaldo Olivo and E. Allen Emerson. A More Efficient BDD-Based QBF Solver.
In Jimmy Lee, editor, Principles and Practice of Constraint Programming, CP
2011, volume 6876 of LNCS, pages 675–690. Springer, 2011.

24. Richard Rudell. Dynamic variable ordering for ordered binary decision diagrams.
In Proceedings of the 1993 IEEE/ACM International Conference on Computer-
Aided Design, 1993, pages 42–47, 1993.

25. Christoph M. Wintersteiger, Youssef Hamadi, and Leonardo de Moura. Efficiently
solving quantified bit-vector formulas. Formal Methods in System Design, 42(1):3–
23, 2013.

	Solving Quantified Bit-Vector Formulas Using Binary Decision Diagrams

