
EPiC Series in Computing

Volume 57, 2018, Pages 488–497

LPAR-22. 22nd International Conference on Logic for
Programming, Artificial Intelligence and Reasoning

Is Satisfiability of Quantified Bit-Vector Formulas

Stable Under Bit-Width Changes?∗

Martin Jonáš and Jan Strejček

Masaryk University, Brno, Czech Republic
{xjonas, strejcek}@fi.muni.cz

Abstract

In general, deciding satisfiability of quantified bit-vector formulas becomes harder with
increasing maximal allowed bit-width of variables and constants. However, this does not
have to be the case for formulas that come from practical applications. For example,
software bugs often do not depend on the specific bit-width of the program variables and
would manifest themselves also with much lower bit-widths. We experimentally evaluate
this thesis and show that satisfiability of the vast majority of quantified bit-vector formulas
from the smt-lib repository remains the same even after reducing bit-widths of variables
to a very small number. This observation may serve as a starting-point for development of
heuristics or other techniques that can improve performance of smt solvers for quantified
bit-vector formulas.

1 Introduction

In the modern world, as the computer software becomes still more ubiquitous and complex, there
is an increasing need to test it and formally verify its correctness. Several approaches to software
verification, such as symbolic execution or bounded model checking, rely on the ability to decide
whether a given first-order formula in a suitable logical theory is satisfiable. To this end, many of
the verifiers use Satisfiability Modulo Theories (smt) solvers, which can solve precisely the task
of checking satisfiability of a given first-order formula in a given logical theory. For describing
software, the natural choice of a logical theory is the theory of fixed-size bit-vectors in which the
objects are vectors of bits and the operations on them precisely reflect operations performed
by computers. Moreover, in applications such as synthesis of invariants, ranking functions, or
loop summaries, the formulas in question also naturally contain quantifiers [10, 21, 6, 16, 17].

For most of the decision procedures for satisfiability of quantifier-free bit-vector formulas,
their time and space complexities grow with the increasing bit-widths of used variables. This
is caused by the conversion of the input formula to the equisatisfiable propositional formula
(bit-blasting), which is a fall-back strategy for most of the decision procedures. The problem
with growing bit-width in turn applies to decision procedures for quantified bit-vectors based
on the quantifier-instantiation used by Boolector [18], CVC4 [19], and Z3 [22], which employ a

∗The authors have been supported by the Czech Science Foundation grant GBP202/12/G061.

G. Barthe, G. Sutcliffe and M. Veanes (eds.), LPAR-22 (EPiC Series in Computing, vol. 57), pp. 488–497



Is Satisfiability of Quantified Bit-Vector Formulas Stable Under Bit-Width Changes? Jonáš and Strejček

32 bits

0 10 20 30

0

20

40

60

Reduced bit−width

C
P

U
 ti

m
e 

[s
]

64 bits

0 20 40 60

0

10

20

30

40

50

Reduced bit−width

C
P

U
 ti

m
e 

[s
]

Figure 1: The scatter plots show cpu times of the solver CVC4 on a subset of 32bit and 64bit
formulas from the smt-lib repository after changing their bit-width to the bit-width specified
on the x-axis. The formulas are divided according to the original bit-width.

solver for quantifier-free formulas as a black box. The approach to quantified bit-vector formulas
based on binary decision diagrams used by the solver Q3B [14] is sensitive to bit-width as well:
as the bit-width increases, so do the sizes of the produced binary decision diagrams. These
claims are supported by plots in Figure 1, which show solving times of the solver CVC4 on
almost all 32bit and 64bit quantified bit-vector formulas from the smt-lib repository [2] after
reducing their bit-widths to all values between 1 and the original bit-width. Details concerning
the selection of benchmarks and reduction of their bit-widths are described in Section 3.

Under reasonable complexity-theory assumptions, the effect of increasing bit-width is also
observable from the complexity-theory point of view. For both quantifier-free and quantified
formulas, the respective complexity classes of deciding satisfiability of formulas with bit-widths
encoded in unary and in binary differ: NP vs. NEXPTIME for quantifier-free formulas and
PSPACE vs. AEXP(poly) for quantified formulas [15, 13]. Therefore, the decision problem
has to become harder with the increasing bit-width, otherwise the complexity classes for unary
and binary encoding would coincide.

For quantifier-free bit-vector formulas, this problem has been tackled several times. Bryant
et al. have proposed an abstraction-based procedure that tries to solve the underapproximations
of the input formula with reduced bit-widths of variables, whose satisfiability would prove the
input formula satisfiable, and selectively increases their bit-widths if the underapproximation
is unsatisfiable [5]. Fröhlich et al. have proposed stochastic local search approach that looks
for models of quantifier-free formulas and thus avoids bit-blasting with its inherent space-
complexity dependence on the bit-widths of the input formula [9]. This approach was improved
by propagation rules by Niemetz et al. [18]. Zeljić et al. have developed the solver mcBV [24]
that implements the model-constructing satisfiability calculus [8] that tries to construct a model
directly and thus also avoids bit-blasting. Johannsen has shown how to compute a bit-width to
which a formula can be reduced while preserving its satisfiability for a restricted class of formulas
that represent bitwise functions [11, 12]. Kovásznai et al. used this observation regarding such
formulas to show that the complexity of their satisfiability is the same for both unary and binary
encoding of the bit-widths [15]. Considering a related theory of floating-point arithmetic, Zeljić
et al. have introduced an approximation framework that produces mixed-approximations of the

489



Is Satisfiability of Quantified Bit-Vector Formulas Stable Under Bit-Width Changes? Jonáš and Strejček

original formula by reducing the bit-widths used for floating-point variables. After solving the
mixed-approximation, the solver checks its result against the original formula and if it fails, it
refines the approximation [25, 23]. In general, this approach works for arbitrary quantifier-free
theory, but as far as we know, it has been implemented only for floating-point arithmetic.

For quantified bit-vector formulas, only one existing smt solver tries to reduce bit-widths
of some variables of the input formula: the solver Q3B uses approximations inspired by the
abstractions by Bryant et al. and computes underapproximations and overapproximations by
reducing bit-widths of existentially and universally quantified variables, respectively [14].

In this paper, we experimentally evaluate the thesis that the satisfiability of only a small
number of quantified bit-vector formulas changes as the bit-widths of their variables decrease.
We show that the satisfiability of the vast majority of quantified bit-vector formulas from the
smt-lib repository remains the same even after reducing bit-widths of their variables to a very
small number of bits. Therefore, the results of this experimental paper suggest that extending
the techniques described for quantifier-free formulas to quantified formulas or designing novel
techniques for reducing bit-widths of quantified bit-vector formulas could be worthwhile. These
techniques could allow smt solvers both solving more quantified bit-vector formulas and to
solving them more quickly.

The paper is structured as follows: Section 2 provides the necessary background and no-
tation for the bit-vector theory, Section 3 describes how we obtain formulas with reduced
bit-widths, and Section 4 presents our experiments with the reduced formulas and results of
these experiments. The following Section 5 discusses challenges arising from these results.

2 Preliminaries

This section briefly recalls the theory of fixed-size bit-vectors (BV or bit-vector theory for short).
In the description, we assume familiarity with standard notions of many-sorted logic.

The bit-vector theory is a many-sorted first-order theory with infinitely many sorts corre-
sponding to bit-vectors of various lengths, which are called their bit-widths. We denote a variable
x of a sort corresponding to the bit-width n ≥ 1 as x[n]. The BV theory uses only three pred-
icates, namely equality (=), unsigned inequality of binary-encoded natural numbers (≤u), and
signed inequality of integers in two’s complement representation (≤s). The theory also contains
various functions including addition (+), multiplication (·), unsigned division (÷u), signed di-
vision (÷s), unsigned remainder (%), bit-wise and (&), bit-wise or (|), bit-wise exclusive or (̂),
left-shift (�), right-shift (�), concatenation (concat), zero extension extending the argument
with n most-significant zero bits (zeroExtn), sign extension extending the argument with n
copies of the sign bit (signExtn), and extraction of n bits starting from position p (extractnp ).

The signature of BV theory also contains numerals for constants m[n] for each bit-width n > 0
and each number 0 ≤ m ≤ 2n − 1. Each term has an associated bit-width, which is denoted as
bw(t).

For a valuation µ that assigns to each variable a value in its domain, J Kµ denotes the evalu-
ation function, which assigns to each term t the bit-vector obtained by substituting variables in
t by their values given by µ and evaluating all functions. Similarly, the function J Kµ assigns to
each formula ϕ the value obtained by substituting free variables in ϕ with values given by µ and
evaluating all functions, predicates, logic operators etc. A formula ϕ is satisfiable if JϕKµ = 1
for some valuation µ; it is unsatisfiable otherwise.

The precise definition of many-sorted logic can be found for example in Barrett et al. [3].
The precise description of bit-vector theory and its operations can be found for example in the
paper describing complexity of quantified bit-vector theory by Kovásznai et al. [15].

490



Is Satisfiability of Quantified Bit-Vector Formulas Stable Under Bit-Width Changes? Jonáš and Strejček

3 Obtaining Formulas with Reduced Bit-Widths

This section describes how we obtain formulas with the reduced bit-width from the original
benchmarks. Given a formula ϕ and a desired bit-width bw ≥ 1, the following procedure
produces the formula reduceF (ϕ, bw) in which all subterms have bit-width at most bw. In
particular, reduceF (ϕ, bw) is obtained from ϕ by:

• decreasing bit-width of all variables with bit-width more than bw to bw,

• replacing all numerals with bit-width more than bw by their bw least-significant bits,

• decreasing the numbers of added bits by all zeroExt and signExt functions so that the
bit-width of the result is at most bw.

Formally, we introduce the following recursive function reduceT that performs the above-
described reduction of maximal bit-width on terms:

reduceT (m[n], bw) = (m mod 2min(n,bw))
[min(n,bw)]

,

reduceT (x[n], bw) = x[min(n,bw)],

reduceT (t1 � t2, bw) = reduceT (t1, bw) � reduceT (t2, bw) for � ∈ {+, ·,÷s,÷u,%,&, |,̂ ,�,�},

reduceT (extn(t), bw) =

{
reduceT (t, bw) if bw(t) ≥ bw,
extmin(n,bw−bw(t))(t) if bw(t) < bw,

for ext ∈ {zeroExt, signExt}.

By using the function reduceT on arguments of relation symbols in the formula, we obtain the
function reduceF that reduces maximal bit-widths in arbitrary formulas:

reduceF (t1 1 t2, bw) = reduceT (t1, bw) 1 reduceT (t2, bw) for 1 ∈ {=,≤u,≤s},
reduceF (¬ϕ, bw) = ¬reduceF (ϕ, bw),

reduceF (ϕ1 � ϕ2, bw) = reduceF (ϕ1, bw) � reduceF (ϕ2, bw) for � ∈ {∧,∨},
reduceF (Qx[n] .ϕ, bw) = Qx[min(n,bw)] .reduceF (ϕ, bw) for Q ∈ {∀,∃}.

Note that the function reduceT is undefined on terms that contain extraction or concatenation.
We have decided to exclude formulas that contain these operations for the following reasons. For
extraction, there are multiple arbitrary choices of bits to extract: for example, the extraction
of the middle (i.e. the third) bit from a 5bit variable reduced to 3 bits could extract the middle
(i.e. the second) bit or the third bit. Reduction of a formula containing concatenation may
require reducing a single variable to multiple different bit-widths – although this is possible to
achieve by adding extractions, this would change the semantics of the formula beyond merely
changing the bit-widths of variables in which we are interested. For example, after reducing
the formula concat(x[4], y[4]) = concat(y[4], x[4]) to 6 bits, the variable x would get reduced to
2 bits on the left-hand side, but would stay 4bit on the right-hand side.

We have written a simple tool that for an input formula ϕ in the smt-lib [1] format generates
formulas reduceF (ϕ, i) for all i between 1 and the maximal bit-width (included) of a subterm
of the formula ϕ. The tool uses api of the smt solver Z3 [7] and it is available at https:

//gitlab.fi.muni.cz/xjonas/FormulaReducer. Using this tool, we have generated reduced
versions of all quantified bit-vector formulas from the smt-lib repository except for

• all 400 4bit and 32bit formulas from the 2018-Preiner-cav18 benchmark family. This
does not lead to loss of information because all these formulas are generated from the
remaining 64bit formulas by the function reduceF with parameter 4 and 32, respectively;

491

https://gitlab.fi.muni.cz/xjonas/FormulaReducer
https://gitlab.fi.muni.cz/xjonas/FormulaReducer


Is Satisfiability of Quantified Bit-Vector Formulas Stable Under Bit-Width Changes? Jonáš and Strejček

Table 1: The table shows the formulas excluded from our evaluation according to their families.
The column total shows a total number of formulas in each family (except for 2018-Preiner-
cav18, where all 4bit and 32bit benchmarks have been excluded). Next three columns show
numbers of formulas excluded because of too large bit-width, use of operations concat and
extract, and timeout of the solver for any of the reduced versions of the formula, respectively.
The last column shows the number of remaining formulas on which the evaluation of effects of
bit-width reduction on satisfiability was performed.

benchmark family total bw > 100
concat
extract T/O remaining

2017-Preiner-keymaera 4035 0 0 65 3970
2017-Preiner-psyco 194 0 0 5 189
2017-Preiner-scholl-smt08 374 0 0 153 221
2017-Preiner-tptp 73 0 0 0 73
2017-Preiner-UltimateAutomizer 153 0 0 2 151
2017-Heizmann-UltimateAutomizer 131 0 4 7 120
2018-Preiner-cav18 200 0 40 30 130
wintersteiger 191 21 67 52 51

total 5351 21 111 314 4905

• 21 formulas that contain subterms of bit-width larger than 100 to keep the solving time
reasonable;

• 111 formulas that use operations concat or extract.

Table 1 shows the numbers of such excluded benchmarks according to their families.

From the set of 5219 non-excluded original formulas, we have generated in total 173 105
corresponding formulas with the reduced bit-widths. An archive containing all these generated
formulas can be found at http://fi.muni.cz/~xstrejc/lpar2018/ReducedBW.tar.gz.

4 Experimental Evaluation

We have evaluated satisfiability of all the resulting 173 105 formulas. For the evaluation, we
have used the SMT solver CVC4 [19], as it is the winner of the smt Competition 2018 in the
category of quantified bit-vector formulas. The solver was run with 1 minute cpu time limit
and 8 GiB ram limit. For this, we employed BenchExec [4], a tool that allocates resources
for a program execution and precisely measures their use. All experiments were performed on a
Debian machine with two six-core Intel Xeon E5-2620 2.00GHz processors and 128 gb of ram.

From the original 5219 formulas, 4905 were decided by CVC4 for all bit-widths. On the
other hand, CVC4 exceeded the time limit on at least one bit-width on the remaining 314
formulas. The distribution of these non-decided formulas among benchmark families can be
found in Table 1. We excluded these 314 formulas from the evaluation and performed the
evaluation only on 4905 formulas with known status for all bit-widths. When grouped by their
maximal bit-width, the set of evaluated formulas contains 10 formulas of bit-width 1, 10 of
bit-width 8, 20 of bit-width 20, 4727 of bit-width 32, 1 of bit-width 33, 134 of bit-width 64, and
3 of bit-width 65.

492

http://fi.muni.cz/~xstrejc/lpar2018/ReducedBW.tar.gz


Is Satisfiability of Quantified Bit-Vector Formulas Stable Under Bit-Width Changes? Jonáš and Strejček

Table 2: The table shows the numbers of benchmarks in the individual families whose satisfia-
bility status is different for the original formula and for any reduced formula with bit-width at
least 1, 2, 4, and 8 bits, respectively.

benchmark family benchmarks ≥ 1b ≥ 2b ≥ 4b ≥ 8b

2017-Preiner-keymaera 3970 64 19 12 4
2017-Preiner-psyco 189 49 5 0 0
2017-Preiner-scholl-smt08 221 1 0 0 0
2017-Preiner-tptp 73 20 10 3 0
2017-Preiner-UltimateAutomizer 151 41 32 3 0
2017-Heizmann-UltimateAutomizer 120 29 20 6 5
2018-Preiner-cav18 130 4 3 3 3
wintersteiger 51 8 6 5 2

total 4905 216 95 32 14
% 4.4 1.9 0.65 0.29

4.1 Satisfiability of Formulas with Reduced Bit-Widths

From the 4905 formulas, only 4.4% have a different satisfiability status for any of their reduced
version. Moreover, only 1.9% have a different satisfiability status after reducing to 2 bits or
more, 0.65% have a different satisfiability status after reducing to 4 bits or more, and only
0.29% have a different satisfiability status after reducing to 8 bits or more. Table 2 shows the
numbers of such benchmarks precisely after grouping the formulas to their respective families.
For example, the table shows that all decided formulas from the family 2017-Preiner-scholl-
smt08, which contains the largest number of undecided benchmarks, have the same satisfiability
status for all bit-widths from 2 to the original bit-width and all decided formulas from the family
2017-Preiner-psyco have the same satisfiability status for all bit-widths from 4 to the original
bit-width. Note that the original bit-width of all benchmarks from these families is 32 bits.

Figure 2 presents these results graphically for all bit-widths between 1 and the original bit-
width. The figure shows the results only for formulas with the original bit-width of 32 or 64
bits as the number of benchmarks of other bit-widths is negligible. It can be seen that only
under 0.25% of 32bit formulas change their satisfiability status after reducing their bit-width
to 6 bits or more.

Figure 3 presents the satisfiability status of each reduction for all 32 formulas that changed
the status after reducing the bit-width to 4 bits or more. Although the plot does not show
names of the respective formulas due to the available space, the names can be found at the
accompanying web page. Note that most of these formulas are unsatisfiable; this is caused
by the fact that most of the formulas in the whole benchmark set are unsatisfiable. The plot
contains four outstanding groups of formulas:

• Formulas 7–10 (intersection-example-onelane.proof-node{19355,20770,46589,54847} from
2017-Preiner-keymaera). These formulas are unsatisfiable for even bit-widths and satis-
fiable for odd bit-widths because they contain subformulas equivalent to

(c[n] = (x[n] ·x[n])÷s (2[n] ·y[n])) ∧ (0[n] ≤s y[n]) ∧ (y[n] >s y
[n]+c[n]) ∧ (y[n] ≤s c[n]).

For n ≥ 2, this subformula entails the formula

(x[n] · x[n])÷s (2[n] · y[n]) ≥s (2n−2)
[n]
,

493



Is Satisfiability of Quantified Bit-Vector Formulas Stable Under Bit-Width Changes? Jonáš and Strejček

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

4.5%

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

Bit−width

P
er

ce
nt

ag
e 

of
 fo

rm
ul

as

Original bit−width

32

64

Figure 2: The plot shows the percentage of 32bit and 64bit benchmarks (y-axis) whose satis-
fiability status is different for the original formula and for any reduced formula with a given
(x-axis) or a larger bit-width.

●
●

●

●
●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●
●
●
●
●
●

●

●

●

●
●
●
●

●

●

●

●

●
●
●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●
●
●

●
●

●
●
●
●

●

●
●

●
●
●
● ●

●
●

●

●
●
●
●

●
●
●

●
●

●
●
●

●
●
●
●
●
●

●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●

●

●
●
●

● ●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

0

20

40

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Benchmark ID

B
it−

w
id

th Satisfiability status

● sat

unsat

Figure 3: For each of the 32 benchmarks that have a different satisfiability result when reducing
their bit-width to 4 bits or more, the plot shows satisfiability statuses for all their reduced
versions.

494



Is Satisfiability of Quantified Bit-Vector Formulas Stable Under Bit-Width Changes? Jonáš and Strejček

which is unsatisfiable for even bit-widths, but satisfiable for odd bit-widths by setting

x[n] 7→ (2(n−1)/2)
[n]

and y[n] 7→ (2(n−1) − 1)
[n]

.

• Formulas 11–15 (jain 7 true unreach-call true-no-overflow i {215,242,245,262,475} from
2017-Heizmann-UltimateAutomizer). Satisfiability of these formulas differs for bit-widths
less than 23 and at least 23, because these formulas contain the numeral (presented here
in binary)

1111 1111 1100 0000 0000 0000 0000 0000,

which gets reduced to 0 after reduction to less then 23 bits.

• Formulas 27–29 (check eq bvashr0 64bit and check ne {bvlshr0,bvshl0} 64bit from 2018-
Preiner-cav18 ). Satisfiability of these formulas is different for the original bit-width of
64 bits and for almost all smaller bit-widths because the formulas contain a subformula
similar to (x[64] <u 64[64])→ ψ, where ψ contains a subterm of the form t� x[64].

• Formula 30 (mmedia gsm610 gsm6102.c from wintersteiger). Satisfiability of this formula
is different for reduction to 31 bits, as it contains a subformula of the form

x[32] ≤s 0100 0000 0000 0000 0000 0000 0000 0000,

in which the second argument has a negative sign-bit precisely for the reduction to 31 bits.

Detailed results together with the raw data files and scripts we used to produce them can
be found at: http://fi.muni.cz/~xstrejc/lpar2018/

5 Discussion

The experimental evaluation in the previous section shows that the satisfiability of the vast
majority of quantified bit-vector formulas remains the same even after reducing their maximal
bit-widths to a very small number of bits. In our opinion, this observation can be helpful in
several ways:

• Similarly to the case of the approximation framework of Zeljić et al. for quantifier-free
formulas, the performance of smt solvers for quantified bit-vectors could be improved by
first solving a reduced version of the input formula and then checking the result against
the original formula. For example, the solver Boolector computes symbolically expressed
Skolem functions, which certify satisfiability, and Herbrand functions, which certify un-
satisfiability [20]. These functions can be computed from a reduced formula and their
validity can be checked against the original formula. More generally, in an smt solver
based on quantifier instantiation such as Boolector, CVC4 [19], or Z3 [22], the set of
quantifier instances that are sufficient to decide satisfiability of the reduced formula can
be checked against the original formula.

• Because satisfiability of some formulas can be decided even without using the original bit-
width, more fine-grained computational complexity of deciding their satisfiability could
be identified. Currently, the known results of computational complexity are in term of
the size of the input formula, from which the bit-widths are inseparable. In contrast,
parameterized computational complexity could be examined to show how the complexity
depends on various parameters such as the bit-width, the size of the largest constant, the
number of used function symbols, number of quantifier alternations etc.

495

http://fi.muni.cz/~xstrejc/lpar2018/


Is Satisfiability of Quantified Bit-Vector Formulas Stable Under Bit-Width Changes? Jonáš and Strejček

• As a practical use of the previous point, it could be possible for some formulas to compute
a bit-width for which the reduced formula is equisatisfiable to the input one. Such a bit-
width could be used to decide the satisfiability without using the original bit-width.

6 Conclusions

We have experimentally evaluated the effect of reducing bit-width of variables in quantified bit-
vector formulas from smt-lib repository and have shown that satisfiability of the vast majority
of these formulas remains the same even after reducing bit-widths of variables to a very small
number of bits.

References

[1] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Standard: Version 2.5. Tech-
nical report, Department of Computer Science, The University of Iowa, 2015. Available at
www.SMT-LIB.org.

[2] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org, 2016.

[3] Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. Satisfiability Modulo
Theories. In Handbook of Satisfiability, pages 825–885. IOS Press, 2009.

[4] Dirk Beyer, Stefan Löwe, and Philipp Wendler. Benchmarking and Resource Measurement. In
Model Checking Software - 22nd International Symposium, SPIN 2015, Proceedings, volume 9232
of Lecture Notes in Computer Science, pages 160–178. Springer, 2015.

[5] Randal E. Bryant, Daniel Kroening, Joël Ouaknine, Sanjit A. Seshia, Ofer Strichman, and
Bryan A. Brady. An abstraction-based decision procedure for bit-vector arithmetic. STTT,
11(2):95–104, 2009.

[6] Byron Cook, Daniel Kroening, Philipp Rümmer, and Christoph M. Wintersteiger. Ranking func-
tion synthesis for bit-vector relations. Formal Methods in System Design, 43(1):93–120, 2013.

[7] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In Tools and
Algorithms for the Construction and Analysis of Systems, 14th International Conference, TACAS
2008, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS
2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings, volume 4963 of Lecture Notes in
Computer Science, pages 337–340. Springer, 2008.

[8] Leonardo Mendonça de Moura and Dejan Jovanovic. A model-constructing satisfiability calcu-
lus. In Verification, Model Checking, and Abstract Interpretation, 14th International Conference,
VMCAI 2013, Rome, Italy, January 20-22, 2013. Proceedings, pages 1–12, 2013.

[9] Andreas Fröhlich, Armin Biere, Christoph M. Wintersteiger, and Youssef Hamadi. Stochastic Local
Search for Satisfiability Modulo Theories. In Proceedings of the Twenty-Ninth AAAI Conference
on Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA., pages 1136–1143, 2015.

[10] Sumit Gulwani, Saurabh Srivastava, and Ramarathnam Venkatesan. Constraint-based invariant
inference over predicate abstraction. In Verification, Model Checking, and Abstract Interpreta-
tion, 10th International Conference, VMCAI 2009, Savannah, GA, USA, January 18-20, 2009.
Proceedings, pages 120–135, 2009.

[11] Peer Johannsen. Reducing bitvector satisfiability problems to scale down design sizes for RTL
property checking. In Proceedings of the Sixth IEEE International High-Level Design Validation
and Test Workshop 2001, Monterey, California, USA, November 7-9, 2001, pages 123–128, 2001.

[12] Peer Johannsen. Speeding up hardware verification by automated data path scaling. PhD thesis,
University of Kiel, Germany, 2002.

496



Is Satisfiability of Quantified Bit-Vector Formulas Stable Under Bit-Width Changes? Jonáš and Strejček

[13] Martin Jonáš and Jan Strejček. On the Complexity of the Quantified Bit-Vector Arithmetic with
Binary Encoding. Inf. Process. Lett., 135:57–61, 2018.

[14] Martin Jonáš and Jan Strejček. Solving Quantified Bit-Vector Formulas Using Binary Decision
Diagrams. In Theory and Applications of Satisfiability Testing - SAT 2016 - 19th International
Conference, Bordeaux, France, July 5-8, 2016, Proceedings, volume 9710 of Lecture Notes in Com-
puter Science, pages 267–283. Springer, 2016.

[15] Gergely Kovásznai, Andreas Fröhlich, and Armin Biere. Complexity of fixed-size bit-vector logics.
Theory Comput. Syst., 59(2):323–376, 2016.

[16] Daniel Kroening, Matt Lewis, and Georg Weissenbacher. Under-approximating loops in C pro-
grams for fast counterexample detection. In Computer Aided Verification - 25th International
Conference, CAV 2013, volume 8044 of LNCS, pages 381–396. Springer, 2013.

[17] Jan Mrázek, Petr Bauch, Henrich Lauko, and Jǐŕı Barnat. SymDIVINE: Tool for control-explicit
data-symbolic state space exploration. In Model Checking Software - 23rd International Sympo-
sium, SPIN 2016, Co-located with ETAPS 2016, Eindhoven, The Netherlands, April 7-8, 2016,
Proceedings, pages 208–213, 2016.

[18] Aina Niemetz, Mathias Preiner, and Armin Biere. Propagation based local search for bit-precise
reasoning. Formal Methods in System Design, 51(3):608–636, 2017.

[19] Aina Niemetz, Mathias Preiner, Andrew Reynolds, Clark Barrett, and Cesare Tinelli. Solving
quantified bit-vectors using invertibility conditions. In Computer Aided Verification - 30th In-
ternational Conference, CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018,
Oxford, UK, July 14-17, 2018, Proceedings, Part II, pages 236–255, 2018.

[20] Mathias Preiner, Aina Niemetz, and Armin Biere. Counterexample-Guided Model Synthesis. In
Tools and Algorithms for the Construction and Analysis of Systems - 23rd International Confer-
ence, TACAS 2017, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, Part I, volume 10205
of Lecture Notes in Computer Science, pages 264–280. Springer, 2017.

[21] Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. From program verification to pro-
gram synthesis. In Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2010, Madrid, Spain, January 17-23, 2010, pages 313–326, 2010.

[22] Christoph M. Wintersteiger, Youssef Hamadi, and Leonardo Mendonça de Moura. Efficiently
solving quantified bit-vector formulas. Formal Methods in System Design, 42(1):3–23, 2013.

[23] Aleksandar Zeljic, Peter Backeman, Christoph M. Wintersteiger, and Philipp Rümmer. Exploring
Approximations for Floating-Point Arithmetic Using UppSAT. In Automated Reasoning - 9th
International Joint Conference, IJCAR 2018, Held as Part of the Federated Logic Conference,
FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, pages 246–262, 2018.

[24] Aleksandar Zeljic, Christoph M. Wintersteiger, and Philipp Rümmer. Deciding Bit-Vector For-
mulas with mcSAT. In Theory and Applications of Satisfiability Testing - SAT 2016 - 19th Inter-
national Conference, Bordeaux, France, July 5-8, 2016, Proceedings, pages 249–266, 2016.

[25] Aleksandar Zeljic, Christoph M. Wintersteiger, and Philipp Rümmer. An Approximation Frame-
work for Solvers and Decision Procedures. J. Autom. Reasoning, 58(1):127–147, 2017.

497


	Introduction
	Preliminaries
	Obtaining Formulas with Reduced Bit-Widths
	Experimental Evaluation
	Satisfiability of Formulas with Reduced Bit-Widths

	Discussion
	Conclusions

