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Abstract. Symbolic execution is an established program analysis technique that aims to
search all possible execution paths of the given program. Due to the so-called path explosion
problem, symbolic execution is usually unable to analyze all execution paths and thus it is not
convenient for program verification as a standalone method. This paper focuses on backward
symbolic execution (BSE), which searches program paths backwards from the error location
whose reachability should be proven or refuted. We show that this technique is equivalent
to performing k-induction on control-flow paths. While standard BSE simply unwinds all
program loops, we present an extension called loop folding that aims to derive loop invariants
during BSE that are sufficient to prove the unreachability of the error location. The resulting
technique is called backward symbolic execution with loop folding (BSELF). Our experiments
show that BSELF performs better than BSE and other tools based on k-induction when non-
trivial benchmarks are considered. Moreover, a sequential combination of symbolic execution
and BSELF achieved very competitive results compared to state-of-the-art verification tools.

1 Introduction

Symbolic execution (SE) [56] is a widely used technique for static program analysis. In principle,
SE runs the program on symbols that represent arbitrary input values with the aim to explore all
execution paths. This approach is inherently doomed to suffer from the path explosion problem. In
other words, it typically runs out of available resources before finishing the analysis as the number
of all execution paths is often very large or even infinite. Moreover, some execution paths may be
infinite, which is another obstacle that makes SE fail to completely analyze the program.

Many techniques modifying or extending SE have been introduced to mitigate the path explosion
problem. Some of them try to reduce the set of considered execution paths [20, 73, 80, 82] or
process multiple execution paths at once [46, 58, 75]. Others focus on the efficient processing of
program loops [74, 39, 79], computation of reusable function summaries [38, 3, 69], or they do not
symbolically execute nested [63] or library [61] functions as these are assumed to be correct. There
are also approaches combining SE with other established techniques like predicate abstraction [40],
counterexample-guided abstraction refinement (CEGAR) [16], or interpolation [47, 64]. We refer to
a recent survey [6] for more information about symbolic execution and its applications.
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int n; // input
int x = 0;
int i = 0;
while (i < n) {

++x;
++i;
assert(x == i);

}

init 1 2 3

4 err

x = 0;
i = 0; [i < n]

[i ≥ n]

x = x+1;
i = i+1

[x = i]
[x 6= i]

SE tree:

init | n 7→n;x 7→x; i 7→ i | true

1 | n 7→n;x, i 7→0 | true

4 | n 7→n;x, i 7→0 | 0 ≥ n

2 | n 7→n;x, i 7→0 | 0 < n

3 | n 7→n;x, i 7→1 | 0 < n

err | n 7→n;x, i 7→1 | false

1 | n 7→n;x, i 7→1 | 0 < n

4 | n 7→n;x, i 7→1 | n = 1

2 | n 7→n;x, i 7→1 | 1 < n

...

x = 0; i = 0

[i < n]

[i ≥ n]

x = x+1; i = i+1

[x 6= i]

[x = i]

[i < n]

[i ≥ n]

x = x+1; i = i+1

BSE tree:

err | true

3 | x 6= i

2 | x 6= i

1 | x 6= i ∧ i < n init | false

3 | false

[x 6= i]

x = x+1; i = i+1

[i < n] x = 0;
i = 0

[x = i]

Fig. 1. Top part presents a simple program (left) and the corresponding control-flow automaton (right)
with err location representing the assertion violation. The bottom part shows the infinite SE tree (left)
starting in the initial location init , and the BSE tree (right) starting in the error location err .

Our original research goal was to study possible combinations of SE and k-induction [78] for
program verification, in particular for the error location reachability problem, i.e., the problem to
decide whether there exists an execution of the program that reaches an error location. k-induction
has been introduced as a technique for checking safety properties of symbolic transition systems
by induction with respect to the length of paths in the system. It has been also adapted to model
checking software [30, 13, 36, 70], where the induction is typically led with respect to the number
of loop iterations. We show that in the context of error location reachability problem, k-induction
applied to control-flow paths of a given program corresponds to backward symbolic execution with
the breadth-first search strategy. This is the first result of the paper.

Backward symbolic execution (BSE) [23, 43, 29] is the backward version of SE: it starts at
the program location whose reachability is to be determined and symbolically executes the pro-
gram backwards until it either reaches the initial location or all analyzed paths become infeasible.
Similarly, as in the case of SE, this process may never terminate.

Let us illustrate the difference between SE and BSE on a very simple example. Assume that we
want to verify the validity of the assertion in the program in Figure 1 (top left). In other words,
we need to decide the error location reachability problem for the location err in the corresponding
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control-flow automaton (top right). SE assigns to each variable v the symbol v representing its
input value. Further, SE gradually builds the SE tree (bottom left) of paths starting in init . Each
node in the SE tree is labelled with a triple l | m | φ of the current program location l, the memory
content m, and the path condition φ, which is the weakest precondition on input values that makes
the program follow the path leading from the tree root to the node. Whenever a path becomes
infeasible, i.e., its path condition becomes unsatisfiable, SE stops executing this path (we draw such
nodes dotted). Clearly, the assertion is valid iff the tree does not contain any node that is labelled
with err and a satisfiable path condition. The assertion in Figure 1 is valid, but SE cannot prove
it as the SE tree is infinite.

BSE works similarly, but it proceeds from the error location backward to init . In other words,
instead of computing the weakest precondition of paths that start in init , it computes the weakest
precondition of paths that end in err . Note also that because BSE directly computes the precondi-
tion, it does not need to keep the contents of memory. For the program in Figure 1, the BSE tree
(bottom right) is finite and because there is no feasible path from init to err , it proves that the
assertion is valid.

Now consider a similar program given in Figure 2. This time, the results of SE and BSE are
switched: the SE tree (bottom left) is finite and implies the validity of the assertion, but the BSE
tree (bottom right) is infinite and thus inconclusive.

The main difference between examples in Figures 1 and 2 from the BSE perspective is the
position of the assertion. In both cases, BSE first processes the negation of the assertion. But only
in the example with the assertion inside the loop, it is processed again and this time in the positive
form, which makes the path infeasible. This illustrates that a valid assertion inside a program loop
may be a loop invariant that is able to prove its own validity (it is inductive).

A standard solution to checking assertions that are not strong enough to prove their own validity
is to use externally generated invariants [12, 19, 21, 44]. In this work, we address this issue by
extending BSE with loop folding that attempts to infer inductive invariants during BSE. Backward
symbolic execution with loop folding (BSELF) is the second result presented in this paper.

We have implemented both BSE and BSELF. Our experimental evaluation shows that BSELF
is significantly more efficient than BSE and other tools implementing k-induction on non-trivial
benchmarks. Further, our experiments indicate that a sequential combination of SE and BSELF
forms a powerful tool fully comparable with state-of-the-art verification tools.

The paper is organized as follows. The next section provides necessary definitions. Section 3
studies BSE, k-induction, and the relation between them. The algorithm BSELF is described in
Section 4 and the experimental evaluation is presented in Section 5. Finally, Section 6 discusses
related work.

2 Preliminaries

In this paper, we consider programs represented as control-flow automata (CFAs) [14]. A CFA
A = (L, init , err , E) consists of a finite set L of program locations, an initial location init ∈ L,
an error location err ∈ L r {init}, and a finite set E ⊆ (L r {err}) × Ops × L of edges between
program locations which are labeled with operations. An operation is either an assumption (denoted
in figures with blue text in square brackets, e.g., [x > 5]) or a sequence of assignments (e.g.,
x = y + 10; y = 5). If a location has two or more outgoing edges, then all these edges have to be
labeled with assumptions such that any valuation satisfies at most one of these assumptions. The
error location has no outgoing edges.
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int n = 100;
int x = 0;
int i = 0;
while (i < n) {

++x;
++i;

}
assert(x == i);

init 1

2

3 err

n = 100;
x = 0;
i = 0

[i < n]

[i ≥ n]

x = x+1; i = i+1

[x 6= i]

SE tree:

init | n 7→n;x 7→x; i 7→ i | true

1 | n 7→100;x, i 7→0 | true

3 | n 7→100;x, i 7→0 | false

2 | n 7→100;x, i 7→0 | true

1 | n 7→100;x, i 7→1 | true

3 | n 7→100;x, i 7→1 | false

2 | n 7→100;x, i 7→1 | true

...

1 | n, x, i 7→100 | true 3 | n, x, i 7→100 | true

2 | n, x, i 7→100 | false err | n, x, i 7→100 | false

n = 100;x = 0; i = 0

[i < n]

[i ≥ n]

x = x+1; i = i+1
[i ≥ n]

[i < n]

x = x+1; i = i+1

x = x+1; i = i+1
[i ≥ n]

[i < n] [i 6= n]

BSE tree:

err | true

3 | x 6= i

1 | x 6= i ∧ i ≥ n

init | false

2 | x 6= i ∧ i ≥ n−1

1 | x 6= i ∧ i = n−1

init | false

2 | x 6= i ∧ i = n−2

...

[x 6= i]

[i ≥ n]
n = 100;
x = 0;
i = 0

x = x+1; i = i+1

[i < n]
n = 100;
x = 0;
i = 0

x = x+1; i = i+1

[i < n]

Fig. 2. Top part presents a simple program (left) and the corresponding control-flow automaton (right)
with err location representing the assertion violation. The bottom part shows the infinite SE tree (left)
starting in the initial location init , and the BSE tree (right) starting in the error location err .

A control-flow path or simply a path π in a CFA is a nonempty finite sequence of succeeding
edges π = (l0, o0, l1)(l1, o1, l2) . . . (ln−1, on−1, ln) ∈ E+. Locations l0 and ln are start and target
locations of the path and we refer to them with sl(π) and tl(π), respectively. By Locs(π) we denote
the set of locations on π, i.e., Locs(π) = {li | 0 ≤ i ≤ n}. A path with start location init is called
initial. A path is called error path if its target location is err and it is called a safe path otherwise.
The length of the path π is denoted by |π| and is equal to the number of edges on π, i.e. |π| = n.

We assume that our CFAs are reducible [48], i.e., every loop has a single entry location. The entry
location of a program loop is called the loop header. We further assume that there are no nested
loops in CFAs. Given a loop header h, by LoopPaths(h) we denote the set of paths corresponding
to a single iteration of the loop. Formally, LoopPaths(h) is the set of all paths π such that sl(π) =
tl(π) = h and h does not appear inside π (i.e., π = (h, o0, l1)(l1, o1, l2) . . . (ln−1, on−1, h) where
l1, l2, . . . , ln−1 6= h). We extend the Locs notation to loops identified by their headers such that
Locs(h) = ∪π∈LoopPaths(h)Locs(π).
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To simplify the presentation, we assume that programs manipulate only variables of a fixed
bit-width integer type. A program state (or simply a state) is fully specified by a pair (l, v) of
the current program location l and the current valuation v of program variables. An initial state
consists of the initial location init and an arbitrary valuation. Given an edge (l, [ψ], l′) ∈ E labelled

with an assumption ψ, we write (l, v)
(l,[ψ],l′)−→ (l′, v) for each valuation v satisfying ψ. Given an

edge (l, soa, l′) ∈ E labelled with a sequence of assignments soa, we write (l, v)
(l,soa,l′)−→ (l′, v′)

for all valuations v and v′ such that v′ arises from v by performing the sequence of assignments.
We generalize the notation to paths: given a program path π = (l0, o0, l1) . . . (ln−1, on−1, ln), we

write (l0, v0)
π−→ (ln, vn) whenever there exist valuations v1, v2, . . . , vn−1 satisfying (li, vi)

(li,oi,li+1)−→
(li+1, vi+1) for each 0 ≤ i < n. A path π is feasible from a state (l, v) if (l, v) π−→ (l′, v′) holds for
some state (l′, v′). A path is called feasible if it is feasible from some program state. Note that if
two paths are feasible from the same program state, then one of these paths has to be a prefix of
the other.

In this paper, we study the error location reachability problem, i.e., the problem to decide
whether a given CFA contains a feasible initial error path. The CFA is called correct if there is no
such path. If the CFA is not correct, then any feasible initial error path is called an error witness.

In the following, we often work with a set of states that have the same program location and
their valuations are models of some formula φ over program variables. Such a set is denoted as (l, φ)
and it is formally defined as

(l, φ) = {(l, v) | v satisfies φ}.

A state (l′, v′) is reachable from (l, φ) if there exist (l, v) ∈ (l, φ) and a path π such that (l, v) π−→
(l′, v′). A set (l, φ) is called inductive if each state reachable from (l, φ) with the location l is again
in (l, φ). A set (l, φ) is an invariant if it contains all states with the location l that are reachable
from (init , true).

Given a formula φ and a path π, let π−1(φ) denote the weakest precondition of φ for the sequence
of the operations along π. Formally, π−1(φ) is a formula that is satisfied by a valuation v if and
only if (sl(π), v) π−→ (tl(π), v′) for some v′ satisfying φ. The formula π−1(φ) can be computed from
π and φ for example by symbolic execution of the path. Clearly, a path π is feasible if and only if
π−1(true) is satisfiable.

In general, we work with quantifier-free first-order formulas over a decidable theory. Each such a
formula can be transformed into conjunctive normal form (CNF), which is a conjunction of clauses,
where each clause is a disjunction of literals and a literal is an atomic formula or its negation. We
assume that there exists a decision procedure sat(φ) which returns true if φ is satisfiable and false
otherwise. We say that two formulas are disjoint if their conjunction is unsatisfiable.

3 Backward Symbolic Execution and k-Induction

This section recalls backward symbolic execution and k-induction [78]. Moreover, it shows that the
two techniques provide equivalent results when applied to the error location reachability problem.

3.1 Backward symbolic execution (BSE)

Backward symbolic execution (BSE) [23], sometimes also called symbolic backward execution [7],
computes the weakest preconditions [27] of control-flow paths by a slightly different process than
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Input: CFA A = (L, init , err , E)
Output: correct if A is correct, an error witness π otherwise

workbag ← E ∩ (L×Ops × {err})
while workbag 6= ∅ do

π ← pick a path of the minimal length from workbag
workbag ← workbag r {π}
if π is feasible then

if π is initial then return error witness π
workbag ← workbag ∪ {eπ | e ∈ E ∧ tl(e) = sl(π)}

return correct

Algorithm 1: The backward symbolic execution (BSE) algorithm.

SE. In particular, paths are explored in the opposite direction: from the error location towards the
initial location. BSE either shows that all error paths are infeasible, or it finds a feasible initial error
path, or it runs forever. We assume that paths are explored in the shortest-first order. A high-level
formulation of BSE is provided in Algorithm 1.

In the beginning, workbag is set to contain all paths of length 1 leading to the error location.
Until workbag is empty, it takes a path from workbag and checks its feasibility. If the path is
infeasible, it is discarded. In the opposite case, we check whether the path is also initial and report
it as an error witness if the answer is positive. Otherwise, we prolong the path by each edge leading
to its start location (i.e., we prolong it in the backward direction) and put all these prolonged paths
to workbag . If workbag gets empty, it means that all initial error paths have an infeasible suffix and
thus they are infeasible. Because each iteration picks a path of the minimal length from workbag ,
BSE invoked on an incorrect CFA eventually reports an error witness even if the number of feasible
error paths is infinite. Unfortunately, there are correct programs for which BSE does not terminate
as illustrated in Figure 2. More specifically, BSE does not terminate on correct CFAs with infinitely
many feasible error paths.

Theorem 1. Let P be the set of all feasible error paths of a CFA A. BSE executed on A

– returns an error witness if P contains an initial path;
– returns correct if P is finite and contains no initial path;
– does not terminate if P is infinite and contains no initial path.

Proof. We start with a simple observation. Let π ∈ P be a path of length n and, for each 0 < i ≤ n,
let πi be the suffix of π of length i. As π is a feasible error path, each suffix πi is also a feasible
error path and thus πi ∈ P . Path π1 of length 1 is inserted to workbag during its initialization. For
each 0 < i < n, when πi is processed by BSE, either it is initial and reported as an error witness,
or πi+1 is inserted to workbag .

Assume that A is incorrect, i.e., P contains an initial path. Let π ∈ P be a feasible initial error
path of the minimal length. Hence, no proper suffix of π is initial. The observation implies that for
all 0 < i < n, processing of πi inserts πi+1 to workbag . When π = πn is processed, it is returned as
an error witness unless other error witness is found sooner.

Now assume that A is correct, i.e., P contains no initial path. Note that workbag can contain
only error paths of length one, paths in P , and paths of the form eπ such that π ∈ P . Hence if P
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is finite, there are only finitely many paths that can appear in workbag . Moreover, every path can
be inserted to workbag at most once. Altogether, we get that finiteness of P implies that workbag
gets empty after a finite number of iterations and BSE returns correct.

If P is infinite and contains no initial path, the observation implies that every π ∈ P eventually
gets to workbag . Since every iteration of BSE removes only one path from workbag and P is infinite,
BSE does not terminate. ut

Note that usual implementations of BSE do not check the feasibility of each path in workbag
from scratch [23, 24] as Algorithm 1 does. Instead, they gradually build the BSE tree of all feasible
error paths as shown in Figures 1 and 2 by computing the weakest preconditions incrementally:
for a path of the form eπ, the value of (eπ)−1(true) is computed from the previously computed
π−1(true) using the relation (eπ)−1(true) = e−1(π−1(true)). We employ this incremental approach
in Section 4 where we extend BSE with loop folding.

3.2 k-induction

The k-induction [78] technique uses induction to prove the correctness of transition systems.
Adapted to CFAs, it is sufficient to prove these two statements for some k > 0 to show that
the CFA is correct:

(Base case) All feasible initial paths of length at most k are safe.
(Induction step) Each feasible path of length k+1 that has a safe prefix of length k is also safe.

If the base case does not hold, then there exists a feasible initial error path and the CFA is not
correct. To prove the induction step, we consider each feasible safe path π of length k and check
that all paths that arise by prolonging π with an edge leading to the error location are infeasible.
If this check fails, we cannot make any conclusion. Thus we try to prove both statements again for
k + 1. If we check the statements for k = 1, 2, . . . , the base case can be simplified to checking only
paths of length (exactly) k. The whole process is formalized in Algorithm 2.

The k-induction algorithm applied to an incorrect CFA eventually returns an error witness of the
minimal length. When applied to a correct CFA, it either returns correct or it does not terminate.

Theorem 2. Let P be the set of all feasible error paths of a CFA A. k-induction executed on A

– returns an error witness if P contains an initial path;
– returns correct if P is finite and contains no initial path;
– does not terminate if P is infinite and contains no initial path.

Proof. Assume that A is incorrect, i.e., P contains an initial path. Let π ∈ P be a feasible initial
error path of the minimal length and let n = |π|. For each 0 < k < n, the base case holds as all
feasible initial paths of the length k are safe (due to the minimality of |π|) and the induction step
cannot be proven as the suffix of π of length k+1 is a feasible error path with a safe prefix of length
k. Hence, k-induction reaches the iteration for k = n where the base case identifies π or another
feasible initial error path of length n as an error witness.

Now assume that A is correct, i.e., P contains no initial path. The base case clearly holds for
each k. The induction step holds for k if and only if all paths in P have length at most k. If P
contains a path π of length at least k+ 1, then it also contains the suffix of π of length k+ 1. This
suffix is a feasible error path with a safe feasible prefix of length k. Hence, the induction step fails
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Input: CFA A = (L, init , err , E)
Output: correct if A is correct, an error witness π otherwise

k ← 1
while true do

foreach initial path π of length k do // base case
if π is feasible and tl(π) = err then return error witness π

inductionstepfail ← false // induction step
foreach safe path π of length k do

if π is feasible then
foreach e = (tl(π), o, err) ∈ E do

if πe is feasible then
inductionstepfail ← true

if ¬inductionstepfail then return correct
k ← k + 1

Algorithm 2: The algorithm for k-induction on control-flow paths.

for k. If all paths in P have length at most k, then all feasible paths of length k + 1 are safe and
the induction step holds. To sum up, if P is finite, the k-induction returns correct in the iteration
where k = max{|π| | π ∈ P}. If P is infinite, the induction step always fails as for any k there exists
a path in P longer than k and thus k-induction does not terminate. ut

Note that when k-induction is applied to finite transition systems instead of CFAs, the incom-
pleteness can be fixed by restricting the induction step only to acyclic paths [78].

3.3 Equivalence of BSE and k-induction

Theorems 1 and 2 imply that BSE and k-induction return an error witness or the value correct
in identical cases. On an incorrect CFA, both algorithms detect an error witness of the minimal
length. On a correct CFA with a finite set P of all feasible error paths, the k-induction terminates
for k = max{|π| | π ∈ P} and the longest path processed by BSE has length at most k + 1 (as
k-induction in fact checks paths of length k + 1 for the given k).

If we look once again at Algorithm 2, we can see that the induction step can be simplified.
Instead of analysing each feasible path π of length k and checking whether it can be prolonged
into a feasible error path of the form πe, we can directly look for all error paths of length k + 1
and check their feasibility. This form of the k-induction algorithm gets closer to BSE. The main
difference is that BSE checks only the feasibility of error paths of length k + 1 that have a feasible
suffix of length k. Hence, we can see BSE as an optimized version of the k-induction algorithm.

4 BSE with Loop Folding (BSELF)

This section introduces our extension of BSE called backward symbolic execution with loop folding
(BSELF). Loop folding targets the incompleteness of BSE. Similar to other verification techniques,
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we approach this problem by using invariants that constraint the state space analyzed by BSE.
Instead of relying on external invariant generators, we compute the invariants directly in BSELF.
That allows us to compute disjunctive invariants which can be hard to discover for invariant-
generation algorithms [72, 68, 44, 81].

Before describing BSELF in detail, we give a brief description of its functioning. BSELF is
searching the program backwards from err as regular BSE. The difference comes when it runs into
a loop, i.e., when it finds a feasible error path π with tl(π) = err and sl(π) = l where l is a loop
header. Normal BSE would continue the backward search, unwinding the loop. BSELF, instead,
attempts to fold the loop – infer an inductive invariant from which is the path π infeasible. The loop
folding successively generates invariant candidates. An invariant candidate is a formula ξ such that
the set of states (l, ξ) is inductive and π is infeasible from (l, ξ), i.e., ξ ∧ π−1(true) is unsatisfiable.
The generation continues until either some invariant candidate is shown to be an actual invariant
or a pre-set bound is reached, in which case we give up the current loop folding attempt. If an
inductive invariant from which π is infeasible have been found, the search on π is terminated.
Otherwise, BSELF continues BSE as if no loop folding took place. Irrespective of the result of the
folding, we remember all the generated invariant candidates (if any) in an auxiliary set Ol so that
we can recycle work if we hit l again on some path. The check of whether an invariant candidate is
an invariant is performed by a nested call of BSELF. This way, we automatically handle sequentially
chained loops.

The idea behind loop folding is the following. We start with an initial invariant candidate ξ0
that we derive from π and/or previously computed invariant candidates stored in Ol. The set of
states (l, ξ0) is inductive and the program contains no nested loops, so ξ0 must describe a set of
states in which the program may be during some last iterations of the loop (this, in fact, holds for
any invariant candidate). So if (l, ξ0) is not an invariant, there is a possibility that adding states
from previous iterations will make it an invariant. Thus, we compute the set of states in which the
program may be one iteration before entering (l, ξ0) and try to overapproximate these states to
cover more than just one previous iteration of the loop. This step provides us with a new invariant
candidate. If it gives rise to an invariant, we are done. Otherwise, we repeat the process to obtain
a new invariant candidate and so on.

Precisely speaking, loop folding does not extend one invariant candidate all over again. Every in-
variant candidate can be extended to several new invariant candidates. Given an invariant candidate
ξ, we first compute the pre-image of (l, ξ) along every path of the loop (thus we get |LoopPaths(l)|
pre-images). Every non-empty pre-image (l, ψ) from which is π infeasible is then overapproximated
to one or more sets (l, ψ′) such that ψ′ ∨ ξ is a new invariant candidate (i.e., ψ =⇒ ψ′, (l, ψ′ ∨ ξ)
is inductive, and (ψ′ ∨ ξ) ∧ π−1(true) is unsatisfiable). Therefore, loop folding generates a tree of
invariant candidates instead of a single sequence of invariant candidates.

We note that giving up loop folding is an important part of the design of BSELF. It has several
effects: first, it constraints the time spent in computations that could stall the algorithm for a
long time, e.g., nested calls of BSELF that check the invariance of invariant candidates. Second,
remember that we store all invariant candidates generated for a loop l in Ol. After we give up
a folding of the loop l on π, the next trial of folding l on a path derived from π will use also
invariant candidates generated on other paths than π. Symmetrically, attempts to fold the loop l
on other paths than π will use the invariant candidates computed during the loop folding of l on π.
Finally, during loop folding, we never merge a newly generated invariant candidate into a previously
generated candidate, i.e., we preserve the tree structure of candidates during loop folding. This tree
structure is forgotten by storing candidates to Ol and thus further attempts to fold the loop l can
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Procedure BSELF (loc, φ0, infoldloop)
Input: location loc ∈ L, formula φ0 over program variables, a boolean infoldloop
Output: correct meaning that no state of (loc, φ0) is reachable from (init , true), or

incorrect meaning that a state of (loc, φ0) is reachable from (init , true), or
unknown meaning that the procedure finished without decision

initialize queue with (loc, φ0, ∅)
while queue is not empty do

(l, φ, visited)← pop item from queue

if ¬sat(φ) then continue
if l = init then return incorrect

if l is a loop header then // start of the loop folding extension
if FoldLoop(l, φ, visited) then return correct
if infoldloop then return unknown
visited ← visited ∪ {l} // end of the loop folding extension

foreach e = (l′, o, l) ∈ E do
push (l′, e−1(φ), visited) to queue

return correct

Algorithm 3: The main procedure of the BSELF algorithm.

merge these candidates generated for different paths through the loop and thus find invariants that
need such a merging (see the last example of Subsection 4.5).

4.1 The BSELF algorithm

The pseudocode of BSELF is shown in Algorithm 3. To shorten the notation, we assume that an
input CFA (L, init , err , E) is fixed. Further, for each loop header l, the algorithm uses

– a global variable Ol initially set to ∅, which stores constructed invariant candidates at l, and
– a parameter κl ≥ 0 which bounds the effort to infer an invariant at l in a single visit of l.

These global variables and parameters appear only in procedure FoldLoop. To decide the error
location reachability problem, one should call BSELF (err , true, false).

If we ignore the loop folding extension, Algorithm 3 is just an efficient version of Algorithm 1.
The difference is that preconditions are now computed incrementally along individual edges of CFA
instead of executing whole error paths. Since we lost the information about the length of paths,
we use a first-in first-out queue instead of a workbag to achieve the shortest-path search order.
The parameter infoldloop and sets visited have an effect only inside FoldLoop procedure. Indeed,
Algorithm 3 executed with infoldloop = false never returns unknown.

Before discussing the central procedure FoldLoop presented in Algorithm 4, we describe how it is
used in the main BSELF loop. Whenever BSELF hits a loop header l with the states (l, φ) (further
called the error states), we call the procedure FoldLoop which attempts to find an invariant (l, ρ)
that proves the unreachability of the current error states, i.e., such that ρ∧φ is unsatisfiable. If the
procedure succeeds, we return correct. If it fails, we check whether infoldloop = true. If it is the case,
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Procedure FoldLoop(l, φ, visited)
Input: location l ∈ L, formula φ over program variables, and set visited ⊆ L
Output: true if an invariant disjoint with (l, φ) is found; false otherwise

ψ ← InitialInvariantCandidate(l, φ, visited)
if ¬sat(ψ) then return false
workbag ← ∅
for ψ′ ∈ Overapproximate(l, ψ, false, ψ, φ) do

workbag ← workbag ∪ {(ψ′, ψ′, κl)}
Ol ← Ol ∪ {ψ′} // update known invariant candidates

while workbag 6= ∅ do
(ψ, ξ, k)← pick item from workbag
workbag ← workbag r {(ψ, ξ, k)}
fail ← false // check if (l, ξ) is an invariant
foreach e = (l′, o, l) ∈ E outside any loop do

if BSELF (l′, e−1(¬ξ), true) 6= correct then
fail ← true
break

if fail = false then return true
if k > 0 then // extend the candidate

foreach π ∈ LoopPaths(l) do
ψ′ ← π−1(ψ)
if ¬sat(ψ′ ∧ φ) then

for ψ′′ ∈ Overapproximate(l, ψ′, ψ, ξ, φ) do
workbag ← workbag ∪ {(ψ′′, ψ′′ ∨ ξ, k − 1)}
Ol ← Ol ∪ {ψ′′ ∨ ξ} // update known invariant candidates

return false

Algorithm 4: The procedure FoldLoop(l, φ) looking for invariants disjoint with (l, φ).

then BSELF was called from inside FoldLoop and we return unknown. This is to ensure progress
and avoid stalling in nested calls of FoldLoop. Finally, if infoldloop = false, we update visited with
l to remember that we have visited this loop on the current path and continue searching paths like
in regular BSE.

Now we turn our attention to the procedure FoldLoop (Algorithm 4). In the following, by an
invariant candidate at location l we mean a formula ξ such that (l, ξ) is disjoint with (l, φ) and
inductive, i.e., each state with location l reachable from (l, ξ) is also in (l, ξ). We talk just about an
invariant candidate if l is clear from the context. The procedure FoldLoop maintains a workbag of
triples (ψ, ξ, k), where ξ is an invariant candidate at l, ψ is the latest extension of ξ (i.e., the last
set of states added to ξ), and k is the remaining number of extensions of this candidate that we
allow to try. Initially, we set k to κl, so every candidate is extended maximally κl times.

First, we ask the procedure InitialInvariantCandidate for an initial invariant candidate ψ at l.
Then we call the procedure Overapproximate that returns a set of overapproximated candidates.
That is, each ψ′ returned from Overapproximate is again an invariant candidate and (l, ψ′) is a
superset of (l, ψ). Then we put the triples (ψ′, ψ′, κl) to workbag and remember ψ′ also in Ol for
possible future attempts of folding this loop.



12 Marek Chalupa and Jan Strejček

In every iteration of the main cycle, a triple (ψ, ξ, k) is picked from workbag . Then we check
whether the corresponding candidate ξ is an invariant. As the candidate is inductive, it is sufficient
to check that ξ holds whenever we enter the loop header l from outside of the loop. Hence, we
consider all edges e = (l′, o, l) that enter the loop from outside and call BSELF (l′, e−1(¬ξ), true)
to detect if ξ always holds when entering l. If the answer is correct for all considered edges, then
no state in (l,¬ξ) is reachable from (init , true) and we found an invariant (l, ξ) disjoint with (l, φ).

Otherwise, if k > 0 then we try to extend the candidate by new states. Specifically, we take
every loop path π ∈ LoopPaths(l) and compute the precondition ψ′ = π−1(ψ) with respect to ψ
(the previous extension of the candidate). Note that the set (l, ψ′ ∨ ψ) is again inductive as (l, ψ)
is inductive and all executions of the program from (l, ψ′) must end up in (l, ψ) ⊆ (l, ψ ∨ ψ′).
If ψ′ is disjoint with φ, then ψ′ is also an invariant candidate. We put the triples corresponding
to overapproximations of this candidate to workbag and update the known candidates in the Ol
set. Intuitively, the described process of extending a candidate corresponds to computing the set
of states in which the program is one iteration before getting into ψ along π ∈ LoopPaths(l) and
overapproximating this set to cover not just one, but possibly multiple previous iterations of the
loop (along any path).

The main cycle is repeated until either an invariant is found or workbag gets empty. Even if we
fail to find an invariant in a particular call to FoldLoop, it is possible that we find one when BSELF
reaches l again. This is because the procedure InitialInvariantCandidate (which is described later
in detail) not only reuses candidates stored in Ol to recycle the work, but it can even merge several
candidates originally computed for different paths through the loop and from different attempts of
folding the loop with the header l.

To make the description of loop folding complete, it remains to describe the procedures
InitialInvariantCandidate and Overapproximate.

4.2 The computation of the initial invariant candidate

The procedure InitialInvariantCandidate computes the initial invariant candidate during loop fold-
ing. It gets the current error states (l, φ) and the set visited of loop headers where the loop folding
failed during the exploration of the current path, and produces a formula ψ such that the set (l, ψ)
is disjoint with (l, φ) and inductive.

Let Πe be the set of safe paths starting in l that exit the loop without finishing a single itera-
tion. Formally, Πe contains the paths πe = (l0, o0, l1)(l1, o1, l2) . . . (ln−1, on−1, ln) such that l0 = l,
l1, . . . , ln−1 ∈ Locs(l)r {l}, and ln 6∈ Locs(l) ∪ {err}. Further, we set

ψe = ¬φ ∧
∨

πe∈Πe

πe
−1(true).

Note that ψe is an invariant candidate as it is disjoint with φ and inductive because it enforces that
the loop is left without finishing any other iteration (and we cannot reach the loop again as the
program has no nested loops).

The procedure InitialInvariantCandidate works as follows. If l 6∈ visited , then BSELF tries to
fold this loop for the first time during exploration of the current path. In this case, ψe seems to be
a reasonable invariant candidate. However, we would like to recycle the work from previous loop
foldings on l (executed on different paths), so we extend ψe with all possible candidates stored in
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Ol that are disjoint with φ and subsume ψe. Hence, the procedure returns the formula

ψ1 = ψe ∨
∨
ξ∈Ol

ψe =⇒ ξ
¬sat(ξ∧φ)

ξ.

If l ∈ visited , then BSELF previously failed to fold this loop during exploration of the current path.
In this case, we combine the candidates stored in Ol. More precisely, we define formulas

ψ2 =
∨
ξ∈Ol

ψe =⇒ ξ
¬sat(ξ∧φ)

ξ and ψ3 =
∨
ξ∈Ol

¬sat(ξ∧φ)

ξ

where ψ2 is a formula that joins all candidates stored in Ol that are disjoint with φ and subsume
ψe. If sat(ψ2) = true (i.e., we found some suitable candidates in Ol) we return it. Otherwise, we
return ψ3 which gives up on subsumption and just gathers all the candidates stored in Ol that are
disjoint with ψ. Note that there may be no such candidates and therefore ψ3 can be just false.

4.3 Overapproximation of an inductive set

The procedure Overapproximate(l, ψ′, ψ, ξ, φ) gets the current error states (l, φ), an invariant can-
didate ξ together with its last extension ψ, and the newly suggested extension ψ′. The procedure
produces a set of extensions ψ′′ that are overapproximations of ψ′ (i.e., ψ′ =⇒ ψ′′) and they are
valid extensions of ξ. Formula ψ′′ is a valid extension of ξ if the following two conditions hold.

1. (l, ψ′′ ∨ ξ) is disjoint with (l, φ). As (l, ξ) and (l, φ) are always disjoint, the condition holds if
and only if ψ′′ ∧ φ is unsatisfiable.

2. (l, ψ′′∨ ξ) is inductive. As (l, ξ) is inductive, it is sufficient to check that after one loop iteration
starting from (l, ψ′′) we end up in (l, ψ′′ ∨ ξ). This condition holds if and only if∨

π∈LoopPaths(l)

(
ψ′′ ∧ π−1(¬(ψ′′ ∨ ξ))

)
is unsatisfiable.

Note that Algorithm 4 ensures that the value of ψ′ is always a valid extension of ξ.
Our overapproximation procedure works in several steps. In the first step, we collect relations

that are implied by ψ′ (sometimes together with ψ). Specifically, we derive these kinds of relations:

Type 1 Equalities of the form x = c, where x is a program variable and c is a constant.
Type 2 Linear equalities of the form x± y = a or x± y = a · z, where x, y, z are program variables

and a is a constant.
Type 3 Relations a ≤ x ≤ b ∧ x ≡ 0 (mod b− a) for a program variable x and constants a < b

such that either ψ′ =⇒ x = a and ψ =⇒ x = b, or ψ =⇒ x = a and ψ′ =⇒ x = b.
Type 4 A formula µ′ created from a sub-formula µ of ψ′ by the substitution of x with y (or vice

versa), where x, y are program variables or constants such that ψ′ =⇒ x = y and µ 6= µ′.
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To collect these relations, we use satisfiability queries. For example, to check whether ψ′ implies
the relation x − y = a · z for some a, we first check the satisfiability of ψ′ ∧ (x − y = A · z) where
A is an uninterpreted constant. If the answer is positive, we get a model that assigns some value a
to A. Now we check the satisfiability of ψ′ ∧ (x− y = A · z) ∧ A 6= a. If it is unsatisfiable, then ψ′
implies x− y = a · z.

In the second step, we create a formula ρ by conjoining the relations of type 1 to ψ′ and trans-
forming this new formula to CNF. Note that ρ is equivalent to ψ′. The rest of the overapproximation
procedure tries to overapproximate ρ∧R for every relation R of type 2–4, yielding potentially many
valid extensions of ψ′. To reduce the number of considered relations, we use only those that are not
implied by any other relation. Additionally, we try also R = true which leads to overapproximating
plain ρ.

Given a relation R, we try to drop clauses of ρ while keeping ρ∧R a valid extension. Note that
at the beginning, ρ ∧R is again equivalent to ρ. Let us choose a clause c in ρ and let δ = ρ−c ∧R,
where ρ−c denotes the formula ρ without the clause c. Note that δ is an overapproximation of ρ. If
δ is also a valid extension of ξ, we replace ρ with ρ−c. Otherwise, we keep clause c in ρ. We repeat
this process until no clause can be dropped. Finally, let ρ′ be the formula ρ ∧R.

The fourth step tries to relax the inequalities in ρ′. It tries to replace each inequality e1 ≤ e2
(resp. e1 < e2) in ρ′ with e1 ≤ e2 + r (resp. e1 < e2 + r) where r is a constant as large as possible
such that the modified ρ′ is a valid extension. We search this constant r using the bisection method.
If we find such an r 6= 0, we must also check that the modified formula is an overapproximation of
ψ′. Note that it does not have to be the case, for example, due to integer overflows. If the modified
ρ′ is an overapproximation, we keep it and continue with the next inequality. A crucial point is to
apply this step also to equalities by taking each equality clause e1 = e2 as (e1 ≤ e2) ∧ (e1 ≥ e2).

The last step is similar to the third one: we drop clauses from the current ρ′ as long as the
formula is a valid extension of ξ. In contrast to the third step, now we try to drop also clauses that
were originally in R and thus were not dropped in the third step. The resulting formula has to be
a valid extension of ξ and an overapproximation of ψ′ by construction.

Similarly, as with filtering relations, we now filter the computed extensions and return only those
that are not implied by any other extension.

Note that the result of overapproximating steps are sensitive to the order in which the clauses
are processed and to the order in which inequalities are relaxed.

4.4 Optimizations

In our implementation, we use also two optimizations of BSELF. The first optimization is that
when we try to fold a loop for the first time, we continue BSE until we unwind the whole loop once
along every loop path before we start the actual folding. If the current error becomes infeasible
during unwinding, we directly return true. This way we avoid loop folding of loops that are easily
verifiable by pure BSE.

The second optimization is that we annotate loop headers with generated loop invariants which
are then used in BSE. This has no effect on the algorithm as the invariants are always stored
also in Ol sets – should the invariant make a path infeasible during BSE, it will get to the initial
inductive candidate during loop folding and is discovered again. However, there is the overhead of
overapproximating and checking the invariance again.
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1 int x; // input
2 int i = 0;
3 assume(x == 1);
4 while (i < 1000000) {
5 if (i == 5)
6 --x;
7 ++x;
8 ++i;
9 }
10
11 assert(x == i);

1 int n = 1000000;
2 int x = 0;
3 int i = 0;
4 while (i < n) {
5 ++i;
6 }
7 while (x < n) {
8 ++x;
9 }

10
11 assert(x == i);

1 int x; // input
2 int y; // input
3 int n; // input
4 assume(x >= 0 &&
5 x <= y && y < n);
6 while (x < n) {
7 ++x;
8 if (x > y)
9 ++y;
10 }
11 assert(y == n);

Fig. 3. Three programs verifiable with BSELF.

4.5 Examples

In this subsection, we give examples of running BSELF on the program from Figure 2 and three
programs in Figure 3 that all trigger a different behavior of BSELF.

Program in Figure 2. In this program, BSELF first hits the loop with the error states (1, φ) =
(1, x 6= i ∧ i ≥ n). There are no stored invariant candidates, so the initial invariant candidate is
inferred as ψe = ((x = i ∨ i < n) ∧ i ≥ n). It is simplified and overapproximated to x = i, which is
directly identified as an invariant.
Figure 3 (left). In this program, BSELF computes the initial invariant candidate and overap-
proximates it to ξ0 = (1000000 ≤ i ∧ x = i). It is not an invariant, so BSELF tries to extend it.
Although the loop has two paths, the only possible pre-image of ξ0 is x = i ∧ i = 999999. The
later equality is relaxed to 999999 ≤ 999993 + i which simplifies to 6 ≤ i and ξ0 is extended with
ψ′′1 = (6 ≤ i ∧ x = i) to ξ1 = ((1000000 ≤ i ∧ x = i) ∨ (6 ≤ i ∧ x = i)). This is still not an
invariant, but the extension of ξ1, which is computed as an overapproximation of the pre-image of
ψ′′1 , is (i = x− 1 ∧ i ≤ 5) which together with ξ1 forms an invariant.
Figure 3 (middle). This program shows that BSELF is not constrained to one loop only. Let
us call the first loop L4 and the other loop L7 and set κL4 = κL7 = 1. The loop folding at L7
starts with the candidate i = x∧ x ≥ n. The nested call of BSELF to check whether this candidate
is invariant leads to folding the loop L4 with the initial inductive candidate i ≥ n ∧ i = x. This
folding fails after one extension (because the limit on the number of extensions κL4 = 1 is hit),
the nested instance of BSELF terminates and the top-level instance of BSELF continues extending
the candidate at L7 to (i = x ∧ x ≥ n) ∨ (n = i ∧ x < n). This set of states is again checked
for invariance, leading to folding the loop L4 which succeeds after 1 extension with the invariant
(i ≥ n ∧ (x = i ∨ n = i) ∧ (n = i ∨ x ≥ n) ∧ (x < n ∨ x = i)) ∨ (i < n ∧ (x < n ∨ x = 1 + i)) that in
turn proves that (i = x ∧ x ≥ n) ∨ (n = i ∧ x < n) is invariant at L7.
Figure 3 (right). Assume that κL6 = 1. BSELF starts folding L6 with the error set y 6= n∧x < n
from which it derives the initial candidate ξ0 = (y = n). Two extended candidates are generated,
namely ξ1 = (y = n ∨ (n > x ∧ n − 1 ≤ y ∧ y ≤ n)) and ξ2 = (y = n ∨ (y = x ∧ y ≤ n)). Neither
of these candidates is an invariant and we hit the limit on the number of extensions, therefore
the folding fails. However, ξ1 and ξ2 were stored into OL6. BSELF continues unwinding the loop,
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hitting its header two more times on different paths. In both cases, the initial invariant candidate
is drawn from OL6 and it is ψ = ξ1 ∨ ξ2 as both these sets are disjunctive with the new error states.
In one case ψ is overapproximated to y = n ∨ n ≤ y and in the other it is overapproximated to
n − 1 ≤ y ∨ y = x ∨ 1 + x ≤ y ∨ y = n. The overapproximations are different because they were
done with respect to different error states. However, both are identified as invariants and BSELF
terminates.

5 Experimental Evaluation

We have implemented BSE and BSELF1 in the symbolic executor SlowBeast [1]. SlowBeast
is written in Python and uses Z3 [65] as the SMT solver. It takes LLVM [59] bitcode as input.

As BSELF aims to improve BSE on programs with loops, our evaluation uses the benchmarks
of the category ReachSafety-Loops from the Competition on Software Verification (SV-COMP)
2021 [10]2. Every benchmark is a sequential C program with explicitly marked error locations. The
category contains 770 benchmarks out of which 536 are safe and 234 are unsafe.

In experiments with BSELF, BSE, and SE, we compile each benchmark with Clang to LLVM,
inline procedure calls, and flatten nested loops. Even after this preprocessing, some of the bench-
marks do not meet the assumptions of BSELF, which is designed primarily for integer programs
and does not support the reading of input inside loops. In such cases, loop folding may fail and
BSELF falls back to performing BSE. In experiments with BSELF, we set the parameter κl to
2 · |LoopPaths(l)| − 1 for each loop header l.

We first compare BSELF against BSE and then we compare both these techniques to state-
of-the-art verification tools. All experiments were conducted on machines with AMD EPYC CPU
with the frequency 3.1GHz. For each tool, the run on a benchmark was constrained to 1 core and
8GB of RAM and 900 s of CPU time. We used the utility Benchexec [17] to enforce resources
isolation and to measure their usage.

5.1 Comparison of BSELF and BSE

First, we turn our attention to the comparison of BSELF and BSE. The scatter plot in Figure 4
(left) shows the running time of BSE and BSELF on all benchmarks that were decided by at least
one of the algorithms. We can see that BSELF can decide many benchmarks that are out of the
scope of BSE (green crosses on the top). Not surprisingly, there are also benchmarks where BSE
beats BSELF as computing invariants has non-negligible overhead (red crosses and black crosses
under the diagonal line). The quantile plot on the right shows that BSELF performs better on the
considered benchmark set than BSE.

The observation from the plots is confirmed by the total numbers of decided benchmarks in
Table 1. BSELF was able to solve 65 more safe benchmarks. On unsafe instances, BSE performs
better which is expected as BSELF focuses on proving the correctness rather than on finding bugs.

1 The artifact with implementation and experiments infrastructure can be found at https://doi.org/10.
5281/zenodo.5220293.

2 https://github.com/sosy-lab/sv-benchmarks, commit 3d1593c

https://doi.org/10.5281/zenodo.5220293
https://doi.org/10.5281/zenodo.5220293
https://github.com/sosy-lab/sv-benchmarks
https://github.com/sosy-lab/sv-benchmarks
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Fig. 4. The left plot provides comparison of running times of BSELF and BSE on benchmarks solved by at
least one of them. Green crosses represent benchmarks decided only by BSELF, red crosses are benchmarks
decided only by BSE, and black crosses are benchmarks decided by both algorithms. The right plot shows
how many benchmarks each algorithm decides with the timeout set to the value on y-axis.

5.2 Comparison of BSELF to state-of-the-art tools

Now we compare BSELF to state-of-the-art tools that can use k-induction and to tools that per-
formed well in the ReachSafety-Loops category in SV-COMP 2021. The first set of tools is formed by
CPAchecker [15] and ESBMC [35, 37]. These tools combine bounded model checking (BMC) with
k-induction, where the induction parameter is the number of iterations of loops instead of the length
of paths. To solve the incompleteness problem of k-induction, both tools use invariants [12, 37]. We
used the configuration -kInduction-kipdrdfInvariants of CPAchecker (referred to as CPA-
kind) that employs external invariants from interval analysis (continuously generated in parallel
to k-induction) in combination with invariants inferred from counter-examples to k-induction with
a PDR-like procedure [12, 11]. This configuration performed the best among the configurations
of CPAchecker that we tried. ESBMC was run with the -s kinduction option (referred to as
ESBMC-kind). In this setup, ESBMC computes invariants using interval analysis, injects them
as annotations into the program, and then runs BMC with k-induction [37].

Tools that performed well in SV-COMP 2021 are Divine [8], UAutomizer [49], VeriAbs [2],
and another configuration of CPAchecker called CPA-seq. We call these tools collectively as
sv-comp tools. Divine is a control-explicit data-symbolic model-checker. UAutomizer models pro-
grams as automata and reduces the verification problem to deciding a language emptiness (internally
implemented using interpolation-based predicate analysis with CEGAR). VeriAbs is a software
verifier that uses a portfolio of techniques selected heuristically according to a given program. One of
the techniques is also BMC with k-induction. CPA-seq combines several approaches including value
analysis and predicate abstraction. All these tools were run in their settings for SV-COMP 2021. We
also created a configuration SE+BSELF where we run SE for 450 seconds and for the remaining
450 seconds we run BSELF (if SE did not decide the result).
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Table 1. The total number of benchmarks and non-trivial benchmarks solved by the tools. The tools are
divided into three groups: tools that use k-induction, other unbounded tools, and bounded tools. The column
safe (unsafe) reports the number of solved benchmarks with an unreachable (reachable, respectively) error
location. The column wrong shows the number of wrong decisions by the tool.

All (770) Non-trivial (299)

safe unsafe wrong safe unsafe wrong

BSE 144 80 0 64 1 0
BSELF 209 53 0 104 0 0
CPA-kipdr 245 125 2 58 0 2
ESBMC-kind 284 161 3 42 9 3

SE+BSELF 373 161 0 102 0 0
CPA-seq 318 151 2 72 4 2
Divine 316 152 2 63 10 2
UAutomizer 255 126 0 126 5 0
VeriAbs 412 199 0 136 32 0

CPA-BMC 255 142 2 0 0 2
SE 273 142 0 0 0 0

Finally, we ran BMC and SE on all benchmarks with the purpose to tell apart benchmarks
that are easy to handle by simple state space enumeration. Benchmarks that can be easily decided
neither with BMC (we used BMC implementation from the tool CPAchecker) nor with SE (we
used SE from SlowBeast) are further dubbed as non-trivial. Out of the 770 benchmarks, 299
benchmarks were non-trivial.

Table 1 shows that all approaches but BSE outperform BSELF when compared on all bench-
marks. However, this superiority is mostly caused by the ability to decide easy tasks by entirely
unwinding loops. The configuration SE+BSELF that runs SE before BSELF shows that it is the
case. If we compare the tools on non-trivial benchmarks, BSELF is able to solve more benchmarks
than the other k-induction-based tools and is surpassed only by UAutomizer and VeriAbs in the
comparison of all tools. SE+BSELF is highly competitive with sv-comp tools. Indeed, the only tool
that performs better is VeriAbs, which is not that surprising as it selects a suitable verification
technique (including BMC with k-induction) for each program.

Table 2 provides the cross-comparison of individual tools on non-trivial benchmarks by any of
the approaches. Among k-induction-based tools, BSELF dominates CPA-kind and ESBMC-kind
in these numbers, which suggests that loop folding is a stronger invariant generation technique than
those used by these tools.

6 Related Work

Related work on symbolic execution was discussed in Section 1. Backward symbolic execution [23],
or symbolic backward execution [7] has been paid less attention in the area of automatic code ver-
ification than its forward counterpart. Its roots can be tracked to backward symbolic analysis of
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Table 2. Cross-comparison on non-trivial benchmarks. Numbers in rows show how many benchmarks the
tool in the row decided and the tool in the column did not.
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BSE - 3 28 50 4 27 49 15 31
BSELF 42 - 56 88 2 56 63 38 34
CPA-kipdr 21 10 - 46 11 8 34 4 15
ESBMC-kind 36 35 39 - 36 27 34 18 18

SE+BSELF 41 0 55 87 - 55 62 37 33
CPA-seq 38 28 26 52 29 - 41 5 20
Divine 57 32 49 56 33 38 - 28 7
UAutomizer 81 65 77 98 66 60 86 - 50
VeriAbs 134 98 125 135 99 112 102 87 -

protocols by Danthine and Bremer [26], and Holzmann et al. [51]. Chandra et al. [23] use interproce-
dural BSE with function summaries [76] and path pruning to find bugs in Java programs. Chen and
Kim use BSE in the tool STAR [24], basically following the approach of Chandra et al., to compute
the precondition of a program crash – BSE is guided by the given crash report to reproduce a bug.
Arzt et al. [4] use BSE in a very similar manner. None of these works consider loop invariants.

Although BSE on its own is not very popular in automatic software verification, its principal
foundation – the weakest precondition – is cherished in deductive verification [27, 9, 60, 32].

Our work was motivated by finding a synergy of symbolic execution with k-induction. The
first use of k-induction is attributed to Sheeran et al. [78] who used it to model check hardware
designs. Many other model checking approaches follow up on this work [18, 66, 71, 54, 45, 57]. The
k-induction scheme has been transferred also to software model checking, where it is usually applied
only to loops [30, 36, 12, 22].

Our technique infers loop invariants. There are plenty of works on this topic [25, 55, 19, 5, 41,
42, 21, 44, 43, 77, 28, 52, 67, 31], but a relatively few of the works target disjunctive invariants [41,
42, 43, 77, 28, 67, 81] that arise naturally in loop folding in BSELF.

Loop acceleration computes the reflexive and transitive closure of loop iterations [50] or its
supersets or subsets [62, 34]. It can be used to infer or help to infer inductive invariants [50, 52, 62]
or, in general, for the verification of safety properties with model checking or abstract interpretation.
BSELF could benefit from accelerators to speed up BSE and loop folding.

Similar to loop acceleration is loop summarization [81] which deals with inferring loop sum-
maries [39]. A loop summary is a relation that associates a set of output states (a post-condition)
of the loop to a given set of input states (a pre-condition) of the loop [38, 39]. With loop summaries,
one is able to skip the execution of loops and directly apply the loops’ effect instead of unwinding
them [79]. Such an application would directly help BSE(LF) in scaling on programs with loops as
it removes the need to unwind/fold loops.
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Inferring relations when overapproximating inductive sets in BSELF is similar to the use of
predicates in predicate abstraction [33, 53].

7 Conclusion

In this work, we showed that performing k-induction on control-flow paths is equivalent to running
backward symbolic execution (BSE) with the breadth-first search strategy. Then we introduced loop
folding, a technique to infer disjunctive invariants during BSE that can help to solve a new class
of benchmarks that were previously out of the scope of BSE. We compared BSE with loop folding
(BSELF) with pure BSE, several k-induction-based tools, and also with the state-of-the art tools
that performed well on the ReachSafety-Loops category in SV-COMP 2021. Compared to each of
these tools, BSELF is able to solve benchmarks that the other tool is not, which makes it a valuable
addition to the portfolio of program verification approaches.

In the future, we want to explore the possibilities of using the information from failed induction
checks and try different overapproximation methods, e.g., some PDR-like procedure.
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