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Abstract. There are publications that consider the use of program slic-
ing in software verification, but we are aware of no publication that
thoroughly evaluates the impact of program slicing on the verification
process. This paper aims to fill in this gap by providing a comparison
of the effect of program slicing on the performance of the reachabil-
ity analysis in several state-of-the-art software verification tools, namely
CPAchecker, DIVINE, KLEE, SeaHorn, and SMACK. The effect
of slicing is evaluated on the number of solved benchmarks and running
times of the tools. Experiments show that the effect of program slicing
is mostly positive and can significantly improve the performance of some
tools.

1 Introduction

Program slicing [36] is a method that takes a program and extracts a subprogram
called sliced program or simply slice that contains only statements relevant for
a given slicing criterion. In this paper, we consider static backward slicing with
slicing criterion given as some statement of the program. The slice comprises
the program statements that have some influence on the reachability or the
arguments of the slicing criterion.

Program slicing has applications in many areas of computer science including
(but not limited to) program debugging, code comprehension, code maintenance
and re-engineering, regression testing, and software verification. Many applica-
tions are mentioned in several program slicing surveys [31, 6, 27, 15, 37, 28].

This paper is concerned with the last mentioned use case. In software veri-
fication, program slicing has been usually used simply as a preprocessing step.
That is, the program is sliced with respect to the verified property before the
actual verification process starts. Nevertheless, the impact of applying program
slicing in such settings was usually certified by only few examples, if any. This
paper aims to evaluate the impact of applying program slicing before verification
on a large number of benchmarks.

We took the Symbiotic framework [9], which has the capability of slic-
ing llvm [24] bitcode, and integrated several state-of-the-art software verifi-
cation tools processing llvm bitcode into this framework. The tools, namely
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CPAchecker [4], DIVINE [25], KLEE [7], SeaHorn [14], and SMACK [8],
were selected such that each uses a different verification approach.

We conducted experiments on benchmarks from Software Verification Com-
petition (SV-COMP) [3]. More precisely, we took more than 6500 benchmarks,
which are sequential C programs concerned with the reachability of a specified
error location. Reachability of an error location represents probably the most
common verification task, which may be used for verification of assertion valid-
ity, absence of division by zero, etc.

Each tool was run in three configurations. The first configuration does not use
any slicing. The second configuration uses a slicing originally designed for ter-
minating programs. This slicing can remove potentially non-terminating loops.
As a result, a sliced program may contain a reachable error location that is not
reachable in the original program. Therefore, if the sliced program contains no
reachable error location, then the original program has no reachable error loca-
tion as well, but the opposite implication does not hold. The third configuration
uses a less aggressive slicing that preserves termination properties of program
loops. The experiments show that the application of program slicing has a pos-
itive effect as it increases the number of decided benchmarks and often speeds
up the whole verification process.

The rest of the paper is organized as follows. In the next subsection, we sum-
marize the related literature. Details on program slicing and its use in software
verification is the content of Section 2. Section 3 deals with the relevant aspects
of tools we used to evaluate the effect of slicing on the reachability analysis.
In particular, we describe the slicing functionality of Symbiotic and how we
integrated the tools CPAchecker, DIVINE, KLEE, SeaHorn, and SMACK
into the Symbiotic framework. Section 4 presents the experiments and discusses
their results. The last section concludes the paper.

1.1 Related Work

There are many papers that present some use of program slicing in software
verification but without any analysis of the contribution of program slicing to
the efficiency of the considered verification approach [16, 20, 19, 26, 21, 2, 23].
In the following, we mention papers that provide some evaluation of the effect
of program slicing.

Vasudevan et al. [33, 34] use program slicing to speed-up LTL bounded model
checking of Verilog models. The authors leverage the information from the LTL
specification to improve the effectiveness of slicing over standard static backward
slicing. Improvements over plain bounded model checking as well as over bounded
model checking preceded by standard static backward slicing are reported. The
authors evaluated the contribution of program slicing during bounded model
checking (with bound 24) of 9 different LTL properties on a Verilog implemen-
tation of USB 2.0 Function Core.

Dwyer et al. [12] study the effect of applying program slicing in model check-
ing of concurrent object-oriented programs. The work shows that slicing brings
an additional reduction to partial order reduction, but no significant gain was
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achieved for simple assertion checking. The authors suggest that it may have
been caused by the structure of the 10 benchmarks used in the study.

Wang et al. [35] use slicing to reduce a given program before model checking it
for buffer overrun. The authors report significant performance gain due to slicing,
but they witness it only by verification of 5 assertions in minicom program.

Sabouri and Sirjani [30] use program slicing to slice Rebeca models of con-
current programs before model checking. The evaluation is provided for 9 bench-
marks, each parametrized with several properties. One property was always the
presence of a deadlock and the other properties were unspecified. The authors
conclude that slicing reduces state space of the models and can significantly help
reducing the time of model checking.

Chebaro et al. [10, 11] combine a fast static analysis with program slicing
and concolic testing. The fast static analysis finds possible bugs in the program,
program slicing then reduces the program with respect to these bugs (either to
all of them or to a selected subset), and concolic testing tries to confirm whether
the bug is real. In the two publications, the authors show the positive effect of
slicing on 5 and 9 programs, respectively.

Trabish et al. [32] evaluate the use of program slicing during chopped sym-
bolic execution. Chopped symbolic execution executes some (pre-determined)
functions only on-demand when needed. Program slicing is used to further lower
the cost of the execution of these functions, so it is also invoked on-demand
during the analysis. The evaluation was done on 6 security vulnerabilities, each
parametrised by 3 different search heuristics. The authors report that program
slicing can significantly help their technique in some cases, but report also a slow-
down in some other cases. They planned to avoid this problem by an automatic
analysis which decides when to use program slicing.

2 Program Slicing

Program slicing was introduced by Mark Weiser in 1980’s as a code decompo-
sition technique for debugging [36]. The Weiser’s algorithm is based on a back-
ward data-flow analysis [36]. Ferrante et al. advocated using program dependence
graph (PDG) for program slicing [13]. Their algorithm was extended by Horwitz
et al. to programs with function calls [18] using so-called system dependence
graph (SDG). The algorithms based on PDG/SDG gained on popularity as they
are more intuitive and flexible. Research in the area of program slicing therefore
focuses mainly on algorithms based on dependence graphs.

Now we describe slicing algorithms based on dependence graphs and discuss
obstacles connected with program slicing in the context of program verification.

2.1 Slicing Programs Using Dependence Graphs

Slicing algorithms based on dependence graphs first build a dependence graph
and then compute a slice from the graph. Nodes of the dependence graph corre-
spond to program statements and edges capture all dependencies among these
statements. Two basic kinds of dependence are data and control dependence.
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1 n = input();

2 i = 0;

3 while (i < n) {

4 c = input();

5 if (i == 0) {

6 min = c;

7 max = c;

8 }

9 if (c < min)

10 min = c;

11 if (c > max)

12 max = c;

13 i = i + 1;

14 }

15 print(min);

16 print(n);

1: n = input()2: i = 0

3: while (i < n)

4: c = input()

5: if (i == 0)

6: min = c

7: max = c

9: if (c < min)

10: min = c

11: if (c > max)

12: max = c

13: i = i + 1

16: print(n)

15: print(min)

Fig. 1. A program (left) and its program dependence graph (right). Solid blue edges
are data dependencies. Dashed red edges are control dependencies. The dotted red
edges are extra control dependence edges added when using non-termination sensitive
control dependence.

Data dependence may arise between two statements of a program that work
with the same memory. More precisely, a statement sr is dependent on a state-
ment sw if there exists a program execution where the statement sr reads a value
that has been written by the statement sw. For example, consider the program
in Figure 1 (left). The statement on line 3 is data dependent on the statement
on line 2 because the value of variable i written on line 2 is read on line 3. Be-
cause the value of i read on line 3 may have been written also by the statement
on line 13, the statement on line 3 is data dependent also on the statement on
line 13. All data dependencies of the program are shown by solid blue edges in
the graph of Figure 1 (right).

The notion of control dependence is more complicated since there are several
definitions that can be used, each of them leading to slices with different proper-
ties. We introduce two of them. The first one is standard control dependence as
defined by Ferrante et al. [13] and the other is non-termination sensitive control
dependence introduced by Ranganath et al. [29].

Before defining the mentioned forms of control dependence, we must recall
some of the standard concepts from program analysis. A path in a directed graph
G = (V,E) is a nonempty finite or infinite sequence n1, n2, ... of nodes from V
such that for each pair ni, ni+1 of consecutive nodes it holds (ni, ni+1) ∈ E. A
path is non-trivial if it has at least two nodes. Maximal path is an infinite path or
a path whose last node has no successors (i.e., a path that cannot be prolonged).
If there exists a path starting in a node n that contains a node m, we say that m
is reachable from n. Control flow graph (CFG) is a directed graph where nodes
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represent statements of a program and edges represent possible flow of control
between statements in the program. We assume that a CFG has a distinguished
entry node with no predecessors, from which all nodes are reachable. If a CFG
contains also a unique exit node that has no successors and is reachable from any
other node, we say that the CFG has the unique exit property. In such control
flow graphs, we can define the post-dominance relation: we say that a node n
post-dominates a node m if n appears on every path from m to the exit node.
If, additionally, n 6= m, we say that n strictly post-dominates m.

Definition 1 (Standard control dependence). Consider a CFG with the
unique exit property. We say that a node n is control dependent on a node b if

1. there exists a non-trivial path π from b to n with any node on π (excluding
b) post-dominated by n, and

2. b is not strictly post-dominated by n.

In other words, a statement n is control dependent on a statement b if b is
the “closest” point where the program may go some way that misses n. Figure 1
(right) depicts standard control dependencies as dashed red edges.

The standard control dependence is sufficient for the most of use cases, but
it is problematic in several ways. First, it is not applicable to CFG without
the unique exit property. Second, this definition of control dependence does not
take into account the fact that loops may not terminate (as post-dominance
considers only the paths that actually reach the exit node). That may result in
incorrect slices where a non-terminating loop is sliced away making a previously
unreachable code reachable. Both these problems can be solved by using non-
termination sensitive control dependence [29]:

Definition 2 (Non-termination sensitive control dependence). Given a
CFG, a node n is non-termination sensitive control dependent on a node b if b
has successors s1 and s2 such that

1. n occurs on all maximal paths form s1, and
2. there exists a maximal path from s2 on which n does not occur.

For any CFG with the unique exit property, the definition actually extends
the standard control dependence in the sense that if a node n is control dependent
on a node b, then n is also non-termination sensitive control dependent b. The
opposite implication does not hold. Figure 1 (right) depicts the additional non-
termination sensitive control dependencies as dotted red edges.

Using non-termination sensitive control dependence improves the applicabil-
ity of program slicing to a greater class of programs, but may be sometimes
too strict – it results in keeping all loops of the program from which the slicing
criterion is reachable in the slice. We elaborate on this matter later in Section 2.2.

Having a PDG and a slicing criterion, slicing the PDG is as easy as collecting
all the nodes that are backward reachable through dependence edges from the
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1 n = input();

2 i = 0;

3 while (i < n) {

4 c = input();

5 if (i == 0) {

6 min = c;

8 }

9 if (c > min)

10 min = c;

13 i = i + 1;

14 }

15 print(min);

1 n = input();

16 print(n);

1 n = input();

2 i = 0;

3 while (i < n) {

13 i = i + 1;

14 }

16 print(n);

Fig. 2. Slices of the program from Figure 1 for slicing criterion print(min) using
standard control dependence (left), for print(n) using standard control dependence
(middle), and for print(n) using non-termination sensitive control dependence (right).

node of the slicing criterion statement. For example, Figure 2 shows slices of the
program in Figure 1 for slicing criteria print(min) (on the left) and print(n) (in
the middle) using standard control dependence. The slice on the right considers
also slicing criterion print(n), but non-termination sensitive control dependence
is used. In contrast to the slice in the middle, the slice on the right obtained
using non-termination sensitive control dependence keeps also the header and
the counter of the loop, as the slicing criterion is never reached if the loop does
not terminate. Note that a program can be sliced with respect to more slicing
criteria at once. Such slice consists of all nodes of the dependence graph that are
backward reachable from at least one of the slicing criteria nodes.

If a program is structured into procedures and contains call statements, one
can naturally build a single PDG for the program by working with interpro-
cedural control flow graph (ICFG) instead of isolated control flow graphs for
each procedure. An ICFG is a graph containing a CFG for each procedure and
edges that go from call sites to entry points of procedures and from exits from
procedures to return sites. This approach is comfortable as it does not require
any changes in the PDG construction or in the slicing algorithm. Nevertheless,
there are better algorithms (i.e., producing smaller slices) that work on system
dependence graphs [18, 6] instead of on PDG. We do not go into details of these
algorithms as we do not use them.

2.2 Program Slicing in Verification

In this section, we describe several obstacles that must be considered when apply-
ing program slicing before reachability analysis in software verification. These
are mainly the use of user-defined assumptions and possibly non-terminating
loops.
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1 int x = nondet();

2 assume(x > 0);

3 assert(x > 0); // slicing crit.

1 int x = 0;

2 assume(x == 1);

3 assert(0); // slicing crit.

Fig. 3. The code on the left contains an assumption that behaves like a modifier to the
data and the code on the right shows an assumption that changes the control flow. In
both cases, the assertion is neither control nor data dependent on the assumption and
thus the assumption would be sliced out if the assertion is taken as the slicing criterion.
However, slicing the assumption away would introduce an error in the program.

Assumptions If the analyzed code contains user-defined assumptions (further
represented as calls to function assume()), a special care must be taken to slice
the program correctly. The reason is that slicing criteria are not dependent on
assumptions as an assumption only reads values of variables. However, assump-
tions can influence a program execution in two ways:

– Assumptions can restrict the value of non-deterministic variables and thus
act in a sense as a write to the variable.

– Assumptions can change the control flow of the program (e.g., execution is
terminated if an assumption is not satisfied).

An example of such effects can be seen in Figure 3. On the left, the call to
assert is dependent only on the statement on line 1 as the call to assume on
line 2 only reads the variable x and does not modify it. However, if we would slice
away the call to assume, we introduce an error to the program as the assertion on
line 3 could be violated. Similar problem is shown in the code on the right, where
the assertion on line 3 is independent of the rest of statements, but because of
the unsatisfied assumption it is unreachable. Slicing away the assumption again
introduces an error.

A simple solution, that we utilized also in our experiments, is to set the as-
sumption statements as additional slicing criteria. This solution is imprecise –
many of the assumptions that are left in the code along with their dependencies
may be in fact irrelevant to the verified property. However, because the assump-
tions are usually localized to the beginning of the program where they constrain
possible inputs, the increase of the slice size is mostly small.

The Choice of Control Dependence Here we discuss advantages and disad-
vantages of the two definitions of control dependence provided in Section 2.1.

Using the standard control dependence (Definition 1) may result in slicing
away non-terminating loops and thus making previously unreachable code reach-
able. In particular, it may transform an unreachable error location into a reach-
able one. For example, consider the program in Figure 3 (right) with the error
location assert(0) and replace the call assume(x == 1) by while(1). The er-
ror location is unreachable due to the infinite loop, but if we slice the program
with respect to the assertion as the slicing criterion, we get just the last line.
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Hence, the whole process of slicing and program verification can report spurious
errors. On the positive side, when using error locations as slicing criteria, slicing
with standard control dependence cannot transform a reachable error location
into unreachable one. Hence, if a slice is correct (i.e., it does not contain any
reachable error location), then the original program is correct as well. More-
over, slices obtained with standard control dependence are smaller than these
obtained with non-termination sensitive control dependence.

The non-termination sensitive control dependence (Definition 2) does not al-
low to slice away a loop (more precisely, its header and counters) if the loop may
cause the unreachability of a slicing criterion by cycling forever. From the cor-
rectness point of view, one must therefore choose the non-termination sensitive
control dependence. However, the price for this correctness is relatively high as
only the loops that do not lie on a path in CFG from the entry node to any
slicing criterion can be sliced away from the program.

To sum up, the main disadvantage of standard control dependence over non-
termination sensitive control dependence is potential introduction of spurious
errors by slicing away some non-terminating loops. Because these spurious errors
can be ruled out by trying to reproduce each discovered error trace in the original
program, we believe that using standard control dependence is also meaningful.
In our experiments, we therefore consider both standard and non-termination
sensitive control dependence and we report the numbers of correct as well as
incorrect results.

3 Considered Tools

To evaluate the effect of program slicing on efficiency of reachability analysis, we
integrated five state-of-the-art verification tools into the Symbiotic framework
that has the capability of slicing programs. This section briefly describes Symbi-
otic, the implementation of the slicing procedure, and the five verification tools
including important details about integration of these tools.

3.1 Symbiotic

Symbiotic [9] is a verification framework that applies program slicing to re-
duce the analyzed program before passing it to a verification backend. Slicing in
Symbiotic works on programs in llvm [24], which is an assembly-like language
extended with types. An llvm bitcode file is divided into functions. Instructions
in a function are composed into basic blocks that form the control flow graph of
the function. Memory manipulations (reads and writes) are done via pointers.

The workflow of Symbiotic when deciding reachability of an error location
is straightforward. Symbiotic takes as input a list of C sources and compiles
them into a single llvm bitcode file (if the input is not already an llvm bitcode).
As the next step, the bitcode is optimized using the llvm infrastructure, then
it is sliced with error locations as slicing criteria, and optimized again. Finally,
the sliced and optimized bitcode is passed to a selected verification tool. In
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this paper, we do not use the two optimization steps as we want to observe
the pure effect of slicing. Note that the optimization steps can substantially
improve efficiency of the verification process, but some care must be taken not
to introduce unsoundness in the case the program contains undefined behavior.

3.2 Slicing Algorithm

The slicing procedure implemented in Symbiotic is based on dependence graphs
capturing dependencies between llvm instructions. To compute dependencies for
llvm bitcode, one must

– perform pointer analysis,
– compute data dependencies by computing reaching definitions, and
– compute control dependencies from the bitcode structure.

Pointer analysis is needed to identify what memory is accessed by memory-
manipulating instructions. Symbiotic provides several pointer analyses with
various precision and computation cost. Here we use interprocedural flow-
insensitive field-sensitive inclusion-based pointer analysis [17] to compute in-
formation about pointers.

The information about pointers and the knowledge about the control flow of
the analyzed program are then used in the (interprocedural) reaching definitions
analysis. For each instruction that reads from memory, the analysis computes
which instructions may have written the values read by the reading instruction.
Symbiotic applies the classic data-flow approach to reaching definitions com-
putation [1]. With the results of reaching definition analysis, data dependencies
can be computed easily.

Control dependencies (either standard or non-termination sensitive) are com-
puted on the basic block level. Since computing control dependencies on ICFG
can be impractical for big programs and programs that contain multiple calls of a
function (which create a loop in ICFG), Symbiotic computes control dependen-
cies only intraprocedurally. Interprocedural control dependencies that arise from
the possibility of not returning from a called function (e.g., when the function
calls exit or abort, or loops indefinitely) are then filled in by post-processing.

When the algorithm computing standard control dependencies is used and
the analyzed CFG does not have the unique exit property because it has multiple
exit nodes, we establish the property by adding an artificial exit node that is
the immediate successor of all original exit nodes. If the original CFG does not
have the property because it has no exit node, then we conservatively make all
instructions of each basic block control dependent on instructions immediately
preceding the basic block.

Symbiotic builds a single PDG for the whole bitcode. The slice is then
computed as all instructions that are backward reachable from the slicing criteria
nodes. The current slicing procedure in Symbiotic cannot handle calls to setjmp
and longjmp functions. However, these appear only rarely and do not appear in
our benchmarks.
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3.3 Verification Tools and Their Integration

In order to evaluate the effect of program slicing on reachability analysis, we
integrated several state-of-the-art verification tools that can work with llvm
into Symbiotic framework. Besides the symbolic executor KLEE, which has
been used as Symbiotic’s verification back end for many years, the framework
now supports also CPAchecker, DIVINE, SeaHorn, and SMACK. The tools
were integrated using BenchExec [5] tool-info modules that take care of assem-
bling command line for a given tool setup.

Some of the tools have particular requirements on the input bitcode, e.g., that
the bitcode does not contain any switch instructions. These requirements had
to be addressed during the integration. We briefly describe the integrated tools
along with the extra steps where the integration of the tool differs from the
default configuration.

CPAchecker [4] is a configurable program analysis framework implementing
many modern program analysis algorithms. For experiments, we used our fork of
CPAchecker that contains several fixes for the llvm backend1 and SV-COMP
2019 configuration (-svcomp19 option). This configuration runs several analyses
sequentially chained one after each other (each with a given time budget). The
actual sequence of the analyses depends on the structure of the program and
include, for instance, bounded model checking, explicit value analysis, predicate
abstraction, and k-induction.

Note that the support for llvm in CPAchecker is still experimental. The
required version of llvm is 3.9.1.

DIVINE [25] is an explicit model checker that have recently added a support
for verifying programs with inputs via instrumenting the symbolic computation
directly into the analyzed program. Symbolic computations in DIVINE do not
support 32-bit bitcode, therefore all the experiments with DIVINE assumed
that the programs are written for 64-bit architectures. This assumption is void
for most of the benchmarks that we used, but there are several cases where it
led to an incorrect result.

We used DIVINE 4.3.1 (the static binary downloaded from DIVINE’s web
page) in experiments. The required llvm version is 6.

KLEE [7] is a highly optimized symbolic executor. Before passing a bitcode
to KLEE, Symbiotic makes external globals internal, and replaces undefined
functions with functions that return non-deterministic values (which should have
no effect in our experiments). Also, Symbiotic transforms standard SV-COMP
functions that model non-determinism (named VERIFIER *) to ones that call
KLEE’s internal functions with equivalent semantics.

1 https://github.com/mchalupa/cpachecker/tree/llvm-fixes2
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Symbiotic has its own fork of KLEE based on KLEE 2.0. The fork differs
from the mainstream version mainly by the ability of handling memory alloca-
tions of symbolic size. We used this fork of KLEE built for llvm in version 8.0.0
in our experiments.

SeaHorn [14] is a modular verification framework that uses constrained Horn
clauses as the intermediate verification language. The verification condition is
model checked using PDR/IC3.

We used the nightly build in version 0.1.0-rc3-61ace48 obtained from the
docker image. The llvm version is 5.0.2.

SMACK [8] is a bounded model checker that internally compiles the program
into Boogie and then uses Corral [22] to perform the analysis.

We used the version of SMACK that competed in SV-COMP 2019. The
required llvm version is 3.9.1.

4 Experiments and Evaluation

We conducted a set of experiments on 6571 benchmarks from Software Ver-
ification Competition (SV-COMP) 2019 [3], namely all benchmarks from the
category ReachSafety and from the subcategory LinuxDeviceDrivers64 of the
category Systems. Each of these benchmarks is a sequential C program that
contains some marked error location. Moreover, each benchmark comes with the
information whether at least one of its error locations is reachable or not.

The ReachSafety category contains several thematically focused subcate-
gories like Arrays, BitVectors, and Floats with rather small programs. Then
there is the subcategory ProductLines of generated models for e-mail commu-
nication, elevator, and mine pump, the subcategory Sequentialized of sequen-
tialized parallel programs which often contian non-terminating loops, and the
subcategory ECA of huge, synthetic benchmarks with extensive branching. Fi-
nally, LinuxDeviceDrivers64 is a category of benchmarks generated from real
Linux kernel device drivers.

The experiments were run on machines with Intel Core i7-8700 CPU running
at 3.20 GHz and 32 GB RAM. Each run was restricted to a single core, 8 GB of
memory, and 15 minutes of CPU time. The presented times are running times of
the whole process including compilation to llvm and program slicing (if applied).

Each tool was run on each benchmark in three configurations:

– without any slicing (referred as No slicing),
– with slicing using standard control dependencies (Standard CD), and
– with slicing using non-termination sensitive control dependencies (NTS CD).

Table 1 shows the numbers of decided benchmarks by each tool configura-
tion summarized over all considered benchmarks.2 It can be clearly seen that the

2 Detailed numbers for each configuration and subcategory can be found at:
https://github.com/staticafi/symbiotic/releases/tag/ifm2019
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Table 1. Numbers of decided benchmarks by the considered tool configurations. The
columns correct and wrong present the numbers of correctly and incorrectly decided
benchmarks, respectively. The columns marked with X (resp. ) contain the number
of benchmarks where the decision of the tool was that error locations are unreachable
(resp. reachable). For each tool, the highest numbers of correctly decided benchmarks
with and without reachable error locations are typeset in bold.

No slicing Standard CD NTS CD

correct wrong correct wrong correct wrong

Tool X X X X X X

CPAchecker 673 666 72 13 976 690 75 44 841 672 71 14
DIVINE 727 458 0 1 804 610 0 35 799 518 0 4
KLEE 799 1173 45 0 1364 1138 46 43 1102 1007 4 4
SeaHorn 2222 874 23 580 2460 933 32 627 2264 898 21 589
SMACK 2165 969 2 235 2076 1059 5 282 1984 1039 3 259

configurations with slicing decide in all but one case more benchmarks than the
corresponding configuration without slicing. As expected, Standard CD usually
decides more benchmarks than NTS CD . In fact, slicing helps the most in Pro-
ductLines subcategory (this holds namely for SMACK and DIVINE) and Lin-
uxDeviceDrivers64 subcategory (CPAchecker, KLEE, and SeaHorn). This
is not surprising as other subcategories contain usually small programs, which
were often designed for testing of some verification tool, and thus slicing does
not significantly change the complexity of these benchmarks.

There are only two cases when a tool in Standard CD configuration correctly
decided less benchmarks than without slicing. The first case is KLEE on bench-
marks with a reachable error location. The reason is that there are about 40
such benchmarks in the ECA subcategory that can be decided by KLEE with-
out slicing, but not by the other configurations as slicing runs out of memory.
The second case is SMACK and the explanation for this case is provided later
at the description of Figure 4.

The results also show that all configurations produce some incorrect answers.
There are several potential sources of these answers including bugs in verification
tools, bugs in slicing, and maybe also wrongly marked benchmarks. Nevertheless,
one can clearly see that NTS CD produces very similar (and sometimes even
lower) number of incorrect answers as the tools without any slicing. Standard
CD produces noticeably more incorrect answers. Most of these incorrect answers
are negative, i.e., the tool decides that some error location is reachable even if it
is not. These answers are mostly caused by slicing away non-terminating loops
and are distributed mainly in the category Sequentialized.

The positive contribution of program slicing can be observed also in Figure 4
that shows quantile plots of times of correctly decided benchmarks. From the
plots, we can read how many benchmarks (on x-axis) would the tool decide if the
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Fig. 4. Quantile plots of CPU time of correctly decided benchmarks. On x-axis are
benchmarks sorted according to CPU time (on y-axis) in ascending order.
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timeout would be set to the value on y-axis. We see the same pattern: Standard
CD is the best (with the exception of SMACK), then NTS CD and then No
slicing configuration.

The plots for SMACK have a very specific shape on its right end showing
that many benchmarks are decided shortly before the timeout. This can be
explained by a careful optimization of SMACK for SV-COMP: it seems that
for many benchmarks the tool says shortly before the timeout that their error
locations are unreachable unless it proves the opposite until then. Note that our
experiments use the same benchmarks and time limit as the competition, and
that this optimization can also explain the anomaly on the last line of Table 1. We
manually checked the benchmarks on which SMACK behaved better without
slicing and most of them crash after exactly 880 seconds with a compilation error
when slicing is used.

The positive effect of slicing to running times of the verification tools can
be also seen in Figure 5, where scatter plots on the left compare No slicing
configuration against Standard CD configuration, and scatter plots on the right
compare Standard CD configuration against NTS CD configuration. The results
of the configuration on x-axis are represented by shapes and on y-axis by colors.
For x-axis, circle means correct result, cross wrong result, and triangle other
result (timeout, error, unknown). For y-axis, green is correct result, red is wrong
result, and purple is other result. For example, green circle means that the result
was correct for both configurations and red triangle means that the result was
other for the x-axis configuration but turned to wrong for y-axis configuration. To
decrease the clutter in the plots, we omitted results of type other-other (purple
triangles) as these are not very interesting.

From the scatter plots, we see that slicing usually helps decreasing the time
of the analysis (green circles below the diagonal on the left scatter plots) or to
decide new benchmarks that were not decided without slicing (green triangles on
the left scatter plots). Slicing with standard control dependence (Standard CD)
can introduce some wrong answers (red circles and triangles on the left scatter
plots), which are mostly eliminated in NTS CD configuration (green or purple
crosses on the right scatter plots). Using the NTS CD configuration, however,
leads to increase of running times compared to Standard CD when deciding some
benchmarks (green circles above the diagonal on the right).

5 Conclusion

We provided an intensive evaluation of the impact of program slicing on per-
formance of software verification tools in reachability analysis. The experiments
used a huge set of 6571 benchmarks, namely the ReachSafety category and Lin-
uxDeviceDrivers64 subcategory of SV-COMP 2019 benchmarks.

We confirmed several previous observations that program slicing can be ef-
fective in reducing the verification time. Further, we showed that it is worth
considering the use of standard control dependence when slicing a program be-
fore its verification. This follows from the fact that the increase of the number
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Fig. 5. Scatter plots that compare running time (in seconds) of No slicing and Standard
CD configurations (left), and Standard CD and NTS CD configurations (right). Circle
represents a correct result by the configuration on x-axis, cross a wrong result, and
triangle other result (timeout, error, or unknown). Green color represents a correct
result by the configuration on y-axis, red color a wrong result, and purple color other
result. Purple triangles were omitted to reduce clutter.

of false positive answers is typically small (and we can get rid of them by try-
ing to replay the found error trace, but we have not included this part in our
experiments). Using non-termination sensitive control dependence may increase
the analysis time compared to using standard control dependence, but it is still
better than not using program slicing at all.
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