
Abstraction of Bit-Vector Operations
for BDD-based SMT Solvers?

Martin Jonáš and Jan Strejček

Masaryk University
Brno, Czech Republic

{xjonas,strejcek}@fi.muni.cz

Abstract. bdd-based smt solvers have recently shown to be competi-
tive for solving satisfiability of quantified bit-vector formulas. However,
these solvers reach their limits when the input formula contains com-
plicated arithmetic. Hitherto, this problem has been alleviated by ap-
proximations reducing efficient bit-widths of bit-vector variables. In this
paper, we propose an orthogonal abstraction technique working on the
level of the individual instances of bit-vector operations. In particular,
we compute only several bits of the operation result, which may be suf-
ficient to decide the satisfiability of the formula. Experimental results
show that our bdd-based smt solver Q3B extended with these abstrac-
tions can solve more quantified bit-vector formulas from the smt-lib
repository than state-of-the-art smt solvers Boolector, CVC4, and Z3.

1 Introduction

In the modern world, as the computer software becomes still more ubiquitous
and complex, there is an increasing need to test it and formally verify its correct-
ness. Several approaches to software verification, such as symbolic execution or
bounded model checking, rely on the ability to decide whether a given first-order
formula in a suitable logical theory is satisfiable. To this end, many of the veri-
fiers use Satisfiability Modulo Theories (smt) solvers, which can solve precisely
the task of checking satisfiability of a first-order formula in a given logical theory.
For describing software, the natural choice of a logical theory is the theory of
fixed-size bit-vectors in which the objects are vectors of bits and the operations
on them precisely reflect operations performed by computers. Moreover, in ap-
plications such as synthesis of invariants, ranking functions, or loop summaries,
the formulas in question also naturally contain quantifiers [8, 17, 6, 11, 12].

It is therefore not surprising that the development of smt solvers for quanti-
fied formulas in the theory of fixed-size bit-vectors has seen several advances in
the recent years. In particular, the support for arbitrarily quantified bit-vector
formulas has been implemented to existing solvers Z3 [18], Boolector [15], and
CVC4 [14]. Moreover, new tools that aim for precisely this theory, such as the
solver Q3B [9], were developed. Approaches of these tools fall into two categories:

? The research was supported by Czech Science Foundation, grant GA18-02177S.

Z3, Boolector, and CVC4 use variants of quantifier instantiation that iteratively
produces quantifier-free formulas that can be solved by a solver for quantifier-
free bit-vector formulas. On the other hand, the solver Q3B uses Binary Decision
Diagrams (bdds) to represent quantified bit-vector formulas and to decide their
satisfiability.

However, bdds have inherent limitations. For example, if a formula contains
multiplication of two variables, the bdd that represents it is guaranteed to be
exponential in size regardless the chosen order of variables. Similarly, if the
formula contains complicated arithmetic, the produced bdds tend to grow in
size very quickly. The solver Q3B tries to alleviate this problem by computing
approximations [9] of the original formula to reduce sets of values that can
be represented by the individual variables and, in turn, to reduce sizes of the
resulting bdds. In particular, if the set of possible values of all existentially
quantified variables is reduced and the formula is still satisfiable, the original
formula must have been satisfiable. Conversely, if the set of possible values of all
universally quantified variables is reduced and the formula is still unsatisfiable,
the original formula must have been unsatisfiable.

Although the approximations allowed Q3B to remain competitive with state-
of-the-art smt solvers, the approach has several drawbacks. Currently, Q3B can-
not solve satisfiability of simple formulas such as

∃x, y ((x < 2) ∧ (x > 4) ∧ (x · y = 0))) ,

∃x, y ((x� 1) · y = 1) ,

∃x, y (x > 0 ∧ x ≤ 4 ∧ y > 0 ∧ y ≤ 4 ∧ x · y = 0) ,

where all variables and constants have bit-width 32, and� denotes bit-wise shift
left. All these three formulas are unsatisfiable, but cannot be decided without
approximations, because they contain non-linear multiplication. Moreover, they
cannot be decided even with approximations, because they are unsatisfiable and
contain no universally quantified variables that could be used to approximate
the formula.

However, the three above-mentioned formulas have something in common:
only a few of the bits of the multiplication results are sufficient to decide satis-
fiability of the formulas. The first formula can be decided unsatisfiable without
computing any bits of x · y whatsoever. The second formula can be decided by
computing only the least-significant bit of (x� 1) · y because it must always be
zero. The third formula can be decided by computing 5 least-significant bits of
x · y, because they are enough to rule out all values of x and y between 1 and 4
as models.

With this in mind, we propose an improvement of bdd-based smt solvers
such as Q3B by allowing to compute only several bits of results of arithmetic
operations. To achieve this, the paper defines abstract domains in which the op-
erations can produce do-not-know values and shows that these abstract domains
can be used to decide satisfiability of an input formula.

2

The paper is structured as follows. Section 2 provides necessary background
and notations for smt, bit-vector theory, and binary decision diagrams. Section 3
defines abstract domains for terms and formulas and shows how to use them to
decide satisfiability of a formula. Section 4 introduces specific term and formula
abstract domains that are used to compute only several bits from results of
arithmetic bit-vector operations. Section 5 describes our implementation of these
abstract domains in the smt solver Q3B and the following Section 6 provides
evaluation of this implementation both in comparison to the original Q3B and
to other state-of-the-art smt solvers.

2 Preliminaries

2.1 Bit-Vector Theory

This section briefly recalls the theory of fixed sized bit-vectors (BV or bit-vector
theory for short). In the description, we assume familiarity with standard defi-
nitions of many-sorted logic, well-sorted terms, atomic formulas, and formulas.
In the following, we denote the set of all well-sorted terms as T and the set of
all well-sorted formulas as F .

The bit-vector theory is a many-sorted first-order theory with infinitely many
sorts corresponding to bit-vectors of various lengths. The BV theory uses only
three predicates, namely equality (=), unsigned inequality of binary-encoded
natural numbers (≤u), and signed inequality of integers in two’s complement
representation (≤s). The theory also contains various functions including ad-
dition (+), multiplication (·), unsigned division (÷), unsigned remainder (%),
bit-wise and (bvand), bit-wise or (bvor), bit-wise exclusive or (bvxor), left-shift
(�), right-shift (�), concatenation (concat), and extraction of n bits starting
from position p (extractnp). The signature of BV theory also contains constants

c[n] for each bit-width n > 0 and a number 0 ≤ c ≤ 2n − 1. If a bit-width of
a constant or a variable is not specified, we suppose that it is equal to 32. We
denote set of all bit-vectors as BV and the set of all variables as vars.

For a valuation µ that assigns to each variable from vars a value in its domain,
J Kµ denotes the evaluation function, which assigns to each term t the bit-vector
obtained by substituting variables in t by their values given by µ and evaluating
all functions. Similarly, the function J Kµ assigns to each formula ϕ the value
obtained by substituting free variables in ϕ by values given by µ and evaluating
all functions, predicates, logic operators etc. A formula ϕ is satisfiable if JϕKµ = 1
for some valuation µ; it is unsatisfiable otherwise.

The precise definition of many-sorted logic can be found for example in Bar-
rett et al. [3]. The precise description of bit-vector theory and its operations can
be found for example in the paper describing complexity of quantified bit-vector
theory by Kovásznai et al. [10].

3

x

y y

0 1

Fig. 1: bdd for (x xor y)

2.2 Binary Decision Diagrams

A binary decision diagram (bdd) is a data structure that can succinctly represent
Boolean functions. Formally, it is a binary directed acyclic graph that has at most
two leaves, labelled by 0 and 1, and inner nodes labelled by formal arguments of
the function. Each inner node has two children, called high and low children, that
denote values 1 and 0, respectively, of the corresponding formal argument. Given
a bdd that represents a Boolean function f , the value of f in a given assignment
can be computed by traversing the bdd as follows: start in the root node; if the
value of the argument corresponding to the current node is 1, continue to the
high child, otherwise continue to the low child; continue with the traversal until
reaching a leaf node and return its label. Given a bdd b and an assignment µ, we
denote the result of the function represented by b as JbKµ. For example, Figure 1
shows a bdd that represents a binary function f(x, y) = (x xor y). According
to the traditional notation, the high children are marked by solid edges, the
low children are marked by dotted edges. The trivial bdds 0 and 1 represent
functions false (0) and true (1), respectively.

Alternatively, binary decision diagrams can be used to represent a set of
satisfying assignments (also called models) of a Boolean formula ϕ. Such a bdd
represents a function that has Boolean variables of the formula ϕ as formal
arguments and that evaluates to 1 in a given assignment iff the assignment is a
model of the formula ϕ. In this view, the bdd of Figure 1 represents the set of
assignments satisfying the formula (x ∧ ¬y) ∨ (¬x ∧ y).

In this paper, we suppose that all binary decision diagrams are reduced and
ordered. A bdd is ordered if for all pairs of paths in the bdd the order of common
variables is the same. A bdd is reduced if it does not contain any inner node
with the same high and low child. It has been shown that reduced and ordered
bdds (robdds) are canonical – given a variable order, there is exactly one bdd
for each given function [5].

Binary decision diagrams can be also used to represent an arbitrary bit-vector
function, i.e., a function that assigns a bit-vector value to each assignment of bit
variables. Such a function of a bit-width k (i.e., the produced bit-vectors have the
bit-width k) can be represented by a vector of bdds b = (bi)0≤i<k. Result of this
function for an assignment µ is then the bit-vector (JbiKµ)0≤i<k. For example,
Figure 2 shows a vector of bdds representing addition x2x1x0 + y2y1y0 of two
bit-vectors of size 3. In the following text, we denote the set of all bdds as BDD

4

x0

y0

x1 x1

y1

x2 x2

y2 y2

10

x0

y0

x1 x1

y1 y1

10

x0

y0 y0

10

Fig. 2: Vector of bdds representing the addition x2x1x0 + y2y1y0 of two bit-
vectors of size 3. The least significant bit of the result is on the right.

and the set of all vectors of bdds as BDDvec. We use the overlined symbols for
both vectors of bdds and bit-vectors.

2.3 Operations on Binary Decision Diagrams

It has been shown by Bryant [5] that given robdds for Boolean functions f and
g, one can compute a bdd for functions f(x)∧g(x) and f(x)∨g(x) in polynomial
time. A bdd for negation can be obtained by exchanging leaf nodes 0 and 1. Using
these operations, a bdd for an arbitrary Boolean formula can be constructed by
computing the corresponding bdds for all subformulas from the smallest ones.
Bryant has also described a function that modifies a given bdd by setting selected
variables to given values. Using this function, it is possible to eliminate variable x
from a given bdd representing f(x, y) existentially or universally by computing
the bdds for f(0, y) ∨ f(1, y) or f(0, y) ∧ f(1, y), respectively. We denote the
functions for computing conjunction, disjunction, and negation of bdds by the
infix notations &, |, and !, respectively. Using these functions, we can define
functions computing equivalence and exclusive or of two bdds with the infix
notations ↔ and xor, respectively.

Further, given two vectors of bdds that represent bit-vector functions f and
g of the same bit-width, a vector of bdds for the function f(x) + g(x), where +
is addition of two bit-vectors, can also be computed by using the basic logical
operations on bdds representing the individual bits. Listing 1.1 shows a pseudo-
code of this computation, which is implemented for example in the bdd package
BuDDy1. Other arithmetical operations such as multiplication, division, or re-
mainder can also be computed in this way, although the algorithms are more
involved in these cases.

1 http://sourceforge.net/projects/buddy

5

Listing 1.1: Pseudo-codes computing operations addition (+) and equality (=)
on vectors a = (ai)0≤i<k and b = (bi)0≤i<k of bdds.

1 bvec_add(a, b)
2 {

3 result ← (0 , 0 , . . . , 0) with the bit -width k;

4 carry ← 0 ;
5 for i from 0 to k - 1 {
6 result i ← ai xor bi xor carry;
7 carry ← (ai & bi) | (carry & (ai | bi));
8 }

9 return result;
10 }
11

12 bvec_eq(a, b)
13 {

14 result ← 1 ;
15 for i from 0 to k - 1 {
16 result ← result & (ai ↔ bi);
17 }
18 return result;
19 }

Finally, given two vectors of bdds that represent bit-vector functions f and
g of the same bit-width, it is also possible to compute the bdd for their equality
f(x) = g(x), the bdd for their unsigned inequality f(x) ≤u g(x), and the bdd for
their signed inequality f(x) ≤s g(x). Listing 1.1 shows a pseudo-code computing
the bdd for equality, which corresponds to the implementation in BuDDy.

Using these algorithms, it is possible to define a function t2BDDvec, which
converts a bit-vector term to the vector of bdds representing the function com-
puted by the term. Consequently, it is possible to define a function f2BDD, which
converts a bit-vector formula to the corresponding bdd.

3 Formula and Term Abstractions

Although it is often infeasible to compute functions t2BDDvec and f2BDD pre-
cisely, even an imprecise result can sometimes be enough to decide satisfiability
of the input formula as illustrated in Introduction. In this section we describe
notions of a term abstract domain, which captures an imprecise computation of
t2BDDvec, and a formula abstract domain, which captures an imprecise computa-
tion of f2BDD. Generally, a term abstract domain defines a set of abstract objects
A, a function α mapping terms to these abstract objects, and an evaluation func-
tion J KA, which assigns to each abstract object a and a variable assignment µ
the set JaKAµ of bit-vectors represented by a.

6

Definition 1 (Term abstract domain). A term abstract domain is a triple
(A,α, J KA), where A is a set of abstract objects, α : T → A is an abstraction
function, and J KA : A× BVvars → 2BV is an abstract evaluation function.

As an example, consider the precise bdd term abstract domain, in which the
corresponding vector of bdds is assigned to each term. In particular, the pre-
cise bdd term abstract domain is the triple (BDDvec, t2BDDvec, J KBDDvec), where
JaKBDDvecµ is the singleton set {bv} such that bv is the result of evaluation of vector
a of bdds in the assignment µ, i.e., bv = JaKµ. This abstract domain enjoys two
interesting properties: for each term and assignment, the corresponding abstract
object contains the correct result and it does not contain any incorrect result.
These properties are called completeness and soundness.

Definition 2. A term abstract domain (A,α, J KA) is complete if each term
t ∈ T and each assignment µ satisfy JtKµ ∈ Jα(t)KAµ . Conversely, it is sound if

each t and µ satisfy Jα(t)KAµ ⊆ {JtKµ}.

Similarly to the term abstract domain, the formula abstract domain defines
a set of abstract objects A, a function α mapping formulas to these abstract
objects, and an evaluation function J KA, which assigns to each abstract object
a and a variable assignment µ the set JaKAµ ⊆ {0, 1} of truth values associated
to a.

Definition 3 (Formula abstract domain). A formula abstract domain is a
triple (A,α, J KA), where A is an arbitrary set of abstract objects, α : F → A is
an abstraction function, and J KA : A×BVvars → 2{1,0} is an abstract evaluation
function.

Definition 4. A formula abstract domain (A,α, J KA) is complete if each for-
mula ϕ ∈ F and each assignment µ satisfy JϕKµ ∈ Jα(ϕ)KAµ . Conversely, it is

sound if each ϕ and µ satisfy Jα(ϕ)KAµ ⊆ {JϕKµ}.

As in the case of terms, the precise computation of the bdd corresponding to
a formula yields a precise bdd formula abstract domain, which is complete and
sound. The precise bdd formula abstract domain is a triple (BDD, f2BDD, J KBDD),
where JaKBDDµ is the singleton set {b}, where b is the result of evaluation of the
bdd a in the assignment µ, i.e., b = JaKµ.

In the following, we weaken the precise term and formula bdd abstract do-
mains by dropping the requirement on the soundness, while still retaining the
requirement of completeness. As the following theorem demonstrates, such an
abstract domain can still be used for deciding satisfiability of the input formula.

Theorem 1. Let ϕ be a formula and (A,α, J KA) be a complete formula abstract
domain. If there exists an assignment µ such that Jα(ϕ)KAµ = {1}, the formula

ϕ is satisfiable. On the other hand, if all assignments µ satisfy Jα(ϕ)KAµ = {0},
the formula is unsatisfiable.

7

? ?
x0

y0 y0

10

Fig. 3: Truncated result of addition of two three-bit bit-vectors.

Note that for abstract domains in which abstract objects are bdds with the
standard evaluation function, the check for existence of the assignment µ from
the previous theorem is easy to implement. Such an assignment exists precisely
if the leaf node 1 is reachable from the root of the bdd. Furthermore, if the bdd
is reduced and ordered, this happens precisely if the bdd is not 0 . Conversely,
all assignments µ satisfy Jα(ϕ)KAµ = {0} iff the reduced and ordered bdd α(ϕ)

is 0 .

4 Truncating Formula and Term Abstract Domains

This section describes a term abstract domain and a corresponding formula
abstract domain that allow truncating results from bit-vector operations, i.e.,
computing only several bits from the result of arithmetic bit-vector operations.

In this whole section, we suppose that all formulas are in negation normal
form, i.e., logical operations are conjunctions, disjunctions, and negations and
negations are applied only on atomic subformulas. As traditional, we denote the
literal ¬(t1 = t2) as t1 6= t2.

4.1 Truncating Term Abstract Domain

We introduce the truncating term abstract domain first. It is a complete but
unsound term abstract domain, in which the terms are represented by vectors
whose elements are bdds, as in the precise term abstract domain, or do-not-know
values. The do-not-know value, denoted as ?, represents an unknown value of
the corresponding bit – it can be both 0 and 1.

For example, Figure 3 shows the result of computing only the least-significant
bit of an addition of two bit-vectors x2x1x0 + y2y1y0. The value of this abstract
object under the assignment {x 7→ 001, y 7→ 100} is the set {001, 011, 101, 111},
since only the value of the least-significant bit is computed precisely.

Formally, the truncating term abstract domain is a triple

(tBDDvec, t2tBDDvec, J KtBDDvec),

where the set of abstract elements consists of vectors of bdds and ? elements

tBDDvec = {(bi)0≤i<k | k ∈ N, bi ∈ BDD ∪ {?} for all 0 ≤ i < k}

8

and the abstract evaluation function assigns to each b = (bi)0≤i<k ∈ tBDDvec
and an assignment µ the set of bit-vector values

JbKtBDDvecµ = {(vi)0≤i<k | if bi = ? then vi ∈ {0, 1} else vi = JbiKµ, 0 ≤ i < k}.

There are many possible implementations of the t2tBDDvec function including
the following two:

1. the number of computed bits is specified and other bits are set to ?,
2. the limit on bdd nodes in the result of the operation is specified and after

reaching it, the remaining bits are set to ?.

In the following, we describe only the second option as our evaluation has shown
that it outperforms the first one on the set of our benchmarks. Furthermore, it
is easy to derive the implementation of the first option based on the description
of the other option. In addition, we suppose that the limit on bdd nodes is fixed
for the given domain. In the implementation, we use multiple abstract domains
varying by the bdd node limit.

The function t2tBDDvec is computed recursively on the input term. The base
case for the variables or constants is straightforward and it is the same as in the
precise function t2BDDvec. On the other hand, the computation for bit-vector
operations differs from t2BDDvec in two important aspects:

– The operations have to work correctly with ? elements. To achieve this, we
modify the bdd operations &, |, and xor, which occurred in the computation
of t2BDDvec. The handling of ? in the modified operations is similar to the
definition of logical connectives in the three-valued logic and to the way
bit-masks are computed in the smt solver mcBV [19]. The modified bdd
operations &t, |t, and xort are computed as follows:

a &t b =

0 if a = 0 or b = 0

a & b if a, b /∈ { 0 , ?}
? otherwise

a |t b =

1 if a = 1 or b = 1

a | b if a, b /∈ { 1 , ?}
? otherwise

a xort b =

{
a xor b if a 6= ? and b 6= ?

? otherwise

Note that ? xort ? is not 1 as each ? can represent a different value.
– Implementation of operations has to consider the given limit on the num-

ber of bdd nodes and set the bits that have not been computed precisely
to ? after the limit has been reached. The example of modification of the
original bvec add that uses the node limit is shown in the Listing 1.2. The

9

Listing 1.2: Pseudo-code computing truncated addition of two tBDDvecs a =
(ai)0≤i<k and b = (bi)0≤i<k.

1 bvec_add_nodeLimit(a, b, limit)
2 {

3 result ← (0 , 0 , . . . , 0) with the bit -width k;

4 carry ← 0 ;
5 for i from 0 to k - 1 {

6 if (bddNodes(result) > limit) {
7 result i ← ?;
8 } else {
9 result i ← ai xort bi xort carry;

10 carry ← (ai &t bi) |t (carry &t (ai |t bi));
11 }
12 }

13 return result;
14 }

implementations of other operations are similar. However, they differ in the
order in which the precise bits are produced: during computation of addition
and multiplication, the first computed precise bits are the least significant
ones; during computation of division, the first computed precise bits are the
most-significant ones. Therefore if the computation of addition or multipli-
cation reaches the bdd node limit, remaining most-significant bits are set to
?, while for division least-significant bits are set to ?.

The set of values represented by the result of t2tBDDvec always contains the
precise result of the given term because the t2tBDDvec can only make precise
values imprecise by using ? elements. The truncating term abstract domain is
therefore complete. However, it is not sound, as the abstract object can describe
also incorrect results.

4.2 Truncating Formula Abstract Domain

We now define a formula abstract domain that uses results of truncated bit-
vector operations. Intuitively, the abstract elements in this abstract domain are
bdd pairs (bmust , bmay): the first one determines the assignments that satisfy the
formula for all possible values of ? elements, and the second one determines the
assignments that satisfy the formula for some values of ? elements.

Formally, the truncating formula abstract domain is a triple

(BDDpair, f2BDDpair, J KBDDpair),

where BDDpair = BDD × BDD and the evaluation function assigns to each pair
(bmust , bmay) ∈ BDDpair the set of Boolean values

J(bmust , bmay)KBDDpairµ = {v ∈ {0, 1} | JbmustKµ =⇒ v =⇒ JbmayKµ}.

10

Observe that J(bmust , bmay)KBDDpairµ is {0} when JbmustKµ = JbmayKµ = 0, it is {1}
when JbmustKµ = JbmayKµ = 1, and it is {0, 1} when JbmustKµ = 0, JbmayKµ = 1.
While the result would be ∅ in the remaining case JbmustKµ = 1, JbmayKµ = 0,
this situation never happens for the result of the defined function f2BDDpair.

The function f2BDDpair(ϕ) is defined recursively as follows.

1. The formula ϕ is an atomic subformula or its negation, i.e., ϕ ≡ t1 1 t2
for 1 ∈ {=, 6=,≤u, <u,≤s, <s}. The function f2BDDpair computes the pair
(bmust , bmay) from t2tBDDvec(t1) and t2tBDDvec(t2) using modified algo-
rithms for the corresponding operations on vectors of standard bdds. For
example, Listing 1.3 shows an algorithm for equality of t2tBDDvec(t1) and
t2tBDDvec(t2) (compare with the algorithm for equality of vectors of stan-
dard bdds presented in Listing 1.1). In this algorithm, the value bmust be-
comes 0 if there is ? in any of the input vectors, because then the arguments
may differ for some value of the ?. On the other hand, the value bmay is the
conjunction of equality of all pairs of corresponding bits that both have a
known value. In particular, construction of bmay ignores the pairs of bits con-
taining some ? as it could be the case that equality holds for these bits. List-
ing 1.3 also shows the algorithm for computing disequality of t2tBDDvec(t1)
and t2tBDDvec(t2). The algorithms for other relational symbols are similar.

2. The formula ϕ has the form ϕ1 ∧ ϕ2 or ϕ1 ∨ ϕ2. Let (b1must , b
1
may) be the

result of f2BDDpair(ϕ1) and (b2must , b
2
may) be the result of f2BDDpair(ϕ2).

Then we define

f2BDDpair(ϕ1 ∧ ϕ2) = ((b1must & b2must), (b1may & b2may)),

f2BDDpair(ϕ1 ∨ ϕ2) = ((b1must | b2must), (b1may | b2may)).

3. The formula ϕ has the form ∀x. ϕ1 or ∃x. ϕ1. Let (b1must , b
1
may) be the result

of f2BDDpair(ϕ1). Then we define

f2BDDpair(∀x. ϕ1) = (bdd forall(x, b1must), bdd forall(x, b1may)),

f2BDDpair(∃x. ϕ1) = (bdd exists(x, b1must), bdd exists(x, b1may)),

where the function bdd forall(x,) eliminates the variable x universally and
bdd exists(x,) eliminates it existentially as explained in Section 2.3.

Example 1. Let t, r, s, u be bit-vector terms, for which we have computed only
the least-significant bit as computation of the other bits was infeasible. Formally,

t2tBDDvec(t) = (?, . . . , ?, bt), t2tBDDvec(r) = (?, . . . , ?, br),

t2tBDDvec(s) = (?, . . . , ?, bs), t2tBDDvec(u) = (?, . . . , ?, bu),

where bt, br, bs, bu are bdds.
Consider the formula t = r. The function f2BDDpair applied on this formula

returns the pair (0 , bt ↔ br). This pair says that every assignment satisfying
the formula must also satisfy the bdd bt ↔ br. Therefore, if t = r is put in

11

Listing 1.3: Pseudo-codes computing truncated equality and truncated disequality
of two tBDDvecs a = (ai)0≤i<k and b = (bi)0≤i<k.

1 bvec_eq_trunc(a, b)
2 {

3 resultmust ← 1 ;

4 resultmay ← 1 ;
5 for i from 0 to k - 1 {
6 if (ai == ? or bi == ?) {

7 resultmust ← 0 ;
8 } else {
9 resultmust ← resultmust & (ai ↔ bi);

10 resultmay ← resultmay & (ai ↔ bi);
11 }
12 }
13 return (resultmust , resultmay);
14 }
15

16 bvec_neq_trunc(a, b)
17 {

18 resultmust ← 0 ;

19 resultmay ← 0 ;
20 for i from 0 to k - 1 {
21 if (ai == ? or bi == ?) {

22 resultmay ← 1 ;
23 } else {
24 resultmust ← resultmust | (ai xor bi);
25 resultmay ← resultmay | (ai xor bi);
26 }
27 }
28 return (resultmust , resultmay);
29 }

conjunction with another formula implying that bt ↔ br is equal to 0 , the
whole conjunction can be decided to be unsatisfiable.

Consider the formula s 6= u. The function f2BDDpair now produces the pair
(bs xor bu, 1). Intuitively, if an assignment satisfies bs xor bu, it also satisfies the
formula s 6= u, regardless the values of the remaining bits.

Finally, consider formulas t = r ∧ s 6= u and t = r ∨ s 6= u. The result of
f2BDDpair(t = r ∧ s 6= u) is (0 , bt ↔ br), while the result of f2BDDpair(t =
r ∨ s 6= u) is (bs xor bu, 1).

Similarly to the truncating term abstract domain, the truncating formula
abstract domain is also complete, as the following theorem shows.

Theorem 2. The truncating formula abstract domain is complete.

12

Proof (sketch). It can be shown by induction on the structure of the formula
that if f2BDDpair(ϕ) = (bmust , bmay), then the following must hold for each
assignment µ:

JbmustKµ =⇒ JϕKµ and JϕKµ =⇒ JbmayKµ.

Therefore JϕKµ ∈ Jf2BDDpair(ϕ)KBDDpairµ holds for each assignment µ, so the ab-
stract domain is indeed complete. ut

Since the truncating formula abstract domain is complete, Theorem 1 can be
used to check satisfiability of a given formula ϕ. Consider bmust and bmay such
that

f2BDDpair(ϕ) = (bmust , bmay).

Then if bmust is not 0 , the formula ϕ is satisfiable. On the other hand, if bmay

is 0 , the formula ϕ is not satisfiable.
This satisfiability check solves the formulas mentioned in Introduction as the

motivation for the described approach. For all three of the formulas, the bmay

after computing at least 5 bits from results of the multiplication is 0 and the
formulas can be decided as unsatisfiable.

5 Implementation

We have implemented the described truncated abstract formula domain into
the smt solver Q3B, which is written in C++. The solver Q3B uses the package
cudd [16] for bdd representation and operations, and the implementation of bit-
vectors and bit-vector operations for cudd by P. Navrátil [13]. We have modified
this implementation to support ? elements and to support computing truncated
results of bit-vector operations and computing (bmust , bmay) for all bit-vector
relation operators and logical operators ∧ and ∨. The operations that introduce
? elements, when the precise result would contain too many bdd nodes, are
addition, multiplication, and division. We have selected these operations as the
original version of Q3B often has difficulties to handle them. The implementation
is available at GitHub2.

In contrast to the description of computing formula abstraction from the pre-
vious section, the implementation does not convert the formula to the negation
normal form. Instead, during the traversal of the formula, the solver maintains
the polarity of the current subformula and uses it to perform the appropriate
abstraction of atomic subformulas.

5.1 Further Optimizations

The described approach cannot solve simple formulas as x · y ≤u 2 ∧ x · y ≥u 4.
Even if the subterms x · y are computed abstractly, the information that the ?
elements in the two vectors representing the two occurrences of x · y have been

2 https://github.com/martinjonas/Q3B/releases/tag/ictac2018

13

the same is lost after computing bdd pairs for x·y ≤u 2 and x·y ≥u 4. Therefore,
in the implementation, each multiplication and division is replaced by a fresh
existentially quantified variable and the constraint specifying its relation to the
multiplication or division, respectively, is added to the formula. For example,
the previous formula is transformed to the equivalent formula

∃mx,y(mx,y ≤u 2 ∧ mx,y ≥u 4 ∧ mx,y = x · y).

This formula is decided as unsatisfiable even if x · y is computed with arbitrar-
ily low precision. Note that the transformed formula is still not solved by the
original version of Q3B as the solver starts to build the precise bdds for all
three conjuncts. Although this particular case could be solved by computing
precise bdds for mx,y ≤u 2 ∧ mx,y ≥u 4 and not for the third conjunct as the
conjunction is already unsatisfiable, the proposed formula modification is more
general.

Similar problem arises for example in the unsatisfiable formula x · y ≤u
2 ∧ ∀z (z · y ≥u 4). This formula cannot be solved even after performing the
above-mentioned transformation. The transformation yields the formula

∃mx,y(mx,y ≤u 2 ∧ mx,y = x · y ∧ ∀z ∃mz,y (mz,y ≥u 4 ∧ mz,y = z · y)),

which can not be decided unsatisfiable even by using the abstractions, because
the solver can not infer the relationship between variables mx,y and mz,y. To
solve such formula, the implementation adds a congruence subformula stating
that x = z → mx,y = mz,y to the formula. This results in the formula

∃mx,y

(
mx,y ≤u 2 ∧ mx,y = x · y ∧
∧ ∀z ∃mz,y (mz,y ≥u 4 ∧ mz,y = z · y ∧ (x = z → mx,y = mz,y))

)
,

which can be decided unsatisfiable using the abstractions. Similarly to the pre-
vious transformation, the resulting formula is equivalent to the original one and
its unsatisfiability can not be shown by the original solver without the abstrac-
tions, because it is infeasible to compute the precise bdd for the inner quantified
subformula.

5.2 Combining Operation Abstractions and Formula
Approximations

The solver Q3B employs formula approximations, which can in some cases help
with solving input formulas with multiplication. This subsection elaborates on
the interaction of these approximations with the newly implemented operation
abstractions. Approximations of formulas are of two kinds: underapproximation
and overapproximation. An underapproximation is a formula that logically en-
tails the input formula; therefore if an underapproximation is satisfiable, the
original formula is also satisfiable. On the other hand, an overapproximation is a
formula that is logically entailed by the input formula; if an overapproximation
is unsatisfiable, the original formula is also unsatisfiable.

14

Listing 1.4: Algorithm combining operation abstractions with underapproxima-
tion.

1 solve_underapproximation(ϕ) {
2 effBW ← initialEffBW;
3 nodeLimit ← initialNodeLimit;
4 while (true) {
5 ϕu ← underApprox(ϕ, effBW);
6 (b_must , b_may) ← solveAbstract(ϕu, nodeLimit);

7 if (b_must != 0) return SAT;

8 if (b_may == 0 and ϕ == ϕu) return UNSAT;
9 if (b_must != b_may) {

10 nodeLimit ← increaseNodeLimit(nodeLimit);
11 }
12 else if (ϕ != underApprox(ϕ, effBW)) {
13 effBW ← increaseEffBW(effBW);
14 }
15 }
16 }

The formula approximations are performed on formulas in negation normal
form by reducing the effective bit-width of selected variables by fixing some of
their bits to chosen values. The underapproximations are obtained by decreas-
ing effective bit-widths of all existentially quantified variables and the overap-
proximations are obtained by decreasing effective bit-widths of all universally
quantified variables. Q3B tries to solve the input formula by solving the orig-
inal formula, underapproximations of the formula, and overapproximations of
the formula in parallel. We have integrated the proposed operation abstractions
into the functions for solving underapproximations and overapproximations. The
function solving the original formula can be adjusted to use operation abstrac-
tions as well, but the tool performs better if we keep this function unchanged.

Note: This is a
fixed version of
the pseudocode.
Line 8 was not
correct in the
published paper.
It was, however,
correct in the im-
plementation.

Listing 1.4 shows the simplified implementation of solving underapproxima-
tions. The algorithm starts with the small initial values of the effective bit-width
effBW for existential variables and the limit nodeLimit on the number of bdd
nodes in the results of arithmetic operations. It repeatedly tries to solve the
input formula and if the result is not determined, either the effective bit-width
or the node limit is increased:

– if operation abstractions caused an imprecision, the node limit is increased;
– if the operation abstractions were precise, but the reduced effective bit-width

could have caused imprecision, the effective bit-width is increased.

Currently, the initial effective bit-width is 1 and it is increased to 2, 4, 6, 8,
The initial node limit is 1000 and the function increaseNodeLimit() multiplies it
by 4 each time. The implementation for solving overapproximations is analogous.

15

Table 1: Numbers of benchmarks solved by the individual solvers divided by the
satisfiability/unsatisfiability and the benchmark family.

benchmark family Boolector CVC4 Z3 Q3B Q3B+OA
U

N
S
A

T

heizmann 14 107 21 93 94

preiner-keymaera 3919 3919 3922 3786 3906
preiner-psyco 62 62 62 45 49
preiner-scholl-smt08 71 37 68 52 69
preiner-tptp 55 56 56 56 56
preiner-ua 137 137 137 137 137

wintersteiger-fixpoint 74 75 74 75 75
wintersteiger-ranking 20 14 19 19 19

Total UNSAT 4352 4407 4359 4263 4405

S
A

T

heizmann 17 18 13 19 20

preiner-keymaera 108 78 108 104 104
preinr-psyco 131 129 131 131 131
preiner-scholl-smt08 248 215 203 239 256
preiner-tptp 17 17 17 17 17
preiner-ua 15 14 16 16 16

wintersteiger-fixpoint 45 51 36 54 54
wintersteiger-ranking 21 32 35 40 40

Total SAT 602 554 559 620 638

Total 4954 4961 4918 4883 5043

6 Experimental Evaluation

We have compared Q3B with our implementation of operation abstractions (ref-
erenced as Q3B+OA) against the original Q3B [9] and state-of-the-art smt
solvers Z3 [7], Boolector [15], and CVC4 [1]. We used Z3 in the version 4.6.0,
Boolector in the version that entered smt-comp 2017, and CVC4 in the version
presented in the paper by Niemetz et al. [14]. We evaluated all 5 solvers on
all 5151 quantified bit-vector formulas from the smt-lib repository [2] used in
smt-comp 2017. The used benchmarks are divided into three benchmark sets:
benchmarks from the tool Ultimate Automizer by M. Heizmann (marked as heiz-
mann), benchmarks that were created by converting integer and real arithmetic
benchmarks to bit-vectors by M. Preiner (marked as preiner), and benchmarks
from software and hardware verification by C. M. Wintersteiger (marked as win-
tersteiger). The benchmark sets preiner and wintersteiger are further divided
into smaller families of benchmarks.

All experiments were performed on a Debian machine with two six-core Intel
Xeon E5-2620 2.00GHz processors and 128 gb of ram. Each benchmark run was
limited to use 16 gb of ram and 90 minutes of cpu time. All measured times are

16

17

19

97

6

100

88

246

109

165

66

3

3

27

19

31

Q3B+OA

Q3B

Z3

CVC4

Boolector

0 100 200

Number of unsolved benchmarks (less is better)

Benchmark set

wintersteiger

preiner

heizmann

Fig. 4: The number of benchmarks unsolved by the individual solvers. The bench-
marks are divided by the source of the benchmark.

cpu times. For reliable benchmarking we employed BenchExec [4], a tool that
allocates resources for a program execution and measures their use precisely.

Table 1 shows numbers of solved benchmarks by the individual solvers. In
total, Q3B+OA was able to solve 160 more benchmarks than the original version
of Q3B. Moreover, Q3B+OA solved more benchmarks than other state-of-the art
smt solvers: 89 more than Boolector, 82 more than CVC4, and 125 more than
Z3. We have also evaluated the effect of formula transformations described in
Subsection 5.1. The transformations helped only in two families of benchmarks:
in the family preiner-keymaera the optimizations were necessary to solve 116
out of 120 newly decided benchmarks; in the family wintersteiger-fixpoint the
solver Q3B+OA solved 1 benchmark less without the optimizations.

From the opposite point of view, Figure 4 shows the number of benchmarks
unsolved by the individual solvers. This graph shows that most of the benefit
of abstractions is on formulas from the preiner benchmark set, where expensive
operations like multiplication and division are frequently used.

Naturally, due to the repeated refinement of the abstractions, some bench-
marks may require more solving time than without abstractions. In particular,
there is one benchmark in the heizmann benchmark set that was solved by the
original Q3B but not by Q3B+OA. Although this was the only such benchmark,
the additional cost of abstractions is observable also on some benchmarks that
were decided both with and without abstractions: computing abstractions slowed
Q3B by more than 0.5 seconds on 115 benchmarks. On the other hand, there
were 96 benchmarks decided by both versions of Q3B on which the version with
abstraction was faster by more than 0.5 seconds.

17

0 500 1000 1500 2000

Solved formulas

C
P

U
 ti

m
e

(s
)

10
−

3
10

−
2

10
−

1
1

10
10

2
10

3
Boolector
CVC4
Z3
Q3B
Q3B+OA

Fig. 5: Quantile plot of all solved non-trivial benchmarks from the smt-lib repos-
itory. Trivial benchmarks are those that all solvers solved within 0.1 s. The plot
shows the number of non-trivial benchmarks (x-axis) that each solver was able
to decide within a given cpu time limit (y-axis).

To compare the solving times of all solvers, Figure 5 shows quantile plots
of solving times of non-trivial benchmarks for the individual solvers. We have
filtered out 3168 trivial benchmarks, i.e., the benchmarks that were decided by
all of the solvers in less than 0.1 s.

The detailed results of the evaluation, including the raw data files and further
analyses, such as cross comparisons and scatter plots, are available at:

http://fi.muni.cz/∼xstrejc/ictac2018/

7 Conclusions

We have presented operation abstractions that allow bdd-based smt solvers to
decide a formula by computing only some bits of results of arithmetic operations.
The experimental evaluation shows that by using these abstractions, bdd-based
smt solver Q3B is able to solve more quantified bit-vector formulas from the
smt-lib repository than state-of-the-art solvers Boolector, CVC4, and Z3.

In the implemented version, the solver computes overapproximations and un-
derapproximations independently. It could be interesting to investigate whether
sharing of the information obtained by an overapproximation with other parallel
computations of the solver could improve the performance even more.

18

References

1. Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan
Jovanovi’c, Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4. In Ganesh
Gopalakrishnan and Shaz Qadeer, editors, Proceedings of the 23rd International
Conference on Computer Aided Verification (CAV ’11), volume 6806 of Lecture
Notes in Computer Science, pages 171–177. Springer, July 2011. Snowbird, Utah.

2. Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Modulo
Theories Library (SMT-LIB). www.SMT-LIB.org, 2016.

3. Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. Satis-
fiability Modulo Theories. In Handbook of Satisfiability, pages 825–885. IOS Press,
2009.

4. Dirk Beyer, Stefan Löwe, and Philipp Wendler. Benchmarking and Resource Mea-
surement. In Model Checking Software - 22nd International Symposium, SPIN
2015, Proceedings, volume 9232 of Lecture Notes in Computer Science, pages 160–
178. Springer, 2015.

5. Randal E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation.
IEEE Trans. Comput., 35(8):677–691, 1986.

6. Byron Cook, Daniel Kroening, Philipp Rümmer, and Christoph M. Wintersteiger.
Ranking function synthesis for bit-vector relations. Formal Methods in System
Design, 43(1):93–120, 2013.

7. Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In
Tools and Algorithms for the Construction and Analysis of Systems, 14th Interna-
tional Conference, TACAS 2008, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-
April 6, 2008. Proceedings, volume 4963 of Lecture Notes in Computer Science,
pages 337–340. Springer, 2008.

8. Sumit Gulwani, Saurabh Srivastava, and Ramarathnam Venkatesan. Constraint-
based invariant inference over predicate abstraction. In Verification, Model Check-
ing, and Abstract Interpretation, 10th International Conference, VMCAI 2009,
Savannah, GA, USA, January 18-20, 2009. Proceedings, pages 120–135, 2009.

9. Martin Jonáš and Jan Strejček. Solving Quantified Bit-Vector Formulas Using
Binary Decision Diagrams. In Theory and Applications of Satisfiability Testing
- SAT 2016 - 19th International Conference, Bordeaux, France, July 5-8, 2016,
Proceedings, volume 9710 of Lecture Notes in Computer Science, pages 267–283.
Springer, 2016.

10. Gergely Kovásznai, Andreas Fröhlich, and Armin Biere. Complexity of fixed-size
bit-vector logics. Theory Comput. Syst., 59(2):323–376, 2016.

11. Daniel Kroening, Matt Lewis, and Georg Weissenbacher. Under-approximating
loops in C programs for fast counterexample detection. In Computer Aided Veri-
fication - 25th International Conference, CAV 2013, volume 8044 of LNCS, pages
381–396. Springer, 2013.

12. Jan Mrázek, Petr Bauch, Henrich Lauko, and Jǐŕı Barnat. SymDIVINE: Tool for
control-explicit data-symbolic state space exploration. In Model Checking Soft-
ware - 23rd International Symposium, SPIN 2016, Co-located with ETAPS 2016,
Eindhoven, The Netherlands, April 7-8, 2016, Proceedings, pages 208–213, 2016.

13. Peter Navrátil. Adding Support for Bit-Vectors to BDD Libraries CUDD and
Sylvan. Bachelor’s thesis, Masaryk University, Faculty of Informatics, Brno, 2018.

14. Aina Niemetz, Mathias Preiner, Andrew Reynolds, Clark Barrett, and Cesare
Tinelli. On solving quantified bit-vectors using invertibility conditions. CoRR,
abs/1804.05025, 2018.

19

15. Mathias Preiner, Aina Niemetz, and Armin Biere. Counterexample-Guided Model
Synthesis. In Tools and Algorithms for the Construction and Analysis of Systems -
23rd International Conference, TACAS 2017, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden,
April 22-29, 2017, Proceedings, Part I, volume 10205 of Lecture Notes in Computer
Science, pages 264–280. Springer, 2017.

16. Fabio Somenzi. CUDD: CU Decision Diagram Package Release 3.0.0. University
of Colorado at Boulder, 2015.

17. Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. From program verifi-
cation to program synthesis. In Proceedings of the 37th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2010, Madrid, Spain,
January 17-23, 2010, pages 313–326, 2010.

18. Christoph M. Wintersteiger, Youssef Hamadi, and Leonardo Mendonça de Moura.
Efficiently solving quantified bit-vector formulas. Formal Methods in System De-
sign, 42(1):3–23, 2013.

19. Aleksandar Zeljic, Christoph M. Wintersteiger, and Philipp Rümmer. Deciding bit-
vector formulas with mcsat. In Theory and Applications of Satisfiability Testing
- SAT 2016 - 19th International Conference, Bordeaux, France, July 5-8, 2016,
Proceedings, pages 249–266, 2016.

20

