
Checking Properties Described by State
Machines: On Synergy of Instrumentation,

Slicing, and Symbolic Execution

Jǐŕı Slabý, Jan Strejček, and Marek Trt́ık

Faculty of Informatics, Masaryk University
Botanická 68a, 60200 Brno, Czech Republic

{slaby,strejcek,trtik}@fi.muni.cz

Abstract. We introduce a novel technique for checking properties de-
scribed by finite state machines. The technique is based on a synergy of
three well-known methods: instrumentation, program slicing, and sym-
bolic execution. More precisely, we instrument a given program with a
code that tracks runs of state machines representing various properties.
Next we slice the program to reduce its size without affecting runs of
state machines. And then we symbolically execute the sliced program to
find real violations of the checked properties, i.e. real bugs. Depending
on the kind of symbolic execution, the technique can be applied as a
stand-alone bug finding technique, or to weed out some false positives
from an output of another bug-finding tool. We provide several examples
demonstrating the practical applicability of our technique.

1 Introduction

There are several successful formalisms for description of program properties.
One of the most popular is a finite state machine (FSM). This formalism is simple
and still flexible enough to describe many often studied program properties in-
cluding locking policy in concurrent programs, null-pointer dereferences, resource
allocations, and resource leaks. FSM specification is therefore used in many static
program analysis tools like xgcc [24], SLAM [4], SDV [3], Blast [5], ESP [14],
or Stanse [27]. All the mentioned tools produce false positives, i.e. they report
errors that do not correspond to any real error. We now roughly explain the
basic principle of static analysis implemented in xgcc, ESP, and Stanse.

1.1 Checking FSM Properties by Static Analysis

Let us consider the state machine SM(x) of Figure 1. It describes a lock ma-
nipulation including malign transitions. Intuitively, the state machine represents
possible courses of states of a lock referenced by x along an execution of a
program. The state of the lock is changed according to the program behavior.
Whenever the program contains a statement syntactically subsuming the label
of a transition, the transition is fired in the state machine. We would like to



U L

lock(x)

unlock(x)

DU

unlock(x)

DL

lock(x)

RL

return

Fig. 1. State machine SM(x) describing errors in manipulation with lock x. The nodes
U and L refer to states unlocked and locked, respectively. The other three nodes refer
to error states: DU to double unlock, DL to double lock, and RL to return in locked
state. The initial node is U.

decide whether there exists any program execution where an instance of state
machine SM(x) reaches an error state for some lock in the program. Unfortu-
nately, this is not feasible due to potentially unbounded number of executions
and unbounded execution length. Hence, static analysis tools overapproximate
the set of reachable state machine states.

Let us assume that we want to check the program of Figure 2 for errors
specified by the state machine SM(x). First, we find all locks in the program
and to each lock we assign an instance of the state machine. In our case, there
is only one lock pointed to by L and thus only one instance SM(L). For each
program location, we compute a set overapproximating possible states of SM(L)
after executions leading to the location. Roughly speaking, we initialize the set
in the initial location to {U} and the other sets to ∅. Then we repeatedly update
the sets according to the effect of individual program statements until the fixed
point is reached. The resulting sets for the program of Figure 2 are written
directly in the code listing as comments.

1: char *copy(char *dst , char *src , int n, int *L) {
2: int i, len; // {U}
3: len = 0; // {U}
4: if (src != NULL && dst != NULL) { // {U}
5: len = n; // {U}
6: lock(L); // {L}
7: } // {U,L}
8: i = 0; // {U,L}
9: while (i < len) { // {U,L}

10: dst[i] = src[i]; // {U,L}
11: i++; // {U,L}
12: } // {U,L}
13: if (len > 0) { // {U,L}
14: unlock(L); // {DU ,U}
15: } // {U,L}
16: return dst; // {U,RL}
17: }

Fig. 2. Function copy copying a source string src into a buffer dst using a lock L to
prevent parallel writes.

2



As we can see, the sets contain two error states: double unlock after the
unlock(L) statement and return in locked state in the terminal location. If we
analyze the computation of the sets, we can see that the first error corresponds
to executions going through lines 1,2,3,4,8, then iterating the while-loop and
finally passing lines 13,14. These execution paths are not feasible due to the
value of len, which is set to 0 at line 3 and assumed to satisfy len > 0 at line
13. Hence, the first error is a false positive. The second error corresponds to
executions passing lines 1,2,3,4,5,6,7,8, then iterating the while-loop and finally
going through lines 13,16. All these paths are also infeasible except the one
that performs zero iterations of the while-loop, which is the only real execution
leading to the only real locking error in the program.

To sum up, static analysis tools like xgcc, ESP, and Stanse are highly flex-
ible, fast and thus applicable to extremely large software projects (e.g. the Linux
kernel). It examines all the code and finds many error reports. Unfortunately,
many of the reports are false positives.1 As manual sorting of error reports con-
taining a pile of false positives is tedious work, the practical applicability of such
tools is limited.

1.2 No False Positives with Symbolic Execution

In contrast to static analysis, test-generation tools based on symbolic execution
do not suffer from false positives, since the checked program is actually executed
(but on symbolic input instead of concrete one). A disadvantage of these tools is
that they usually detect only low-level errors representing violations of program-
ming language semantics, i.e. various types of undefined behavior or crashes. To
detect violations of other program properties like locking policy, the program has
to be modified such that the errors can be detected during the execution. This
can be achieved, for example, by introducing a couple of assert statements to
specific program locations. Another and even more important disadvantage of
the tools is extreme computation cost of symbolic execution. In particular, pro-
grams containing loops or recursion have typically large or even infinite number
of execution paths and cannot be entirely analysed by symbolic execution.

1.3 Our Contribution: A New Technique

In this paper, we introduce a new fully automatic program analysis technique
offering flexibility of FSM property specification with zero false positive rate
of symbolic execution. The technique symbolically executes only parts of the
analysed program having impact on the checked property. The basic idea is very
simple:

1. We get state machines describing some program properties. We instrument
a given program with a code tracking behavior of the state machines.

1 We note that xgcc and ESP actually use many techniques for partial elimination
of false positives (see [24, 14] for details).

3



2. The instrumented program is then reduced using method called slicing [33].
The sliced program has to meet the criterion to be equivalent to the instru-
mented program with respect to reachability of error states of tracked state
machines. Note that slicing may remove large portions of the code, including
loops and function calls. Hence, an original program with an infinite number
of execution paths may be reduced to a program with a finite number of
execution paths.

3. Finally, we execute the sliced program symbolically to find violations of the
checked property.

Our technique may be used in two ways according to the applied symbolic exe-
cution tool. If we apply a symbolic executor that prefers to explore more parts
of the code (for example by exploring each program loop at most twice), we may
use the technique as a general bug-finding technique reporting only real errors.
On the contrary, if we use a symbolic executor exploring all execution paths, we
may use our technique for classification of error reports produced by other tools
(e.g. xgcc or Stanse). For each such an error report, we may instrument the
corresponding code only with the state machine describing the reported error.
If our technique finds the same error, it is a real one. If our technique explores
all execution paths of the sliced code without detecting the error, it is a false
positive. If our technique runs out of resources, we cannot decide whether the
error is a real one or just a false positive.

We have developed an experimental tool implementing our technique. The
tool instruments a program with a state machine describing locking errors (we
use a single-purpose instrumentation so far), then it applies an interprocedural
slicing to the instrumented code, and it passes the sliced code to symbolic execu-
tor Klee [9]. Our experimental results indicate that the technique can indeed
classify error reports produced by Stanse applied to the Linux kernel.

We emphasize the synergy of the three known methods combined in the
presented technique.

– Instrumentation of a program with a code emulating state machines provides
us with simple slicing criteria: we want to preserve values of memory places
representing states of state machines. Hence, the sliced program contains
only the code relevant to the considered errors specified by state machines.

– Slicing may substantially reduce the size of the code, which in turn may
remarkably improve performance of the symbolic execution.

– Application of symbolic execution brings us another benefit. While in stan-
dard static analysis, the state machines are associated to syntactic objects
(e.g. lock variables appearing in a program), we may associate state ma-
chines to actual values of these objects. This leads to a higher precision of
error detection.

The rest of the paper is organized as follows. Sections 2, 3, and 4 deal with
program instrumentation, program slicing, and symbolic execution, respectively.
Experimental implementation of our technique and some experimental results
are discussed in Section 5. Section 6 is devoted to related work while Section 7

4



indicates some directions driving our future research. Finally, the last section
summarizes presented results.

2 Instrumentation

In our algorithm, the purpose of the instrumentation is to insert a code imple-
menting a state machine into the analysed program. Nonetheless, the semantics
of the program being instrumented must not be changed. A result of this phase
is therefore a new program that still has the original functionality but it also
simultaneously updates instrumented state machines. We show the process using
the state machine SM(x) of Figure 1 and a program consisting of two functions:
copy of Figure 2 and foo of Figure 3. The function foo calls copy twice, first
with the lock L1 and then with the lock L2. The locks protect writes into buffers
buf1 and buf2 respectively. The function foo is a so-called starting function. It
is a function where the symbolic execution starts.

char *buf1 , *buf2;
int L1, L2;

void foo(char *src , int n) {
copy(src , buf1 , n, &L1);
copy(src , buf2 , n, &L2);

}

Fig. 3. Function foo forms the analysed program together with function copy.

The instrumentation starts by recognizing code fragments which manipulate
with locks in the analysed program. More precisely, we look for all those code
fragments matching edge labels of the state machine SM(x) of Figure 1. The
analysed program contains three such fragments, all of them in function copy

(see Figure 2): the call to lock at line 6, the call to unlock at line 14, and the
return statement at line 16.

Next we determine a set of all locks that are manipulated by the program.
From the recognized code fragments, we find out that a pointer variable L in
copy is the only program variable through which the program manipulates with
locks. Using a points-to analysis, we obtain set {L1, L2} of all possible locks the
program manipulates with.

We introduce a unique instance of the state machine SM(x) for each lock in
the set. More precisely, we define two integer variables smL1 and smL2 to keep
the current state of state machines SM(L1) and SM(L2), respectively. Further,
we need to specify a mapping from locks to their state machines. The mapping
is basically a function (preferably with constant complexity) from addresses of
program objects (i.e. the locks) to addresses of corresponding state machines.
Figure 4 shows an implementation of a function smGetMachine that maps ad-
dresses of locks L1 and L2 to addresses of corresponding state machines. We note
that the implementation of smGetMachine would be more complicated if state
machines are associated to dynamically allocated objects.

5



1: const int smU = 0; // state U
2: const int smL = 1; // state L
3: const int smDU = 2; // state DU
4: const int smDL = 3; // state DL
5: const int smRL = 4; // state RL
6:
7: const int smLOCK = 0; // transition lock(x)
8: const int smUNLOCK = 1; // transition unlock(x)
9: const int smRETURN = 2; // transition return

10:
11: int smL1 = smU , smL2 = smU;
12:
13: int *smGetMachine(int *p) {
14: if (p == &L1) return &smL1;
15: if (p == &L2) return &smL2;
16: return NULL; // unreachable
17: }
18:
19: void smFire(int *SM , int transition) {
20: switch (*SM) {
21: case smU:
22: switch (transition) {
23: case smLOCK:
24: *SM = smL;
25: break;
26: case smUNLOCK:
27: assert(false ); // double unlock
28: break;
29: default: break;
30: }
31: break;
32: case smL:
33: switch (transition) {
34: case smLOCK:
35: assert(false ); // double lock
36: break;
37: case smUNLOCK:
38: *SM = smU;
39: break;
40: case smRETURN:
41: assert(false ); // return in locked
42: break;
43: default: break;
44: }
45: break;
46: default: break;
47: }
48: }

Fig. 4. Implementation of the state machine (smFire) and its identification (smGet-
Machine).

Besides smGetMachine, Figure 4 contains also many constants and a function
smFire implementing the state machine SM(x). Further, Figure 4 declares vari-
ables smL1 and smL2 and initializes them to the initial state of the state machine.
Note that we represent both states of the machine and names of transitions by
integer constants. Also keep in mind that the pointer argument SM of smFire

function points to an instrumented state machine, whose transition has to be
fired.

It remains to instrument the recognized code fragments in the original pro-
gram. For each fragment we know its related transition of the state machine and

6



char *buf1 , *buf2;
int L1, L2;

char *copy(char *dst , char *src , int n, int *L) {
int i, len;
len = 0;
if (src != NULL && dst != NULL) {

len = n;
* smFire(smGetMachine(L), smLOCK );

lock(L);
}
i = 0;
while (i < len) {

dst[i] = src[i];
i++;

}
if (len > 0) {

* smFire(smGetMachine(L), smUNLOCK );
unlock(L);

}
* smFire(smGetMachine(L), smRETURN );

return dst;
}

void foo(char *src , int n) {
copy(src , buf1 , n, &L1);
copy(src , buf2 , n, &L2);

}

Fig. 5. Functions foo and copy instrumented by calls of smFire function.

we also know what objects the fragment manipulates with (if any). Therefore, we
first retrieve an address of state machine related to manipulated objects (if any)
by using the function smGetMachine and then we fire the transition by calling
the function smFire. The instrumented version of the original program consists
of the code of Figure 4 and the instrumented version of the original functions
foo and copy given in Figure 5, where the instrumented lines are highlighted
by *. Note that in our example, the instrumented state variables smL1 and smL2

directly correspond to the program locks L1 and L2 respectively. In general, how-
ever, states of a state machine of a more complex property need not necessarily
correspond to values of a particular program variable. Therefore, we apply this
general approach to our example too.

3 Slicing

Let us have a look at the instrumented program in Figure 5. We can easily
observe, that the main part of the function copy, the loop copying the characters,
does not affect states of the instrumented state machines. Symbolic execution
of such a code is known to be very expensive, moreover in this case it is yet
unneeded. Therefore, we use the slicing technique from [33] to eliminate such a
code from the instrumented program.

The input of the slicing algorithm is a program to be sliced and a so-called
slicing criteria. A slicing criterion is a pair of a program location and a set

7



1: char *buf1 , *buf2;
2: int L1, L2;
3:
4: char *copy(char *dst , char *src , int n, int *L) {
5: int len;
6: len = 0;
7: if (src != NULL && dst != NULL) {
8: len = n;
9: smFire(smGetMachine(L), smLOCK );

10: }
11: if (len > 0) {
12: smFire(smGetMachine(L), smUNLOCK );
13: }
14: smFire(smGetMachine(L), smRETURN );
15: return dst;
16: }
17:
18: void foo(char *src , int n) {
19: copy(src , buf1 , n, &L1);
20: copy(src , buf2 , n, &L2);
21: }

Fig. 6. Functions foo and copy after slicing.

of program variables. The slicing algorithm removes program statements that
do not affect any slicing criterion. More precisely, for each input data passed
to both original and sliced programs, values of the variable set of each slicing
criterion at the corresponding location are always equal in both programs. Our
analysis is interested only in states of the instrumented automata, especially
in locations corresponding to errors. Hence, the slicing criterion is a pair of a
location preceding an assert statement in smFire function and the set of all
variables representing current states of the corresponding state machines. The
slicing criteria then comprises all such pairs.

In the instrumented program of Figures 4 and 5, we want to preserve vari-
ables smL1 and smL2. We put slicing criteria into the lines of code detecting
transitions of state machines into error states. In other words, the slicing crite-
ria for our running example are pairs (27,{smL1,smL2}), (35,{smL1,smL2}), and
(41,{smL1,smL2}), where the numbers refer to lines in the code of Figure 4. The
result of the slicing procedure is presented in Figures 4 and 6 (the code in the
former Figure shall not be changed by the slicing). Note that the sliced code
contains neither the while-loop nor the lock and unlock commands.

It is important to note that some slicing techniques, including the one in [33]
that we use, do not consider inputs for which the original program does not halt.
As a result, an input causing an infinite run of the original program can induce
a finite run in the sliced program. Moreover, the finite run can contain locations
not visited by the infinite run. This is the only principal source of potential false
positives in our technique.

8



19

6

7

11

F

14

15

20

6

7

8

T

9

11

11

F

14

15

14

F

bug

12

T

14

15

8

T

9

11

14

F

bug

12

T

14

15

20

6

7

8

T

9

11

12

T

14

15

14

F

bug

Fig. 7. Symbolic execution tree of the sliced program of Figure 6.

4 Symbolic Execution

This is the final phase of our technique. We symbolically execute the sliced
program from the entry location of the starting function. Symbolic execution
explores real program paths. Therefore, if it reaches some of the assertions inside
function smFire, then we have found a bug.

Our running example nicely illustrates the crucial role of slicing to feasibility
of symbolic execution. Let us first consider symbolic execution of the original
program. It starts at the entry location of the function foo. The execution even-
tually reaches the function copy. Note that value of the parameter n is symbolic.
Therefore, symbolic execution will fork into two executions each time we reach
line 9 of Figure 2. One of the executions skips the loop at lines 9–12, while the
other enters it. If we assume that the type of n is a 32-bit integer, then the
symbolic execution of one call of copy explores more then 231 real paths.

9



By contrast, the sliced program does not contain the loop, which generated
the huge number of real paths. Therefore, a number of real paths explored by
the symbolic execution is exactly 6. Figure 7 shows the symbolic execution tree
of the sliced program of Figure 6. We left out vertices corresponding to lines in
called functions smGetMachine and smFire. Note that although the parameter
n has a symbolic value, it can only affect the branching at line 11. Moreover,
the parameter L always has a concrete value. Therefore, we do not fork symbolic
execution at branchings inside functions smGetMachine and smFire. Three of
the explored paths are marked with the label bug. These paths reach the sec-
ond assertion in function smFire (see Figure 4) called from line 14 of the sliced
program. In other words, the paths are witnesses that we can leave the function
copy in a locked state. The remaining explored paths of Figure 7 miss the asser-
tions in the function smFire. It means that the original program contains only
one locking error, namely return in locked state.

It might be the case for some program and checked property, that the sliced
code still contains loops. Then the subsequent symbolic execution can be very
costly due to the well-known path explosion problem. Fortunately, there have
been done some work tackling the problem [18, 19, 22, 30, 34].

5 Implementation and Experimental Results

To verify applicability of the presented technique, we have developed an exper-
imental implementation. Our experimental tool works with programs in C and,
for the sake of simplicity, it detects only locking errors described by a state
machine very similar to SM(x) of Figure 1. The instances of the state machine
are associated with arguments of lock and unlock function calls. Note that the
technique currently works only for the cases where a lock is instantiated only
once during the run of the symbolic executor, which is the most frequent case.
However we plan to add a support even for the rest. The main part of our im-
plementation is written in three modules for the Llvm framework [35], namely
Prepare, Slicer, and Kleerer. The framework provides us with a C compiler
clang. We also use an existing symbolic executor for Llvm called Klee [9].

Instrumentation of a given program proceeds in two steps. Using a C prepro-
cessor, the original program is instrumented with function calls smFire located
just above statements changing states of state machines. The program is then
translated by clang into Llvm bytecode [35]. Optimizations are turned off as
required by Klee. The rest of the instrumentation (e.g. adding global variables
and changing the code to work with them) is done on the Llvm code using the
module Prepare.

The module Slicer implements a variant of the inter-procedural slicing al-
gorithm by Weiser [33]. To guarantee correctness and to improve performance
of slicing, the algorithm employs points-to analysis by Andersen [2].

The module Kleerer performs a final processing of the sliced bytecode before
it is passed to Klee. In particular, the module adds to the bytecode a function
main that calls a starting function. The main function also allocates a symbolic

10



File Running Time (s)
Sliced Result

Factual

Function Comp. Instr. Slic. SE Total State

fs/jfs/super.c

jfs quota write 1.25 0.18 0.15 5.09 6.67
67.8%
369/119

BUG BUG

drivers/net/qlge/qlge main.c

qlge set mac address 2.70 0.72 26.75 13.28 43.45
66.5%

1333/447
BUG BUG

drivers/hid/hidraw.c

hidraw read
1.06 0.18 0.14 Timeout

67.0%
666/220

TO BUG

drivers/net/ns83820.c

queue refill 1.76 0.29 1.72 0.62 4.39
72.9%

1212/329
FP FP

drivers/usb/misc/
sisusbvga/sisusb con.c

sisusbcon set palette
1.50 0.24 0.27 17.19 19.20

76.0%
2936/705

FP FP

fs/jffs2/nodemgmt.c

jffs2 reserve space 1.04 0.18 0.22 Timeout
46.8%
677/360

TO FP

kernel/kprobes.c

pre handler kretprobe 0.32 0.09 0.51 2.43 3.35
66.3%
202/68

ME FP

Table 1. Experimental results. The table presents running time of preprocessing and
compilation (Comp.), instrumentation including points-to analysis (Instr.), slicing
(Slic.), symbolic execution (SE), and the total running time. The column Sliced
presents the ratio of instructions sliced away from the instrumented Llvm code and
the exact number of instructions before/after slicing. The column Result specifies the
result of our tool: BUG means that the tool found a real error, FP means that the
analysis finished without error found (i.e. the original error report is a false positive),
TO that the symbolic execution did not finish in time and ME denotes an occurrence
of memory error. The last column specifies the factual state of the error report.

memory for each parameter of the starting function. Size of the allocated memory
is determined by the parameter type. Plus, when the parameter is a pointer, the
size is multiplied by 4000. For example, 4 bytes are allocated for an integer
and 16000 bytes for an integer pointer. Further, for the pointer case, we pass
a pointer to the middle of the allocated memory (functions might dereference
memory at negative index). The idea behind is explained in [28]. Finally, the
resulting bytecode is symbolically executed by Klee. If a symbolic execution
touches a memory out of the allocated area, we get a memory error. To remedy
this inconvenience, we plan to implement the same on-demand memory handling
UcKlee [28] does.

5.1 Experiments

We have performed our experiments on several functions of the Linux kernel
2.6.28, where the static analyzer Stanse reported some error. More precisely,
Stanse reported an error trace starting in these functions. We consulted the
errors with kernel developers to sort out which are false positives and which are

11



real errors. All the selected functions (and all functions transitively called from
them) contain no assembler (in some cases, it has been replaced by an equivalent
C code) and no external function calls after slicing.

We ran our experimental tool on these functions. All tests were performed
on a machine with an Intel E6850 dual-core processor at 3 GHz and 6 GiB of
memory, running Linux. We specified Klee parameters to time out after 10
seconds spent in an SMT solver and after 300 seconds of an overall running
time. Increasing these times brings no real effect in our environment. We do not
pass optimize option for Klee because it causes Klee to crash for most of the
input.

Table 1 presents results of our tool on selected functions. The table shows
compilation, instrumentation, slicing, symbolic execution, and the overall run-
ning time. Further, the table presents the ratio of instructions that were sliced
away from the instrumented Llvm code. The last two columns specify the re-
sults of our analysis and the real state confirmed by kernel developers. The table
clearly shows that the bottleneck of our technique is the symbolic execution.
However, if we did not slice the code, the only function completely executed in
time would be sisusbcon set palette, computed in 20.64s.

Although the results have no statistical significance, it is clear that the tech-
nique can in principle classify error reports produced by other tools like Stanse.
If our technique reports an error, it is a real one. If it finishes the analysis with-
out any error detected, the original error report is a false positive. The analysis
may also not finish in a given time, which is usually caused by loops in the sliced
code. Finally, it may report a memory error mentioned above.

6 Related Work

There are many tools checking properties described by finite state machines.
They produce both kinds of reports, real error as well as false positives. The
technique of xgcc presented in [11, 12, 16, 24] found a thousands of bugs in real
system code. It provides a language Metal for easy description of properties to
be checked. xgcc suffers from false positives despite usage of false positive sup-
pression algorithms like killing variables and expressions, synonyms, false path
pruning, and others. Besides the suppression algorithms, bug-reports from the
tool are further ranked according to their probability of being real errors. There
are generic and statistical ranking algorithms ordering bug-reports. An extension
introduced in [17] provides an automatic inference of some temporal properties
based on statistical analysis of assumed programmer’s beliefs. The ESP [14]
technique uses a similar language to Metal for properties description. It imple-
ments an interprocedural dataflow algorithm based on [29] for error detection
and an abstract simulation pruning algorithm for false positives suppression.
Stanse [27], a static analysis tool also uses state machines for description of
checked program properties. The description is based on parametrised abstract
syntax trees. Finally, CEGAR [13] based tools like SLAM [4], SDV [3], or
Blast [5], do not produce false positives, in theory. However, to achieve an ap-

12



propriate efficiency and scalability for a practical use, the implementation of the
CEGAR loop is typically unsound.

Program analysis tools based on symbolic execution [25] mainly discover
low-level bugs like division by zero, illegal memory access, assertion failure etc.
These tools typically do not have problems with false positives, but they have
problems with scalability to large programs. There has been developed a lot
of techniques improving the scalability to programs used in practice. Modern
techniques are mostly hybrid: they usually combine symbolic execution with
concrete one [20, 21, 31]. There are also hybrid techniques combining symbolic
execution with a complementary static analysis [22, 26]. Symbolic execution can
be accelerated by a compositional approach based on function summaries [1,
18]. Another approach to effective symbolic execution introduced in [8–10] is
based on recording of already seen behavior and pruning its repetition. There is
an orthogonal line of research which tries to improve the symbolic execution for
programs with some special types of inputs. Some techniques deal with programs
manipulating strings [7, 34], and some other techniques reduce input space using
a given input grammar [19, 30].

The interprocedural static slicing was introduced by Weiser [33]. But nowa-
days, there are many different approaches to program slicing. They are surveyed
by several authors [6, 15, 32]. Applications of slicing include program debugging,
reverse engineering and regression testing [23].

7 Future Work

Our future work has basically three independent directions.

First, we plan to run our tool to classify all lock-related error reports pro-
duced by Stanse on the Linux kernel. The results should provide a better image
of practical applicability of the technique. To get a relevant data, we should solve
some practical issues like a correct detection of starting functions, automatic re-
placement of assembler, treatment of external function calls, etc. We should also
implement an on-demand memory allocation to Klee as discussed in Section 5
or use a different executor.

The second direction is to adopt or design some convenient way for spec-
ification of arbitrary state machines. It may be a dedicated language similar
to Metal [12]. Then we plan to implement an instrumentation treating these
state machines. In particular, the instrumentation should correctly handle state
machines associated with dynamically allocated objects.

Finally, we would also like to examine performance of our technique as a
stand-alone error-detection tool. To this point, we have to use a symbolic ex-
ecutor aiming for maximal code coverage. In particular, such an executor has to
suppress execution paths that differ from explored paths only in number of loop
iterations. Unfortunately, we do not know about any publicly available symbolic
executor of this kind. However, it seems that UcKlee [28] (which is not public
as of now) has been designed for a similar purpose.

13



8 Conclusion

We have presented a novel technique combining three standard methods (instru-
mentation, slicing, and symbolic execution) to check program properties given in
form of finite state machines. We have discussed a synergy of the three methods.
Moreover, our experimental results indicate that the technique can recognize
some false positives and some real errors in error reports produced by other
error-detection tools.

Acknowledgements The authors are supported by the Czech Science Foundation,
project No. P202/12/G061.

References

1. S. Anand, P. Godefroid, and N. Tillmann. Demand-driven compositional symbolic
execution. In Proceedings of TACAS, pages 367–381. Springer, 2008.

2. L.O. Andersen. Program analysis and specialization for the C programming lan-
guage. PhD thesis, DIKU, University of Copenhagen (report 94/19), 1994.

3. T. Ball, E. Bounimova, R. Kumar, and V. Levin. SLAM2: Static driver verification
with under 4% false alarms. In Proceedings of FMCAD, pages 35–42. IEEE, 2010.

4. T. Ball, V. Levin, and S. K. Rajamani. A decade of software model checking with
SLAM. Journal on Commun. ACM, 54(7), 2011.

5. D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. The software model checker
BLAST. Journal on Software Tools for Technology Transfer 9(5), 505-525, 2007.

6. D. W. Binkley and K. B. Gallanger. Program slicing. Advances in Computers, 43,
1996.

7. N. Bjørner, N. Tillmann, and A. Voronkov. Path feasibility analysis for string-
manipulating programs. In Proceedings of TACAS, pages 307–321. Springer, 2009.

8. P. Boonstoppel, C. Cadar, and D. Engler. RWset: attacking path explosion
in constraint-based test generation. In Proceedings of TACAS, pages 351–366.
Springer, 2008.

9. C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In Proceedings of OSDI, pages
209–224. USENIX Association, 2008.

10. C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler. EXE:
Automatically generating inputs of death. ACM Trans. Inf. Syst. Secur., 12:1–38,
2008.

11. B. Chelf, S. Hallem, and D. Engler. How to write system-specific, static checkers
in metal. In Proceedings of PASTE, pages 51–60. ACM, 2002.

12. A. Chou, B. Chelf, D. Engler, and M. Heinrich. Using meta-level compilation to
check FLASH protocol code. ACM SIGOPS Oper. Syst. Rev., 34(5):59–70, 2000.

13. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In Proceedings of CAV, pages 154–169. Springer, 2000.

14. M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitive program verification in
polynomial time. In Proceedings of PLDI, volume 37,5 of SIGPLAN. ACM Press,
2002.

15. A. De Lucia. Program slicing: methods and applications. In Proceedings of SCAM,
pages 142–149. IEEE Computer Society, 2001.

14



16. D. Engler, B. Chelf, A. Chou, and Hallem S. Checking system rules using system-
specific, programmer-written compiler extensions. In Proceedings of OSDI, pages
1–16. ACM, 2000.

17. D. Engler, D. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs as deviant behavior:
A general approach to inferring errors in systems code. In Proceedings of SOSP,
pages 57–72. ACM, 2001.

18. P. Godefroid. Compositional dynamic test generation. In Proceedings of POPL,
pages 47–54. ACM, 2007.

19. P. Godefroid, A. Kiezun, and M. Y. Levin. Grammar-based whitebox fuzzing. In
Proceedings of PLDI, pages 206–215. ACM, 2008.

20. P. Godefroid, N. Klarlund, and K. Sen. DART: directed automated random testing.
In Proceedings of PLDI, pages 213–223. ACM, 2005.

21. P. Godefroid, M. Y. Levin, and D. A. Molnar. Active property checking. In
Proceedings of EMSOFT, pages 207–216. ACM, 2008.

22. P. Godefroid, A. V. Nori, S. K. Rajamani, and S. D. Tetali. Compositional may-
must program analysis: unleashing the power of alternation. In Proceedings of
POPL, pages 43–56. ACM, 2010.

23. R. Gupta, M. J. Harrold, and M. L. Soffa. An approach to regression testing using
slicing. In Proceedings of ICSM, pages 299–308. IEEE, 1992.

24. S. Hallem, B. Chelf, Y. Xie, and D. R. Engler. A system and language for building
system-specific, static analyses. In Proceedings of PLDI, pages 69–82. ACM, 2002.

25. J. C. King. Symbolic execution and program testing. Communications of ACM,
19(7):385–394, 1976.

26. A. V. Nori, S. K. Rajamani, S. Tetali, and A. V. Thakur. The Yogi project: Software
property checking via static analysis and testing. In Proceedings of TACAS, pages
178–181. Springer, 2009.

27. J. Obdržálek, J. Slabý, and M. Trt́ık. STANSE: Bug-finding Framework for C
Programs. In Proceeding of MEMICS, volume 7119, pages 167–178. Springer, 2011.

28. D. Ramos and D. Engler. Practical, low-effort equivalence verification of real code.
In Proceedings of CAV, pages 669–685. Springer, 2011.

29. T. Reps, S. Horowitz, and M. Sagiv. Precise interprocedural dataflow analysis via
graph reachability. In Proceedings of POPL, pages 49–61. ACM, 1995.

30. P. Saxena, P. Poosankam, S. McCamant, and D. Song. Loop-extended symbolic
execution on binary programs. In Proceedings of ISSTA, pages 225–236. ACM,
2009.

31. K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit testing engine for C. In
Proceedings of ESEC/FSE, volume 30, pages 263–272. ACM, 2005.

32. F. Tip. A survey of program slicing techniques. Journal of Programming Languages,
3:121–189, 1995.

33. Mark Weiser. Program slicing. IEEE Transactions on Software Engineering,
10(4):352–357, 1984.

34. R. G. Xu, P. Godefroid, and R. Majumdar. Testing for buffer overflows with length
abstraction. In Proceedings of ISSTA, pages 27–38. ACM, 2008.

35. LLVM. http://llvm.org/.

15


