
} w��������
��Æ������������ !"#$%&'()+,-./012345<yA| Faculty of Informatics

Masaryk University

Visual Coordination Networks

David Šafránek

Ph.D. Thesis

Supervisor: Luboš Brim

Brno, September 4, 2006

Abstract

Concerning software systems, there has been developed a huge scale of
architectural formalisms, so-called Architectural Description Languages
(ADL), which support formal specification and analysis of software archi-
tectures and architectural styles, e.g., Wright, UniCon, or Darwin. How-
ever, all these architectural languages lack features suitable for abstract de-
scription of other kinds of systems such as complex synchronous or asyn-
chronous hardware circuits.

During our five years long experience of working in a team specialised
on a software/hardware codesign and development of a high-speed hard-
ware accelerated network monitoring hardware, we found it very encour-
aging to rise the notion of software architectural description to architec-
tural description of a computer-based system of any kind. To this end, we
decided to develop a framework of Visual Coordination Networks (VCN)
which would make a step towards satisfaction of the above mentioned
needs.

In this thesis, a visual formalism Visual Coordination Networks (VCN)
for description and analysis of system architectures is developed. This for-
malism puts together ideas of exogenous coordination models and princi-
ples of architectural description and incorporates them in order to achieve
an architectural description framework suitable for description and anal-
ysis of such a scale of systems for which the family of traditional archi-
tectural description languages is insufficient. Moreover, VCN is aimed to
serve as a generic coordination model, which allows modelling of a va-
riety of coordination primitives in a single language (from asynchronous
Linda-like coordination to synchronous channel-based communication).
The most significant properties we are taking into account are composi-
tionality and hierarchy, which are important factors in component-based
design.

Acknowledgements

At first, many thanks go to my supervisor Luboš Brim, especially for a lot
of encouragement and a lot of suggestions during the work on this thesis.

A lot of thanks go also to Jean-Marie Jacquet, especially for giving me
important suggestions in development of the behavioural model (Chap-
ter 7) of the language introduced in the thesis, and also, for initiating of the
research on the universal language for description of coordination models
— the result of Chapter 6.

My thanks go also to Zdeněk Řehák, to members of Parallel and Dis-
tributed Systems Laboratory (ParaDiSe), and to members of Institute for
Theoretical Computer Science (ITI).

Finally, I would like to thank Erika and my family for a lot of patience
and support during writing of this thesis.

David Šafránek

Contents

1 Introduction 1

1.1 Motivation . 2

1.1.1 Coordination Models 2

1.1.2 Architectural Description 2

1.2 Thesis Objectives . 3

1.3 Thesis Contribution . 3

1.4 Thesis Structure . 5

2 Background and Preliminaries 7

2.1 Characteristics of System Design 7

2.1.1 Modelling Techniques 8

2.1.2 Compositional Hierarchy 9

2.1.3 Atomicity . 10

2.1.4 Synchrony vs. Asynchrony 10

2.2 Architectural Description . 11

2.2.1 Wright . 13

2.2.2 PADL . 15

2.2.3 Properties of ADLs . 16

2.3 Coordination Languages . 16

2.3.1 Linda-like Languages 17

2.3.2 Reo . 18

2.4 Visual Notations . 19

2.5 VCN Approach of Architectural Description 22

2.6 Related Work . 23

2.6.1 Wright . 24

2.6.2 PADL . 24

2.6.3 AID . 25

2.6.4 Other Component-based Models 26

2.7 Formal Preliminaries . 28

3 Introduction to VCN 31

3.1 Modelling a Shared Memory Access System 31

3.1.1 Top-Most Network of Components and Buses 32

3.1.2 Inter-level vs. Inner-level Cooperation Specification . 35

3.1.3 Computation Layer . 39

3.2 Architectural Interoperability Checking 40

3.3 Generic Specification of Coordination Models 41

3.4 Thesis Roadmap . 43

4 VCN: Principles and Features 45

4.1 Structure of VCN . 45

4.2 Basic Principles . 46

4.2.1 Hierarchy of Networks and Leaves 46

4.3 Elementary Entities . 48

4.3.1 Component Body . 50

4.3.2 Component Interface 50

4.3.3 Component Gate . 53

4.3.4 Bus and Link Elements 61

4.3.5 Bus Classes and Link Ranks 67

5 VCN: Structure 71

5.1 Formal Representation . 71

5.1.1 Components, Interfaces, and Gates 71

5.1.2 Buses and Links . 80

5.1.3 Link Ranking . 82

5.1.4 Networks and Leaves as Structural Terms 82

5.2 Additional Notes . 86

6 VCN: Coordination Model 89

6.1 Semantics of Bus Instances . 89

6.2 Bus Class Specification Language 92

6.2.1 Semantics of Bus Classes 99

6.2.2 Model-Theoretic Issues 122

6.2.3 Expressiveness . 124

7 VCN: Behavioural Model 133

7.1 Principles of Behavioural Model 133

7.1.1 Computational Layer 134

7.1.2 Coordination Layer . 135

7.2 Behavioural Model of Networks 135

7.2.1 Leaf Configurations 136

7.2.2 Component Configurations 138

7.2.3 Network Configurations 139

7.2.4 Structural Operational Semantics 140

7.2.5 Properties of the Behavioural Model 145

7.2.6 Expressiveness . 148

7.3 Additional Notes . 150

8 Architectural Interoperability Checking 153

8.1 Behavioural Equivalence of Cooperation Machines 154
8.2 Behavioural Equivalence of Structural Terms 155
8.3 Saturated Cooperation Machines 159
8.4 Architectural Interoperability Failure Freedom 161

8.4.1 Gate Interoperability 161
8.4.2 Network Interoperability 162
8.4.3 Formal Solution . 163

8.5 Additional Notes . 198

9 Prototype Implementation 201

10 A Case-Study: Rail Line Signalling 205
10.1 Automatic Line Signalling . 205

10.1.1 First Segment of the Line 205
10.1.2 Inner Segments of the Line 206
10.1.3 Last Segment of the Line 207
10.1.4 Architecture of the Line Signalling System 207

11 Conclusion 211

11.0.5 Future Work . 211

Chapter 1

Introduction

Nowadays, the complexity of real systems, including the safety-critical
systems such as aeroplane control software, medical devices, and various
embedded systems (e.g., control components in cars), and on the other
hand, very large web applications, the importance of having powerful tools
for comfortable design and development of such complex systems is in-
evitable. The necessary part of any modern software engineering design
methodology is modelling of systems at high level of abstraction. However,
formal methods are still not satisfactorily used. The work undertaken in the
thesis deals with improving this situation. The power of formal methods
together with results of concurrency theory unified with the ideas of co-
ordination are brought closer to a common system designer, who can use
them practically.

There exist several techniques for analysis, modelling, and proving cor-
rectness of various aspects of systems. These techniques, so-called formal
methods, have an exact mathematical base. In last decades, the main re-
search topic on formal methods has been aimed to capture concurrent sys-
tems, which are more complex and require different and more sophisti-
cated approaches (CSP [Hoa85], CCS [Mil89], Pi-calculus [Mil99]). It has
appeared very important to deal with concurrency, because it is a natu-
ral property of the most of real systems. Real systems are composed of
components that run in concurrent and interact with one another. With
the increasing power of hardware systems, the notion of interaction plays
more and more crucial role. The primary concern in the design of a concur-
rent application becomes its model of cooperation: how the various active
entities comprising the application are to cooperate with each other.

2 INTRODUCTION

1.1 Motivation

1.1.1 Coordination Models

The models of cooperation used in the most of present concurrent appli-
cations are essentially a set of ad hoc templates that have been found to be
useful in practise. There is no paradigm wherein we can systematically talk
about cooperation of active entities, and wherein we can compose cooper-
ation scenarios such as (and as alternatives to) models like client-server,
workers pool, etc., out of a set of primitives and structuring constructs.
Consequently, developers must directly deal with the lower-level commu-
nication primitives that comprise the realisation of the cooperation model
of a concurrent application.

To capture these problems, the notion of coordination models has ap-
peared in the last decade, and it is a state-of-the-art approach to design
and development of complex concurrent systems. Coordination can be de-
fined as the study of topologies of interactions among components, and
the construction of protocols to realise such topologies that ensure correct-
ness. Moreover, coordination can be treated exogenously [Arb98], which
means that interaction aspects are managed separately from component
behaviour. Such property fits the principles of component-based design
and allows compositional analysis of the system semantics.

During the last decade, a variety of languages for modelling various
kinds of coordination have appeared. These are mostly Linda [CG89]
(based on shared tuple space), Gamma [BM93] (based on multi-set rewrit-
ing), and the most recent exogenous coordination language REO [Arb04]
developed at CWI. The state-of-the-art research question around this group
of languages is currently to adapt both the formal methods for analysis and
verification of concurrent systems to handle coordination.

1.1.2 Architectural Description

An important problem which any system developer encounters is the size
and complexity of the system he or she develops. As the complexity of
computer systems increases, correctness of the overall system structure —
so-called architecture — comes to consideration as a crucial problem of sys-
tem design.

A typical architecture of a system appears usually as an informal or
semi-formal description realised in some kind of diagrammatic notation
such as a flow-chart or a diagram of UML. Hence it seems very natural for
system designers to use some visual notation in order to describe the criti-
cal architecture of a system. In other words, simple visual notations fit the
requirements of a system designer to describe an architecture of the system
he or she develops. However, the problem lies just in the informality or
semi-formality of the used notation.

1.2 THESIS OBJECTIVES 3

Although the recent version of UML, UML 2.0 [OMG03], offers a large
scale of notations which comprise descriptions of systems of arbitrary kind,
they still suffer from existence of a formal semantics which would be
analysable in terms of formal methods.

Concerning software systems, there has been developed a huge scale
of architectural formalisms, so-called Architectural Description Languages
(ADL), which support formal specification and analysis of software archi-
tectures and architectural styles, e.g., Wright [AG97], UniCon [SDK+95], or
Darwin [MK96]. However, all these architectural languages lack features
suitable for abstract description of other kinds of systems such as complex
synchronous or asynchronous hardware circuits or rail interlocking mech-
anisms.

During our five-year long experience of working in a team specialised
on a software/hardware codesign and development of a high-speed hard-
ware accelerated network monitoring hardware [SRV+06, HKR+04], and
our collaboration with members of a team specialized on formalization
of rail control systems [BCJ+04], we found it very encouraging to lift the
framework of software architectural description to capture different kinds
of computer-based systems than the traditional component-based soft-
ware. Especially, we focused on embedded systems which employ prin-
ciples of concurrency and reactivity. To this end, we decided to develop a
framework of Visual Coordination Networks (VCN) which would make a
step towards satisfaction of the above-mentioned intention.

1.2 Thesis Objectives

In this thesis, a visual formalism Visual Coordination Networks (VCN) for
description and analysis of system architectures is developed. This formal-
ism puts together ideas of exogenous coordination models and principles
of architectural description and incorporates them in order to achieve an
architectural description framework suitable for description and analysis
of such a scale of systems for which the family of traditional architectural
description languages is insufficient. Moreover, VCN is aimed to serve as
a generic coordination model, which allows modelling a variety of coordi-
nation primitives in a single language (from asynchronous Linda-like coor-
dination to synchronous channel-based communication). The most signifi-
cant properties we are taking into account are compositionality and hierar-
chy, which are important factors in component-based design.

1.3 Thesis Contribution

Research related to architectural description and coordination languages
has been vital during the last decade. On the one hand, various archi-

4 INTRODUCTION

tectural description languages (ADLs, [AB05, RC03, AG97, Cle96]) have
appeared in order to enable formal high-level description of component-
based topologies of software systems. Moreover, also the incessantly semi-
formal Unified Modelling Language (UML,[OMG03]) has turned to its sec-
ond version incorporating a lot of features of ADLs. On the other hand,
the research on coordination has aimed to studying of implementation and
formal-based modelling of correct component interaction.

The most recently introduced coordination language Reo [Arb04] em-
ploys some features of ADLs, i.e., connectors and connector types, in order
to make the development of a coordination glue more flexible. In conse-
quence, joining of the results of both communities appears significant to
turn towards achieving of correctness-by-construction property in design
of computer-based systems of any kinds. Moreover, what appears to be
very promising with respect to the success of UML, is supporting of such
a process of design by easily comprehensible visual notations which can
rapidly simplify the process of high-level system design.

However, visual notations which appear useful for high-level descrip-
tion of component-based system topologies are still too far from being satis-
factorily used for formal system design and its consequent analysis. To our
best knowledge, there is no precisely defined formal-based visual notation
(visual formalism) which would satisfy the needs of formal architectural
description while sufficiently employing the correctness-by-construction
property. All the previous approaches to develop such an architecture-
based visual formalism [RC03, CDS00, Saf02] lack some of the required
features.

The contribution of this thesis is development of a visual formalism for
architectural description which satisfies the following properties:� a simple but yet sufficiently expressive graphical notation� precise formal mapping of graphical notation to well-defined mathe-

matical structures� embodying of the correctness-by-construction property in terms of
automatised compatibility checking of architecture parts and inter-
operability checking of entire architectures� enhancement of the correctness-by-construction property by allow-
ing abstract specification and reuse of exogenous coordination mod-
els

1.4 THESIS STRUCTURE 5

1.4 Thesis Structure

The thesis is organised as follows.

Chapter 2 gives a background overview of coordination and architectural
description research topics emphasising the properties relevant for
establishing of a visual formalism for architectural description. In
consequence, the approach developed in this thesis is briefly intro-
duced and compared with the most significant related work.

Chapter 3 gives a brief step-by-step introduction to Visual Coordination
Networks on an example of a system architecture description. The
chapter also contains a roadmap to simplify reading of the thesis.

Chapter 4 introduces informally all the features of the VCN graphical no-
tation and explains semantics of VCN structures.

Chapter 5 gives formal mathematical representation of the VCN graphical
notation and discusses correctness of the included definitions. The
entire static part of the VCN language is exhaustively described in
this chapter.

Chapter 6 defines four families of bus specification languages for specifi-
cation and reuse of connector types — so-called bus classes. Conse-
quently, an algorithm for construction of particular connectors from
such specifications is given and model-theoretic and expressiveness
issues of bus classes are studied.

Chapter 7 defines behavioural model of VCN architectures in terms of
structural operational semantics. The issues of compositionality of
the semantics are subsequently analysed and expressiveness of the
behavioural model is discussed.

Chapter 8 develops a framework for architectural interoperability check-
ing of VCN architectures based on weak bisimulation equivalence of
architecture parts.

Chapter 9 gives a report about current state of the implementation support
for VCN.

Chapter 10 gives a case-study of a railway automatic signalling system.

Chapter 11 concludes the achieved results and states directions of future
research.

Chapter 2

Background and Preliminaries

In this chapter, we firstly summarise important properties of computer-
driven systems which are relevant for high-level system modelling and, in
consequence, we give a brief overview of fundamental methods for for-
mal high-level description of systems (Section 2.1). In Section 2.2 we em-
phasise some key properties of architectural description languages, and
in Section 2.3, we touch on coordination languages in order to single out
some characteristics of coordination which are useful for high-level mod-
elling of system architectures. In Section 2.4 we focus on existing meth-
ods which can be related with high-level (semi)formal visual description of
component-based systems.

Section 2.5 introduces our approach for architectural description. Sub-
sequently, the comparison of our approach with related approaches is given
in Section 2.6.

Finally, in Section 2.7, the formal notions employed throughout the the-
sis are declared.

2.1 Characteristics of System Design

Present modern computer-driven systems can be divided into the follow-
ing two distinct classes:

interactive systems - The basic property of systems from this class is con-
stant interaction with the environment, in which they run. Addi-
tionally, this systems can be viewed as the leaders of the interac-
tion. Whenever it can, the system listens to its environment, which
calls for its services. The system delivers the services as soon as they
are available. The typical interactive systems are operating systems,
distributed databases, distributed algorithms, networking, etc. The
main critical properties are deadlock avoidance, fairness, and coher-
ence of distributed information.

8 BACKGROUND AND PRELIMINARIES

reactive systems - This systems continuously react to stimuli coming from
their environment by emitting back other stimuli. In contrary to in-
teractive systems, reactive systems are purely input-driven and they
must react in time dictated by the environment. In this systems, the
environment is the leader of the interaction. Common members of
this class are industrial process control systems, air-plane or automo-
bile control systems, embedded systems, audio and video protocols,
hardware circuits, man-machine interfaces drivers, etc. The key criti-
cal properties are safety and timeliness.

Of course, every complex computer-driven system never falls entirely
into any of these two classes. Nevertheless, it is always useful to iden-
tify which parts of the system are interactive and reactive, and to handle
them with appropriate formal methods. The key property shared by both
interactive and reactive systems is concurrency. At first, these systems act
concurrently with their environment. At second, their internal parts are
usually also concurrent and communicate with each other. For example the
client and the server in the distributed database system or the time-keeper,
stopwatch, and alarm in a digital watch. Such a distinction of internal parts
of a system leads to the idea of component-based design, where the individual
parts are called components and the entire system is constructed modularly
from such components.

The way of communication (a particular communication protocol, also
called a coordination model) between components inside the system can be
of both kinds — endogenous or exogenous. Endogenous communication
is fully realised inside the components as a part of their internal computa-
tion. E.g., clients of a database server have to implement a protocol which
ensures mutual exclusive access to a particular piece of data. In contrary,
exogenous communication stands apart of the internal component com-
putation providing that there are some special components in the system
which control mutual communication of all the other components. E.g.,
clients of a database server have only to call some communication infras-
tructure service which ensures mutual exclusiveness of their access to the
data on the server. With respect to these two kinds of communication pro-
tocols, two kinds of coordination models are distinguished — endogenous
and exogenous coordination model [Cia96]. In modern component-based de-
sign, the exogenous model of coordination plays a very significant role.
To emphasise the specificity of components which realise communication
protocols, these special components are called connectors [AG97].

2.1.1 Modelling Techniques

There exist several techniques for modelling and analysis of all the kinds of
systems mentioned above. These techniques, so-called formal methods, have

2.1 CHARACTERISTICS OF SYSTEM DESIGN 9

a precisely formal mathematical base. The most important theory, which
underlies formal methods, is the theory of formal semantics [Win93]. For
proving the correctness of a system, its mathematical model must be given.
Such a mathematical model is defined by the formal semantics of the sys-
tem. In seventies, C.A.R. Hoare presented the approach called axiomatic
semantics, for proving correctness of classical “transformational” systems
(systems which compute the output values for given initial input values
and stop). In the last two decades, the main research topic on formal meth-
ods has been aimed to capture reactive systems, which are more complex
and require different and more sophisticated approach. Formal analysis
of such systems is based on their operational, denotational, and axiomatic
semantics. In this thesis we deal with the operational approach of formal
semantics, as this approach is close to the intuitive comprehension of inter-
active and reactive system computation and especially enables, in case of
finite models, fully automatised analysis of system correctness (in terms of
model checking [EMCP99] and equivalence checking [CS01a]).

In last decades, several languages for both reactive and interactive
systems were founded. In the field of interactive systems, languages
CSP (Communicating Sequential Processes [Hoa85]) and CCS (Calculus
of Communicating Systems [Mil89]), based on the process algebraic ap-
proach, have appeared. Their formal semantics and the theory behind
them relate them naturally with formal verification methods. On one hand,
these languages lead to more expressive extensions in terms of synchrony
(SCCS [Mil83], Meije [BRS93]), broadcasting (CBS [Pra91]),BSP [Geh84]) ,
and mobility (�-calculus, [Mil99]). On the other hand, the concurrent pro-
gramming languages for interactive systems Ada and Occam were build on
principles of CCS and CSP. This languages have also appeared to be useful
for specification of communication protocols, to this end, the language LO-
TOS [vEVD89] was developed. In LOTOS, the specification features of CCS
are combined with some features of CSP. For reactive systems, SCCS and
Meije calculi became the base for Esterel [Ber98] language, around which a
large group of so-called synchronous languages appeared.

2.1.2 Compositional Hierarchy

CCS and CSP implement a very useful aspect of system design, in par-
ticular, the feature of compositional hierarchy. By applying this principle,
processes can be defined as compositions of other processes. As this prin-
ciple can be applied recursively, a deep hierarchy of processes can be con-
structed. Moreover, the compositionality property ensures that the seman-
tics of each process is inferred modularly from semantics of its subpro-
cesses. This feature allows to determine behavioural equivalence of two
processes with the same compositional structure from equivalence of the
respective subprocesses, taken component-wisely. Additional feature of

10 BACKGROUND AND PRELIMINARIES

hierarchical process definition provides abstraction of subprocess actions,
so-called hiding. This way, observation of behaviour of a particular process
behaviour can be abstracted from internal actions of its subprocesses.

The feature of hierarchy conforms to the methodology of component-
based design [HC01], and hence allows this methodology to be applied in
design using this kind of specification languages.

2.1.3 Atomicity

Two different notions of atomicity are concerned in formal modelling of
behaviour of interactive and reactive systems — interaction atomicity and
execution atomicity. Interaction is considered atomic if its effect on partic-
ipating components cannot be altered through interference with another
interaction [Sif05]. An example of atomic interaction is synchronous hand-
shake communication in CCS as no two communications can occur simul-
taneously. In contrary, a model of broadcasting communication expressed
in CCS by a sequence of actions is by its nature an instance of non-atomic
interaction.

The execution atomicity is characterised by the requirement that no two
component computation actions can overlap in time of execution. An ex-
ample of atomic execution can be found in CCS, as well. In particular, all
individual non-communication actions of a CCS process occur atomically.
In contrary, the execution models of synchronous languages or SCCS are
non-atomic [Gra99], as a group of more than one events can be processed
at a single computation step.

Atomicity is an important property which must be taken into account
when searching for a specification language suitable for modelling of the
system behaviour at the required level of abstraction. I.e., it appears useful
in high-level architectural modelling to employ high abstraction of the real
system behaviour in order to avoid over-complication of the model and
rather focus on architectural aspects only.

2.1.4 Synchrony vs. Asynchrony

Similarly as in the case of atomicity, two kinds of synchrony characterise
particular kinds of reactive and interactive systems — interaction synchrony
and execution synchrony. Interaction synchrony deals with the way of how
the system interacts with its environment while the execution synchrony
describes how the system components execute with each other.

Synchronous interaction, also called strict synchronisation [Sif05], as-
sumes the system to synchronise with the environment in order to perform
an action. An example of synchronous interaction is the operational model
of CCS. An action in CCS executes just if the environment executes the
complementary action. Note that this model of interaction can introduce

2.2 ARCHITECTURAL DESCRIPTION 11

a deadlock in systems of interacting deadlock free components. This hap-
pens just if a component is forced to perform a particular action but the
environment can never execute the respective complementary action. In
contrary, in asynchronous interaction, also called non-strict synchronisation,
execution of outputs does not require synchronisation with inputs. This is
a typical property of synchronous languages.

Synchronous execution considers that a system executes in synchrony
with its environment. It assumes the so-called synchrony hypothesis [BG92],
which requires the system to be infinitely faster than its environment. This
model of executions fits the reactive systems such as hardware circuits
in which signal levels change non-atomically and synchronously with the
clock. This kind of execution implies existence of a global execution step of
a system.

In contrary, asynchronous execution does not adopt any notion of global
execution step. Each component of a system executes independently (in
concurrency) of other components. The typical example of such models
are interactive systems. Note that the interleaving semantics of CCS and
CSP implements just this kind of execution.

2.2 Architectural Description

Architectural description is in general a formal high-level representation of
a system topology, in particular, a static configuration of component and
connectors of the system. For encoding of architectural descriptions there
exists a family of Architectural descriptions languages (ADLs) which con-
tains various formalisms suitable for formal architectural description of a
large scale of software systems. As there is still a little consensus in the re-
search community on what an ADL exactly is and what aspects should be
modelled by an ADL, these ADLs are divers in various aspects (see [Cle96]
for a survey).

In general, each ADL provides some feature of consistency checking
of architectures. Typically, it can be checked whether all the pairs of com-
ponents and connectors in the architecture are architecturally compatible in
the sense that their mutual interaction never introduces a deadlock un-
der the assumption that all the participating components and connectors
are deadlock-free. Such a property is crucial especially when a designer
composes an architecture by reusing already predefined components and
connectors. As he treats such components as black boxes, the compatibility
checking is a useful method which can ensure such a composition to be
correct without designer’s knowledge of the component behaviour.

Note that there can appear cyclic relationships among components and
connectors. Such relationships are natural. In particular, consider for in-
stance a kind of a client-server architecture sketched in Figure 2.1. There are

12 BACKGROUND AND PRELIMINARIES

two different servers, one client, and three connectors composed in the sys-
tem. The client is connected to both servers and also both servers are mu-
tually connected (by the connector CON3). SERV ER1 has a role of a client
with respect to the SERV ER2. If the particular behaviour of all the connec-
tors and components satisfied the mutual compatibility check, then, con-
sidering the entire system, a deadlock situation could still arise [BCD02].
Thus another checking mechanism is required to ensure deadlock freedom
of architectural description. A mechanism which considers not only the
pairwise compatibility, but also the cyclic interoperability, is called architec-
tural interoperability checking.

CON1

CON2

request1

result1

CLIENT1

SERVER1

request

result

invoke

return

SERVER2

CON3

invoke1

return1

invoke2 return2request2result2

Figure 2.1: An architecture with cyclic relationships

From the topological perspective of architectures we distinguish two
kinds of architecture checking methods — horizontal and vertical check-
ing [Pla05].

Vertical checking concerns hierarchical embedding of one architecture
into another architecture. The main purpose of this checking method is to
ensure that the hierarchical embedding of a deadlock free sub-architecture
into the component of the superior architecture introduces no deadlock.
In other words, by this checking an inter-level interoperability property
is considered — it is analysed whether the sub-architecture interoperates
correctly with the interface of the superior component.

Horizontal checking deals with mutual compatibility of connectors and
components at a particular level of architecture hierarchy. This checking
method ensures that mutual interaction of any deadlock free component
with any deadlock free connector introduces no dead lock. In other words,
this checking method considers an inner-level interoperability property —
it analyses whether each component in the architecture interoperates cor-
rectly with each connector that is connected to it. Moreover, as we have
mentioned above, cyclic relationships should be also considered by the hor-
izontal checking method.

2.2 ARCHITECTURAL DESCRIPTION 13

In this thesis, we use the term architectural interoperability checking as
a general notion which comprises all the architectural interoperability as-
pects mentioned above.

In the following subsections, we take two significant representatives of
software ADLs and analyse their particular features and properties which
are important for construction of a visual formalism for architectural de-
scription of a wider class of systems than is considered by the original aim
of ADLs.

2.2.1 Wright

Owing to its closeness to the notion of exogenous coordination and the
provided static kind of architectural description, we consider the language
Wright [AG97], which is defined in terms of CSP, as a characteristic repre-
sentative of an ADL established on a formal base. Moreover, Wright strictly
distinguishes between components and connectors, and thus is a typical
representative of ADLs.

In Wright, an architecture is represented by a so-called configuration.
Each configuration is determined by a number of components and connec-
tors. Component is defined by a computation encoded in CSP, and a set of
ports. Each port has attached an interaction protocol expressed in CSP. Con-
nector is defined by a glue and a set of roles. Glue represents the coordina-
tion model of a connector and is expressed in CSP. Similarly to ports, each
role has attached an interaction protocol. After the component and con-
nector declaration, the configuration contains instance declaration which
instantiates the component and connectors declared above. Thus each con-
nector and component can be replicated in the configuration. The last struc-
ture contained in a configuration is the set of attachments. Each attachment
is a one-to-one link connecting a particular port of some component in-
stance to a role of some connector instance. An example of a simple Wright
specification is demonstrated in Figure 2.2.

Additionally, it is also worth noting that a configuration can be consid-
ered as a component computation. In this way, hierarchical design is al-
lowed. Binding of the sub configuration events to the ports of the superior
component is realised in terms of CSP relabelling.

In consequence of encoding an architecture description as a Wright con-
figuration, its analysis can be performed. For this purpose, Wright intro-
duces a checking methodology which has to be performed in order to de-
cide that the architecture (hierarchical Wright configuration) is correct. In
general, a configuration is said to be correct, if checking of all the following
properties is successful (the respective tests are realised by the notion of
CSP process refinement):

14 BACKGROUND AND PRELIMINARIES

Figure 2.2: An architecture specified in Wright

1. Each port is consistent with computation of the respective compo-
nent.

2. Each port is compatible with a role attached to it (if any).

3. Each connector glue is deadlock-free.

4. Each component computation is deadlock-free.

As it can be deduced from the list above, Wright offers both vertical and
horizontal interoperability checking methods. However, there is no sup-
port for checking of cyclic relationships in Wright configurations. In spite
of this fact, there are some other tests which can be performed in Wright. In
particular, the initiator tests and the tests which concern the conformance
of an architecture with respect to its architectural style. Architectural styles
are defined as parametrised configurations which allow generalisation of
architectures. For instance, the number of components, connectors, roles,
and ports can be parameterised. As not all parameter values might be al-
lowable, to disallow the unexpected architectures to be generated from the
style, so-called parameter constraints can be provided as a part of the style
description.

2.2 ARCHITECTURAL DESCRIPTION 15

2.2.2 PADL

A representative of another kind of ADL is Process Algebraic Architectural
Description Language (PADL) [AB05]. In PADL, there is no distinction be-
tween components and connectors. An architectural description in PADL
consists only of components interconnected by links. Another difference
from Wright is in ports. In PADL, a port represents a single event (so-called
interaction, as in terms of PADL events are called interactions, but here we
avoid this term to not confuse the vocabulary). Hence, there is no coun-
terpart for the notion of port (resp. role) protocol. PADL specifications are
formalised in terms of a CCS-like process algebra. The previous example
of a Wright specification can be encoded as a PADL architecture by the fol-
lowing specification:

ARCHI TYPE
ARCHI ELEM TYPES

ELEM TYPE A-type

BEHAVIOR
A = out.A + stop

ELEM TYPE B-type

BEHAVIOR
B = in.b.B + stop

ELEM TYPE C-type

BEHAVIOR
C = a.c.C + stop

ARCHI TOPOLOGY

ARCHI ELEM INSTANCES
A : A-type
B : B-type
C : C-type

ARCHI ATTACHMENTS
FROM A.out TO C.a
FROM B.in TO C.c

END

The feature of hierarchical embedding is more expressive in PADL than
in Wright. In particular, subcomponents can be attached to a port of the
superior component not only in one-to-one fashion, but also in many-to-

16 BACKGROUND AND PRELIMINARIES

one fashion. There are two kinds of semantics of many-to-one connection.
At first, subcomponent events can be marked OR. In situation when two
or more subcomponents are capable of performing an event marked as OR
which is attached to a superior component port, one of them is chosen to
perform that event provided that the choice is nondeterministic. At sec-
ond, subcomponent events can be marked AND. If there arises a situation
when two or more subcomponents are set to perform AND-marked event at-
tached to the superior component, then all these events will participate in
synchronisation with the superior component event. Thus, the meaning ofAND connections is synchronous broadcasting.

Concerning the analysis of architectures, PADL allows compatibility
checking of interactions among all the components in the architecture.
Moreover, also interoperability of cyclic architectures is supported, which
is a significant property of this language. Concerning the issues of pa-
rameterisation, similarly to Wright also in PADL the architectures can be
parametrised. However, owing to the structure of PADL, there is no verti-
cal checking method considered.

2.2.3 Properties of ADLs

To conclude the aspects of architectural languages presented above and dis-
cuss their usability for specific domains of interactive and reactive systems,
we have to consider an example of an architecture of a simple hardware
system depicted in Figure 2.3. In the scheme, there is a simple architecture
of a circuit which in every tick of the clock takes the information stored
in registers REG1 and REG2, performs the logical AND operation, and
stores the result into the register REG3, provided that the entire operation
is realised atomically. Even if we abstracted from the synchronous aspects
of the circuit and model the system in terms of asynchronous execution, we
would found no primitive for atomic realisation of the AND connector in
any of the ADLs described above.

Finally, it is worth noting that neither of the ADLs described above pro-
vides a visual notation, although visualisation of architectures seems to be
very natural as the architectures are static and does not allow any kind of
evolution (i.e., components cannot create other components during system
computation). However, the schemes in the examples above shifts us to-
wards the idea to define a visual notation for static architectures precisely.

2.3 Coordination Languages

Coordination languages constitute a family of programming and mod-
elling languages which abstract away the details of computation, and fo-
cus on the invariant properties of systems. As such, coordination focuses

2.3 COORDINATION LANGUAGES 17

REG1

REG2

REG3
in0

in1

out0

out1

out0

out1

in0

in1

in1

in0

out0

out1 0 0
0
1
11

0
1

y z

1
0
0
0

x

AND

y

z

x

Figure 2.3: A specific system architecture inexpressible in a typical ADL

on system patterns that specifically deal with interaction. Coordination is
relevant in design, development, debugging, maintenance, and reuse of
all concurrent systems [Arb98]. Coordination models and languages are
meant to close the conceptual gap between the cooperation model of an
application and the lower-level communication model used in its imple-
mentation. The inability to deal with the cooperation model of a concur-
rent application in an explicit form contributes to the difficulty of develop-
ing working concurrent applications that contain large numbers of active
entities with non-trivial protocols of cooperation. Thus it is required to
treat cooperation explicitly — this model of coordination is called exoge-
nous. The idea of exogenous coordination fits the principle of architectural
description where connectors are treated independently of components.

2.3.1 Linda-like Languages

There is number of software platforms and libraries, so-called middle-
ware, aimed to the development of concurrent applications, e.g., MPI or
CORBA. Coordination languages can be comprehended as the linguistic
counterpart of these platforms. One of the best known coordination lan-
guages is Linda [CG89], which is based on the notion of a shared tuple
space. The tuple space of Linda is a centrally managed space which con-
tains all pieces of information that processes want to communicate. Linda
processes can be written in any language augmented with Linda primi-
tives. There are only four primitives provided by Linda, each of which
associatively operates on (e.g., reads or writes) a single tuple in the tuple
space. There is a number of other models of coordination. Examples in-
clude various forms of parallel multi-set rewriting (Gamma, [BM93]) or a
platform of a software bus (ToolBus, [BK98]). An exhaustive expressiveness
comparison of Linda-like languages is given in [BJ03].

18 BACKGROUND AND PRELIMINARIES

2.3.2 Reo

Concerning the above mentioned family of coordination languages in the
context of high-level design and architectural modelling of a system, we
find their underlying models too low-level for such a purpose. This draw-
back is rectified by another class of coordination models which are based on
explicit support for coordination mechanisms. The most recent representa-
tive of such languages is Reo [Arb04] which is founded on the principle of
channel-based coordination.

In Reo the exogenous coordination model is realised in terms of com-
plex connectors, which are compositionally built out of simpler ones. The
simplest connectors in Reo are a set of channels with well-defined be-
haviour supplied by users. A connector has a graphical representation,
called a Reo circuit, which can be produced by applying certain composition
operators to channels. In the static version of the Reo language, in which
no dynamic evolution of component and channels is allowed, a Reo-circuit
is just a finite graph where the nodes are labelled with pair-wise disjoint,
non-empty sets of channel ends, and where the edges represent the respec-
tive connecting channels. An example of a Reo channel is depicted in the
left-side of Figure 2.4. This channel is composed from two kinds of ba-
sic channels — a one-bounded FIFO channel (represented by a link with a
box), and two synchronous handshake channels (represented by the com-
mon arrow). The entire connector composition behaves like a one-place
buffer cell which synchronously outputs the stored data to its two output
ends in terms of synchronous broadcast. Thus, this simple circuit combines
the (bounded) asynchronous interaction with atomic synchronous interac-
tion.

Figure 2.4: An example of a Reo connector and its semantics

Semantics of a Reo connector is defined as a constraint automaton [AR02]
which is a traditional state-transition system extended in such a way that
each transition is labelled with a set of atomically cooperating ports and a
respective data constraint. The semantics of the above mentioned connec-
tor is depicted in the right-side of the Figure 2.4.

Reo offers a large scale of basic connectors which can be used for con-
nector composition. As Reo is primary intended as a programming lan-

2.4 VISUAL NOTATIONS 19

guage, with the compositionality feature of channels Reo can be used also
for description of high-level models of coordination. However, Reo does
not directly support the feature of architectural compatibility and interop-
erability checking.

To emphasise the properties of Reo that are relevant for our purposes,
note that the connector of Figure 2.3, which cannot be encoded in typical
ADLs, can be be satisfactorily expressed as a Reo circuit. Moreover, all typi-
cal aspects of connectors described in traditional ADL approach can be also
implemented in Reo channels due to the expressive power of constraint au-
tomata, i.e., synchronous and asynchronous ways of interaction.

2.4 Visual Notations

Commonly used visual methods for specification of various system
aspects, nowadays unified into the Universal Modelling Language
(UML [OMG03]), also include notations useful for specification of reactive
and interactive system architectures. As the primary aspect of a system
architecture is a very abstract specification of the system, visualisation of
architectures rapidly simplifies understanding of the static system struc-
ture. Moreover, visual notations have the advantage of being simple to
use by system designers. Thus, additional equipping of a particular visual
notation with a formal semantics (this way a so-called visual formalism is es-
tablished) brings formal methods closer to system designers. Therefore we
believe that it is very useful to develop a visual formalism for architectural
description.

Concerning development of a visual formalism, a difficult problem is
to find a compromise between the richness of syntactic constructs and the
comprehensible formal semantics of the chosen visual notation. I.e., it is
worth noting that there is no formal semantics of full versions of UML no-
tations.

In our thesis proposals we pioneered a survey of visual formalisms
which can be applied to design of reactive and interactive systems. In
general, we separated the visual formalisms into two groups — state-based
languages (based on ideas of Harel’s Statecharts [Har87] and their syn-
chronous variants Argos [Mar91], SyncCharts [APF00], or asynchronous
GCSR [DS97],. . .), and data-flow-based languages (build on ideas of Message
Sequence Charts (e.g. UML sequence and communication diagrams). Both
approaches emphasise different aspects of designed systems. For purposes
of architectural design, the latter group is relevant. However, formalisms
of the former group can be used at a lower-level of architectural design, in
particular, for visual description of components and connectors. This fully
agrees with Harel [Har87]:

20 BACKGROUND AND PRELIMINARIES

“. . . one has to assume some physical and functional de-
scription of the system, providing, say, a hierarchical de-
composition into subsystems and the functions and activi-
ties they support. . . ”

Additionally, It is worth noting that we did not include Petri nets [KB99]
to that survey, owing to the fact that the principles of exogenous coordina-
tion and hierarchical design cannot be satisfactorily realised in Petri nets.
The reason for that is true-concurrent semantics model of Petri nets based
on the inherent notion of a token. However, concerning architectural de-
scription, Petri nets can be employed in the sense of the above mentioned
application of state-based formalisms. This way, a very high expressive-
ness of components or connectors can be achieved, which might be useful
especially for architectures of reactive systems.

As in this thesis we deal with a visual formalism for architectural de-
scription, here we only mention some data-flow-based formalisms of that
survey. Data-flow-based visual formalisms concern description of commu-
nication relations among system components, in particular, they abstract
from internal process behaviour. The semantics of a data-flow-based lan-
guage is based on a particular coordination model. Coordination models
are build upon a communication media and coordination laws. Examples
of coordination media are channels, tuple spaces, buses, etc. Coordination
model is given by a number of coordination laws which can describe both
asynchronous or synchronous behaviours for communication of processes
via coordination media.

Message flow graphs

Message flow graphs (MFGs) are visual notation for describing par-
tial message-passing interaction between communicating concurrent pro-
cesses. MFGs may represent different descriptions of communicating pro-
cesses, e.g. concurrent programming language code, abstract specifications
of communication services or protocols, or high level message flow dia-
grams like the well-known Message Sequence Charts (MSCc).

The basic idea of the MFG is that it is represented by a graph structure
which is based on the concept of send and receive events represented as
nodes. MFGs have two types of edges, next-event and signal edges, both
represent explicit relations between nodes. Solid arrows represent next-
edges and dashed arrows correspond to signal relation. All nodes in MFG,
with the exception of the start and finish nodes, must be connected to just
one other node. An example of an MFG is in figure 2.5. The formalisation
of MFG is given in [Leu94]. To gain more power, MFGs can be equipped
with conditions. MFGs, especially MSCs, are used in the description of
telecommunication systems, in the analysis of parallel code, and in object-
oriented system analysis and design methodologies. An example of the

2.4 VISUAL NOTATIONS 21

bottom bottom bottom

top

!a

top top

?aa

?b
b !b

Figure 2.5: Example of an MFG diagram

latter are UML sequence diagrams.

The semantics of MFGs are traces of interleaved atomic communica-
tion events. The coordination model can be synchronous or asynchronous.
Finite state operational semantics is required for analysis of MFG using for-
mal methods. Finiteness of the global state space can be achieved with the
assumption requiring the number of messages being sent at an instant of
time to be finite.

The key property of MFGs is that they describe the behaviour of the sys-
tem partially. In particular, each MFG models a particular view of a system
interactive behaviour. In order to describe an entire system architecture
we need a number of MFGs. Therefore this formalism is not suitable for
architectural description.

Graphical calculus of communicating systems

Another approach, Graphical calculus of communicating systems (GCCS),
aimed to visual specification of coordination aspects of interactive sys-
tems with abstraction from internal behaviour of components, has been
proposed in [CDS00]. It preceded the formalism Visual Coordination Dia-
grams (VCN) which we develop in this thesis. As we originally elaborated
on GCCS, in particular, we formalised and implemented the semantics of
GCCS in [Saf01]. As VCN refines the principles of GCCS we mentioned its
basic properties. adapts the robust process algebraic approach of CCS for
the purpose of architectural description. GCCS is equipped with the binary
synchronous handshake-style coordination model.

The basic principle of GCCS is hierarchical and compositional specifi-
cation of coordination of components, which have their behaviour defined
in terms of the process-algebraic operational semantics which is a parallel-
composition-free sub-language of CCS. Comparing with Statecharts and
other state-based languages which support concurrency and hierarchy, the
coordination is in GCCS strictly semantically separated from the behaviour
of components.

22 BACKGROUND AND PRELIMINARIES

In GCCS, a component is represented as a box with ports, which have the
meaning of the input/output interface. Coordination relations among com-
ponents are represented as so-called buses. The set of boxes interconnected
with buses makes a network. Networks can be embedded into other net-
works as components which makes the hierarchical structure. An example
of a network is in figure 2.6.

sender

receiver2

receiver1

send

rcv2

rcv1
out1

in

out2

Figure 2.6: Example of a GCCS network

2.5 VCN Approach of Architectural Description

We have found out that the inability of GCCS to incorporate (at the level
of connectors) any other coordination primitive than the binary handshake
is very restrictive. In this sense, GCCS is less expressive than PADL. In
PADL, there also a synchronous broadcast can be expressed together with a
binary handshake. But it is still impossible to encode specification like the
one from Figure 2.3, where the connector represents a more complicated
coordination primitive. Therefore, we elaborated on GCCS and extended
it to its synchronous variant SGCCS [Saf02] which enables such kind of
connectors.

However, both SGCCS and GCCS in comparison with the ADLs suf-
fer from the inability to parameterise the architectural description. This
is mainly because of the visual notation — a number of ports appearing
on a box representing the component, and also the number of links in an
architecture, has to be fixed. To this end, we extend the language with a
mechanism of so-called bus classes. A bus class can be treated as an ab-
stract parameterisable specification of a particular coordination model, i.e.,
a family of connectors. We define a language for description of such bus
classes and, subsequently, an algorithm for construction of particular buses,
so-called bus instances, which satisfy such specifications. In this language,
abstract connector types representing combinations of asynchronous and
synchronous coordination can be specified. To realise semantics of bus
instances, we introduce a notion of cooperation machines, which are state-
transition systems in which each transition is labelled by a cooperation.
Each cooperation represents a particular atomic synchronous interaction
that can be any kind of multi-synchronisation of actions of participating

2.6 RELATED WORK 23

components. The state space of the cooperation machine then represents
asynchronous kinds of interaction, i.e., states represent a memory of a bus.
The capacity of the memory is implicitly considered to be finite which im-
plies that asynchronous coordination is implemented in terms of bounded
buffers. This boundedness requirement is employed in order to allow au-
tomatised analysis of the architectures.

We also improve hierarchical aspects in such a way that a notion of
a multi-purpose gate is introduced. Gates allow flexible encapsulation of
architectures into components of higher-level architectures provided that
both one-to-one and many-to-one kinds of relations are allowed. In terms
of PADL, both OR and AND kinds of embedding can be employed in our
extension. Moreover, a so-called synchronous gate is introduced. Meaning
of a gate can be comprehended as a special kind of theAND of embedding.
When n ports of some sub-architecture components is attached to a port of
the superior component in terms of synchronous gate, then only n-to-one
synchronisation might be performed. More precisely, each subcomponent
must be enabled to perform the event attached by a synchronous gate in
order to realise the expected synchronisation with the respective superior
component’s port.

Concerning the analysis features, we extend the architectural interoper-
ability framework of PADL to checking of architectures extended with the
above mentioned features. As some of those features violate modularity
of architecture semantics, in establishing of this analysis feature the frame-
work of PADL cannot be directly applied. Especially, the feature of syn-
chronous gate requires a vertical checking methodology to be introduced
in VCN.

Finally, we unify all the features mentioned above into a single visual
formalism, which we call Visual Coordination Networks.

2.6 Related Work

In previous sections, various formalisms for description of architectures
and coordination models have been briefly summarised. In this section
we emphasise the crucial aspects of these formalisms in comparison with
our approach. In particular, considering all of the compared languages, we
discuss the following properties (in the respective order):

1. generality (parameterisation of specifications)

2. hierarchical embedding of architectures

3. expressiveness of components and connectors

4. architectural interoperability checking

24 BACKGROUND AND PRELIMINARIES

2.6.1 Wright

1. As a textual specification formalism, Wright allows parameterisation
of entire architectures in terms of architectural styles. In general, this
is not possible in VCN, as VCN is exclusively visual formalism. How-
ever, VCN introduces a parameterised connector types — bus classes.
Hence in VCN the developer has to instantiate such connector types
in order to get particular connectors to the architecture.

2. Hierarchical design is allowed in both languages. However, VCN has
more expressive primitive of gates available.

3. Wright has semantics model of both components and connectors de-
fined in terms of CSP, whereas VCN component model is based on
a CCS-like process algebra. Additionally, VCN connector model is
based on a special kind of transition systems — cooperation ma-
chines. If we consider the bottom-most components in the architec-
ture hierarchy then both languages have the same expressiveness at
this level. However, when taking connectors into account, Wright is
less expressive as is demonstrated by the architectural specification
in Figure 2.3. Such a specification is realisable in VCN, but not in
Wright.

Conversely, CSP expressions specifying computation of Wright com-
ponents are sufficiently represented by CCS-like expressions in VCN.
However, there is no counterpart to port and role protocols. This fact
is the main difference of the two languages. In particular, we leave
for future work the extension of VCN to an interface-based view of
specifications in terms of [dAH01b]. That way, such a disadvantage
of VCN can be removed. The version of VCN defined in this thesis is
already syntactically prepared for such an interface-based extension.

4. In both Wright and VCN, architectural compatibility checking of
pairwise mutual interaction of components and connectors is imple-
mented. However, Wright has no implicitly defined mechanism for
interoperability checking of cyclic architectures.

2.6.2 PADL

1. Architectural descriptions in PADL may be parametrised in the same
way like in Wright. Thus the same differences apply here.

2. Hierarchical embedding of architectures is realised in PADL by one-
to-one or many-to-one attachments. The letter can be distinguished
with respect to the behavioural model to AND and OR attachments.

2.6 RELATED WORK 25

All these kinds of embedding can be also realised in VCN by the no-
tion of gate. Moreover, gates are even more expressive, as it has been
mentioned in previous section.

3. Components in VCN have the same formal base as in PADL, there-
fore the languages are equivalent at this level. In contrary, PADL has
no direct counterpart to the notion of connectors. Although the AND
and the OR embedding can be sensed as kinds of inter-level connec-
tors, their expressiveness is limited only to binary handshake or syn-
chronous broadcast.

4. Concerning the architectural interoperability checking, it is sup-
ported by both languages. However, as in VCN the notion of hier-
archy has more expressive features than in PADL, VCN comprises
also a mechanism of vertical interoperability checking which is not
defined in PADL.

2.6.3 AID

Here we discuss relations of VCN to another architectural language AID
(Architectural Interaction Diagrams, [RC03]). We mention this language
here because it is another extension of the GCCS language introduced
above, and it has close relations with our work. In principle, an AID is
a GCCS network extended with multi-purpose connectors.

1. Concerning the parameterisation of architectures, none of the two
formalisms allows description of architectural styles like in PADL or
Wright. However, both AID and VCN allow abstract definitions of
connectors. In contrary to VCN, AID has no counterpart to the flexi-
ble bus class specification language. In AID, one has to use a second-
ordered predicate logic to describe conditions that the respective bus
transition systems have to satisfy. Moreover, the feature of link rank-
ing makes the bus class specification language of VCN more expres-
sive (for details see Chapter 6).

2. The feature of hierarchical embedding of architectures is also present
in AID, but comprises only one-to-one attachments. Hence in this
aspect is VCN more expressive.

3. In contrary to VCN, the formal semantics of AID components is de-
fined directly in terms of labelled transition systems. Semantics of
connectors is also defined as a state-transition system. Such a transi-
tion system differs from the VCN cooperation machine in the format
of transition labels (for details see Section 7.3 in Chapter 7). In gen-
eral, this difference leads to a greater expressive power of AID in this

26 BACKGROUND AND PRELIMINARIES

aspect, as a synchronous lossy coordination model can be expressed
in AID, but not in VCN.

4. There is no methodology of architectural interoperability checking
employed in AID.

2.6.4 Other Component-based Models

ADLs are primary aimed to high-level description of component-based sys-
tems, and together with formal verification methods they support, ADLs
seem to be ideal tools for analysis of software architectures and for em-
ploying the design-by-correctness property in software design. However,
just because of their high-level granularity and the distance between an ab-
stract model and the executable code, they are not being widely commer-
cially used in software design. The low-level granularity component mod-
els such as COM/DCOM [Mic] or CORBA [OMG] are being much more
frequently used for direct software design, although they do not support
such large scale of formal methods as ADLs. We believe that the high-level
granularity architecture description formalisms necessarily require a direct
support of some visual notation which would bring the abstract power of
the high-level formalisms closer to system designers. In our approach to
high-level specification of component-based systems we try to tackle just
this goal.

In the gap between the two different levels of component models stated
above there lie concepts which can be used, to a specific extent, for both
design and implementation of component-based systems. Very promis-
ing is the exogenous coordination language Reo [Arb04] developed at CWI
and already described in the previous section, and also the experimental
component model SOFA/DCUP [PBJ98] developed at Charles University
Prague. In this subsection we compare our approach with both of these sig-
nificant representatives of complex models suitable for component-based
design of concurrent systems.

Reo

In spite of its different (lower-level) purpose, we have mentioned
Reo [Arb04] especially because of the kind of abstract connectors it intro-
duces. In comparison to VCN, we just focus on discussion of the notion of
connectors in both languages. The main difference between VCN and Reo
connectors is in the way of their specification. In Reo, one has to compose
complicated connectors from basic connectors. Generality of such speci-
fications is then achieved by abstracting from particular sets of input and
output ends. In contrary, in VCN one has to give an overall specification of
the connector type — the bus class. There is no notion of bus class compo-
sition in VCN. Therefore, these two approaches of connector specification

2.6 RELATED WORK 27

can be comprehended as dual. However, Reo allows specification of syn-
chronous lossy channels which is not possible in VCN.

SOFA

SOFA/DCUP [PBJ98, Pla05] is a component model for design and deploy-
ment of concurrent software systems which offers abstraction at the level
very similar to ADLs. Such abstraction allows the top-down design in
SOFA to start from abstract architectures with component interfaces inter-
connected with connector roles leading to executable concurrent programs
deployed on different platforms where the complex multi-platform coordi-
nation glue is generated from connector specifications [Bal02]. Connectors
in SOFA can be implicit — remote procedure call, event delivery mecha-
nism, and data stream communication, or explicit — connectors created
by architectural composition of other connectors and components. The ab-
stract level of SOFA concerns specification of component and connector
frames (black-box view). Component frames are composed from interfaces,
whereas connector frames contain roles. Roles and interfaces have attached
behavioural protocols specified as regular expressions. Each component or
connector can be hierarchically refined with a sub-architecture.

Architectural interoperability checking in SOFA consider both horizon-
tal and vertical checking and is focused on component composition correct-
ness. This checking methods include searching for specific kind of software
component communication errors which cannot be caught by traditional
CSP or CCS approach [AP05].

In spite of the different purpose, it is worth comparing SOFA with our
approach, especially as possible requests for future extensions of both mod-
els can arise from their mutual inspiration. By its nature, VCN is strictly
binded to its visual notation and therefore is a high-level design language.
At this level the abstract way of connector specification in terms of bus
classes allows high-level modelling and reuse of coordination models. This
can be comprehended as a more abstract level with respect to the SOFA
level of abstraction. A VCN connector can be taken as an abstract model
of a complex SOFA connector. In other words, a SOFA connector can cap-
ture implementation aspects of a given coordination model specified by a
VCN bus. However, as VCN is primarily aimed to abstract description of
reactive and interactive systems with high-level atomicity of interactions,
in contrary to SOFA, the VCN interoperability checking framework has no
support for checking of specific errors which arise from asynchronous com-
ponent composition.

28 BACKGROUND AND PRELIMINARIES

2.7 Formal Preliminaries

In this section, we recall some basic notions of concurrency theory which
are used throughout the thesis.

First of all we present a definition of the fundamental notion of a gen-
eral labelled transition system which provides the semantic domain for
VCN architecture parts. In consequence, we recall the notion of bisimu-
lation equivalence that is used in Chapter 8 to establish the framework for
architectural interoperability checking of VCN architectures.

Definition 2.1 A labelled transition system (LTS) is a quadruplehQ;At; T; q0i where� Q is the set of states,� At is the alphabet of the system, satisfying � =2 At;� T � Q� (At [f�g) �Q is the transition relation

where hq; q0i 2 T is denoted q a!T q0� q0 2 Q is the initial state.

A labelled transition system is called finite if both its set of states and its transition
relation are finite.

Subsequently, we present the definition of strong bisimulation equiva-
lence of two labelled transition systems.

Definition 2.2 Let S1 = hQ1; At; T1; q01i and S2 = hQ2; At; T2; q02i labelled
transition systems.� A relation R � Q1�Q2 is a strong bisimulation if whenever hq1; q2i 2 R

then for each a 2 At both of the following holds:

1. If q1 a!T1 q01 then 9q02 2 Q2: q2 a!T2 q02 and hq01; q02i 2 R.

2. If q2 a!T2 q02 then 9q01 2 Q1: q1 a!T1 q01 and hq01; q02i 2 R.� We say the states q1 and q2 are strongly bisimulation equivalent and
write q1 � q2 iff there exists a strong bisimulation R such that hq1; q2i 2 R.� We say that the labelled transition systemsS1 and S2 are strongly bisim-
ulation equivalent and write S1 � S2 if and only if q01 � q02 .

Another kind of behavioural equivalence which is employed in this the-
sis is weak bisimulation. Before we define the weak bisimulation equiva-
lence itself, we fix some notation.

2.7 FORMAL PRELIMINARIES 29

Notation 2.3 For each a 2 At denote â the following event:� â df= �, if a = � ;� â df= a, otherwise.

Denote
a) the following sequence of succeeding transitions:a) df= (�!)� a! (�!)�

Definition 2.4 Let S1 = hQ1; At; T1; q01i and S2 = hQ2; At; T2; q02i labelled
transition systems.� A relation R � Q1�Q2 is a (weak) bisimulation if whenever hq1; q2i 2 R

then for each a 2 At both of the following holds:

1. If q1 a!T1 q01 then 9q02 2 Q2: q2 â)T2 q02 and hq01; q02i 2 R.

2. If q2 a!T2 q02 then 9q01 2 Q1: q1 â)T1 q01 and hq01; q02i 2 R.� We say the states q1 and q2 are (weakly) bisimulation equivalent and
write q1 � q2 iff there exists a (weak) bisimulation R such that hq1; q2i 2 R.� We say that the labelled transition systems S1 and S2 are (weakly)
bisimulation equivalent and write S1 � S2 if and only if q01 � q02 .

Chapter 3

Introduction to VCN

In this chapter, we introduce basic principles of VCN on a real example
of an architecture of a part of a hardware design developed in the Liber-
outer project [AFN03]. In particular, we consider the design of a DRAM
access scheduler which makes an important part of Liberouter four-port
hardware-accelerated high-speed router [CES06].

3.1 Modelling a Shared Memory Access System

The overall scheme of the memory scheduler is depicted in Figure 3.1.
Main components of the entire router design are a header-field extractor
(HFE), which parses headers and data information from incoming pack-
ets, an edit engine (EE), which is responsible for modifying packet headers
according to the current routing table, and a packet replicator (RP), which
allows multicasting of packets. As the router is designed to incorporate
four network interfaces, there are four header field extractors and four edit
engines to capture the high-speed routing process for all interfaces. The
memory scheduler has the purpose of storing parsed packet data and al-
lowing quick packet replication and editing. The scheduler is implemented
together with header-field extractors, edit engines, and the replicator in a
Xilinx FPGA chip, hence the design has the character of a firmware loaded
into the chip during the booting process.

The design is encoded in VHDL hardware description lan-
guage [vEVD90]. In spite of the fact that VHDL has high-level features
and employees component-based hierarchical design methodologies, our
experiences show that VHDL programs are very difficult to read and un-
derstand, especially concerning wire interconnections. These experiences
motivate us to adapt our architectural visual notation VCN for hardware
design architecture description.

To demonstrate basic features and principles of VCN we show how an
architecture of a particular part of the above-mentioned design can be vi-

32 INTRODUCTION TO VCN

SW_HFE1

HFE4

HFE3

HFE2

HFE1 EE1

EE2

EE3

EE4

SW_EE_1

DDR SDRAM

Data management

Address management

Low Level Scheduler

Figure 3.1: Scheme of Liberouter DRAM scheduler

sually formalised using the VCN notation. In particular, we consider a
version of the memory scheduler design simplified to a single packet edi-
tor and we focus on the address management unit. Moreover, we abstract
from the header-field extractor part of the design.

3.1.1 Top-Most Network of Components and Buses

The component of the memory scheduler serves address reference manipu-
lation requests obtained from concurrently running edit engine and packet
replicator components, and controls correct interaction of both components
with the shared memory ensuring mutually exclusive access. The memory
is organized in frames of a constant size provided that with each packet
data there is stored a number of references. The replicator component in-
creases this number in order to set the replication factor. On the contrary,
the edit engine unit decreases the number of references in order to unset the
packet replication factor. The entire address management unit is responsi-
ble for ensuring mutual exclusion of both operations.

To create the VCN architecture of the memory scheduler component,
we will follow guidelines of the top-down design methodology. First of all,
we identify the top-most components of the system:

3.1 MODELLING A SHARED MEMORY ACCESS SYSTEM 33� PR . . . a component which controls multicasting of packets to differ-
ent virtual network flows captured by network interfaces. In our
model we abstract from the internal replicator behaviour and con-
sider only the behaviour involved in the address management pro-
cess, in particular, the address reference number increase feature.� EE . . . a component which performs packet header editing in order
to control the routing task. Similarly as in the case of the replicator,
we abstract from the edit engine behaviour that is not relevant for
the address management. More precisely, we focus on the address
reference number decrease feature.� Addr Mng . . . a component which models DRAM address adminis-
tration and realizes mutual access of reference number decrease and
increase operations.

Firstly we focus on each component separately and determine its input
and output ports. In other words, we establish component interfaces. In

EE
rs

clk clk

rs

PR
rs

clk
ADDR_MNG

ack

inc

dec_req

inc_req

dec

ack

dec_ack

inc_ack

Figure 3.2: Interfaces of top-most components

Figure 3.2 there are interfaces of all the three components visualised using
the VCN notation. Each interface is represented as a box with the name
of the component written inside. Input and output ports are depicted as
semicircles. The meaning of each port is the following:� PR

– inputs� rs . . . has the purpose of receiving events of a global asyn-
chronous reset signal. The component reacts to the recep-
tion of the reset signal by returning to the initial state.� lk . . . receives events of clock signal rising edges. As a
typical synchronous hardware component, PR behaviour is
synchronous with the clock signal.� ak . . . accepts the acknowledge signal denoting successful
completion of the last reference number increase operation.

34 INTRODUCTION TO VCN

– outputs� in . . . emits requests for increase of a reference number of
a particular DRAM frame. As we consider the non-value
passing version of VCN, in the behaviour of the PR com-
ponent it is abstracted from transmission of a particular ad-
dress value.� EE

– inputs� rs, lk . . . have the same meaning as in the case of the PR
component.� ak . . . receives the acknowledge signal denoting successful
completion of the last reference decrease operation.

– outputs� de . . . emits requests for decrease of a reference number of a
particular DRAM frame.� Addr Mng

– inputs� rs, lk . . . have the same purpose as in previous components.� in req . . . receives requests for increase of reference num-
bers.� de req . . . accepts reference number decrease requests.

– outputs� in ak . . . emits the signal notifying successful completion
of the last reference increase operation.� de ak . . . emits the signal notifying successful completion
of the last reference decrease operation.

At this point, we have identified all interfaces of top-most components.
As all three top-most components cooperate with each other, what remains
to be done is to specify their mutual interconnection. In particular, we have
to include the three components in a VCN network describing the respective
top-most architecture. Thus, we add a so-called bus with links that realize
interconnection of components. The resulting VCN network is depicted in
Figure 3.3. As the interaction of top-most components is assumed to be
synchronous, the bus included in the network represents a binary hand-
shake coordination model with cooperations listed in Table 3.1. Each line
of the table shows a particular atomic interaction of components, which is
given by a particular set of input ports and a set of output ports involved in
the interaction. As in our case all interactions are binary, the respective sets

3.1 MODELLING A SHARED MEMORY ACCESS SYSTEM 35

are singletons in all the listed cooperations. The dot notation in the third
and in the fourth line is used for unambiguous identification of the in port
which is included in both the PR and the EE component interface. Note
that input and output ends of the bus 1to1 HSK are marked by numbers.
These numbers represent a so-called ranking which is related with general
specification of buses (see Section 3.3).

ADDR_MNG

inc_req

dec_reqEE
rs

PR
rs

inc

clk

rs

clk

clk ack

ack

dec

inc_ack

dec_ack

1to1_HSK

1
1

2

3

4 4

3
2

Figure 3.3: A VCN network of the entire address management system

Cooperations of the 1to1 HSK busfing=fin reqgfdeg=fde reqgfin akg=fPR:akgfde akg=fEE:akg
Table 3.1: Interaction of the top-most network components

3.1.2 Inter-level vs. Inner-level Cooperation Specification

A key property of VCN is the possibility of creating hierarchy of networks.
To demonstrate this feature in our example, we refine the specification of
the Addr Mng component by a sub-network describing architecture of the
address management unit. The refinement has to satisfy the requirement
that all components which appear in the lower-level network must form a
proper decomposition of the superior component. Especially, the decom-
position must employ all ports that appear in the superior component inter-
face. Moreover, these ports are not permitted to be involved in any bus-link
connection (ports which satisfy this requirement are called free ports). This
requirement conveys the higher-level character of these ports.

36 INTRODUCTION TO VCN

A Lower-level Network of the Address Management Unit Architecture

Before we formalize the address management unit architecture, we infor-
mally explain behaviour of the unit. The purpose of the address manage-
ment unit is to manipulate incoming memory address reference increase
and decrease requirements, to implement respective operations, and to ac-
knowledge completion of the last performed operation. Moreover, as the
packet replicator and the edit engine components execute concurrently, an-
other important task of the address management unit is to ensure mutual
exclusion of both operations.

To achieve the above-mentioned tasks modularly, the Addr Mng com-
ponent is decomposed into following four lower-level components (their
respective interfaces are depicted in Figure 3.4):� Req Regs is a component modelling request registers. This com-

ponent stores an incoming request (received on in req and de req
ports) for increase or decrease operation provided that both an in-
crease request and a decrease request can be captured simultaneously
in one tick of the clock. In some future tick, a request currently kept
in the respective register can be read by other components (on output
ports in and de). Both registers can be cleared by the reset signal.� Addr Admin is a component which realizes memory reference in-
crease and decrease operations.

REQ_REGS

dec_reqinc_req

inc

dec
rs

clk
ARB_REGS

win_dec

inc_ack dec_ack

clk

rs

arb_done win_inc

do_inc

do_dec

ADDR_ADMIN ARBITER

inc_req dec_req

start

ref_dec ref_inc

clk

rsrs

clk

done win_inc win_dec

Figure 3.4: Interfaces of lower-level components� Arbiter is a component responsible for controlling the mutual exclu-
sive shared memory access of both decrease and increase operations.
The component checks for a request stored in request registers (byin req and de req ports). If a request is encountered, the arbitra-
tion process is started. The necessary precondition of arbitration is
the requirement that there is no previous arbitration winning request
waiting for realization. This requirement is checked by the start input

3.1 MODELLING A SHARED MEMORY ACCESS SYSTEM 37

port. The process of arbitration itself searches for the highest prior-
ity request. The winning request is then emitted on the win in orwin de port.� Arb Regs is a component modelling arbitration registers. It includes
a register for storing a winning request for both operations and also
a register notifying the last successfully completed request. Winning
requests are received on win in and win de ports, notification of
successful arbitration is received on the arb done port. The particular
winning request is sent for realization by the do in or do de port.
The component includes a control logic which ensures that each re-
quest is sent for realization if and only if the respective arbitration
process has been successfully completed. Finally, notification of suc-
cessful submission of a request for realization is signaled on in ak
or de ak port.

Interconnection of the four components is depicted in Figure 3.5. The1to1 HSK1 and 1to1 HSK2 buses employ a binary handshake coordina-
tion model similarly as the top-most network bus. Cooperations defined
by both buses are listed in Table 3.2.

ARB_REGS

REQ_REGS

ADDR_ADMIN ARBITER

inc_req

win_dec

start

ref_inc

rs

done win_dec

do_inc

do_dec

1to1_HSK1

1to1_HSK2
ARB_BUS

ref_dec

win_incarb_done

win_inc

dec_reqclk

clk

inc

dec

clk

rs

inc_req dec_req

clkrs

inc_ack
rs

dec_ack

1

12

2

1

1

2

2

3

3

2 2

22

1

Figure 3.5: A VCN network representing the address management unit

TheArb Bus, which interconnectsArbiter, Addr Admin, and Arb Regs
components, employs a more complicated coordination model, i.e., interac-
tions of these three components are asynchronous. In particular, the bus is

38 INTRODUCTION TO VCN

Cooperations of 1to1 HSK1 bus Cooperations of 1to1 HSK2 busfing=fin reqg fwin ing=fwin ingfdeg=fde reqg fwin deg=fwin degfdoneg=farb doneg
Table 3.2: Interaction of the lower-level network components

equipped with a memory in that it stores a request submitted for realization
by the arbitration process (by a signal received from the do de or do in
port of the Arb Regs component). When the address administration unit
(the component Addr Admin) processes a request, the request is removed
from the bus internal memory and signaled to the ref de or ref in port of
the Addr Admin component. Finally, the bus is also responsible for notifi-
cation of the fact that no request is currently waiting for realization in order
to coordinate initiation of a next arbitration process. The notification is sig-
naled to the start port of the Arbiter component. Entire behaviour of the
bus is specified by the state transition diagram depicted in Figure 3.6. Each
transition of the diagram denotes a particular cooperation. To simplify the
notation of cooperations in the diagram, we typically exclude braces de-
noting sets of input and output ports, as in the case of this diagram. The
empty set is denoted by a dash.

−/start

do_dec/−

−/ref_dec
do_inc/−

−/ref_inc

Figure 3.6: Specification of Arb Bus
Embedding of the Lower-level Network

At this point, we have decomposed the Addr Mng component to a lower-
level architecture. What remains to be done is to bind the respective lower-
level network to the interface of the higher-level Addr Mng component. In
particular, inter-level cooperation relationships have to be specified. This
is realized by connecting each of higher-level interface ports to a particular
free port of the lower-level network. There are several kinds of such an
inter-level port connection, i.e., one-to-one and many-to-one connections
are allowed. For a particular lower-level network, the group of all respec-
tive connections is called a gate.

3.1 MODELLING A SHARED MEMORY ACCESS SYSTEM 39

In our particular example, two kinds of inter-level connections, so-
called gate mappings, are employed. The in req and the de req ports are
connected to homonymous ports of the Req Regs component by one-to-
one mappings. Similarly, the in ak and the de ak ports are connected
to homonymous ports of the Arb Regs component. More complicated is
the mapping of the rs and lk ports. In particular, the rs port is connected
to all rs ports appearing in lower-level component interfaces by a many-
to-one mapping. Interconnection of the lk ports is treated similarly by
another many-to-one gate mapping. The many-to-one kind of mapping re-
quires a more precise specification concerning its semantics. Especially, a
many-to-one mapping can have basically two different interpretations —
non-deterministic choice of just one of connection ways or synchronous
processing of just all connection ways (for details see Chapter 4). In our
example, both many-to-one mappings have the latter interpretation. The
reason for that lies in the fact that both the reset and the clock signals are
required to be atomically transmitted in an indivisible time instant to all
components of the decomposition.

In the VCN visual notation, inter-level connections are specified by
dashed lines. Gates employed in our example are depicted in Figure 3.7.
Synchronous interpretation of a many-to-one gate mapping is specified by
the ’�’ symbol inside the respective higher-level port semicircle.

3.1.3 Computation Layer

Up to this point, we have tackled modelling of interconnection aspects of
the system architecture. The respective part of the VCN language is called
a coordination layer. As it is demonstrated on our example, the coordina-
tion layer is hierarchical. The entire coordination layer hierarchy is closed
by component computation specification — the so-called computation layer.
More specifically, instead of further refinement of a component by another
lower-level network, an undecomposable leaf representing computation
aspects of the respective component can be embedded in the component
interface. VCN accepts the model of component computation defined in
terms of a state transition system. Such a model can be considered either as
an abstract (interface-level) specification of component computation or as
an implementation of a component compiled into a state transition system.

Considering our example, we demonstrate aspects of the computation
layer by making each of the lower-level network components a leaf of the
entire model. To show how a particular leaf can be defined, a state tran-
sition system of the Req Regs component is depicted in Figure 3.8. Each
transition label represents an event of reception (denoted ’?’) or transmis-
sion (denoted ’!’) of a signal on the respective port.

40 INTRODUCTION TO VCN

ARB_REGS

REQ_REGS

ADDR_ADMIN ARBITER

inc_req

win_dec

start

ref_inc

rs

done win_dec

do_inc

do_dec

1to1_HSK1

1to1_HSK2
ARB_BUS

rs
ref_dec

win_incarb_done

win_inc

dec_reqclk

clk

clk

clk

rs

dec_ack

dec_ackinc_ack

inc_ack

dec_reqinc_req

inc_req dec_req clk

x

inc

dec

rs

rs

x

1

12

2

1

1

2

2

3

3

1

22

22

Figure 3.7: Gate mappings of higher-level ports to lower-level free ports

rs?clk?

dec_req?

dec! rs?

inc_req?

inc!

rs?

clk?

inc!

clk?

inc_req?
rs?

rs?

dec_req?

dec!

Figure 3.8: Computation layer of the bottom-most component Req Regs
3.2 Architectural Interoperability Checking

A completely defined VCN architectural specification (a hierarchy of net-
works closed by leaves) that satisfies all syntactic requirements imposed
by the VCN language can be further analyzed by the so-called architec-

3.3 GENERIC SPECIFICATION OF COORDINATION MODELS 41

tural interoperability checking framework. In particular, it can be automat-
ically checked if all horizontal (bus-component) and vertical (subnetwork
embedding) connections are correct with respect to behavioural aspects of
the entire architecture.

A typical property which is checked in system architectures is deadlock
freedom. An architecture is said to be interoperably correct with respect to
the deadlock freedom property if and only if all the following conditions
are satisfied:

1. All components are deadlock free.

2. All buses are deadlock free.

3. Interaction of all components and buses does not introduce any dead-
lock at any level of hierarchy.

4. Every hierarchical embedding of a sub-architecture does not intro-
duce any deadlock.

The general interoperability checking framework incorporated in the VCN
language allows not only the deadlock freedom property to be checked,
i.e., the interoperability check can be set for a large variety of behavioural
properties (see Chapter 8 for details).

3.3 Generic Specification of Coordination Models

As it can be seen in the example of the memory access system architec-
ture, particular coordination models employed in architectural modelling
are typically repeatedly reused. In our example, three buses employ the
binary handshake coordination model. To allow generic specification of
such frequently reused coordination models, VCN includes a framework
for parametrized description of buses – the framework of so-called bus
classes. Bus classes represent templates for construction of particular buses.
For specification of bus classes, VCN introduces the bus class specification
language.

In the example of the memory access system presented above, there
are two kinds of coordination models employed – the binary handshake
(all 1to1 HSK buses) and a one-place buffer with emptiness signalization
(Arb Bus). At first we show how a basic bus class for the former model
can be specified in the bus class specification language. In consequence, we
demonstrate more complex features of bus classes on the latter model.

A bus class specification consists of a list of so-called cooperation patterns.
A cooperation pattern is a generic template for particular kind of coopera-
tions making the respective coordination model. Each cooperation pattern
can be optionally equipped with a so-called rank constraint. The purpose

42 INTRODUCTION TO VCN

of rank constraints is mutual relation of individual input and output ports
connected to buses (instances of a particular bus class). Assuming that each
link of a particular bus is identified with a natural number – a so-called
rank, rank constraints realize intended relations of bus input and output
ends.

The binary handshake coordination model can be generally defined by
the following bus class:B(In; Out; rank) := fIn; Out; rank 6= ;i=o ^ rank(i) = rank(o)g
The In; Out parameters of the bus class denote sets of input and output
ports that can be connected to particular buses, respectively. The rank pa-
rameter represents ranking of particular bus links. The first line of the spec-
ification is a parameter constraint that requires all these parameters to have
non-empty values. The second line of the specification is a cooperation pat-
tern that generates a binary synchronization cooperation for each pair of a
bus input and a bus output port which satisfies the rank constraint, i.e.,
links which connect both ports of the pair to the bus must have the same
rank.

If we look into our example, we observe that all handshaking buses
are equipped with link ranking. Thus, with respect to the particular rank-
ing numbers, the bus class specified above generates exactly cooperations
listed in Table 3.1 and Table 3.2 for the respective buses.

The Arb Bus models a more intricated coordination model. Especially,
this bus is equipped with a bounded memory (i.e., a one-place buffer). Al-
though there is only one bus of this kind in the considered system archi-
tecture, we demonstrate how it can be generalized for arbitrary number of
registered signals. The resulting bus class specification has the following
form: B(In; Out; rank; apaity) := fIn; Out; rank 6= ; ^ apaity = 1i"reg=�^ rank(i) = 2�=o#reg ^ rank(o) = 2�=?reg; o ^ rank(o) = 1g
Comparing this bus class with the previous specification, on the first view
it can be observed that there is one more parameter and that cooperation
patterns have a more complicated structure. The presence of the apaity
parameter notifies the fact that the bus class is equipped with a buffer. A

3.4 THESIS ROADMAP 43

particular value of this parameter then sets the number of buffer cells. Co-
operation patterns of this bus class contain so-called memory handles that are
responsible for manipulating the referred buffer (i.e., storing or removing
of a value and testing for buffer emptiness). In our particular case, there is
considered a one buffer referred by the label reg. As the capacity of the bus
memory is limited to just one, the buffer has just one cell. The first pattern
defines the storing operation provided that whenever the buffer reg is not
full and a signal is sent to the bus from a port ranked by 2, the received
signal can be stored into the buffer reg. The second pattern specifies de-
structive transmission of a signal stored in the buffer reg provided that if
the buffer is not empty then the signal can be removed from the buffer and
emitted to some port ranked by 2. Finally, the third pattern tests for empti-
ness of the buffer reg provided that whenever the buffer reg is empty, a
signal can be emitted to some port ranked by 1.

With respect to the link ranking of the Arb Bus included in our exam-
ple, by instantiating the bus class specified above we achieve the same bus
behaviour as the one depicted in Figure 3.6. Thus, we have demonstrated
the general power of bus class specification. For more details on the bus
specification language we refer the reader to Chapter 6.

3.4 Thesis Roadmap

In this section we give a roadmap of the thesis to simplify reading of the
thesis with respect to this introductory chapter.

Explanation of all basic specification features and principles of VCN is
given in Chapter 4. Especially, all types of many-to-one gates are presented
there (Section 4.3.3).

Precise definition of VCN syntax is given in Chapter 5. All require-
ments stating how the structure of a well-defined (syntactically consistent)
VCN architecture looks like (Definition 5.27) are presented formally in that
chapter.

Architectural interoperability checking framework is developed in
Chapter 8. The problem of horizontal interoperability is introduced in Sec-
tion 8.4.2 and the respective checking methodology is stated and proved
in Theorem 8.26. The problem of vertical interoperability is explained in
Section 8.4.1 and the respective checking methodology is given at the end
of the chapter. The interoperability checking methodology employs the be-
havioural semantics of VCN architectures that is defined in Chapter 7.

Details of bus class specification are given in Chapter 6 where the bus
class specification language is defined formally. An algorithm for construc-
tion of instances of bus classes is also presented in that chapter.

Chapter 4

VCN: Principles and Features

In this chapter, all principles and features of VCN are introduced infor-
mally.

4.1 Structure of VCN

Being a visual formalism, VCN introduces a graphical notation. More pre-
cisely, two dimensional geometric space is used to represent VCN syntac-
tic structures. In contrast to linear, i.e. textual, notation, two dimensional
space allows expressing of complex information more efficiently. In other
words, suitably defined graphical notation can be in this particular sense
more succinct than textual syntax and can be easily captured by the user.
However, without any precise mathematical definition giving unambigu-
ous meaning to the graphical notation, graphical notation is inexact.

Following that fact, we firstly present the diagrammatic notation of
VCN, and then we define its precise unambiguous representation in the
form of algebraic terms. It is a common approach, which is, for example,
known from the work on formalisation of Statecharts [Har87]. The graph-
ical notation of VCN networks is based on the notation which has been
firstly introduced in [CDS00] and further refined in [Saf02]. We generalise
that notation and extend it to satisfy nontrivial requirements of architec-
tural specification. We focus on universality of VCN, in particular, we de-
fine the VCN language to be abstract in the sense of its potential application
in different domains of system design.

It is worth noting that the VCN graphical notation (and therefore its
formal representation) represents only the static topology of the concurrent
system under design. Behavioural aspects of the system are supposed to be
captured separately in some suitable visual or textual formalism, which is
compatible with VCN semantics. In other words, the behavioural aspects
of architectures are completely treated in competence of VCN behavioural
model, whereas the structural aspects of architectures fall under the VCN
visual syntax.

46 VCN: PRINCIPLES AND FEATURES

With respect to the separation of structural and behavioural aspects we
distinguish two kinds of VCN terms:� structural terms – representing the static structure (formal representa-

tion of diagrams themselves)� behavioural terms – representing behaviour (i.e., the semantics of the
component computational model, or the semantics of the coordina-
tion behaviour).

In this chapter, the basic principles of VCN language concerning both struc-
tural and behavioural aspects are introduced. The notion of structural
terms is then precisely defined in Chapter 5. Chapter 6 and Chapter 7 are
dedicated to behavioural semantics of VCN. The former of the two chapters
is focused on behavioural model of connectors, while the latter contains
precise definition of component and architecture composition behavioural
terms.

4.2 Basic Principles

There are two main kinds of design methodologies that are usually used for
specification and design of a component-based concurrent system. These
are the bottom-up and the top-down methodology. To support these
methodologies by a graphical notation, the feature of hierarchy is nec-
essary. Therefore, we introduce hierarchical approach to specification of
component-based systems in the VCN formalism.

4.2.1 Hierarchy of Networks and Leaves

At the most abstract level of view, the hierarchy of VCN introduces two
separate layers — computation layer and coordination layer. The compu-
tation layer focuses on computational aspects of a system under design,
while the coordination layer deals with interaction aspects. The principle
of such a layered structure respects the nature of component-based system
design, and is inspired by the work concerning software architecture de-
scription [AG97].

In our setting, the computation layer is treated as the low level layer of
system specification, upon which the coordination layer is bottomed. Thus
from the designers point of view, both the top-down and the bottom-up de-
sign methodologies can be applied during system design using the VCN.
On one hand, VCN language allows the computation layer to be taken as
a supplementary layer, which can be added to the system hierarchy later
during the design (the top-down approach). On the other hand, the com-
putation of components can be specified at first, while the coordination
layer can be added later (the bottom-up approach).

4.2 BASIC PRINCIPLES 47

Coordination layer

The main idea of the VCN coordination layer, which revises the concept
introduced in Wright [AG97], is to describe interaction aspects of a static
component-based architecture. The notion of such a static structure con-
cerns topology of concurrently running components permanently coordi-
nated by specific connectors. This topology is determined by the point-to-
point links which connect component interface ports to connectors. The
particular VCN construct that represents such topologies of components
and connectors is called network. An example of a network is depicted in
Figure 4.1.

CLIENT SERVER

return

invokerequest

result

COORD

Figure 4.1: A network of two components coordinated by a connector (bus)

Similarly to Wright, connectors are treated as first-class citizens (at the
same level as components). In the VCN setting, connectors are called buses.
Buses represent coordination mechanisms which control component inter-
action.

Computation layer

Component computation is described using VCN leaves. VCN leaves are
cornerstones of the computation layer. In our setting, leaves are assumed
to be abstract computation models of system components. More particu-
larly, a leaf is an atomic element in the VCN structure and can be specified
in an arbitrary formalism for formal description of reactive computation. It
is assumed that the kind of formalism which can be used for this purpose
is compatible with the used semantic model of VCN. In general, the poten-
tial set of such compatible formalisms includes any reactive computation
description language which can be encoded into a labelled transition sys-
tem. Details of this semantic compatibility will be given in the next chapter,
where the semantic models of VCN will be described.

Network hierarchy

The computation layer makes the bottom most level of the VCN hierarchy.
It is determined by the set of all the leaves which are used in the particular
system design. As it has been mentioned above, leaves directly represent
computation of components and are interconnected by buses to form net-
work topologies.

48 VCN: PRINCIPLES AND FEATURES

In a natural sense, such a network topology of leaves and buses is
viewed as a black box with complex behaviour hidden inside (defined by
computation of leaves coordinated by buses). More specifically, not only
leaves represent computation, but also entire network topologies do so.
This idea leads us to set the notion of a component to be more abstract
than is the notion of a leaf. In particular, either a leaf or a network can be
sensed as a component in the VCN style of thinking.

The possibility of taking a network as a component (instead of taking
only a leaf) allows the coordination layer to have more levels of hierarchy.
In consequence, entire network hierarchy of a particular top most network
has a form of a tree with nodes representing its components at each level.

SERVERCLIENT COORD

return

invokerequest

result

request

COORD

result

resultrequest

invoke

return

SUPCLIENT

SUPSERVER

Figure 4.2: A network as a body of a higher level component

2 In the example in Figure 4.2 the network representing a hierarchical
client/server architecture is depicted. The server component of the net-
work of a plain client/server architecture from Figure 4.1 is extended to
behave as both a server (for the subsidiary client) and a client (for com-
munication with the higher level server). The entire network is considered
as a client component of the higher level client/server architecture. The
component bodies of the Client, Server, and Supserver components rep-
resent leaves of the entire hierarchy. The tree structure of the whole system
is depicted in Figure 4.3.

4.3 Elementary Entities

First of all, we introduce entities related with components, which are elemen-
tary structures in the scope of the VCN network. The purpose of compo-
nents is description of computational aspects. Consequently, we introduce
entities related to coordination aspects – buses and links.

4.3 ELEMENTARY ENTITIES 49

SERVER CLIENT

Root network

SUPCLIENTSUPSERVER

Figure 4.3: Example of VCN hierarchy

As it has been suggested before, the notion of VCN component is rather
conceptual than constructive. More precisely, its meaning is gluing three
constructive entities together to form a single logical entity. The relevant
constructive component entities are component body, component interface,
and gate. Intuition behind these entities is illustrated in Figure 4.4.

a?
a!

b!

c?

e!

c!

b?
d?

e?

a

b

c

a

c

b

BODY
INTERFACE

GATE

Figure 4.4: Scheme of component entities

Component body captures component computation. Component inter-
face identifies the component as a black box with a specified set of ports.
That way, component interface makes the border between the component
internal computation and the environment. By the notion of environment
we mean other components in the particular network topology which can
interact with the component.

Gate makes the glue layer which binds a particular component body to
a component interface. The main purpose of a gate is to allow construction
of a component by embedding an arbitrary (already predefined) compo-
nent body into a given interface.

50 VCN: PRINCIPLES AND FEATURES

4.3.1 Component Body

Component body makes the main functional element of a component. It
allows embedding of computation behaviour to VCN structure. In more
particular, component body represents the model of component reactive
computation. By its nature, the component body is the entity which incor-
porates the component behavioural model to VCN networks.

From the structural point of view, every component body is charac-
terised by the finite set of observable events which can occur during the
component computation. With respect to the nature of reactive behaviour,
two basic kinds of computation events are distinguished — input events
(reception of a signal or data) and output events (transmission of a signal
or data). To represent the internal non-reactive activities of components
(i.e., computation unobservable by the environment), the special event de-
noted � is introduced. An occurrence of any event during the computation
is called an action. Thus in our setting, an event is sensed as abstraction of
its occurrences (actions). Each observable event is identified by its name
and type. Moreover, each action is identified by the respective event name
and type.

With respect to VCN hierarchy, the basic kind of component body is a
leaf. Leaf is sensed as an atomic element with respect to the hierarchy, and
is directly characterised by the set of particular computation events. This
static structural abstract characterisation is assumed to be further refined
by a suitable semantic model of dynamic computational behaviour, e.g.,
the operational semantics presented in Chapter 7.

As it has been mentioned above, component body can be not only a
leaf, but also a network. At the bottom most networks of the VCN hi-
erarchy, bodies of all components have the form of leaves. However, at
any higher level of the hierarchy, arbitrary network can form a component
body. In that case, the component computation is inferred from the net-
work topology by composition of individual elements computation. The
resulting network computation is characterised by events in the same way
like the leaf computation. All the coordinative behaviour of the network
composition is implicitly assumed to be considered as the internal activity
(occurrence of the � event).

Graphical representation of a higher level component body is implicitly
realised by the VCN network diagram. The representation of a leaf compo-
nent body can be realised by explicit embedding of some suitable graphical
formalism (e.g., a variant of Statecharts).

4.3.2 Component Interface

Component interface is graphically represented as a rectangular box. Its
purpose is to determine the black box view of the component. In more

4.3 ELEMENTARY ENTITIES 51

particular, it is responsible for identification of all observable component
events. Most notably, every occurrence of such an observable event (an
action) is sensed as stimuli for interaction of a component with its environ-
ment. Such interaction can be of two forms:� input action — accepting of some input (instant reception of an event

from the environment)� output action — producing of some output (instant emission of an
event to the environment)

To capture the place where actions of some event occur, we introduce
the notion of a port. Ports are supposed to be named locations on which in-
put and output actions occurring during the component computation take
place.

Respecting the two kinds of events, two types of ports are distinguished
— input and output ports. Each port is graphically represented as a semicir-
cle drawn on the border of an interface box. Orientation of the semicircle
notifies naturally port type. The port name is placed outside the interface
box near the semicircle. In the scope of a particular interface, names of
ports of either kind are required to be unambiguous. More precisely, there
can be two ports of the same name included in the interface only if they are
of different type.

To illustrate the principle of component interface, in the left part of Fig-
ure 4.5 there is a component representing a client of a simple client/server
system. Its component body is a leaf characterised by one output eventrequest! and one input event result?. The computation of this leaf is
sketched by a simple statechart in the right part of the figure. In addi-
tion, the internal event init occurs in the first step of the computation. This
event is supposed to be internal event of the leaf. The respective ports for
both observable events are depicted on the component interface box.

CLIENT
result

request

obs(CLIENT):={request!, result?}

result?

request!

init

Figure 4.5: Client component with one input and one output port

In modelling of a more complex component, it can be useful to distin-
guish among its various roles. Typically, specific parts of a component are

52 VCN: PRINCIPLES AND FEATURES

acting in different computational tasks. Such tasks are focused on particu-
lar component behaviour the basic properties of which can be determined
independently of the properties of other tasks. For example, imagine a
component representing a node of a hierarchical client/server system. This
component can serve as a server for some subsidiary client, while to fulfil
its server task it interacts as a client with some superior server. Such a com-
ponent is depicted in Figure 4.6. The left ports of the interface are responsi-
ble for the server role of the component and the right ports are involved in
its client role. In the right part of the figure there is a statechart illustrating
the computation of the component. The two roles comprise independent
properties, especially concerning the order of invocation of the respective
events. The client role of the component imposes an invocation order to therequest! and the result? events provided that both events are assumed to
be invoked in just the specified order. Analogously, the server role defines
the ordering of the invoke? and the return! events.

result

request

NODE

result?

invoke

return

obs(NODE):={request!, result?, invoke?, return!}

invoke? request!

return!

Figure 4.6: A component performing two different roles

The feature of organising ports into roles can be included in VCN com-
ponent description by the following way. Each interface port can be op-
tionally extended with a role name. Role name is assumed to be placed near
the relevant port semicircle inside the interface box. The role name denotes
the logical assignment of a port to a role. By convention, the following re-
quirements must be satisfied. At first, a port can be assigned to at most one
role. Secondly, if any port of a particular interface has assigned a role, then
all the other ports of the respective role must have the role name defined.

In our example, the two roles of the Node component are denoted l
and srv. Resulting interface with the relevant role names is depicted in
Figure 4.7.

To complete the description of the component interface entity, we have
to refer the reader to Section 7.2.6, where the expressiveness issues are dis-
cussed and compared with other work. Here we would like to highlight
the fact that the VCN formalism is not exceedingly focused on the com-
ponent interface description, but it is specifically aimed to description of
coordination aspects of the system architecture. However, roles can be re-
fined by sophisticated interface specification methods such as interface au-

4.3 ELEMENTARY ENTITIES 53

result

request

NODE
return

invoke srv

srv cl

cl

Figure 4.7: Interface ports extended with role names

tomata [dAH01a] or port protocols in Wright [AG97]. To keep our graphical
notation clear, but yet sufficiently expressive and easily extensible, we con-
sider the above mentioned principle of component interface specification.
Although we do not introduce an interface model of VCN, we included the
possibility of organising interface ports in terms of roles to the syntax of
the language. In our future work we aim to establish the interface model
of VCN in terms of refining component interfaces with state-transition se-
mantics and enable mutual checking of the behavioural model defined in
this thesis against such interface model.

In the last note on component interface entity, we would like to make
a reference to other elements of the coordination layer which are closely
related with interfaces, i.e., links. Links are responsible for component-to-
bus connections and will be described later in this section. Here we only
underscore the fact that each interface port can be equipped with at most
one link in the scope of network. The presence of a link reserves the port
to be used only for interaction with the particular bus. Conversely, if a
particular port has no link assigned, the respective event which is related
with such a port is observable by the environment of the entire network.
This property of a port is an important concept of the network hierarchy.
Therefore, we use the term free port for each port that embodies the property
of having no link assigned.

4.3.3 Component Gate

If we consider a component body S characterised by the set of its observ-
able events denoted obs(S), the way of how these computation observables
are related to ports of the component interface is justified by the notion of
gate. In general, gate can be comprehended as a group of relations which
relate the observable events of the component body to the interface ports.
More precisely, gate is from the structural point of view constituted of a
set of gate mappings of various kind. From the semantical point of view,
gate determines a function, so-called gate function, which takes the set of
component body (white box) observables and according to their mapping
to interface ports it returns observable (black box) events. this way, the
gate function transforms the white box view of a component to the black
box view. The scheme illustrating the gate functionality is depicted in Fig-
ure 4.8.

54 VCN: PRINCIPLES AND FEATURES

black box white boxGATE

y

x

z

y

x

z

obs(INTERFACE):={x?,x!,y?,y!,z?,z!}
obs(BODY):={a?,a!,b?,b!,c?,c!,d?,e?,e!}

obs(INTERFACE):=GATE(obs(BODY))

a?
a!

c? c!

b?

d?

e!
b!

e?

a! −> x!
e!, b! −> y!
c! −> z!

a? −> x?
b?, d? −> y?
c? −> z?

e?,f! −> tau

f!

Figure 4.8: Scheme of gate functionality

In general, the gate function is supposed to embody the following prop-
erties:� many-to-one character — more than one event can be associated to

a particular port, the semantic issues of this property are discussed
below;� event type preservation — input events can be mapped just only to
input ports and output events just only to output ports;� total function — each observable event for which no gate mapping is
defined is supposed to be mapped to � and reflected as an internal
event from the black box viewpoint;� surjective function — each interface port must be targeted by some
gate mapping, this property ensures natural consistency of the inter-
face by requiring all the interface ports to have defined their subtle
meaning.

With respect to VCN hierarchy we have to distinguish two different
cases of how the range of a gate function can be obtained. If the compo-
nent body has form of a leaf then the gate is only a logical entity and has
no graphical representation. Its meaning is direct one-to-one mapping of
observable leaf events to the interface ports provided that each event is re-
named to the name of the target port. Events which are not mapped to any
port are hidden and observed as the � event.

If the component body has form of a network, gate is the key entity
which glues together two different levels of network hierarchy. In this case,
it is worth recalling the fact that observable events of the component body

4.3 ELEMENTARY ENTITIES 55

are inferred from the composition of computation of individual network
components. Since every coordinative behaviour is not observable by the
network environment, all the network observable events can occur only on
free ports. In other words, the set of network observables coincides with the
set of all free ports of that network. Thus, gate has in this case a graphical
representation which is realised by the set of dashed lines connecting free
ports of the lower level network components to ports of the superior inter-
face. A simple example of such a gate is demonstrated in Figure 4.2. There
the gate makes the local server component events request! and return? to
be observable on the interface of the TOPCLIENT component. Names of
both events are preserved in this particular case. Each of the both dashed
lines in the figure represents a particular gate mapping.

As it has been declared in the above mentioned list of gate properties,
gate can contain many-to-one mappings in general. This property is mean-
ingful in situations when the component body has the form of a network.
The purpose of many-to-one gate mapping is to identify free ports of sev-
eral components in the subsidiary network with one particular port of the
superior interface. Such a many-to-one gate mapping has to be consistent
in the sense that for each subsidiary component there can be at most one
free port included in the gate domain. We impose this constraint to prevent
over-complicating of VCN behavioural model. Additionally, with respect
to the event type preserving property, another natural constraint of gate
consistency is that all the ports of a particular gate mapping must be of the
same kind (all either output or input).

To introduce other properties of gate mappings, we have to state before-
hand some specific aspects of the VCN behavioural model. More particu-
larly, three different types of many-to-one gate mappings are distinguished
according to the intended behavioural semantics. The type of a particular
many-to-one gate mapping is determined by the respective symbol inside
the target port semicircle. With respect to the intended behavioural seman-
tics, the possible mapping types can be the following:+ asynchronous gate mapping — the interface-level event is constituted of

just one of the component body events involved,� synchronous gate mapping — the interface-level event is constituted
just of all the component body events involved (occurring simulta-
neously, the interface-level event notifies their synchronisation);[universal gate mapping — the interface-level event is constituted of
maximal nonempty subset of the component body events involved
(events in the particular subset are supposed to occur simultaneously,
the interface-level event notifies their synchronisation – the maximal-
ity of the set ensures that there is no enabled event omitted in the
synchronisation; see the example below for details).

56 VCN: PRINCIPLES AND FEATURES

REG2

x

reset reset

reset

set
out set outout

in HSK

full full

full
x

REG1

Figure 4.9: Examples of synchronous gate mappings

Two examples of the synchronous gate mapping are illustrated in Fig-
ure 4.9, where a network representing a two-place FIFO system is depicted.
Each group of dashed lines leading to the same interface port represents a
particular many-to-one gate mapping. The fact that these mappings are
synchronous is denoted by ’�’ symbol inside the target ports. In this par-
ticular case, there is one input and one output synchronous mapping. Both
mappings are of 2-to-1 character. The input synchronous mapping ensures
relaying of the reset event to both register components. The output map-
ping models the signalling of the global full event just only if both register
components are notifying their fullness by their local full events. To all
appearance, the following event refinement is enforced by the gate in this
example (each event is taken prefixed by the relevant component name to
avoid name conflicts):� REG1:reset � REG2:reset 7! reset – the network reset input event

is refined to synchronous occurrence of the respective reset input
events in both components;� REG1:full�REG2:full 7! full – the network full output event is re-
fined to synchronous occurrence of the respective full output events
in both components.

It is worth noting that synchronous mapping forces synchronisation of
computation in several components in a particular network. Therefore, the
synchronous gate affects the overall network computation.

To overcome possible collisions of source event names in the gate map-
ping from the above mentioned example, all events are annotated by the

4.3 ELEMENTARY ENTITIES 57

relevant component name which is unique in the scope of the network
topology. The technical requirement of having component names unique
in the scope of a network topology would have been too strict and unin-
tuitive for the designer, especially because the component name refers to a
network or a leaf which can form a body of more than one component of
the particular network topology (component reuse). Therefore all compo-
nents in the particular network are implicitly indexed by unique numbers.
Events are then formally annotated by these numbers (see the Definition 5.4
in Chapter 5). However, not to unnecessarily complicate our examples in
this section, herein we will always take the events in gate mappings pre-
fixed by the particular component name and assume unambiguity of com-
ponent names in the scope of a particular network topology.

In Figure 4.10 there are examples of asynchronous gate mappings de-
picted. The figure shows a network representing the server part of a
client/server system. The server part is hierarchically refined by two server
components which back up each other. Asynchronous mapping is deter-
mined by the ’+’ symbol. Similarly to the previous example, there is one
input and one output mapping, both of 2-to-1 character. The input map-
ping allows relaying of the service invocation request to just one of the
servers. The output mapping then relays the result to the server part out-
put port.

invoke

SERVER2SERVER1

return

invoke invoke

return

return

+

+

Figure 4.10: Examples of asynchronous gate mappings

The following event refinement is enforced by the asynchronous map-
ping in this example:

58 VCN: PRINCIPLES AND FEATURES� SERV ER1:invoke 7! invoke or SERV ER2:invoke 7! invoke – the
network invoke input event is refined to either one (and just one) of
the subsidiary components invoke events;� SERV ER1:result 7! result or SERV ER2:result 7! result – the net-
work result output event is refined to either one (and just one) of the
subsidiary components result events.

The key property of the asynchronous mapping is that there is no syn-
chronisation considered. Thus, asynchronous gate mappings do not affect
the overall network computation.

An example of a universal gate mapping is illustrated in Figure 4.12.
There is a network representing a robot production line depicted. All of the
robot components are supposed to fulfil the same task. Moreover, assume
that each robot has two different states distinguished in its computation.
The state-transition diagram describing the robot computation is depicted
in Figure 4.11.

task? ready!

waiting

computing

Figure 4.11: Computation model of the ROBOT component

In the first state, it is in standby mode waiting for task to be received
in terms of the task event. In the second state, it computes the task and
turns back to the standby mode notifying the state change by the ready
event. Every task is expected to be transfered to all the robots which are
ready to compute. To capture this property, the universal input gate map-
ping is employed. By that way, the task event is refined into any possi-
ble synchronous composition of the task events of the three components.
However, if only one of the robots is ready to compute, this composition
is degraded to a single event. Similarly, information about the readiness of
the robots is also manipulated in terms of the universal gate mapping. To
prevent the product line from being inefficiently delayed, the ready event
is accepted simultaneously and atomically from all the robots which have
already finished the task. More precisely, the following event refinement is
enforced by the universal mappings included in this example:� ROBOT1:task 7! task or ROBOT2:task 7! taskROBOT1:task �ROBOT2:task 7! taskROBOT1:task �ROBOT3:task 7! task

4.3 ELEMENTARY ENTITIES 59

task
U

ROBOT1

task

ROBOT2 ROBOT3

tasktask

ready

U
ready

ready ready

Figure 4.12: Examples of universal gate mappingsROBOT2:task �ROBOT3:task 7! taskROBOT1:task �ROBOT2:task �ROBOT3:task 7! task
The network task input event is refined to synchronous occurrence of
the maximal possible (w.r.t. the current situation of individual com-
ponent computation) number of the respective components task in-
put events.� The situation concerning ready event is analogous. The only differ-
ence is that the events considered here are of the output type.

Similarly as synchronous mappings, universal mappings affect the
overall network computation. As it can be seen from the principle de-
scribed above, the intuition of state transition based behavioural model of
component computation is needed to demonstrate the purpose of universal
gate mapping. This notifies that the concept of this kind of gate mapping
is deeply wedded to the behavioural model of VCN.

The aspects of many-to-one gate mappings are generalised and sum-
marised in Table 4.1. In the part marked (1) there is shown the semantics
of asynchronous mapping. In the part (2) and (3) the semantics of syn-
chronous mapping and universal mapping is described, respectively. All
the mappings are shown generalised to arbitrary number of connections
(n-to-1 mapping). The (a) parts of all figures correspond to input mappings
whereas the (b) parts correspond to output mappings.

60 VCN: PRINCIPLES AND FEATURES

C2C1 Cn

r

rnr2r1

+

1a)
fri 7! r k i 2 f1; :::; ngg

C2C1 Cn

w

w1 w2 wn

+

1b)

fwi 7! w k i 2 f1; :::; ngg
C2C1 Cn

r

rnr2r1

x

2a)

Qi2f1;:::;ng ri 7! r
C2C1 Cn

w

w1 w2 wn

x

2b)

Qi2f1;:::;ngwi 7! w
C2C1 Cn

U

r

rnr2r13a)
fQi2I ri 7! r k ; 6= I � f1; :::; ngg

C2C1 Cn

U
w

w1 w2 wn
3b)

fQi2I wi 7! w k ; 6= I � f1; :::; ngg
Table 4.1: Many-to-one gate mapping variants

4.3 ELEMENTARY ENTITIES 61

4.3.4 Bus and Link Elements

As it has been mentioned in Section 4.2.1, VCN networks consist of compo-
nents and buses connected together by links. Here we introduce the notion
of buses and links in detail.

A bus represents some coordination model in a particular place in a
network. From the architectural point of view, buses represent architectural
connectors, and similarly as components they are stand-alone members of
VCN networks. For graphical representation of a bus we use a rectangle
with rounded corners.

Links make the glue layer between components and buses. They are
responsible for creating network topologies of components interconnected
by buses. Each link is represented as a solid line connecting the particular
component interface port with a bus. With respect to the nature of ports,
each link is either input or output according to the type of the relevant port.
To emphasise visually this fact, a small triangle oriented in the respective
direction is placed at the intersection of the link and the bus rectangle. Ar-
bitrary number of links can be connected to a bus, which allows various
components in the network to be coordinated by a single bus. Moreover,
a number of links can be employed to connect a component to a particular
bus. However, links are assumed to satisfy the condition that there can be
at most one link leading from any particular component interface port.

A simple network of two components coordinated by one bus has been
illustrated in Figure 4.1. In that example, the coordination mechanism rep-
resented by the COORD bus is expected to allow two kinds of atomic co-
operations of the SERV ER and CLIENT components:

1. atomic relaying the client request to server (binary handshake),

2. atomic relaying the result from server to client (binary handshake).

In general, a bus can be sensed as a set of all the possible cooperations
which represent the particular coordination mechanism. Each cooperation
has the meaning of atomic multi-synchronisation of actions occurring on
the ports involved in the cooperation. A cooperation is defined as a set of
particular component ports which are linked to the respective bus. In other
words, each cooperation consists of a subset of output ports and a subset
of input ports. To describe cooperations in a well arranged way we use the
syntax of the formhset of output ports=set of input portsi:
The left side of the cooperation is called input section and the right side is
called output section. The following two cooperations express the COORD
bus from the above mentioned example:

62 VCN: PRINCIPLES AND FEATURES

1. request=invoke
2. result=return

SERVER

return

invokerequest
COORD

result

CLIENT1

CLIENT2

request result

Figure 4.13: Example of multi-synchronisation bus

To demonstrate a more complicated example of a bus, let us extend the
previous example to a network topology of two clients cooperating with a
server. The resulting network is depicted in Figure 4.13. The server com-
putation is expected not to care about the identification of the clients. In
this cooperation protocol it is in competence of each client component to
determine if the result replied back belongs to it or not. More specifically,
both clients receive the result whenever it is sent (in terms of atomic multi-
synchronisation) and each of them decides whether to accept it or ignore.
The COORD bus can be now extended to handle such cooperation. Sim-
ilarly to the gate descriptions, we take each port prefixed by the respec-
tive component name to avoid name conflicts. All the cooperations of theCOORD bus are now the following:

1. relaying the first client request to the server (binary handshake)CLIENT1:request=SERVER:invoke
2. relaying the second client request to the server (binary handshake)CLIENT2:request=SERVER:invoke
3. broadcasting the result to both clients (multi-synchronisation)SERVER:return=CLIENT1:result; CLIENT2:result
In general, a bus is determined by an arbitrary finite set of cooperations.

Cooperations of the particular bus contain ports of components connected
to the bus. The topology of a bus and all the components directly connected
to it by links is called star topology. To overcome possible collisions of port
names in a particular cooperation, all ports in cooperations from the exam-
ple above are annotated by the relevant component name which is unique

4.3 ELEMENTARY ENTITIES 63

in the scope of the particular star topology. As we have already noted in
the previous subsection, the technical requirement of having component
names unique in the scope of a network topology would be too strict and
therefore all components in the particular network are implicitly indexed
by unique numbers. Ports in cooperations are exactly annotated by these
numbers (for details see Definition 5.2 in Chapter 5). However, for the same
simplification reasons as in the case of gates, for the purpose of this chapter
we will always consider the ports in cooperations prefixed by the particu-
lar component name and assume unambiguity of component names in the
scope of a particular star topology.

To describe the notion of cooperation in more detail, we focus on its re-
lationship with observable component events at first. Then, with respect
to this relationship, we declare the required properties of cooperations.
The relationship of a cooperation with the relevant events occurring on the
linked ports has the character of mutual matching. The meaning of this
matching is that a cooperation, in order to be performed, has to satisfy a
particular set of conditions. Especially, we say that the set of component
events matches the cooperation if all the output events from the set match
the input section (output component ports) of the cooperation and the all
input events from the set match the output section (input component ports)
of the cooperation. The set of component events taken into account is as-
sumed to be just the set of all component events of the star topology which
are enabled in the particular state of the respective component computation.
An event is enabled in a particular computation state if there is some rele-
vant action offered to be performed in the next step of the respective com-
ponent computation. The sense of a cooperation is atomic synchronisation
of actions of all the events involved. Naturally, such an atomic synchro-
nisation is supposed to be an internal system action unobservable by the
environment. But what events can exactly match a particular cooperation?
In Figure 4.14 there is a network topology of two producing and three con-
suming components depicted. The purpose of the COORD bus is to atom-
ically communicate the content of one of the put events to all producers
prepared for receiving it. In other words, it is a multicasting coordination
mechanism — a weak variant of broadcast in which not all consumers must
necessarily receive the information, but only the maximal prepared group
of them has to do so. In Table 4.2 there are all the cooperations defined byCOORD bus listed in the left column. In the right column, all the possible
sets of component events are shown. Each component set matches just the
cooperation on the same line. In next paragraphs we discuss the details of
the cooperation matching.

The first requirement (completeness) of cooperation matching is that the
cooperation must be complete, so that on each port which appear in the
cooperation there must occur a relevant component event. Thus, all ports
forming the cooperation must be exactly involved in synchronisation. The

64 VCN: PRINCIPLES AND FEATURES

P1 put

P2

C1get

get

C2
get

COORD

C3
put

Figure 4.14: Example of a multicasting bus

Cooperations of COORD Sets of enabled component eventsP1:put=C1:get fP1:put!; C1:get?gP1:put=C2:get fP1:put!; C2:get?gP1:put=C3:get fP1:put!; C3:get?gP1:put=C1:get; C2:get fP1:put!; C1:get?; C2:get?gP1:put=C1:get; C3:get fP1:put!; C1:get?; C3:get?gP1:put=C2:get; C3:get fP1:put!; C2:get?; C3:get?gP1:put=C1:get; C2:get; C3:get fP1:put!; C1:get?; C2:get?; C3:get?gP2:put=C1:get fP2:put!; C1:get?gP2:put=C2:get fP2:put!; C2:get?gP2:put=C3:get fP2:put!; C3:get?gP2:put=C1:get; C2:get fP2:put!; C1:get?; C2:get?gP2:put=C1:get; C3:get fP2:put!; C1:get?; C3:get?gP2:put=C2:get; C3:get fP2:put!; C2:get?; C3:get?gP2:put=C1:get; C2:get; C3:get fP2:put!; C1:get?; C2:get?; C3:get?g
Table 4.2: Multicasting cooperations and the matching component events

second requirement (consistency) limits the number of component ports in-
volved in a cooperation to at most one port per each component. The
last requirement (maximality) deals with limiting of possible nondetermin-
ism in choosing the particular cooperation if there is more than one which
matches a specific set of component events (i.e., all satisfy both of the re-
quirements above). We require the cooperation containing maximal num-
ber of involved events to be chosen. In our example, if we take into ac-
count the set of events fP1:put; C1:get; C2:get; C3:getg, the only coopera-
tion which is matched by this set is P1:get=C1:get; C2:get; C3:get. None of
the cooperations placed above this one in the table can be chosen. Thus
the nondeterminism of coordination matching is limited just to the set of
maximal cooperations w.r.t. the particular set of events. It is worth noting
that no other synchronisation than listed in Table 4.2 can be performed in
our example.

4.3 ELEMENTARY ENTITIES 65

With respect to the requirements above, we conclude claiming that in
VCN each cooperation has to satisfy the following properties:� atomicity — each cooperation is sensed as an uninterruptible discrete

event,� completeness — all ports in the cooperation are exactly involved in the
relevant synchronisation (there is some action occurring on each of
these ports),� closeness — each cooperation is treated as an internal � -action unob-
servable by the environment of the network topology involved in the
cooperation,� consistency — in each cooperation at most one port of a particular
component can appear,� maximality — the maximal cooperation is chosen for the particular set
of enabled component events.

The character of coordination models from the above mentioned exam-
ples is similar in its nature to coordinative aspects of gates introduced in
previous subsection. In Figure 4.15 it is shown how cooperations of buses
from the previous examples can be visualized as groups of internal lines
connecting the inputs of a bus to its outputs.

1. The first bus is the COORD bus from Figure 4.1. Here the dashed
line represents the request=invoke cooperation and the solid line thereturn=result cooperation.

2. The COORD bus from Figure 4.13 is depicted as the second
bus. The dashed lines joined by the ’+’ connector represent theCLIENT1:request=SERVER:invokeand CLIENT2:request=SERVER:invoke
cooperations.

The solid lines joined by the ’�’ connector represent theSERVER:return=CLIENT1:result; CLIENT2:result cooperation.

3. The third bus is the multicasting bus taken from Figure 4.14. The
dashed ’[’-joined group of lines corresponds to the set of coopera-
tions from the first line of Table 4.2 and similarly the group of solid
lines corresponds to the second line of the table.

In all the examples above, the COORD bus models passive coordina-
tion. In other words, it is in competence of component computation to
implement the protocol of correct cooperation. To allow modelling of pro-
tocol cooperation completely in competence of buses, their expressiveness
must be extended with sufficient behavioural logic. To this end, sets of

66 VCN: PRINCIPLES AND FEATURES

1. 2. 3.

U

U+

x

Figure 4.15: Schemes of three different versions of the COORD bus

cooperations can be extended with state-transition control (see Chapter 7
for details). This way, buses which model complex protocols (active co-
ordination models) of component cooperation can be defined. Moreover,
asynchronous coordination models (buffers) can be also modelled. How-
ever, in this chapter we abstract from the coordinative dynamism and treat
buses just as static sets of cooperations. This abstraction allows us to in-
troduce structural aspects of VCN without dealing with details related to
behavioural aspects, which form the other dimension of VCN semantics.

Finally, we would like to highlight heterogeneity of the coordination
framework presented here. In the context of a particular network, several
buses of different coordination models can be employed. This possibility
allows to mix different coordination mechanisms at level of a single net-
work. In other words, each level of coordination layer in network hierar-
chy can be heterogeneous with respect to a variety of coordination models
employed.

It is also worth noting that in our setting buses and links are allowed to
interconnect components only at a single level of network hierarchy. The
decision why we define buses in such a way is based on the intention of
component-based architectural description methodology to enable the de-
sign and its analysis to be compositional. To capture this intention, we
separate the notions of inner-level (horizontal) and inter-level (vertical) co-
ordination in our hierarchical formalism. Inner-level connections are re-
alised by a very complex notion of buses while inter-level connections are
captured by gates incorporating only simple models of coordination as it
has been described in previous subsection. On the one hand, such a setting
simplifies definition of compositional behavioural model for VCN, and on
the other hand, it goes well with the intuition of hierarchical architectural
design.

Notes on Value-passing Interaction

Throughout the thesis we deal with a version of VCN language which ab-
stracts from passing of values during component interaction. However, the

4.3 ELEMENTARY ENTITIES 67

semantics of buses is defined in such a way that the value-passing feature
can be easily added. This can be realized similarly as in value-passing ver-
sions of CCS [Mil89] or CSP [Hoa85]. In particular, an input value variable
can be added to every input event occurrence and each output event can
be equipped with some particular value. Semantics of cooperations can be
then lifted to allow assignment of output values to particular input vari-
ables.

4.3.5 Bus Classes and Link Ranks

For buses representing common coordination primitives such as hand-
shake or broadcast, and also for some complicated coordination models
which are typically reused throughout the design, VCN offers a general
bus specification method. More particularly, VCN provides the concept
based on the idea of a general template, so-called bus class, which rep-
resents a particular coordination model (e.g., handshake, broadcast, . . .).
Such a template is general in the sense that it is not fixed to a concrete set
of input and output ports. From the template, particular bus cooperations
can be automatically generated for concrete cases of network topologies.

To illustrate the intuition of bus classes, let us revisit the example of a
network from Figure 4.9 representing a FIFO component. It contains two
registers which communicate by handshake. Instead of direct specification
of the HSK bus by declaring the set of respective cooperations including
just the REG1:out=REG2:in cooperation, the bus can be determined by setting
of its class. In this case, the handshake class, denoted BHSK, is applied. If
the class is properly defined then all the designer has to do in order to add
the hand-shake coordination model to the design is to instantiate the bus
class. In the next paragraph, we focus just on the principle of bus classes
and their instantiation.

In general, a bus class is defined with two parameters — the set of re-
lated output component ports and the set of related input component ports.
Because the output component ports are viewed as inputs to the bus, we
denote In the set of related output component ports (set of bus inputs).
Analogously, the set of related input component ports (set of bus outputs)
is denoted Out. Now with respect to these parameters the bus class can be
defined by a constraint of these parameters and a predicate characterising
the relevant cooperations. The predicate is typically quantified over the
both parameters. In our example, the handshake bus class BHSK(In; Out)
has the following form:� In; Out 6= ;� 8i 2 In; o 2 Out : i=o 2 BHSK
In similar way, bus classes for some other common coordination primitives
are shown in Table 4.3.

68 VCN: PRINCIPLES AND FEATURES

Broadcast MulticastBBCST(In; Out) :=� In; Out 6= ;� 8i 2 In : i=Out 2 BBCST BMCST(In; Out) :=� In; Out 6= ;� 8i 2 In; O � Out; O 6= ; :i=O 2 BMCST
Table 4.3: Bus classes for synchronous broadcast and multicast

The bus classes mentioned above, if used in settings of greater number
of ports, lead to buses with high number of cooperations. For example,
the class of handshake buses will generate the bus depicted in Figure 4.16
for two input and two output ports (if we assume all the bus outputs and
inputs to be of different components).

Figure 4.16: Cooperations of the four port bus generated from BHSK class

To allow the principle of bus classes to be used for generating of buses
such as the first COORD bus in Figure 4.15, some general mechanism of
marking of bus inputs and outputs has to be added. Therefore, we intro-
duce the notion of link ranks. Any link can be optionally provided with a
natural number identifying the link rank. In our example of the handshake
bus with two input and two output ports we can rank each of its links. The
relevant network extended with link ranks is depicted in Figure 4.17.

CLIENT SERVER

return

invokerequest

result

COORD

1 1

2 2

Figure 4.17: Example of a network with ranked links

The In and Out parameters of bus classes are now extended with a rank
function. Rank function returns for each bus input or output the rank num-
ber of the respective link. We denote the rank of a specific port p as rank(p).

4.3 ELEMENTARY ENTITIES 69

The handshake bus class can be now extended to the version which coop-
erates only the pairs of events occurring on ports of the same rank. The rel-
evant definition of the bus class BHSK(In; Out; rank) can be now extended
with a rank constraint:� In; Out 6= ;� 8i 2 In; o 2 Out : i=o 2 BHSK ^ rank(i) = rank(o)

In general, we assume that the bus class with a rank constraint can be
applied only if each link of the particular bus has a rank defined.

Now if we apply the extension of the bus class BHSK defined above to
specification of the four port COORD bus from our example, the bus will
contain the cooperations as depicted in Figure 4.18.

1

22

1

Figure 4.18: Bus specified by the handshake class with a rank constraint

Bus Class Specification Language

All bus classes mentioned above were defined by universal quantification
which ranged over the particular set of bus input (resp. output) ports.
Moreover, in the predicate of the multicast bus class there appeared an
universal quantifier which ranged over subsets of the set of bus outputs.
In order to make specification of bus classes simpler and encodeable into
comprehensible ASCII text files, we define the so-called bus class specifi-
cation language (see Definition 6.5 in Chapter 6) in which we fix a simple
syntax of predicates, i.e., we make universal quantifiers implicit. Hence the
universal quantification is omitted in predicates specified in the bus class
specification language. In Table 4.4 there are all the above-mentioned bus
classes shown encoded using the bus class specification language.

A predicate is represented in the bus specification language as a list of
so-called cooperation patterns. Each cooperation pattern consists of an in-
put section (in front of the slash) and an output section (behind the slash).
The input section contains a list of mutually different bus input variables,
so-called input handles, each of which is implicitly quantified over the setIn. Similarly, the output section is represented as a list of bus output vari-
ables, so-called output handles, each of which is quantified over the set Out.
There is a special constant ’all’ which can be used in the input (or output)

70 VCN: PRINCIPLES AND FEATURES

Binary Handshake Ranked Binary HandshakeBBCST(In; Out) := fIn; Out 6= ;i=og
BMCST(In; Out; rank) := fIn; Out; rank 6= ;i=o ^ rank(i) = rank(o)g

Broadcast MulticastBBCST(In; Out) := fIn; Out 6= ;i=allg
BMCST(In; Out) := fIn; Out 6= ;i=�allg

Table 4.4: Bus classes specified using the bus class specification language

section to denote the list of all bus inputs (resp. outputs) included in In
(resp. Out). The operator ’�’ placed behind the slash denotes a so-called
right universal unfolding operator which expands the respective cooperation
pattern for all non-empty subsets of the output section. Similarly, the sym-
metric left universal unfolding operator ’�’ placed in front of the slash can
be used for expansion of the input section provided that both unfolding
operators can be combined in a particular cooperation pattern.

To conclude the summary of bus specification language features, we
have to emphasize that cooperation patterns can be additionally equipped
with so-called memory handles which introduce memory manipulation oper-
ations. This allows specification of buses equipped with internal memory,
i.e., asynchronous kinds of coordination models can be specified in terms
of such extended bus class specifications.

Chapter 5

VCN: Structure

In this chapter we focus on definition of the structural part of VCN – the
formal representation of VCN networks realised in the language of struc-
tural terms.

5.1 Formal Representation

The goal of this section is to establish formal representation of the visual
notation of networks introduced in previous chapters. To this end, the the-
ory of VCN structural terms is developed. Structural terms give the VCN
graphical notation unambiguous semantics defined in terms of sets, rela-
tions, and other elementary notions of set theory. We prefer this approach
to abstract data type based formalisation. The reason for that lies in the
fact that notions of the set theory fit well the nature and richness of VCN
syntactic constructs without unnecessary complicating the formalisation.

5.1.1 Components, Interfaces, and Gates

As it has been mentioned in the previous section, each component is de-
termined by its interface, body, and gate. Component interface consists of
ports. Each component body is characterised by its alphabet — the set of
events the component can engage in during its computation. Gate relates a
body of a particular component to the component interface. The compo-
nent body can be a leaf, in the case of a primitive component, or a network
of sub-components, in the case of compound component.

We begin with definition of basic notions and we also establish the ele-
mentary notation of the VCN theory.

72 VCN: STRUCTURE

Ports

First of all we present formal definition of ports. Each port is given by its
label and type (input or output port). Conceptually, we fix a countable set
of labels and on its basis we define two countable sets globally representing
inexhaustible repositories of ports of both kinds.

Definition 5.1 Fix L a countable set of labels and assume � =2 L. Define ports

as members of the set P df= L � fin; outg. Further define projections of P , the set

of output ports W df= fp 2 P k p = hl; outi; l 2 Lg, and the set of input portsR df= fp 2 P k p = hl; ini; l 2 Lg.

As it has been mentioned in the previous section, by reason of avoid-
ing ambiguity of port labels in the scope of network, we annotate each port
with an index denoting its component whenever it is necessary. We assume
that each component in a network is identified by a unique natural num-
ber. By such annotation, the required port label unambiguity in the scope
of entire network topology is guaranteed. Moreover, unambiguity of port
labels connected to a particular bus is also guaranteed.

Definition 5.2 Define set of annotated ports P℄ df= fhp; ii k p 2 P; i 2 Ng.
Further define the respective projections as sets of annotated output and anno-

tated input ports,W℄ df= fhw; iikw 2 W; i 2 Ng, andR℄ df= fhr; iikr 2 R; i 2Ng.

Notation 5.3 For some i 2 N we denote the respective sets of ports annotated byi in the following way:� P℄i df= fhp; ii k p 2 Pg� W℄i df= fhw; ii k w 2 Wg and R℄i df= fhr; ii k r 2 Rg
Members of the set P are usually represented by symbols p; p1; p2;. . . , mem-

bers of W by w;w1; w2;. . . , and, finally, members of R by r; r1; r2;. . . Note the
important fact that W \ R = ;. By the notation p℄i for some i 2 N we meanhp; ii 2 P℄. Thus an input port r 2 R annotated by i 2 N is denoted r℄i . Anno-
tated output ports are denoted in the same way. Whenever the annotation numberi is not important to be specified in a particular context for an annotated port p℄i ,
we omit the upper index ’℄i’ and write simply ’p’.

For a specific set of all (unannotated) ports P � P , the set of all these ports
additionally annotated by i 2 N is denoted P ℄i . For all annotation numbers the

notation P ℄, P ℄ df= Si2N P ℄i , is used.

5.1 FORMAL REPRESENTATION 73

Events

Ports are related with another elementary notion of VCN — events. Ports
represent a structural (syntactical) notion whereas events represent a be-
havioural (semantical) notion. The relation between a port and an event
is depicted in Figure 5.1. A port is a place in the component architecture

Port Event Action

0..1 1..* 1 0..*

Figure 5.1: Relations between ports and events

where specific group of events (determined by a particular gate mapping)
can occur. The difference between the term “event” and the term “event
occurrence” is treated by the notion of “action”. Wherever it is important
to take such a slight distinction into account, the term “action” is used to
refer an event occurrence. Each event can be observed on a particular port
of a component only if it is related with that port by gate. Intuitive meaning
of an event is atomic transmission/reception of some piece of information
to/from the particular port. More specifically, events are atomic elements
of component computation responsible for transmitting a value (a signal
level change) to the component environment, or receiving a value (a signal
level change) from the component environment. To simplify the defini-
tions, we abstract from value passing feature of events. In such an abstract
setting, an event occurrence means an action of sending or receiving a sig-
nal. Moreover, we define a specific untyped event denoted � which is used
to handle internal computation actions.

Formally, each event is determined by its label and type (input and out-
put) in the similar way like a port. In consequence, in the following def-
inition we establish inexhaustible repositories of input and output events.
They differ from ports only in their notation. Input and output events are
determined by a label followed by the symbol ’?’ and ’!’, respectively. We
also define annotation of events by natural numbers. Event annotation has
the meaning of unambiguous marking of events occurring in different com-
ponents in a particular network. This way, conflicts of event labels in the
scope of a network are avoided. We will use event annotation whenever
such conflicts can potentially arise.

Definition 5.4 Define EW df= fw! k w 2 Lg the set of output events and ER df=fr? k r 2 Lg the set of input events. Further define the set of all events as the

countable set E df= EW [ER [f�g.

74 VCN: STRUCTURE

For a particular set of ports P � P , the set of events homonymous with

ports in P is denoted E(P) and defined E(P) df= fw! k hw; outi 2 Pg [fr? k hr; ini 2 Pg.

Define the set of annotated events E ℄ df= fhe; ii k e 2 E n f�g; i 2 Ng.
For some i 2 N the set of all events annotated by i is denoted E ℄i and definedE ℄i df= fhe; iike 2 E n f�gg.

Sets of annotated output events and annotated input events are denoted
in similar way as unannotated versions, analogously to its port counterparts.

Finally, for a particular set of annotated ports P � P℄, the set of annotated
events homonymous with annotated ports in P is denoted E ℄(P) and definedE ℄(P) df= fhw!; ii k hhw; outi; ii 2 Pg [fhr?; ii k hhr; ini; ii 2 Pg.

Note 5.5 Note that the internal event ’� ’ is not included in the repository of an-
notated events. The reason for that is based on the intuition of higher-level sense
of annotated events w.r.t. VCN hierarchy. In particular, the meaning of � -events
is explicit at the level of leaves whereas at higher levels it is solely implicit (denot-
ing multisynchronization). Therefore we treat � -events separately from observable
annotated events to handle their exclusiveness.

Notation 5.6 For a particular set of unannotated events E � E such that � =2 E,

the set of these events annotated by i 2 N is denoted E℄i , E℄i df= fe℄i k e 2 Eg.
To avoid over-complicating of future definitions, we consider a special kind

of annotation, the 0-annotation, to handle events for which the annotation is not
necessary but technically required due to syntactic reasons. Formally, denote E ℄0
the following set of annotated events, E ℄0 = fe℄0 k e 2 E n f�gg.

Component Interface

A component interface is determined by a group of ports. Each port can be
assigned to a particular role in the context of an interface. Relations among
all component elements are illustrated in Figure 5.2.

Notation 5.7 Denote Roles a countable set of roles. The members of this set are
denoted �1, �2, . . .

Definition 5.8 Define (component) interface I as a pair hP; %i, P 6= ; of finite
set of ports P � P and a role mapping % : P ! Roles, satisfying either one of the
following conditions:� for all p 2 P %(p) is defined� for all p 2 P %(p) is undefined (%(p) = ?).

Notation 5.9 For interface I = hP; %i we denote ports(I) the set of its ports,ports(I) df= P , and role(I) its role mapping function, role(I) df= %.

5.1 FORMAL REPRESENTATION 75

Interface Role
0..*

Port

1..*

0..1

1..*

Figure 5.2: Relationships among interfaces, roles, and ports

Component Body

The main functional part of a component is its body. Component body is a
logical element which is represented either by a leaf or a network. The com-
mon characteristic property which determines component body in both
cases is the finite alphabet of events which the component can perform dur-
ing its computation.

The most basic form of a component body is a leaf. Every leaf is sup-
posed to represent a model or an implementation of a computational unit
(e.g, a reactive program). In particular, that can be any structure which
gives semantics to events in terms of actions occurring in discrete time in-
stants during computation. For example, it can be either some abstract
logic specification (e.g., a formula of a temporal logic) or some operational
model (e.g., a state-transition system). In this thesis we focus on the latter
case, which is treated in Chapter 7. The alphabet of a particular leaf is given
as a finite set of all events which can occur during the leaf computation.

An important fact concerning the component body alphabet is annota-
tion of events. Event annotation is crucial in the case when the component
body is represented by a network. In the case of a leaf component body, no
event annotation is necessary. However, to keep the notion of component
body alphabet uniform, we assume events of leaf alphabet to be implicitly
annotated by 0 (w.r.t. Notation 5.6).

Definition 5.10 For each component body S denote �(S) its alphabet, defined
as a finite set of (annotated) events �(S) � E ℄ and satisfying:� If S is a leaf then �(S) � E ℄0 .� If S is a network then �(S) � E ℄ n E ℄0 .

76 VCN: STRUCTURE

Notation 5.11 The set of all leaves is denoted Leaves.
The more complicated form of a component body is network. We refer

the reader to Section 5.1.4, where the notion of network and its alphabet is
defined.

Gate

Another element of a component structure is a gate. As it has been ex-
plained in Section 4.3.3, gate makes the glue layer. It relates the white box
view of the component (body) with its black box view (interface). Gate
has the meaning of a function, so called gate function, which for events ob-
servable at the component body level (white box event) returns specific
events at the interface level (black box events). The gate function can also
hide some component body events by mapping them to the unobservable� event. Formally, the gate function is defined as a set of gate mappings,
each of which can be additionally equipped with information about its
type. Gate mappings provide a formal representation of dashed lines —
the graphical notation of gates. In the following definition, the notions of
gate, gate mapping, gate mapping type, and gate function are established.

Notation 5.12 For an arbitrary set X we denote kXk its cardinality.

Definition 5.13 Let I a component interface, p 2 ports(I)
its port, and S a component body. A gate mapping g
of the body S to the port p is a partial function g,g : �(S)! fpg, satisfying:� 8e 2 �(S) : e 2 EW ℄ , p 2 W (5.1)� 9e 2 �(S) : g(e) = p (5.2)� If for some i 2 N there exists e℄i 2 dom(g) then (5.3)8e0℄i 2 dom(g); e0℄i 6= e℄i : g(e0℄i) is not de�ned:� If S 2 Leaves then kdom(g)k = 1: (5.4)

For gate mapping g we denote type(g) 2 f+;�;[;?g its gate mapping
type.

Define a gate G relating the body S to the interface I as a pair G df=hmapG; typeGi of a nonempty finite set mapG of gate mappings and a functiontypeG determining type of each mapping, all satisfying the following conditions:� For each g 2mapG:

– If kdom(g)k = 1 then typeG(g) = ?.

– If kdom(g)k > 1 then typeG(g) 6= ?.

5.1 FORMAL REPRESENTATION 77� For each p 2 ports(I):9g 2 mapG : g�1(p) 6= ; ^ 8g0 2 mapG; g0 6= g : g0�1(p) = ; (5.5)� For all e 2 �(S) either one of the following conditions holds:9g 2 mapG : g(e) def: ^ 8g0 2 mapG; g0 6= g : g0(e) not def: (5.6)8g 2 mapG : g(e) not def: (5.7)

Finally, for a gate G relating the body S to the interface I define a gate func-
tion gateG as a function gateG : �(S) ! E defined for each e 2 �(S) by the
following equations:� gateG(e) = g(e) if g 2mapG such that g(e) = p for some p 2 ports(I);� gateG(e) = � , otherwise.

Additionally, in the former case we denote type(gateG(e)) the type of the par-

ticular mapping g, type(gateG(e)) df= typeG(g). In the latter case, we declaretype(gateG(e)) df= ?.

Notation 5.14 The set of all gates is denoted Gates.
The condition (5.1) in the above-mentioned definition states formally

the event type preservation requirement introduced in Section 4.3.3. The
condition (5.2) ensures that a gate mapping cannot be an empty function
and the condition (5.3) guarantees a gate mapping not to be defined si-
multaneously for any two different events of one sub-component in the
component body. The condition (5.4) requires a gate mapping to be of the
one-to-one kind in the case when the body is a leaf. The requirement on the
types of gate mappings in a particular gate declares that each many-to-one
mapping must be of nontrivial type. The condition (5.5) ensures surjectiv-
ity of the gate function. Conditions (5.6) and (5.7) guarantee correctness
of a gate mapping function provided that for each component body event
there can be at most one gate mapping defined. The gate function which
is generated from a gate is a total function and for each component body
event for which no gate mapping is defined the gate function returns the
internal � -event.

Lemma 5.15 For each gate G the gate function gateG is correctly defined. More-
over, it is a surjective and total function.

Proof:

Let G be a gate relating the body S with the interface I . Surjectivity
follows obviously from the condition (5.5). The totality is achieved directly
in the definition of gateG function.

78 VCN: STRUCTURE

Correctness:

It has to be proved that 8e1; e2 2 gateG: e1 = e2) gateG(e1) =gateG(e2): We follow the proof by contradiction.
Assume e1 = e2, and claim by contradiction gateG(e1) 6= gateG(e2). Ap-

plying the prescription of gateG from definition 5.13 we get the following
two cases:� gateG(e1) = g(e1) for some g 2 mapG such that g(e1) = p for somep 2 ports(I), and gateG(e2) = g0(e2) for some g0 2 mapG such thatg0(e2) = p for some p 2 ports(I).

In this case, g; g0 2 mapG must be both defined for the same evente1 = e2. By conditions (5.6) and (5.7) such a situation cannot arise.
Hence we have a contradiction.� gateG(e1) = � and gateG(e2) = �
Here the contradiction arises directly. 2

Note that ports are considered annotated in the domain of gate map-
pings. The reason for that is to avoid any conflicts of event labels if the
component body is a network. In such a situation a many-to-one gate map-
ping may be employed. Especially, two or more ports of the same label, but
of different components, can be included in the domain of the gate map-
ping. By annotation it is guaranteed that the gated ports (and respective
events) have mutually different labels.

If the component body is a leaf then annotation of its events is not nec-
essary. However, to simplify definitions we do not treat this situation dif-
ferently. As we have stated above (Definition 5.10), we assume a homoge-
neous 0-annotation of all leaf events in the context of a component body.
Moreover, this fact enables us to use the following notation.

Notation 5.16 Let S 2 Leaves a leaf. Further let G a gate of an arbitrary com-
ponent C = hS; I;Gi which contains S as its component body. For any evente℄0 2 �(S) we use the notation gateG(e) to abbreviate the application of a gate
function to a 0-annotated event in the following way:gateG(e) = p df, gateG(e℄0) = p
Such abbreviation is absolutely correct and does not violate any sugges-
tions declared in Section 4.3.3 because the 0-annotation realises nothing
more than one-to-one renaming of all the observable leaf events. Accord-
ing to these facts and the requirement 5.4 of definition 5.13, the notion of
gate in the case of a leaf component body considers only one-to-one gate
mappings of the type ?.

5.1 FORMAL REPRESENTATION 79

Component

Finally we formalise the component — the logical element which groups to-
gether component body, interface, and gate. Relationships among these
notions have one-to-one character, as it is illustrated in Figure 5.3. Com-
ponent structure is formally captured in the form of so-called component
structural term.

Component Interface

Gate

Body

white box black box

Figure 5.3: Relationships between a component and its parts

Definition 5.17 Define a component structural term C as a tuple C df=hS; I;Gi where� S is a component body.� I is a component interface.� G is a gate relating the body S to the interface I .

Define the white box view of component C , denoted wbox(C), as the al-

phabet consisting of events observable in the component body, wbox(C) df= �(S).
Finally, define the black box view of component C , denoted bbox(C), as the

alphabet of events observable on the interface bbox(C) df= gateG(wbox(C)).
Notation 5.18 LetCTst denote the set of all component terms.

Let hC1; :::; Cni be a tuple of component terms for some n 2 N . Denoteports(hC1; :::; Cni) � P℄ the set of all ports of all components of the tuple,ports(hhS1; I1; G1i; :::; hSn; In; Gnii) df= Sni=1 ports(Ii)℄i .
For a component C � hS; I;Gi denote I(C) df= I its interface.

80 VCN: STRUCTURE

5.1.2 Buses and Links

In this subsection, we formalise the notion of buses and links. As it has been
mentioned in Section 4.3.5, buses are key elements of network construction,
i.e., they make counterparts of components. Relations among all network
construction elements are depicted in Figure 5.4.

Component Port Link Bus

1..*0..11..*

by interface

Figure 5.4: Relationships among buses, links, ports and components

First of all, we define the notion of cooperation. A cooperation represents
a fundamental entity on which the notion of bus is based.

Definition 5.19 Let W ℄ � W℄ and R℄ � R℄ finite set of ports. Define coopera-
tion as the pair hW ℄; R℄i, denoted hW ℄=R℄i, satisfying:8i; j 2 N : p1℄i ; p2℄j 2W ℄ [R℄) i 6= j (5.8)

The sets W ℄ and R℄ are called input and output section of the cooperation,
respectively.

We say that a port p is included in the cooperation := hW ℄=R℄i, and
write p 2 , if either p 2 W ℄ or p 2 R℄. The set of all cooperations is denotedCoops, Coops df= 2W℄�n � 2R℄�n .

In general, either of both sections in the cooperation is allowed to be
empty. The condition (5.8) is important to achieve consistency of coopera-
tions and simplifies the definition of semantics (see Section 7.2.5 of Chap-
ter 7). The nature of this property goes with the aim that we would like
to avoid of specifications which allow more than one action of a particular
component to be coordinated by some cooperation atomically in just one
computation step.

The following definition characterizes the notion of buses.

Definition 5.20 Assume Buses denotes a countable set of all buses. Members ofBuses are typically denoted B;B1; B2;. . .
Let B 2 Buses a bus. Define set of cooperations characterizing the

bus B, denoted oop(B), as an arbitrary finite set of cooperations, oop(B) �Coops; oop(B) 6= ;.

Input of the bus B is denoted In(B) and defined In(B) df=SfW ℄ k hW ℄=R℄i 2 oop(B)g. Similarly, output of the bus B is denotedOut(B) and defined Out(B) df= SfR℄ k hW ℄=R℄i 2 oop(B)g.

5.1 FORMAL REPRESENTATION 81

In the following definition we formalize the notion of links.

Definition 5.21 Define the link relation L as the relation L � P℄ � Buses sat-
isfying for each B 2 Buses each of the following conditions:8i; j 2 N ; p1℄i ; p2℄j 2 P℄:hp1℄i ; Bi 2 L^hp2℄j ; Bi 2 L) p1 6= p2_i 6= j (5.9)8p 2 P℄: hp;Bi 2 L) 9 2 B: p 2 8w 2 W℄: w 2 In(B)) hw;Bi 2 L (5.10)8r 2 R℄: r 2 Out(B)) hr;Bi 2 L

Members of some link relation L are called links. The set of all link relations is
denoted Links. Furthermore, for any B 2 Buses and any L 2 Links the set of all
its links is denoted links(B;L) and defined by the following construction:links(B;L) df= fl k 9p 2 P℄: l = hp;Bi 2 Lg:

The condition (5.9) in the definition above ensures that at most one link
can be defined for a particular component interface port. The set of con-
ditions (5.10) guarantees consistency of embedding a particular bus into a
particular link relation. More precisely, all the ports linked to a particular
bus must be reflected by some cooperation and for each port of any coop-
eration of a particular bus there must be a link between the bus and that
port.

Notation 5.22 For a particular link l 2 L of some link relation L we denote its

port as port(l) df= p; l � hp;Bi, where B 2 Buses. Moreover, for a given link
relation L the set of ports of all links of a particular bus B is denoted ports(B),ports(B) df= fport(l) k l 2 links(B;L)g.

For a particular bus B, a component C and a link relation L we de-
note Llinks(B;C) the set of all links connecting ports of I(C) to the bus B,Llinks(B;C) df= fl 2 L k l � hp;Bi; p 2 ports(I(C))g.

The key requirement imposed on ports as a precondition of hierarchical
connection of ports to a higher-level component interface states that no link
can be assigned to lower-level ports involved in such a vertical connection.
The following definition treats this property of ports formally.

Definition 5.23 Let Ci = hSi; Ii; Gii a component term for some i > 0 and letL 2 Links a link relation. We say that the port p 2 ports(Ii) is a free port w.r.t.L if and only if for every bus B 2 Buses it holds that hp℄i ; Bi =2 L.
Denote freeports(Ci; L) the set of all free ports of the component Ci w.r.t. L.
For a tuple of component terms hC1; C2; :::; Cni for some n 2 N , denotefreeports(hC1; C2; :::; Cni) � P℄ the set of free ports of all components in the

tuple w.r.t. L:freeports(hC1; C2; :::; Cni; L) df= [i2f1;:::;ng freeports(Ci; L)℄i

82 VCN: STRUCTURE

5.1.3 Link Ranking

To extent cooperations with an abstract port addressing mechanism, the
notion of link ranking has been introduced. The goal of link ranking is al-
ternative identification of a port in the context of a network topology. The
identification by ranks is totally independent of identification by port la-
bels. This independence is crucial. A link rank determines specific meaning
of a port notifying a bus about how the port should be treated in a cooper-
ation. By changing a rank of a particular port link in the design, the way
of how the port identifies itself to a bus can be changed. The mechanism of
link ranking is used by special bus classes which are sensitive to ranks.

First of all, we define the notion of link ranking formally. Then we in-
troduce some auxiliary notions which enable us to simplify the use of link
rankings in further definitions.

Definition 5.24 Let L 2 Links be some link relation. Define the link ranking as
a function lrank : L! Rank? which assigns a rank to each link in L, satisfying
the following conditions:

1. 8l 2 L: lrank(l) is defined

2. for any B 2 Buses it holds that either� 8l 2 links(B;L): lrank(l) = ?� or 8l 2 links(B;L): lrank(l) 6= ?.

Notation 5.25 For the given link set L the set of all link rankings which can be
defined for that set is denoted lranks(L). The general set of all link rankings is
denoted Lranks.

To simplify the algorithm for construction of bus class instances (Algo-
rithm 6.18 given in Chapter 6), we introduce a function rankB which for a
each port connected to a particular bus B returns the rank of the respective
link relation.

Definition 5.26 For the particular busB, link relation L, and link ranking lrank
we define the function rankB : In(B) [Out(B) ! Rank? by the following
prescription:rankB(p) df= lrank(l) where l 2 L and port(l) = p.

5.1.4 Networks and Leaves as Structural Terms

Finally we define the language of structural terms which formally represent
static syntax of VCN. More specifically, we define terms representing VCN
networks and leaves.

5.1 FORMAL REPRESENTATION 83

Definition 5.27 For sets of atomic elements Leaves, Gates, Links, Buses, andLranks, introduced in previous definitions, define the set of structural termsTst
as the least set satisfying:

1. A 2 Tst, where A 2 Leaves, and it is called a leaf term.

2. N 2 Tst, if N is a network term defined as a tuple N df= h �C; �B;L; lranki
where� �C = hC1; : : : ; Cni for some n > 0 is a tuple of component terms, for

each i 2 f1; :::; ng, Ci = hSi; Ii; Gii is a component structural term
satisfying:

(a) Si 2 Tst
(b) Gi = hmapG; typeGi a gate in which each mapping g 2 mapG

has the signature g : obs(Si) ! ports(Ii) where obs(Si) is de-
fined in the following way:(i) obs(Si) df= �(Si), if Si 2 Leaves;(ii) obs(h �C; �B;L; lranki) df= E ℄(freeports(�C;L)), otherwise.� �B = hB1; : : : ; Bmi for some m � 0 is a tuple of buses� L 2 Links a link relation satisfyingL � ports(�C)� fBi k i 2 f1; :::;mgg� lrank 2 lranks(L) is a link ranking.

Notation 5.28 Let N = hhC1; ::; Ci; ::; Cni; hB1; :::; Bmi; L; Lranki a net-
work term and let C 0 2 CTst a component. By the notation N [Ci :=C 0℄ denote the network which differs from N only in its ith component, so

that the component Ci is replaced with C 0. Formally, N [Ci := C 0℄ df=hhC1; ::; Ci�1; C 0; Ci+1; ::; Cni; hB1; ::; Bmi; L; Lranki.
Let B0 2 Buses a bus. By the notation N [Bj := B0℄ denote the network term

which differs from N only in its jth bus, so that the bus Bj is replaced with B0.
Formally, N[Bj := B0℄ df= h ~C; hB1; ::; Bj�1; B0; Bj+1; ::; Bmi; L; Lranki.

Further for a network term N denote L(N) its link relation.

Let us discuss reasons why to represent links as an independent no-
tion treated at the same level as buses and components (in the scope of
network). On one hand, the notion of link is by its nature very closed to
the notion of bus, because two different sets of links distinguish any two
buses in a network. In consequence, the first idea was to define a link set
as a part of the bus declaration. However, the set of all links in a network
is naturally very often changed during the system design. In the case of
some link addition or deletion, it would be infeasible to search the network

84 VCN: STRUCTURE

structure to find the relevant bus to change its set of links. To avoid that in-
sufficiency we represent links as an explicit notion and treat them explicitly
in the scope of a network, i.e., at the same level as components and buses.

To ensure that the definition 5.27 of the setTst of structural terms is cor-
rect, we have to prove that Tst is the least fixed point of the inductive con-
struction from the above definition. To capture the construction of Tst, we
define a constructor function F , which realises precisely the definition 5.27.
Afterwards, we prove that Tst is the least fixed point of F .

Definition 5.29 Define a constructor F of VCN structural terms as a functionF : 2Tst ! 2Tst satisfying:

1. F (;) df= fA k A 2 Leavesg
2. For T 6= ; define: F (T) df= (FN Æ FC)(T) [[T 0�T F (T 0)

where� FC : 2Tst ! 2CTst is component constructor

For each T � Tst, T 6= ;:FC(T) df= [S2T fhS; I;Gi 2 CTst k I an interfae ; G a gateg
where each gate G respects the property (b) of the definition 5.27.� FN : 2CTst ! 2Tst is network constructor

For each C � CTst, C 6= ;, define:FN (C) df= [fC1;:::;Cng�Cn�1 fhhC 01; :::; C 0mi; �B;L; lranki km � ng
where

1. For each i 2 f1; :::;mg, C 0i := Cj , for some j 2 f1; :::; ng.

2. For each j 2 f1; :::; ng there exists i 2 f1; :::;mg, C 0i = Cj .
3. �B, L, lrank are arbitrary sets satisfying the relevant properties stated

in definition 5.27.

Lemma 5.30 The constructor F is monotonic.

5.1 FORMAL REPRESENTATION 85

Proof: Let T1;T2 2 Tst and assume T1 � T2.
With respect to the definition of F we have:F (T1) df= (FN Æ FC)(T1) [[T 0�T1 F (T 0)F (T2) df= (FN Æ FC)(T2) [[T 0�T2 F (T 0)(1) Let C 2 FC(T1). From the definition of FC and the assumption above

it follows that C 2 FC(T2). Hence, FC(T1) � FC(T2).(2) Similarly let C1; C2 � CTst and assume C1 � C2.

Let S 2 FN (C1). From the definition of FN and the assumption above
it follows that S 2 FN (C2). Hence, FN (C1) � FN (C2).

From (1) and (2) it follows that FN (FC(T1)) � FN (FC(T2)).
Note that T1 � T2) ST 0�T1T 0 6=; F (T 0) � ST 0�T2T 0 6=; F (T 0).
Hence, F (T1) � F (T2), and therefore, F is monotonic.

Lemma 5.31 The constructor F is continuous.

Proof: From lemma 5.30 we know F is monotonic. Additionally, we have
to prove that F preserves least upper bounds of infinite sequences.

Let T1;T2; ::: be an (infinite) sequence satisfying 8i 2 N : Ti � 2Tst ^Ti � Ti+1. Applying associativity of the set union operation the following
equations are derived:[i2N F (Ti) = [i2N(FN (FC(Ti))[[T 0�Ti F (T 0)) = [i2N FN (FC(Ti))[[T 0�Si Ti F (T 0)F ([i2N Ti) = FN (FC([i2N Ti))[[T 0�Ti F (T 0)) = FN (FC([i2N Ti))[[T 0�Si Ti F (T 0)

Now it remains to be proved that the compositionFN ÆFC is continuous.FC([i2N Ti) = [S2Si TifhS; I;Gi 2 CTst k I an interfae ; G a gateg[i2N FC(Ti) = [i2N [S2TifhS; I;Gi 2 CTst k I an interfae ; G a gateg

86 VCN: STRUCTURE

Associativity of the set union leads to the following equation:FC([i2N Ti) = [i2N FC(Ti)
Following equations are derived by application of definition of FN :FN (FC([i2N Ti)) = [fC1;:::;Cng�FC(Si Ti)n�1 fhhC 01; :::; C 0mi; �B;L; lranki km � ng[i2N FN (FC(Ti)) = [i2N [fC1;:::;Cng�FC(Ti)n�1 fhhC 01; :::; C 0mi; �B;L; lranki km � ng
Finally, from associativity of the set union we get continuity of FN ÆFC :FN (FC([i2N Ti)) = [i2N FN (FC(Ti))
Hence, we have proved that F is continuous.

Theorem 5.32 The set of structural terms Tst, defined as the least set satisfying
properties stated in definition 5.27, is the least fixed point of the constructor F .

Proof: The set 2Tst ordered by the set inclusion relation � is a complete
lattice. Therefore, applying the Kleene theorem, there exists a least fixed
point �F of the monotonic and continuous function F : 2Tst ! 2Tst :�F df= [i2N F i(;)

Note that the set Tst has been defined as the least set satisfying the
properties in definition 5.27. By careful studying of the definition of the
constructor F , we argue that F is a recursive function which corresponds
precisely to the inductive construction presented in definition 5.27. Hence,�F = Tst.
Corollary 5.33 The inductive definition 5.27 of structural terms is correct.

5.2 Additional Notes

In this chapter we have defined a precise formal base for the VCN visual
notation. Before definitions of the coordination and behavioural models of
VCN diagrams which will be presented in next chapters, we discuss the no-
tion of abstractness which is allowed by the definition of structural terms.

5.2 ADDITIONAL NOTES 87

Let us recall the reason why we introduced structural terms, in particular,
giving unambiguous representation to the VCN visual notation. In Defini-
tion 5.27, it is abstracted from detail meaning of leaves and buses. In other
words, members of sets Leaves and Buses have been defined as purely syn-
tactic notions. In contrary, elementary VCN notions of gates, interfaces,
links, and ranks have been defined with the concrete meaning given in
terms of sets (Definition 5.8), relations (Definition 5.21), or functions (Defi-
nition 5.13 and Definition 5.24). We say that all those notions are implicit in
VCN.

However, a fixed predefined meaning of leaves, buses, and gate types
is not in charge of definition of structural terms. Therefore, we say that
these elements are explicit in VCN. To establish concrete semantics for all
structural terms, the meaning of these explicit elements has to be provided
at first. Such a property is introduced to keep the VCN visual notation
abstract and independent of its behavioural semantics.

The coordination model and the behavioural model which are defined
in next chapters give the structural terms a behavioural semantics based
on the notion of state-transition systems. Behavioural semantics of buses is
defined in Section 6.1 of Chapter 6. Behavioural model of leaves is given
in Section 7.2.1 of Chapter 7. In Section 7.2.3 of that chapter, both the be-
havioural semantics of buses and the behavioural model of leaves are com-
bined in order to establish a behavioural model of entire VCN architectures.
This is achieved in Section 7.2.4 by inference rules which define the seman-
tics of component decomposition (i.e., behaviour of individual types of gate
mappings) and the semantics of inner-level component coordination (i.e.,
mutual interconnection of components and buses).

The behavioural model defined in this thesis is computation-oriented
(like CCS and CSP) and does not consider the notion of roles introduced
in this chapter. We leave for future research the development of an
interface-oriented model (like Wright or Interface Automata [dAH01a])
for VCN which would employ the notion of roles. The relation between
both approaches of the behavioural model definition is nicely explained
in [dAH01b]. The basic idea behind the interface-oriented model is based
on refining each component interface with a state-transition semantics.

Chapter 6

VCN: Coordination Model

The coordination model in VCN is identified by the notions of buses and
bus classes. In Chapter 4, the notion of bus classes and their instances (par-
ticular buses) has been introduced informally, and in Chapter 5, the notions
of cooperations and buses have been formally defined. In this chapter, we
assign a state-transition semantics to buses (Section 6.1), and subsequently,
we focus on the notion of bus classes precisely (Section 6.2). Especially, we
define the bus class specification language. In consequence, we show how
bus instances are generated from bus classes.

A proposal of the research provided in this chapter has been previously
published in [SS05].

6.1 Semantics of Bus Instances

As it has been proposed in Chapter 4, the intended meaning of a particular
bus B 2 Buses included in a network is to represent a specific coordination
model for components which together with the bus make a particular part
of the network – a so-called star topology. To that end, we have defined in
Chapter 5 the set of cooperations oop(B) which characterises the bus B
concerning all its possible cooperations. In this section, we refine the set of
cooperations with a behavioural model in terms of a transition system.

The overall intuition about such notion of behavioural model of buses
is illustrated by an example in Figure 6.1, where a model of a weather
condition information system is depicted. The model is represented as a
VCN network with four components Temp sensor, Humi sensor, which
represent weather conditions sensors, the Display component representing
the LCD panel reporting the current weather information, and the Swith
component which initiates entire system computation. The coordination
model of these components is determined by the bus COORD. The mean-
ing of this bus is coordination behaviour which combines atomic broad-
cast, synchronous channel, inhibitor, and a one-place buffer. Note that

90 VCN: COORDINATION MODEL

COORD

SWITCH

touch

humi

temp

HUMI_SENSOR

TEMP_SENSOR
ini1

ini2

DISPLAY

get1

get2

reset

Figure 6.1: Behavioural model of a bus

the framework for capturing of the three former (stateless) coordination
mechanisms has been already defined in the previous chapter (list of coop-
erations). However, that framework does not suffice for definition of the
latter mechanism, because of the requirement of some state-transition con-
trol. The overall principle of the coordination model determined by the
bus COORD in this particular example can be summarised in terms of the
following phases:

1. In the initial phase, pushing of the touh trigger causes broadcasting
of an initiation signal through the ini1; ini2, and reset ports to the cor-
responding components. This broadcasting is performed atomically
in an indivisible time instant to ensure quick and uninterruptible re-
action of the system to the initiation signal.

2. After initiation, the coordination model is waiting for the information
to be signalled on the producers (Temp sensor and Humi sensor)
output ports. In this phase, it is also capable of receiving the touh sig-
nal, to preserve blocking of the initiation switch. However, this signal
is lost whenever it is transmitted (initiation cannot be performed in
this phase).

When the temp and humi information appears, the coordination
model acts like both a synchronous channel (relaying the temp in-
formation to the get1 port) and a one-place buffer (storing the humi
information to the internal memory).

3. After filling of the buffer, the information stored in the buffer is trans-
mitted to the get2 port. It ensures that the get1 and get2 ports are filled
with the appropriate information in a sequence of a given order (i.e.,
the information of the current weather conditions can appear always
in the predefined order on the display panel).

4. The coordination model returns to the initial phase (the phase (1)).

6.1 SEMANTICS OF BUS INSTANCES 91

The coordination behaviour described above can be formally captured
by a labelled transition system with each of its transition labels defined
as a particular cooperation. For the above mentioned example, the tran-
sition system is depicted in Figure 6.2. To illustrate the relation between
the transition system and the description above, numbers of the specific
coordination phases are written inside the circles representing states.

synchronous broadcast

−/get2

touch/−

touch/−

temp,humi/get1

1 2

3

touch/ini1,ini2,reset

synchronous channel (temp−>get1)

one−place buffer (humi−>’mem’)

one−place buffer (’mem’−>get2)

inhibitor (touch)

inhibitor (touch)

Figure 6.2: Transition system representing the COORD bus behaviour

We call such a variant of transition system coordination machine. The
cooperation machine is declared formally by the following definition.

Definition 6.1 Let B 2 Buses a bus. A cooperation machine of B,

denoted m(B), is a finite labelled transition system defined as m(B) df=hQ; oop(B); T; q0i.
The set of all cooperation machines is denoted CMS.

Notation 6.2 As the alphabet of a particular coordination machine m(B)
is given by the definition of the relevant bus B, we will usually abbreviate
the cooperation machine simply as a triple hQ;T; q0i instead of a quadruplehQ; oop(B); T; q0i.

For a given bus B 2 Buses, the set of all states of the cooperation machinem(B) is denoted Q(B). Further, the initial state of the cooperation machinem(B) is denoted �B(B).
The fact that hq; hW=Ri; q0i 2 T for some q; q0 2 Q(B) and hW=Ri 2oop(B) is denoted q W=R!B q0.
Additionally, the set of all transitions which the bus can perform in some stateq 2 Q(B) is denoted en(q), en(q) df= fhW=Ri 2 oop(B) k 9q0 2 Q(B): q W=R!Bq0g.

Note 6.3 The finiteness requirement of the cooperation machine is imposed to en-
able automatised analyses of VCN networks. This requirement deals exclusively

92 VCN: COORDINATION MODEL

with the set of states, finiteness of the transition relation T is then automatically
achieved due to the finiteness of the set of cooperations characterising a particular
bus.

It is worth emphasising some principal properties of the cooperation
machine approach of coordination model specification. In contrast to the
notion of a common transition system, in which a single discrete event for-
tifies the level of its atomicity, the most characteristic property of this state
transition system variant is lifting of the atomicity to a set of events occur-
ring together in a single discrete uninterruptible coordination action (coop-
eration).

6.2 Bus Class Specification Language

Bus classes have the purpose of parametrised templates from which partic-
ular buses (bus instances) are generated for given parameter values. Each
bus class is written by the notation bus lass name(parameters) and de-
termined by its type, parameter constraint, and a bus predicate. Specification
of a particular bus class B has the following structure:B(parameters) :=f � parameter onstraint� bus prediateg

Parameters of the bus class can be the following:� In . . . set of bus inputs (compulsory)� Out . . . set of bus outputs (compulsory)� rank . . . link ranking of the bus inputs and outputs (optional)� apaity . . . capacity of the bus internal memory (optional)

With respect to the type – the particular setting of the parameters, four
kinds of bus classes are distinguished.

1. B(In; Out) denotes a rank-free bus class with no associated memory. This
is the most trivial kind of bus classes which is suitable for specifica-
tion of basic synchronous coordination models.

2. B(In; Out; rank) denotes a ranked bus class with no associated memory.
This is a more general kind of bus class which is suitable for specifica-
tion of synchronous coordination models where addressing of inputs
and outputs is necessary. More particularly, predicates in this kind of
bus classes can reason about ranks of individual inputs and outputs
and relate them with each other.

6.2 BUS CLASS SPECIFICATION LANGUAGE 93

3. B(In; Out; apaity) represents a rank-free bus class equipped with mem-
ory. The memory is organised in an arbitrary number of buffers all
having the capacity determined by the last parameter value. This
kind of bus class allows specification of elementary asynchronous co-
ordination models.

4. B(In; Out; rank; apaity) denotes the most expressive kind of bus
classes – a ranked bus class equipped with memory. Here both address-
ing of inputs and outputs and presence of memory are allowed. This
feature implies using of these bus classes for specification of asyn-
chronous coordination models where distinguishing among individ-
ual inputs and outputs is necessary.

The relative expressiveness of all bus class types is depicted in Fig-
ure 6.3. The least expressive bus class type is depicted at the bottom of
the lattice. All the relationships are strict. Formal arguments explaining
the reasons why the lattice is correct will be given at the end of this sec-
tion (from the trivial purely syntactic point of view) and in the next chapter
(from the more complicated semantic point of view).

In,Out,rank

In,Out

In,Out,capacity

In,Out,rank,capacity

Figure 6.3: Expressiveness relationships among bus class types

Parameter Constraint

The parameter constraint specifies what exact parameter values are accept-
able by the bus class. In particular, it can be any variable and quantifier-free
second-order predicate logic formula with constants In, Out, and apaity
representing the respective parameters. Constants In and Out are inter-
preted as finite sets of ports of the respective kind. The constant rank is
interpreted as a finite unary function assigning a rank to particular ports
(see Definition 5.24). Finally, the apaity constant is interpreted as a
nonzero natural number denoting the capacity of the bus memory. The
three former-most constants are second-ordered, but always limited to in-
terpret only finite objects. This fact enables us to enrich the parameter con-

94 VCN: COORDINATION MODEL

straints with the predicate ard that reasons about cardinality of its param-
eter (which can be one of the constants above).

Example 6.4 An example of a parameter constraint is the formula:In 6= ; ^ Out 6= ; ^ ard(In) = 1 ^ rank 6= ; ^ apaity <= 5
Such a formula limits the particular instances of the respective bus class to have at
least one input and just one output, further requires a link ranking to be applied,
and finally limits the capacity of the memory to store maximally 5 entries.

The purpose of a bus constraint is to state requirements about the pa-
rameter values for which a bus instance can be constructed. This way, the
bus constraint compactly communicate to the user information about the
conditions under which the particular bus class can be used, on the one
hand. It can also avoid from unnecessary execution of bus instance con-
struction in cases when the bus class is being misused, on the other hand.

In general, from what has been stated above we feel a need for an al-
gorithmic procedure deciding weather a given bus constraint is satisfied
or not for a given parameter interpretation. For this purpose we restricted
bus constraints to quantifier-free formulae. However, we impose no other
specific syntactic restrictions. In this thesis we do not discuss details of
such a decision procedure. For our purposes it suffices to know that such
a decision procedure exists. But as no quantifiers are allowed and as all
the constants are interpreted in domains of finite objects, such a procedure
surely exists.

Bus Predicate

Next we focus on the most crucial part of the bus class specification — the
bus predicate. Bus predicate is the heart of each bus class. It is responsible
for specification of bus cooperations and the cooperation machine which
controls them. For a particular bus class, all the cooperations of each bus
instance have to satisfy the conditions specified in the bus predicate. To
capture the syntax of bus predicates, at first we define the bus specification
language.

Definition 6.5 Let V arin and V arout be the countable sets of bus input variables,
and bus output variables, respectively. Additionally assume V arin and V arout to
be mutually disjoint. Furthermore, let Lo be the countable set of location labels
and assume Lo \ N = ;. The bus specification language, denoted BCT, is
defined as a set of well-founded finite terms given by the following grammar:

6.2 BUS CLASS SPECIFICATION LANGUAGE 95� input handleI ::= i k i"k k i*k k i"� k i*�
where k 2 Lo a memory location label,

and i 2 V arin a bus input variable� output handleO ::= o k o"k k o#kk fo1; :::; ong"k k fo1; :::; ong#kk o"� k o#�k ?k
where k 2 Lo a memory location label,

and o; o1; :::; on 2 V arout bus output variables for some n 2 N� input and output handles listlistI ::= � k I;listIlistO ::= � k O;listO� input sectionseI ::= listI k all� output sectionseO ::= listO k allk all"k k all#k
where k 2 Lo a memory location label� cooperation generatorC ::= seI=seO k seI�=seO k seI=�seO k seI�=�seO� rank constraintR ::= rank(x) = rank(y) k rank(x) =nk :R k R ^ R

where n 2 N a rank constant
and x; y 2 V arin [V arout bus input or output variables� cooperation patternP ::= C k C; R

96 VCN: COORDINATION MODEL� bus predicateB ::= P k B _ B
We say that input and output handles of the form i"k, i*k, i"�, i*�, o"k,o#k, o"�, o#�, fo1; :::; ong"k, fo1; :::; ong#k, and ?k are memory input (resp.

output) handles. Handles i"�; i*�; o"�, and o#� are additionally called rank-
bounded memory input (resp. output) handles. The identifier ’�’ and the lo-
cation label k 2 Lo occurring in the above mentioned handles are called location
identifiers. The output handles of the form fo1; :::; ong"k and fo1; :::; ong#k are
called multi-handles. For n = 0 these multi-handles together with the handle ?k
are called tests.

The operator �=� is called universal unfolding. The operators �= and =�
are called left and right universal unfolding, respectively.

A term B is well-defined iff it satisfies the following constraints:

1. First of all we require all input and output variables appearing in arbitrary
cooperation pattern to be mutually different. This requirement ensures cor-
rect treatment of cooperation patterns which are intended to be interpreted as
sets of cooperations. In such an interpretation, any input or output variable
appearing in the context of some handle has to represent particular ports
included in cooperations generated from the pattern. As each section of a
cooperation is a set, also interpretations of cooperation generator sections
must be sets. In the context of a particular section, each port generated for
any input handle (resp. output handle) must be unique.

2. The meaning of a memory input handle is the instruction of storing of an
input value (in the non-value passing model this means the information that
the respective event occurred) into the memory buffer addressed by the re-
spective location identifier. Hence multiple occurrences of a particular loca-
tion identifier in the input section have no sense. The only exception is the
identifier ’�’ which denotes the memory location number to be equal to the
actual rank of the respective input. Thus we require each well-defined term
to include only generators with memory input handles containing mutually
different location identifiers or the identifier ’�’.

3. In similar way, syntax of output handles is also restricted. Each cooperation
generator which contains an input handle of the form i"k or i*k, wherek 2 Lo is some particular memory location, is not allowed to contain this
location in its output section. In other words, all memory location labels
appearing in the output section of a generator must be different from the lo-
cation labels introduced in the input section of that generator, and moreover,
they also must be mutually different. This requirement ensures avoidance
of specifications of the form i"k=o#k in which the possible meaning can be
unclear (there appears a question concerning such a cooperation generator

6.2 BUS CLASS SPECIFICATION LANGUAGE 97

that asks for which of the two operations should precede the other — the in-
put or the output?). Note that also the meaningless specifications of the form�=o1#k; o2"k are excluded by this requirement.

4. To enable definition of a unique semantics for each bus specification, we have
to enforce another requirement concerning the syntax of cooperation gener-
ators. This requirement goes with the intuition that it has sense to output
data only from such a memory location to which a data can be stored. For
location variables and constants we can achieve this restriction at the syntac-
tic level – we require that for each memory location label k 2 Lo occurring
in some output handle there exists a cooperation pattern with a generator
which contains an input handle referring the location k.

However, to achieve correct treatment of rank-bounded memory output han-
dles, the syntactic requirement above cannot be applied. The reason for that
is dependence on the exact values for which a particular bus instance is
generated from a bus class specification. Correctness of using of the rank-
bounded memory output handles must be achieved at the semantics level
(see Definition 6.14).

5. This requirement concerns the syntax of rank constraints. More specifically,
we require each rank constraint of each cooperation pattern of the form C; R to
contain only the bus input and the bus output variables which occur in C.By
such a requirement, the well-definedness of all rank constraints is achieved.

6. Finally, in each subterm of the form seI�=seO the input section is re-
quired to be either all or contain no memory input handles. Similarly, the
output section of each subterm of the form seI=�seO is required to con-
tain no memory location reference. Subterms of the form seI�=�seO are
required to satisfy both of the requirements above. By this requirement, ar-
guments of highly succinct operators �=, =�, and �=� are restricted. The
respective restrictions permits the universal cooperation unfolding to be ap-
plied only to a memory-less section. We believe that this restriction simplifies
the comprehension and use of the bus specification language.

Note 6.6

Another requirement concerning link ranking should be considered in relation with
rank-bounded memory handles. In particular, the intended meaning of a link rank-
ing in such a situation is associating a memory location with each rank-bounded
handle contained in a generator. To satisfy the need of mutually different memory
locations stated in requirements (2) and (3) of the previous definition, we require
a ranking to mark each input and output variable in the generator with a unique
number. However, such a requirement cannot be realised at the syntactic level and
hence must be considered at the semantics level.

98 VCN: COORDINATION MODEL

By the definition above the language for description of bus predicates
has been established. Interpretation of bus predicates is realised in the do-
main of a specific kind of labelled transition systems. Instances of bus spec-
ification — particular buses — are given just in terms of such interpretation.

At the beginning of this section we classified bus specifications into
types reflecting the setting of specification parameters allowed. The mean-
ing of specification parameters is such that particular values of specification
parameters determine interpretation of bus specification language identi-
fiers in the following way:� In — determines interpretation for all bus input variables V arin,� Out — determines interpretation for all bus output variables V arout,� rank — determines interpretation for the rank operator,� apaity — determines interpretation of all the binary operators in

the syntax of memory handles (",*,#).

In the following definition we characterize each bus class type by a re-
spective sublanguage of BST.

Definition 6.7� A rank-free memory-less bus class is defined by arbitrary terms of the bus
specification language denotedBSTIn;Out which is defined as a sublanguage
of BST satisfying the following restrictions:

– Input and output handles identifiers are restricted to include no mem-
ory handles (the operators ";*, #, and ? are excluded from the signature
of the language).

– Output section is restricted to the grammar:seO ::= listO k all
– Rank constraint is completely excluded from the language grammar,

hence cooperation patterns have the form:P := C
– There are no other restrictions considered.� A rank-sensitive memory-less bus class is defined by an arbitrary term

of the language denoted BSTIn;Out;rank and defined as the sublanguage ofBST which corresponds to the language BSTIn;Out additionally extended
in the following way:

– The full rank constraint identifier R of BST is added.

6.2 BUS CLASS SPECIFICATION LANGUAGE 99

– Cooperation patterns are extended to:P := C k C; R
– There are no other extensions considered.� A rank-free bus class with memory is defined by an arbitrary term of

the language denoted BSTIn;Out;apaity and defined as the sublanguage ofBST which corresponds to the language BSTIn;Out additionally extended
in the following way:

– Input and output handles include all memory handles of BST with
the only exception of rank-bounded handles (handles of the form i"�,i*�, o"�, and o#�).

– Output section is completely defined by the seO identifier of BST.

– There are no other extensions considered.� A rank-sensitive bus class with memory is defined by an arbitrary term
of the entire bus specification language BST. To emphasise the fact that
all the bus specification features are included in the language we denote the
language BST alternatively as BSTIn;Out;rank;apaity .

The following claim gives the lattice depicted in Figure 6.3 the meaning
from the syntactic point of view.

Claim 6.8

1. The language BSTIn;Out;rank;apaity is a strict sup-language of the lan-
guages BSTIn;Out;rank and BSTIn;Out;apaity .

2. The language BSTIn;Out is a strict sub-language of the languagesBSTIn;Out;rank and BSTIn;Out;apaity .

3. The languagesBSTIn;Out;rank andBSTIn;Out;rank;apaity are syntactically
incomparable.

Proof: All the statements in the claim follow directly from Definition 6.7.

6.2.1 Semantics of Bus Classes

In the previous subsection, the language BST for specification of bus
classes has been established. In this subsection, we show how partic-
ular bus instances (also called buses or models of bus classes) are gen-
erated from such specifications. In particular, we establish an algo-
rithm which assigns a set of cooperations oop(B) and a cooperation
machine m(B) to a given bus B according to a bus class specifica-
tion B(In; Out; [rank; apaity℄) and particular parameter values (square

100 VCN: COORDINATION MODEL

brackets denote the optional presence of respective parameters). In other
words, we generate a model of a bus class specification. Such a model is
defined as a cooperation machine satisfying the bus class specification in-
terpreted for particular parameter values. More precisely, for a given busB determined by its inputs In(B), outputs Out(B), their ranking rankB
(if required), and some capacity � 2 N (if required), the respective model
is defined by the assignment m(B) ::= B(In(B); Out(B); [rankB; �℄). An
algorithm of how such a model is constructed is the main result of this sec-
tion.

Parameter and Variable Interpretations

Before we present the algorithm for generation of bus class instances, we
have to determine interpretation of bus specification variables and param-
eters. As it has been intuitively stated in the previous paragraph, bus class
parameters In and Out are interpreted as finite sets of output and input
ports, respectively. The rank parameter is interpreted as a function assign-
ing to each member of these finite sets a rank, and thus depends on exact
values of the parameters In and Out. The capacity parameter is interpreted
as a nonzero natural number setting the capacity of the bus memory. In
the following definition the interpretation of bus class parameters is intro-
duced formally.

Notation 6.9 The notation 2W℄�n (resp. 2R℄�n) denotes the set of all finite subsets of
the infinite set of output (resp. input) annotated ports.

Definition 6.10 Define interpretation of bus class parameters as an arbitrary
injective function Vp defined over the domain fIn; Out; rank; apaitygwith the
range satisfying the following conditions:� Vp(In) 2 2W℄�n� Vp(Out) 2 2R℄�n� 8x 2 Vp(In) [Vp(Out):Vp(rank)(x) 2 N� Vp(apaity) 2 N such that Vp(apaity) > 0
Note 6.11 Each parameter interpretation of a rank-free or a memory-less bus class
is supposed to have the domain restricted to the respective subset of parameters.

Next we define interpretation of variables which occur in bus predi-
cates. Note that according to Definition 6.5 from the previous chapter, three
different kinds of variables are distinguished. Hence the interpretation re-
flects the nature of all those variable kinds.

6.2 BUS CLASS SPECIFICATION LANGUAGE 101

Definition 6.12 Define interpretation of bus predicate variables as an injec-
tive function Vv : V arin[V arout !W℄[R℄ satisfying the following conjunction
of requirements:8x 2 dom(Vv): x 2 V arin) Vv(x) 2 W℄ ^ x 2 V arout) Vv(x) 2 R℄

Further let seI be an input section of some cooperation pattern and Vp a bus
class parameter interpretation. We denote by Vv(seI) the variable interpretation
of the input section seI defined in the following way:� Vv(seI) df= ;, if seI � 0�0;� Vv(seI) df= Vp(In), if seI � 0all0;� Vv(seI) df= fVv(i1); :::;Vv(in)g where fi1; :::; ing are all the input vari-

ables appearing in seI, otherwise.

Analogously, let seO be an output section of some cooperation pattern. We
denote by Vv(seO) the variable interpretation of the output section seO defined
in the following way:� Vv(seO) df= ;, if seO � 0�0;� Vv(seO) df= Vp(Out), if seO � 0all�k0 where � 2 f";*g, or seO � 0all0;� Vv(seO) df= fVv(o1); :::;Vv(on)g where fo1; :::; ong are all the input vari-

ables appearing in seO, otherwise.

In contrary to bus class parameters, occurrences of bus predicate vari-
ables are of two kinds — introduction and use occurrences. Formal definition
of these notions is the following.

Definition 6.13 We say that an occurrence of a bus input variable i 2 V arin in
a bus predicate B is an introduction occurrence iff it is a part of an input section
of arbitrary form.

An occurrence of a bus output variable o 2 V arout in a bus predicate B is a
use occurrence iff it appears in an output section of arbitrary form.

Finally, an occurrence of a variable x 2 V arin [V arout in a bus predicate B is
a use occurrence iff it appears in a rank constraint.

Introduction occurrence of some variable in a specification gives the
variable its interpretation. Syntactically, in well-defined predicates, each
use occurrence of a variable requires its introduction occurrence to be in-
cluded somewhere in the predicate (in a cooperation generator of some co-
operation pattern). Introduction occurrences assign each variable a value
which is determined by current values of the bus class parameters. Hence
the interpretation of bus predicate variables depends on the actual inter-
pretation of parameters. This relationship between the two interpretations
allows us to build a concrete model for a given abstract bus specification.

102 VCN: COORDINATION MODEL

Bus Instance Construction

The model (the particular cooperation machine) is assigned to a bus class
and the given parameter values by the algorithm which traverses the bus
predicate linearly and for each cooperation generator and a rank constraint
constructs the respective part of the cooperation machine. The preliminary
assumption of the construction is that the given parameter values have to
satisfy the parameter constraint. In the following definition, the notion of
the model (bus instance) is introduced formally and the algorithm of its
construction is consequently presented.

Definition 6.14 LetB(In; Out; [rank; apaity℄) = f'; �g a bus class with' a
parameter constraint and � a bus predicate. Further let Vp a parameter interpreta-
tion which satisfies the parameter constraint '. Define the model (bus instance)
of the bus class B, written B(Vp(In);Vp(Out); [Vp(rank);Vp(apaity)℄), as a

cooperation machine mBVp df= hQ; 2Vp(In) � 2Vp(Out); T; q0i which is constructed
by Algorithm 6.18.

The algorithm of bus instance construction has basically two phases
which are applied to each cooperation pattern of the particular bus predi-
cate:

1. Computation of variable interpretations.

2. Computation of the cooperation machine.

In the phase (1) the set of all possible interpretations of bus predicate
variables, denoted Ints, which occur in input and output handles of the
current cooperation pattern, is computed. Interpretation of bus input vari-
ables is realised according to the given interpretation of the In parameter of
the bus class. Analogously, bus output variables are interpreted according
to the interpretation of Out parameter. If a rank constraint is additionally
present in the pattern then the possible variable interpretations are limited
only to those ones which satisfy the rank constraint.

The phase (2) comprises construction of fragments of the resulting co-
operation machine (the model). For each particular cooperation pattern P
the respective fragment of the model is constructed. This fragment is de-
termined by the transition relation TP. In general, states of the resulting
cooperation machine are determined with respect to character of the bus
class. If the bus class is memory-less then the state space consists of only
one state and the transition relation is defined by reflexive transitions each
of which is given by applying a precomputed variable interpretation (any
member of the set Ints from the previous phase) to the cooperation gen-
erator of the current cooperation pattern. Additionally, if some universal
unfolding operator is included in the generator then the transition relation
is extended to include all the respective sub-cooperations.

6.2 BUS CLASS SPECIFICATION LANGUAGE 103

If the bus class contains a memory then the state space construction is
more intricated. In general, the number of states is given by the expres-
sion (y + 1)x where x is the number of all different memory locations in-
troduced throughout the bus predicate, and y is the capacity of the mem-
ory determined by the actual interpretation of the apaity parameter. As
each memory location is organised as a buffer, each of the memory input
and output handles has the state-transition semantics defined as depicted
in Table 6.1 (if considered separately of the other handles in the cooperation
generator). In the table, the constant 2 N denotes the required memory
capacity.� i"k, i"�

0 1 c� i*k, i*�
0 1 c� o"k, o"�,fo1; :::; ong"k

0 1 cc−1� o#k, o#�, fo1; :::; ong#k
0 cc−1

Table 6.1: Scheme of the semantics of input and output memory handles

In one cooperation generator a number of various memory handles
can be specified. The intended semantics of such a combination of mem-
ory handles is given by the specific product of the state-transition seman-
tics of the respective memory handles. For better orientation in the entire
state space we denote each state with the index containing the informa-
tion about the actual status of each of the memory locations. In particular,
assume fk1; :::; km; km+1; :::; kng where n � m is the set of all memory lo-
cations needed for interpretation of the current cooperation pattern wherefk1; :::; kmg � Lo are locations directly appearing in the bus predicate andfkm+1; :::; kng � N are locations induced by rank interpretation of input
rank-bounded handles, and � = Vp(apaity) is the predefined mem-

104 VCN: COORDINATION MODEL

ory capacity. We denote each state as qhk1;x1i;hk2;x2i;:::;hkn;xni (abbreviated asqk1x1k2x2:::knxn) where xi for any i 2 f1; :::;mg is either 0 or a positive num-
ber denoting the number of entries currently stored in the memory locationki. Naturally, xi cannot be greater than �. The specificity of the semantics
product of all handles in the cooperation pattern then lies in the following
handle combination principles:� Handle combination in the input section — input part Ti of the tran-

sition relation fragment TP is generated in such a way that all input
memory handles of the input section generate transitions represent-
ing simultaneous reading of the data incoming to the relevant bus
inputs and storing this data to respective memory locations. Thus,
if fk1; :::; kmg are locations appearing in common memory handles
and fkm+1; :::; kng where n � m are locations induced by rank inter-
pretation of rank-bounded handles, generated transitions relate each
source state of the form qk1x1:::kmxmkm+1xm+1:::knxn with a target state
of the form qk1x01:::kmx0mkm+1x0m+1:::knx0n where the following conditions

are satisfied:

– For each j for which the particular memory handle is of the formi"kj or kj is a location induced by a rank-bounded handle i"� it
must hold xj < � and x0j = xj + 1. The former is an input con-
dition ensuring that no data may be written to a full memory
by a common input handle and the latter is an output condition
which ensures increasing the counter of entries stored in the par-
ticular location.

– For each j where the memory handle has the form i*kj or kj is
a location induced by a rank-bounded handle i*� it must hold
that either xj < � ^ x0j = xj + 1 or xj = � ^ x0j = xj . These
conditions ensure the correct semantics of *-handles which al-
lows rewriting of the data in the memory in the case when the
memory is full or which behaves like a "-handle, otherwise.

– A special condition has to be imposed on the combination of ar-
bitrary two rank-bounded input handles. More specifically, we
need to satisfy the requirement that two input handles does not
refer to the same memory location. For the combination of rank-
bounded handles with common memory handles, the required
exclusivity of memory location pointers is achieved automati-
cally by requiring Lo \ N = ;. However, the memory loca-
tion pointer of a rank-bounded handle depends on the particu-
lar ranking, i.e., the current interpretation of the rank parame-
ter. To avoid generating of nonsensical transitions, we require
all rank-bounded input handles in a particular input section to
have mutually different ranks. Hence input variable interpreta-

6.2 BUS CLASS SPECIFICATION LANGUAGE 105

tions which violate this requirement cannot be included in the
set of possible variable interpretations Ints.� Handle combination in the output section — output part To of the

transition relation fragment TP is generated in such a way that all
output memory handles of the output section generate transitions
representing simultaneous reading the data stored in the respective
memory locations and writing this data to the relevant bus outputs.
Thus, if fk1; :::; kng are locations appearing in common memory han-
dles and fkn+1; :::; kn+mg are locations induced by rank interpretation
of rank-bounded handles, generated transitions relate each source
state of the form qk1x1:::knxnkn+1xn+1:::kn+mxn+m with a target state of
the form qk1x01:::knx0nkn+1x0n+1:::kn+mx0n+m where the following conditions

are satisfied:

– For each j for which the particular memory handle is of the formo"kj or kj is a location induced by a rank-bounded handle o"�
it must hold xj > 0 and x0j = xj . The former is an input con-
dition ensuring that no data may be read from an empty mem-
ory and the latter is an output condition which ensures the non-
destructive behaviour of "-handles.

– For each j where the memory handle has the form o#kj or kj is
a location induced by a rank-bounded handle o#� it must holdxj > 0 and x0j = xj � 1. These conditions ensure the correct
semantics of #-handles which realise destructive reading of the
data from the respective memory location.

– Both kinds of output multi-handles fo1; :::; ong"k andfo1; :::; ong#k are treated in the same way like their com-
mon counterparts o"k and o#k, respectively. The fact that
there is a set of output variables instead of a single variable
influences only the form of transition labels (w.r.t. all variable
interpretations allowed). If the respective set is empty, i.e.,
we deal with a test handle, according to Definition 6.12 the
considered interpretations have no effect on the respective part
of transition labels.

– The test output handle ?k has a special semantics — it forces a
restrictive requirement on the source states of generated tran-
sitions. This requirement states that only the transitions which
have the respective component in the source state of the formk0. This way, a transition is added only if it evolves from a state
with the particular memory location k 2 Lo empty.� Combination of input and output sections — the transition relation

fragment TP is constructed by composition of both parts Ti and To.

106 VCN: COORDINATION MODEL

If any of the two sections in the particular cooperation generator is
of the form ’�’ or ’all’ then the respective transition relation part is
defined as a total relation. It conforms to the fact that this kind of
sections does not impose any restrictive requirements on generation
of transitions.

Note that above we have considered handles which span all memory
locations of a particular bus class. More precisely, we have dealt with a co-
operation pattern in which a memory handle for each particular memory
location is included. In general, cooperation patterns do not typically have
such a special form. Hence a more general mechanism which gives seman-
tics to cooperation patterns of arbitrary form has to be considered. The
main idea of such a general mechanism relies on the fact that for a coopera-
tion generator which contains memory locations fk1; :::; kmg where m < n
all the relevant transitions can be generated in terms of the above men-
tioned scheme, but must be additionally extended to the state space where
the memory counters of the remaining locations fkm+1; :::; kng can contain
any value between 0 and �. If this extension is applied to any combina-
tion of handles and also to combination of entire input and output sections
for construction of any transition relation fragment TP then the resulting
transition relation reflects all kinds of cooperation generators.

Moreover, with this general mechanism the two conditions treating the
output section handle combination can be employed also for interpretation
of the output sections of the forms all � k and fo1; :::; ong � k where � rep-
resents either " or #. The only difference is that only one memory location
has to be treated in these cases.

On the principles introduced above, the algorithm of bus instance con-
struction is based. Before we present this algorithm formally, we have to
introduce some elementary notions concerning operators over tuples. As
tuples are used as descriptors of states of bus instance state space, such
operations enables us to formally describe the construction of bus instance
cooperation machine.

Notation 6.15 Let n 2 N and let Prods be a product Prods df= Qni=1(Xi [f?g) of arbitrary sets X1; :::;Xn such that 8i 2 f1; :::; ng:? =2 Xi. Further lethx1; x2; :::; xni 2 Prods be a n-tuple satisfying 8i 2 f1; :::; ng: xi 6= ?.� Arbitrary n-tuple hx1; x2; :::; xni 2 Prods is alternatively denotedQni=1 xi.� Let hy1; :::; yni 2 Prods an n-tuple satisfying 8i 2 f1; :::; ng: (ji 2Proj) yi = xji) ^ (ji =2 Proj) yi = ?) where k � n andProj df= fj1; :::; jkg � f1; :::; ng. We write hy1; :::; yni � hx1; :::; xni and
say that hy1; :::; yni � hx1; :::; xni is a projection given by the projection
set Proj.

6.2 BUS CLASS SPECIFICATION LANGUAGE 107� Let hu1; :::; uni � hx1; :::; xni a projection given by the projection setfi1; :::; ikg � f1; :::; ng for some k � n and hv1; :::; vni � fx1; :::; xng a
projection given by the projection set fj1; :::; jn�kg � f1; :::; ng. We writehu1; :::; uni 1 hv1; :::; vni if and only if fj1; :::; jn�kg \ fi1; :::; ikg = ;.� Let hy1; :::; yni 2 Prods an n-tuple such that hy1; :::; yni � hx1; ::::; xni.
We denote hy1; :::; yni o hx1; :::; xni the n-tuple defined by the following
expression hy1; :::; ynio hx1; :::; xni df= hu1; :::; uni
satisfying 8i 2 f1; :::; ng: (yi = ?) ui df= xi) ^ (yi 6= ?) ui df= ?).� Finally, let hu1; :::; uni; hv1; :::; vni 2 Prods two tuples such thathu1; :::; uni � hx1; :::; xni, hv1; :::; vni � hx1; :::; xni, and hu1; :::; uni 1hv1; :::; vni. Define the union of the tuples hu1; :::; uni and hv1; :::; vni,
denoted hu1; :::; uni � hv1; :::; vni, by the expression:hu1; :::; uni � hv1; :::; vni df= hx1; :::; xni

The following definition introduces the notion of transition relations
composition. This notion is a cornerstone for construction of the transi-
tion relation fragments for individual cooperation patterns of the bus class
specification. In terms of this composition, individual transitions imple-
menting the semantics of specific groups of input and output handles con-
tained in a particular pattern are composed together. The intuition behind
such a composition is based on the preliminary requirement that all the
memory locations referred in each cooperation generator are mutually dif-
ferent. Moreover, the composition is defined to operate on the entire state
space of the bus instance. In particular, we do not take the respective se-
mantics of individual handles as defined above and compose them to form
the entire state space. We rather take the entire state space and put all the
possible transitions to it while respecting the semantics of individual han-
dles. This way, the individual aspects of particular handle combinations
are comfortably realised.

The intuition about the transition composition is demonstrated by an
example in Figure 6.4. There is a transition relation fragment describing the
semantics of the cooperation pattern i1"k1; i2*k2=�. Transition relationsT1 and T2 denoting semantics of the respective input handles are composed
to the transition relation fragment T depicted in the right side of the figure.

Definition 6.16 Let K = fk1; :::; kng � Lo [N and let Q be a set of states

defined as a product Q df= Qni=1Xi of sets X1; :::;Xn such that n 2 N and eachXi � K � f0; :::; �g such that Xi df= fkig � f0; :::; �g where � 2 N .

108 VCN: COORDINATION MODEL

T2: T:T1:
00

10 01

11

00

10 01

11

00

11

Figure 6.4: Composition of transition relations, T := T1
fk1gfk2g T2� Denote each state hhk1; x1i; :::; hkn; xnii 2 Q by the notationqk1x1k2x2:::knxn .� Let K = fkj1 ; :::; kjkg � K where fj1; :::; jkg � f1; :::; ng and qu 2 Q. We
denote �(u;K) the projection of u to locations determined by the set K and
defined: �(u;K) df= hy1; :::; yni
where hy1; :::; yni � hu1; :::; uni is given by the projection set fj1; :::; jkg.� Further let T1; T2 � Q�Q relations. AndK1;K2 � K such thatK1\K2 =;.

Define composition of relations T1 and T2 w.r.t. K1 and K2, writtenT1
K1K2 T2, as a relation T1
K1K2 T2 � Q�Q satisfying:T1
K1K2 T2 := fhqu; qvi k hqu1 ; qv1i 2 T1 ^ hqu2 ; qv2i 2 T2^u = u1 = u2 (6.1)^�(u1;K nK1) = �(v1;K nK1) (6.2)^�(u2;K nK2) = �(v2;K nK2) (6.3)^v = ((!1 � !2)o u)� (!01 � !02)g (6.4)

where !1 df= �(u1;K1); !2 df= �(u2;K2)!01 df= �(v1;K1); !02 df= �(v2;K2)
To ensure that the relation T1
K1K2 T2 from the definition above is cor-

rectly defined relation on Q � Q we have to discuss the condition which
determines the target states of the relation. In particular, we have to ensure
that the expression 6.4 is correctly defined. There are two requirements to
be discussed — correctness of use of the tuple union operator ’�’, and a
requirement that v contains no undefined component ?.

The first requirement is achieved by analysis of each individual occur-
rence of the ’�’ operator in the expression 6.4. Starting from the left, the fact

6.2 BUS CLASS SPECIFICATION LANGUAGE 109

that K1 and K2 are disjunct implies !1 1 !2. Hence the subterm (!1 � !2)
is correct. The same arguments apply to (!01�!02). Moreover, from the con-
ditions 6.1, 6.2, and 6.3 follows ((!01 �!02)o u) = ((!1 �!2)o u) and hence((!1 � !2)o u) 1 (!01 � !02). Thus all occurrences of the ’�’ operator in the
expression 6.4 are correct.

The similar reasons ensure the second requirement. It is easily observed
that the equation ((!01 � !02)o u) = ((!1 � !2)o u) implies that the expres-
sion 6.4 defines a tuple which contains no ? component. The reason for
that is the definition of the ’o’ operator which returns complement of a tu-
ple contained in its sup-tuple. Such a complement operator requires the
sup-tuple to contain no component of the form ? (see notation 6.15) and
satisfies the following property:8x; y; z 2 Prods: xo y = z) x� z = y
Hence if we consider the expression ((!1�!2)ou)� (!1�!2) then we get
the following equation:((!1 � !2)o u)� (!1 � !2) = u
Note that u contains no?. Additionally, according to conditions 6.2 and 6.3
we get the equation:�((!1 � !2)o u;K n (K1 [K2)) 1 �(!01 � !02;K1 [K2)
As (K n (K1 [K2)) [(K1 [K2) = K, we get the required result.

Additionally, we emphasise a specific feature of the transition relation
composition when considered in the form ’
;;’. In particular, such a com-
position always results in a relation containing only self-transitions. This
property is crucial for composition of semantics of memory-less handles
and is used in the algorithm of bus instance construction.

Lemma 6.17 Let T1; T2 � Q�Q arbitrary relations. Their composition T1
;; T2
satisfies the following condition:hqu; qvi 2 T1
;; T2) qu = qv
Proof: Proof of this lemma follows directly from the Definition 6.16 by tak-
ing each of the sets K1 and K2 as ;.

Finally, as all the preliminary notions have been introduced, we can fol-
low in formal presenting the algorithm for bus instance construction. The
algorithm constructs a bus instance for a given bus predicate � and a partic-
ular parameter interpretation Vp. As the algorithm is considered to be gen-
eral for all types of bus classes, we assume that the parameter interpreta-
tion is defined for all the necessary parameters. The fact that a memory-less
bus class is considered is treated by implicit interpretation of the apaity
parameter as zero. More precisely, we assume Vp(apaity) df= 0 for any
memory-less bus class.

110 VCN: COORDINATION MODEL

Algorithm 6.18

procedureGenerateModel(�::bus predicate, Vp::parameter interpretation)
1. Construct the set F of all memory locations contained in �:

(a) Initiate F := ;.

(b) For each cooperation generator C in � do:

i. X1 := fk 2 Lo k 9i 2 V arin: i"k 2 � _ i*k 2 �g
ii. X2 := fn 2 N k n 2 ran(Vp(rank))g

iii. F := F [X1 [X2
2. Construct the state space Q:� Q := fq0g, if Vp(apaity) = 0,� Q := fqi k i 2Qk2F (fkg � f0; :::;Vp(apaity)g)g, otherwise.

3. Construct the transition relation T :

(a) Initiate T := ;.

(b) For each cooperation pattern P of the predicate � where P � C or P �C; R where C is either seI=seO, seI�=seO, seI=�seO or seI�=� seO do:

i. Compute the set Ints of interpretations of bus predicate variables
included in P by calling the procedure ComputeInts(P;Vp) (Al-
gorithm 6.19).

ii. For each Vv 2 Ints compute the relation TiVv � Q �Q relating
all pairs of states which realise the input section identifiers. We
write q1 !iVv q2 whenever hq1; q2i 2 TiVv .� If seI is of the form (up to the particular order of all the

handles included): i1"k1; :::; im1"km1 ;im1+1*km1+1; :::; im2*km2 ;im2+1"�; :::; im3"�;im3+1*�; :::; im4*�;im4+1; :::; im5
where m1; :::;m5 2 N are indices denoting the borders of
individual groups of handles satisfying m1 � m2 � m3 �m4 � m5 andm4 > 1 (we require at least one memory handle
to be present).

6.2 BUS CLASS SPECIFICATION LANGUAGE 111T1 := fqu !i qv k qu; qv 2 Q^u �Qm1j�1hkj ; xji ^ x1; :::; xm1 < Vp(apaity)^v = (Qm1j�1hkj ; xjio u)�Qm1j�1hkj ; xj + 1igT2 := fqu !i qv k qu; qv 2 Q^u �Qm2j�m1+1hkj; xji^v = (Qm2j�m1+1hkj; xjio u)�Qm2j�m1+1hkj ; x0ji^8i;m1 + 1 � i � m2: (xi < Vp(apaity) ^ x0i = xi + 1)_(xi = Vp(apaity) ^ x0i = xi)gT3Vv := fqu !i qv k qu; qv 2 Q^u �Qm3j�m2+1hVp(rank)(Vv(ij)); xji^xm2+1; :::; xm3 < Vp(apaity)^v = (Qm3j�m2+1hVp(rank)(Vv(ij)); xjio u)�Qm3j�m2+1hVp(rank)(Vv(ij)); xj + 1igT4Vv := fqu !i qv k qu; qv 2 Q^u �Qm4j�m3+1hVp(rank)(Vv(ij)); xji^v = (Qm4j�m3+1hVp(rank)(Vv(ij)); xjio u)�Qm4j�m3+1hVp(rank)(Vv(ij)); x0ji^8i;m3 + 1 � i � m4: (xi < Vp(apaity) ^ x0i = xi + 1)_(xi = Vp(apaity) ^ x0i = xi)gTiVv := (T1
K1K2 T2)
K1[K2K3[K4 (T3Vv
K3K4 T4Vv)
where K1 df= fk1; :::; km1g K2 df= fkm1+1; :::; km2gK3 df= fVp(rank)(Vv(x)) k x 2 fim2+1; :::; im3ggK4 df= fVp(rank)(Vv(x)) k x 2 fim3+1; :::; im4gg
Compute the set of locations used in input section KiVv :KiVv df= [i2f1;:::;4gKi

112 VCN: COORDINATION MODEL� If seI is of arbitrary possible form different from the previous
one then TiVv := fqu ! qv k qu; qv 2 Qg
Compute the set of locations used in input section KiVv :KiVv df= ;

iii. For each Vv 2 Ints compute the relation ToVv � Q�Q relating
all pairs of states which realise the output section identifiers. We
write q1 !oVv q2 whenever hq1; q2i 2 ToVv .� If seO is of the form (up to the particular order of all the

handles included): o1"k1; :::; on1"kn1 ;fo1n1+1; :::; ol1n1+1g"kn1+1; :::; fo1n2 ; :::; oln2�n1n2 g"kn2 ;on2+1#kn2+1; :::; on3#kn3 ;fo1n3+1; :::; ol01n3+1g#kn3+1; :::; fo1n4 ; :::; ol0n4�n3n4 g#kn4 ;on4+1"�; :::; on5"�;on5+1#�; :::; on6#�;on6+1; :::; on7 ;?kn7+1; :::; ?kn8
where

– n1; :::; n8 2 N indices denoting the borders of individual
groups of handles satisfying n1 � n2 � n3 � n4 � n5 �n6 � n7 � n8 and n6 > 1 _ n8 > n7 (we require at least
one memory handle to be present),

– 8i 2 f1; :::; n2 � n1g: li 2 N denotes cardinality of the
respective variable set in a multi-handle having the indexli + n1,

– 8j 2 f1; :::; n4 � n3g: l0j 2 N each denotes cardinality
of the respective variable set in a multi-handle having the
index l0j + n3,

– all the output variables which occur in the format stated
above are assumed to be mutually different.

Then construct the following relations:T 01 := fqu !oVv qv k qu; qv 2 Q^u �Qn2j�1hkj ; xji ^ x1; :::; xn2 > 0^v = (Qn2j�1hkj; xjio u)�Qn2j�1hkj; xjig

6.2 BUS CLASS SPECIFICATION LANGUAGE 113T 02 := fqu !oVv qv k qu; qv 2 Q^u �Qn4j�n2+1hkj ; xji ^ xn2+1; :::; xn4 > 0^v = (Qn4j�n2+1hkj ; xjio u)�Qn4j�n2+1hkj; xj � 1igT 03Vv := fqu !oVv qv k qu; qv 2 Q^u �Qn5j�n4+1hVp(rank)(Vv(oj))); xji ^ xn4+1; :::; xn5 > 0^v = (Qn5j�n4+1hVp(rank)(Vv(oj)); xjio u)�Qn5j�n4+1hVp(rank)(Vv(oj)); xjigT 04 := fqu !oVv qv k qu; qv 2 Q^u �Qn6j�n5+1hVp(rank)(Vv(oj)); xji ^ xn5+1; :::; xn6 > 0^v = (Qn6j�n5+1hVp(rank)(Vv(oj)); xjio u)�Qn6j�n5+1hVp(rank)(Vv(oj)); xj � 1igToVv := (T 01
K1K2 T 02)
K1[K2K3[K4 (T 03Vv
K3K4 T 04Vv)
where K1 df= fk1; :::; kn2g K2 df= fkn2+1; :::; k0n4gK3 df= fVp(rank)(Vv(x)) k x 2 fon4+1; :::; on5ggK4 df= fVp(rank)(Vv(x)) k x 2 fon5+1; :::; on6gg
Compute the set of locations used in output section KoVv :KoVv df= fkn7+1; :::; kn8g [[i2f1;:::;4gKi
Remove all transitions the source states of which do not satisfy
all the tests ?kn7+1; :::; ?k, if there are any included in P:ToVv := fhqu; qvi 2 ToVv ku� n8Yj�n7+1hkj ; xji^xn7+1; :::; xn8 = 0g� If seO is of the form all"k thenToVv := fqu !oVv qv k qu; qv 2 Q^u � hk; xi ^ x > 0^v = (hk; xi o u)� hk; xig

114 VCN: COORDINATION MODEL

Compute the set of locations used in output section KoVv :KoVv df= fkg� If seO is of the form all#k thenToVv := fqu !oVv qv k qu; qv 2 Q^u � hk; xi ^ x > 0^v = (hk; xio u)� hk; x� 1igKoVv df= fkg� If seO is of an arbitrary possible form which is different from
the previous forms thenToVv := fqu !oVv qv k qu; qv 2 QgKoVv df= ;

iv. Construct the local transition relation TP:� If C � seI= se O thenTP := fqu Vv(seI)=Vv(seO)�! qv k hqu; qvi 2 TiVv
KiVvKoVv ToVv^Vv 2 Intsg� If C � seI� = se I thenTP := fqu W=Vv(seO)�! qv k hqu; qvi 2 TiVv
KiVvKoVv ToVv^W 2 2Vv(seI) ^W 6= ; ^ Vv 2 Intsg� If C � seI=� se I thenTP := fqu Vv(seI)=R�! qv k hqu; qvi 2 TiVv
KiVvKoVv ToVv^R 2 2Vv(seO) ^R 6= ;Vv 2 Intsg� If C � seI� =� se I thenTP := fqu W=R�! qv k hqu; qvi 2 TiVv
KiVvKoVv ToVv^W 2 2Vv(seI) ^R 2 2Vv(seO)^W;R 6= ; ^ Vv 2 Intsg

6.2 BUS CLASS SPECIFICATION LANGUAGE 115

v. Increment the global transition relation T :T := T [TP
4. Determine the initial state q0:� q0 2 Q ^ kQk = 1, if Vp(apaity) = 0,� q0 := qu where u =Qk2F hk; 0i, otherwise.

Algorithm 6.19

procedureComputeInts(P::cooperation pattern, Vp::parameter interpretation)
1. Assume P � C or P � C; R.

2. Compute the set Intsi of interpretations of bus predicate variables included
in seI:� If seI is of the form (up to the particular order of all the handles in-

cluded): i1"k1; :::; im1"km1 ;im1+1*km1+1; :::; im2*km2 ;im2+1"�; :::; im3"�;im3+1*�; :::; im4*�;im4+1; :::; im5
where m1; :::;m5 2 N are indices denoting the borders of individual
groups of handles satisfying m1 � m2 � m3 � m4 � m5 andm4 > 1
(we require at least one memory handle to be present), then:Intsi := fVv k �1(Vv; fi1; :::; im5g) ^ :�2(Vv; fim2+1; :::; im4g)g
where�1(Vv; fi1; :::; img) :=9fi1; :::; img � Vp(In): kfi1; :::; imgk = m^Vmk�1 Vv(ik) = ik^8x 2 V arin [V arout: fxg \ fi1; :::; img = ;) Vv(x) = ?�2(Vv; fik; :::; ilg) :=Wk1;k22fk;:::;lg k1 6= k2) Vp(rank)(Vv(ik1)) = Vp(rank)(Vv(ik2))

116 VCN: COORDINATION MODEL� If seI is of either form different from the previous one thenIntsi := fVv k 8x 2 V arin [V arout:Vv(x) = ?g
3. Compute the set Intso of interpretations of bus predicate variables included

in seO:� If seO is of the form (up to the particular order of all the handles in-
cluded): o1"k1; :::; on1"kn1 ;fo1n1+1; :::; ol1n1+1g"kn1+1; :::; fo1n2 ; :::; oln2�n1n2 g"kn2 ;on2+1#kn2+1; :::; on3#kn3 ;fo1n3+1; :::; ol01n3+1g#kn3+1; :::; fo1n4 ; :::; ol0n4�n3n4 g#kn4 ;on4+1"�; :::; on5"�;on5+1#�; :::; on6#�;on6+1; :::; on7 ;?kn7+1; :::; ?kn8
where

– n1; :::; n8 2 N indices denoting the borders of individual groups
of handles satisfying n1 � n2 � n3 � n4 � n5 � n6 � n7 � n8
and n7 > 1 (we require at least one bus output variable to be
present),

– 8i 2 f1; :::; n2 � n1g: li 2 N denotes cardinality of the respective
variable set in a multi-handle having the index li + n1,

– 8j 2 f1; :::; n4 � n3g: l0j 2 N each denotes cardinality of the
respective variable set in a multi-handle having the index l0j + n3,

– all the output variables which occur in the format stated above are
assumed to be mutually different;

thenIntso := fVv k �3(Vv; fo1; ::; on7g [Sn2i=n1+1fo1i ; ::; oli�n1i g[Sn4i=n3+1fo1i ; ::; ol0i�n3i g) ^ :�4(Vv; fon4+1; ::; on6g)g
where�3(Vv; fo1; :::; ong) :=9fo1; :::; ong � Vp(Out): kfo1; :::; ongk = n^Vnk�1 Vv(ok) = ok^8x 2 V arin [V arout: fxg \ fo1; :::; ong = ;) Vv(x) = ?

6.2 BUS CLASS SPECIFICATION LANGUAGE 117�4(Vv; fok; :::; olg) :=Wk1;k22fk;:::;lg k1 6= k2) Vp(rank)(Vv(ok1)) = Vp(rank)(Vv(ok2))� If seO is of the either form different from the above treated forms thenIntso := fVv k 8x 2 V arin [V arout:Vv(x) = ?g
4. Compute the set Ints of all the variable interpretations specified by P with

respect to the given parameter interpretation Vp:� If P � C; R thenInts := fVv k Vvi 2 Intsi;Vvo 2 Intso:Vv = Vvi [Vvo^�5(Vv; C) ^ �6(Vv; R)g
where�5(Vv; C) := _x1;x22vars(C)x1 6=x2 Vp(rank)(Vv(x1)) = Vp(rank)(Vv(x2))
where vars(C) is a set of all rank-bounded memory handles included
in C. �6(Vv; R) := R[Vp(rank)(Vv(x))=rank(x)℄� If P � C thenInts := fVv kVvi 2 Intsi;Vvo 2 Intso:Vv = Vvi[Vvo^�5(Vv; C)g

To argue that both of the algorithms above are correctly defined in the
sense that for given values of the respective input parameters each of the
algorithms stops the computation with the expected result, we have to go
through the algorithms step by step. During this analysis we also sketch
briefly a way of how these algorithms can be implemented. These sketches
imply the rough approximation of time complexity of the algorithms. Con-
cerning the complexity issues, we are not going into details here as we
present both algorithms primary in order to formally define the process
of bus class instantiation.

Correctness of Variable Interpretation Computation

We start with Algorithm 6.19. Let P a cooperation pattern and Vp a bus
class parameter interpretation. We analyse the execution of the procedureComputeInts(P;Vp).

118 VCN: COORDINATION MODEL

The computation in the step (2) accepts all the possible forms of the
cooperation pattern input section. In the nontrivial situation when seI is
of the general form, we need to analyse the construction of the set Intsi.
Note that the set of all possible interpretations of variables included in an
arbitrary cooperation pattern is always finite due to the two facts — at first,
the number of variables in an arbitrary cooperation pattern is always finite,
at second, the parameters In and Out are always interpreted as finite sets.
Hence we have to argue that computation of validity of the two predicates�1 and �2 finishes in every possible case.

Both predicates �1 and �2 can be comprehended as requirements on the
form of the possible variable interpretations. Each generated interpretation
is determined by its range defined as a subset of Vp(In) which has a given
finite cardinality. For the computation of Intsi, we can consider these pred-
icates to be applied already during generation of the interpretations so that
each generated interpretation is required to satisfy it. The construction pro-
cedure iteratively computes all the interpretations which satisfy the mutual
rank divergence stated by the predicate �2 and which are additionally de-
fined on the domain fi1; :::; imgwith the range equal to an arbitrary subset
of Vp(In) of the required cardinality m. The last conjunction of the predi-
cate �1 has only formal sense and is realised by considering the generated
interpretations to be implicitly partial functions. Such a setting is important
for the correct computation of bus instance in Algorithm 6.18. To conclude
the analysis of the step (2) we have to discuss a one last issue. As the setVp(In) and cardinality of the required subsets are finite, and hence Intsi
is finite too, the construction procedure in the step (2) constructs a finite
number of interpretations and stops.

The step (3) (computation of Intso) follows the same ideas and prob-
lems as the previous step. The only difference is that instead of the predi-
cates �1 and �2, the counterparts of these predicates adapted to the output
handles are used (�3 and �4, respectively). Note that the use of the predicate�3 is more complicated here then the use of the predicate �1 in construc-
tion of Intsi. The reason for that is treating of the multi-handles included
in the current cooperation pattern. Recall the syntactic requirement (1) of
Definition 6.5 stating that all the variables occurring in any cooperation
pattern must be mutually different. Such a requirement comprises also
multi-handles. In particular, all multi-handles in the particular coopera-
tion pattern output section must be interpreted as mutually disjoint sets
of ports, and moreover, they must be disjoint from the set of all the other
ports generated by the output section of the pattern. Hence the predicate�3 is applied to a union of all output variables which occur in the current
cooperation pattern.

Now only a one more computation step — the final step (4) regard-
ing the computation of Ints — remains for the analysis. If P contains no
rank constraint then Ints is defined as the set of interpretations each of

6.2 BUS CLASS SPECIFICATION LANGUAGE 119

which is defined as a union of an arbitrary interpretation in Intsi and an
arbitrary interpretation in Intso which additionally satisfies the predicate�5. This predicate ensures exclusion of all interpretations which assign the
same rank to any two different memory handles. This way, the requirement
stated in the note 6.6 is achieved. Note that if there is no rank-bounded
handle in the particular cooperation pattern then the predicate �5 is sim-
ply true because of the disjunction over an empty index set. Additionally,
it is worth noting that a domain of each interpretation in Intsi is disjunct
with a domain of any interpretation in Intso. In the similar sense also the
ranges of interpretations in Intsi and Intso are mutually disjunct. Hence
a union of variable interpretations (partial functions) is a correctly defined
variable interpretation (partial function). Computation of Ints can be re-
alised directly by unification of the respective interpretations resulting withkIntsik � kIntsok many interpretations contained in Ints.

If P additionally contains a rank constraint then the computation is
more complicated. Here only interpretations satisfying the conjunction of
predicates �5 and �6 have to be included in Ints. Hence the unification of
interpretations in Intsi and Intso must be restricted only to these interpre-
tations. The predicate �6 is defined as a finite quantifier-free formula con-
structed directly from the rank constraint by replacing of all the included
variables by the respective values given by the particular interpretation.
As the link ranking parameter of the bus class is always interpreted by a
finite ranking function, computation of validity of such a formula finishes
for every parameter and variable interpretation. It is worth noting that due
to the syntactic requirement 5 the ranking function in the predicate �6 is
never applied to an argument ’?’.

To sum up, for any given parameter interpretation Vp and any co-
operation pattern P the procedure ComputeInts finishes with the result-
ing set Ints containing all interpretations of variables included in P in-
duced by the parameter interpretation Vp. The time complexity of the
computation sketched above is characterised by a polynomial function
w.r.t. the size of the input structures. In particular, if ni = kVp(In)k,no = kVp(Out)k, mi, mo denote each the number of input (resp. out-
put) variables in P, ki, ko are the number of rank-bounded input han-
dles and rank-bounded output variables respectively, and r is the num-
ber of rank comparisons in the rank constraint R, then the complexity isO(nmii � (ki + 1)2+nomo � (ko + 1)2+nimi �nomo � (r+ki �ko+1)) where each
summand correspond to the respective computation step described above
(in the respective order).

Correctness of Bus Instance Construction

Next we concentrate on analysis of the Algorithm 6.18. Let � a bus predi-
cate and Vp a bus class parameters interpretation. We analyse the execution
of the procedure GenerateModel(�;Vp).

120 VCN: COORDINATION MODEL

The step (1) is responsible for computation of the set of all memory
locations introduced in cooperation patterns included in �. As the set of
all memory locations referred in an arbitrary bus predicate is always finite
and so is a range of an arbitrary ranking function given by any parameter
interpretation, the computation is finished in every case and returns the
required set.

The state space construction in the step (2) depends on the fact if the bus
class is memory-less or not. In the negative case, the global state space is
constructed taking all memory locations and their uniform capacity given
by the apaity parameter interpretation into account. As both the capac-
ity and number of memory locations is required to be finite, the state space
is also finite.

The most intricated step of the computation is the step (3) which is re-
sponsible for generation of the transition relation on the state space con-
structed in the previous step. The computation of the step (3) runs in a
loop executed for each cooperation pattern P included in �. The result of
each iteration of the loop is construction of the particular fragment of the
transition relation. This fragment, denoted TP, comprises the transitions
induced by the actual cooperation pattern P. We analyse each of the respec-
tive computation steps of the loop individually.

In the first step of the loop, denoted (3b i.), the Algorithm 6.19 is run. As
we have discussed above, the respective computation stops for every input
parameters and gives the expected result. In the step (3b ii.), the input partTiVv of the transition relation fragment TP is constructed for each Vv 2 Ints.TiVv can be comprehended as a transition relation with unspecified labels.
Its main purpose is to relate states according to the semantics of the combi-
nation of the included input handles. Construction of TiVv depends on the
form of the input section of the cooperation generator included in P. At first
we discuss the computation in the case when the input section is of the gen-
eral form including arbitrary number (denoted m1) of memory-less input
handles, arbitrary number (denoted m2 �m1) of memory "-input handles,
arbitrary number (denoted m3�m2) of memory *-input handles, arbitrary
number (denotedm4�m3) of rank-bounded memory "-input handles, and
finally arbitrary number (denoted m5 �m4) of rank-bounded memory *-
input handles. Especially, at least one memory handle is expected here as
the strict inequality m1 < m5 is required to be satisfied. In this situation, a
specific transition relation is constructed for each of the above mentioned
groups of input handles. All of these transition relations have the same
form as TiVv , hence they can be intuitively comprehended as parts of TiVv .
The relations T1 and T2 are independent of the variable interpretation. T1
realises composition of semantics of all the memory "-input handles and
fits them into the overall state space. Such a composition corresponds to a
specific product of several automatons as the one depicted in Figure 6.1a.
The specificity of the product is given by concerning the behaviour of all

6.2 BUS CLASS SPECIFICATION LANGUAGE 121

the respective input handles to be performed simultaneously. Similarly, T2
realises composition of semantics of all the memory *-input handles.

The relations T3Vv and T4Vv are defined for each interpretation sepa-
rately which goes with the fact that the memory location induced by rank-
bounded memory handles is given by evaluating the respective rank on an
interpretation of the particular input variable. In other respects the rela-
tions are constructed similarly to relations T1 and T2, respectively. Com-
putation of each of the four relations above must always stop because of
finiteness of the state space Q.

After all the relations above are constructed, their composition with re-
spect to the operator ’
’ is realised. At first, T1 is composed with T2 w.r.t.
the respective mutually disjoint sets of memory locations. At next, T3Vv
and T4Vv are composed w.r.t. the respective sets of locations. Finally, com-
position of the relations resulting from the previous two compositions is
realised.

For the input section of any possible form different from the one above
(i.e., the form which contains no memory handles — ’all’ or ’�’), we con-
struct the relation which covers the entire state space and includes reflexive
transitions (self-transitions). This goes with the intuition that memory-less
input handles do not depend on actual configuration of memory locations
and hence can be performed anytime.

The output section is treated in the step (3b iii.). The computation is re-
alised similarly as in the case of the input section which has been discussed
above. The difference is in particular declarations of the relations which
here reflect the semantics of respective output handles and in the fact that,
additionally, the other forms of output section have to be treated. First
kind of these forms considers multi-handles. Each multi-handle refers a
one particular memory location of Lo, hence the generated transitions are
declared to change only the respective state component. Another kind of
forms considers test handles which contain no output variable. With re-
spect to the intended semantics of these handles — testing of emptiness
of the referred memory location, these handles are reflected by removing
of all previously generated transition which do not satisfy such a require-
ment. All the other possible forms of an output section, in particular ’all’
or ’�0, do not use any memory location and are treated in the same way
like their respective input counterparts mentioned above.

In the step (3b iv.) construction of the transition relation fragment TB is
realised. Here transitions of previously constructed parts are composed for
all interpretations in Ints and extended with labels determined by evalu-
ating the interpretation for all the input and output variables included in
the respective sections. Moreover, if the cooperation pattern contains some
unfolding operator then every transition labelled by each respective subset
of evaluation of the particular section is added.

122 VCN: COORDINATION MODEL

In the step (3b v.) the global transition relation is extended with the
fragment just acquired. Note that the entire loop which has been just anal-
ysed must always stop because the number of cooperation patterns in a bus
predicate is always finite.

The final step (4) treats determination of the initial state. This is re-
alised with respect to the fact if the bus specification is memory-less or not.
In the positive case, there is only one state in the state space and thus it is
determined as the initial state. In the negative case, the state with the de-
scriptor which corresponds to the situation when all the memory locations
are empty is considered as initial.

As all the relations computed in the algorithm are finite due to finiteness
of the state space and the number of variable interpretations, computation
of Algorithm 6.18 must stop for any finite bus class and parameter inter-
pretation and return the expected model. The returned model can have
an empty transition relation. For example, any instance of a bus predicate
’i"k=o#k’ has the empty transition relation. This is due to the impossible
combination of an input and an output memory handle. More precisely,
there is no variable interpretation which would allow some transition to be
constructed in the step (3b iv.) of the Algorithm 6.18.

Concerning the complexity issues, the algorithm is, roughly saying, ex-
ponential in space. The reason for that is construction of the state space
which grows exponentially w.r.t. the number of memory locations con-
tained in the bus predicate and the given capacity of the memory. The
algorithm, as presented above, is certainly not the most effective one re-
garding the time complexity. E.g., computation of the relations T1 and T2
can be realised only once for each cooperation pattern, because it does not
depend on variable interpretation. However, we have presented a prelimi-
nary algorithm which satisfactorily constructs a model of a bus class spec-
ification. In our future work, we aim to implement the algorithm, hence
some optimisations will have to be considered. However, for the purpose
of construction of buses used in VCN architectural descriptions in which
the number of inputs, outputs, and also the number of memory locations
and the memory capacity are typically low, we believe that this algorithm
is satisfactory.

6.2.2 Model-Theoretic Issues

In the previous section the algorithm for construction of a cooperation ma-
chine which represents a model of a particular bus class specification for
given parameter values was presented. Moreover, it was argued that the
algorithm stops the computation for any given startup parameters and
gives either the resulting cooperation machine or a state transition system
with an empty transition relation. We call the former kind of model a well-
founded model. The latter kind of model is referred to as an empty model. In

6.2 BUS CLASS SPECIFICATION LANGUAGE 123

this section we discuss for which startup conditions the algorithm produces
either well-founded models or empty models.

First of all we define the notion of a realisable bus class. Intuitively, a re-
alisable bus class is a bus class for which there exists at least one parameter
interpretation for which the respective model is well-founded.

Definition 6.20 Let B(In; Out; [rank; apaity℄) = f'; �g a bus class with '
a parameter constraint and � a bus predicate. Further let Vp a parameter interpre-
tation which satisfies the parameter constraint '.

We say that the model B(Vp(In);Vp(Out); [Vp(rank);Vp(apaity)℄) =mBVp df= hQ; 2Vp(In) � 2Vp(Out); T; q0i of the bus class B is empty, if T = ;.
Otherwise we say the model is well-founded.

We say that the bus class B is realisable if and only if there exists a parameter
interpretation Vp which satisfies ' and has a well-founded model.

The preliminary assumption for realisability of a given bus class is mu-
tual conformance of the bus predicate and the parameter constraint in the
bus specification. In particular, we require that the bus predicate does not
contradict the parameter constraint and vice-versa. Therefore it is reason-
able to consider only such consistent bus classes. The following definitions
declare the notion of a consistent bus class formally.

Definition 6.21 Let P a cooperation pattern of some bus class B and Vp a param-
eter interpretation of B. Further let Vv a variable interpretation.

We say that a variable interpretation Vv is allowable by P if and only ifVv 2 Ints where Ints is computed by executing the Algorithm 6.19 for P and Vp.

Definition 6.22 Let B(In; Out; [rank; apaity℄) = f'; �g a bus class with '
a parameter constraint and � a bus predicate. We say that B is consistent if and
only if there exists a parameter interpretation Vp which satisfies ' and induces for
each cooperation pattern P of � (in terms of Algorithm 6.19) at least one variable
interpretation Vv which is allowable by P.

Finally, we present a theorem which states the necessary conditions un-
der which existence of a well-founded model is guaranteed.

Theorem 6.23 Let B(In; Out; [rank; apaity℄) = f'; �g a consistent bus
class and let Vp the parameter interpretation of B which satisfies ' and which
induces for each cooperation pattern P in � a variable interpretation Vv that is al-
lowable by P. Then the model B(Vp(In);Vp(Out); [Vp(rank);Vp(apaity)℄ of B
constructed by Algorithm 6.18 is well-founded.

Proof: The statement follows from the fact that a consistent bus class spec-
ification guarantees existence of a parameter interpretation which induces

124 VCN: COORDINATION MODEL

an allowable variable interpretation for each particular cooperation pat-
tern of the specification. According to the step (3 iv.) of Algorithm 6.18,
each allowable variable interpretation implies the particular transition re-
lation fragment to be nonempty. Thus the respective model generated by
Algorithm 6.18 must be well-founded.

Corollary 6.24 Each consistent bus class is realisable.

By the corollary mentioned above, we completed the discussion of those
model-theoretic issues which exclusively focus on searching for necessary
conditions that guarantee existence of a well-founded model for a given
bus class and its parameter interpretation. To conclude, the important
property which a bus class must satisfy in order to have some well-founded
model is that it must be consistent. For implementation of a compiler for
the bus specification language, this is a key aspect which should be taken
into account. Such a compiler should be capable of checking the consis-
tency of the specification before construction of the respective cooperation
machine.

6.2.3 Expressiveness

In this section we characterise individual types of bus classes from the se-
mantic point of view and analyse their relative expressiveness.

First of all recall the relationships among the respective languages
showed in Section 6.2 of the previous chapter, realised from the syntactic
point of view. All these relationships are summarised in Figure 6.5. Each
of the edges in the diagram means that the lower language is a proper sub-
language of the upper language.

In,Out,rank,capacityBST

In,Out,capacity

In,Out

BST BST

BST

In,Out,rank

Figure 6.5: Syntactic relationships among bus specification languages

Here we study relationships among the bus specification languages
from the semantic point of view. In particular, we compare relative ex-
pressiveness of all the languages with respect to what kind of cooperation
machines can be specified in them up to isomorphism of respective state-
transition graphs.

6.2 BUS CLASS SPECIFICATION LANGUAGE 125

Before we compare the expressive power of individual bus class types,
let us characterise respective semantic domains. As it has been defined in
Section 6.1, the semantic domain of buses is the set CMS of cooperation
machines which have the property of being finite state finitely branching
labelled transition systems in which each transition label is defined as a
pair of finite sets of ports (a cooperation). To identify the subset of CMS
which characterises the language of each particular bus class type, we have
to analyse the computation of the Algorithm 6.18.

At first consider the language of memory-less rank-free bus classesBSTIn;Out. The form of cooperation patterns allowed in this type of bus
classes is reduced to generators in which no reference to a memory loca-
tion is contained. Moreover, no rank constraint is included. As the set of
memory locations F from the step (1) of Algorithm 6.18 is empty, the state
space constructed in the step (2) contains only a single state. In the step(3) a finite number of self-transitions is constructed for this single state.
Hence, the respective subset of CMS is characterised by some set of single-
state cooperation machines. We denote this subset CMSIn;Out. Labels of the
transitions are determined by interpretation of the input and output vari-
ables contained in cooperation generators. Thus each cooperation pattern
generates a number of transitions which are given by all the possible inter-
pretations of the variables with respect to the pattern structure. A typical
example of this kind of specification is demonstrated in Figure 6.6.B(In; Out) := fIn; Out 6= ;i=og a/aa/b b/b b/aB(fa?; b?g; fa!; b!g)
Figure 6.6: An example of a rank-free memory-less bus class and its model

At second, let us analyse the language of ranked memory-less bus
classesBSTIn;Out;rank. Here the allowed cooperation patterns have the same
kind of cooperation generators as the previous language, but they can be
additionally extended with a rank constraint. Thus the construction of the
cooperation machine follows the same guidelines as in the previous case
with the only exception of the step (3) where a ranked cooperation pattern
is treated differently. Here the number of transitions generated according
to the respective pattern is potentially reduced with respect to the interpre-
tation of the rank constraint. Hence rank constraints allow finer setting of
the form of resulting cooperation machines. A typical example of this type
of specification is depicted in Figure 6.7. We denote the subset of coopera-
tion machines characterising this type of bus classes as CMSIn;Out;rank.

126 VCN: COORDINATION MODELB(In; Out; rank) := fIn; Out; rank 6= ;i=o ^ rank(i) = rank(o)g a/a b/bB(fa?; b?g; fa!; b!g;fa? 7! 1; b? 7! 2; a! 7! 1; b! 7! 2g)
Figure 6.7: An example of a ranked memory-less bus class and its model

The third analysis deals with the language BSTIn;Out;apaity of rank-free
bus classes equipped with memory. In the step (1) of the bus instance com-
putation from classes of this type there is typically a nonempty set of mem-
ory locations generated. It implies that the state space computed in the step(2) can be nontrivial. In the step (3), transitions are generated according to
the cooperation patterns and placed into the state space. Note that here
cooperation patterns contain no rank constraints. The generated cooper-
ation machine represents particular composition of semantics of all indi-
vidual memory handles occurring in the specification. We denote the set
of such cooperation machines which characterise this type of specifications
as CMSIn;Out;apaity. An example of a specification of this kind is given in
Figure 6.8.B(In; Out; apaity) := fIn; Out 6= ;i"k=��=o#kg −/ba/− b/− −/aB(fa?; b?g; fa!; b!g)
Figure 6.8: An example of a rank-free bus class with memory and its model

The last language which remains for analysis is BSTIn;Out;rank;apaity .
This language considers all the features of bus class specification. It differs
from the previous language in the added possibility of extending coopera-
tion patterns with rank constraints. Thus construction of a model of a bus
class of this type follows the same guidelines as in the previous case. How-
ever, in the step (3), if a rank constraint is included in some cooperation
pattern then the computation of the respective transition relation fragment
is different. This difference is similar to the difference between rank-free
memory-less and ranked memory-less languages. Here rank constraints
allow finer setting of using of some memory locations by particular rank-
ing of bus inputs and outputs which refer to them. An example of a typical

6.2 BUS CLASS SPECIFICATION LANGUAGE 127

specification of this type is depicted in Figure 6.9. Note that just coopera-
tion machines of this kind are inexpressible in any of the others bus class
languages. The set of cooperation machines which characterises this bus
class type is denoted CMSIn;Out;rank;apaity.B(In; Out; rank; apaity) :=f In; Out; rank 6= ;i"�=��=o#�g

a/−
b/−−/a

−/b

B(fa?; b?g; fa!; b!g;fa? 7! 1; b? 7! 2; a! 7! 1; b! 7! 2g)
Figure 6.9: An example of a ranked bus class with memory and its model

Now we follow with capturing the comparison of expressiveness of bus
specification languages formally. First of all we analyse whether each par-
ticular bus specification language is expressible in its superior languages.
Note that the semantics given by the Algorithm 6.18 is not modular due
to the fact that each cooperation pattern is considered as a whole, i.e., its
semantics is not directly constructed from semantics of its subparts. Hence
the fact that a language is a sublanguage of the other language in our case
does not automatically implies that the former language is expressible in
the latter language. The following lemma analyses these expressibility re-
lationship for the family of bus specification languages.

Lemma 6.25 The following expressiveness relationships among the particular bus
specification languages hold:

1. BSTIn;Out � BSTIn;Out;rank
2. BSTIn;Out � BSTIn;Out;apaity
3. BSTIn;Out;rank � BSTIn;Out;rank;apaity
4. BSTIn;Out;apaity � BSTIn;Out;rank;apaity

Proof: We have to prove that each bus predicate encoded in the language
on the left side can be encoded as a predicate of the language on the right
side, and moreover, that both predicates specify the same bus instance up
to isomorphism of the particular cooperation machines. Formally, for any
bus predicate �1 of the former language and any parameter interpretationVv there must exist a bus predicate �2 of the latter language which generates
for the interpretation Vv the same model up to isomorphism.

128 VCN: COORDINATION MODEL

1. At first we have to consider the language BSTIn;Out;rank which is an
extension of the language BSTIn;Out such that the rank constraints are
added to the syntax of the original language. According to Defini-
tion 6.7, the only syntactic difference of the two languages is in the
form of cooperation patterns. In the latter language, patterns can ei-
ther contain a rank constraint or not. Hence if we take a bus predicate�1 of BSTIn;Out, we can encode it directly in BSTIn;Out;rank as a pred-
icate �2 such that �2 � �1. Now if we fix an arbitrary parameter
interpretation Vp, the computation in Algorithm 6.18 must follow in
both cases the same steps. Especially in the step (4) of the nested call
of Algorithm 6.19, the second possibility is always applied. Thus re-
sults of both computations must be the same cooperation machine.
Additionally, the parameter interpretation Vp does not interpret therank parameter. As the rank interpretation is never applied during
the computation of �2, there is no need to extend Vp. Thus we have
successfully finished the proof.

2. In this case, we need to encode a memory-less predicate �1 (a pred-
icate with no memory handles) into a language which permits use
of memory handles. The encoding is realised by syntactically same
predicate �2, �2 � �1. The proof follows similar guidelines as the
previous one. However, here we have to carefully observe if the com-
putation of �2 matches the computation of �1 in the steps (2) and(3) of the Algorithm 6.18. As we have a memory-less bus class, the
interpretation of apaity parameter is set to 0. In this way, any pos-
sible parameter interpretation of the memory-less specification can be
freely extended. Hence the computation in the step (2) must be the
same. Computations do not event differ in the step (3), as the form of
the cooperation patterns remains the same. Hence we have the result.

3. This situation concerns the extension of a ranked memory-free lan-
guage to the full language. Also here according to Definition 6.7 the
encoding �2 of a predicate �1 into the full language does not require
any syntactic changes. By the similar steps as in the previous case we
achieve the two isomorphic cooperation machines, as the particular
computations in Algorithm 6.18 does not differ.

4. This situation is proved analogously to the first case.

Next we follow with analysis of inclusion relations among the sets of
cooperation machines which characterise the respective bus specification
languages. Before we start, let us emphasise that the symbol ’�’ denotes
the strict subset relationship.

Definition 6.26 Define the set of cooperation machines CMSIn;Out � CMS char-
acterising the semantic domain of the language BSTIn;Out as the set of all models

6.2 BUS CLASS SPECIFICATION LANGUAGE 129

of any bus class B 2 BSTIn;Out generated for any parameter interpretation Vp by
the Algorithm 6.18.

Analogously define the sets of cooperation machines CMSIn;Out;rank,CMSIn;Out;apaity, and CMSIn;Out;rank;apaity characterising the semantic do-
mains of respective families of bus specification languages.

Lemma 6.27 The following strict subset relationships hold:

1. CMSIn;Out � CMSIn;Out;rank
2. CMSIn;Out � CMSIn;Out;apaity
3. CMSIn;Out;rank � CMSIn;Out;rank;apaity
4. CMSIn;Out;apaity � CMSIn;Out;rank;apaity

Proof: At first note that from Lemma 6.25 the non-strict versions of the
set inclusions above directly follows. Thus it suffices to prove that each of
these relationships is strict.

1. The first strict set inclusion follows from the claim that the cooper-
ation machine from Figure 6.7 cannot be encoded in the languageBSTIn;Out. We follow the proof of this claim by contradiction. Sup-
pose the cooperation machine in Figure 6.7 can be specified, up to
isomorphism, in BSTIn;Out. Denote this cooperation machine B. As
all the transition labels ofB contain a single event in both sections, all
the generators in the specification must be of the form i=o. Moreover,
the sets of inputs and outputs of B are the following:In(B) = fa?; b?g Out(B) = fa!; b!g
Hence such a specification leads to the one depicted in Figure 6.6.
Note that this specifications is a minimal representative of the sup-
posed specification up to the particular setting of the bus constraint.
However, the respective cooperation machine is evidently not iso-
morphic to B. Thus the claim holds.

2. Similarly to the previous case, this inequality follows from the claim
that the cooperation machine from Figure 6.8 cannot be expressed
in BSTIn;Out. If we assume the converse of this claim, then we are
forced to model behaviour of a buffer with a transition system which
contains only a single state, which is impossible. Hence the claim
holds.

3. The proof of this inequality follows the same steps as the previous
one. The only distinction is that link ranking is considered here. But
as link ranking is an orthogonal feature w.r.t. to the presence of mem-
ory, it does not influent the proof. Hence the inequality holds.

130 VCN: COORDINATION MODEL

4. The fourth inequality follows from the claim that the cooperation ma-
chine depicted in Figure 6.9 cannot be specified in BSTIn;Out;apaity.
Denote this cooperation machine B and assume the converse of the
claim. As each of the transition labels of B contains a single event in
either the input or the output section, all the generators in the sup-
posed specification must be of the respective forms. It leads us to
the one of the specifications depicted in Figure 6.8, Figure 6.10, or all
their consistent variations which are given by replacing the " operator
with * or/and the operator #with ". Note that these specifications are
minimal representatives of the supposed specification up to the par-
ticular setting of the bus constraint and up to the order of cooperation
patterns. Additionally, note that the sets of inputs and outputs of B
are the following:In(B) = fa?; b?g Out(B) = fa!; b!g
Thus the supposed specification should have the model correspond-
ing to the one of the cooperation machines depicted in the above
listed figures or its variant w.r.t. all the possible representatives. Intu-
itively, no of these models is isomorphic to B. Hence the claim holds.B(In; Out; apaity) := fIn; Out 6= ;i=��=og a/− b/− −/a −/bB(fa?; b?g; fa!; b!g)B(In; Out; apaity) := fIn; Out 6= ;i"k=��=og

a/−
b/−

−/a
−/b

−/a −/bB(fa?; b?g; fa!; b!g)
Figure 6.10: Some representatives of the supposed specification

Corollary 6.28 All the expressiveness relationships stated in Lemma 6.25 are
strict.

6.2 BUS CLASS SPECIFICATION LANGUAGE 131

The final corollary confirms that all the relationships depicted in Fig-
ure 6.5 holds also from the semantic point of view, and moreover, they are
strict.

In the similar way as we have compared the semantic domains
of bus class specification languages, we can compare the domainCMSIn;Out;rank;apaity of full bus class specifications with the domain of all
cooperation machines CMS.

Lemma 6.29 The inclusion CMSIn;Out;rank;apaity � CMS is strict.

Proof: The fact that each cooperation machine of CMSIn;Out;rank;apaity is
included in CMS follows directly from the Definition 6.5. Thus, only the
strictness of this inclusion remains to be proved.

a/−a/−

Figure 6.11: A cooperation machine not specifiable by BST
Assume the cooperation machine depicted in Figure 6.11. We show

that it is impossible to encode such a cooperation machine in the languageBSTIn;Out;rank;apaity. Assume that the converse holds. Here follows the
observation that the considered two-state cooperation machine contains a
transition labelled ’a=�’ leading to the initial state from the other state. Ac-
cording to Algorithm 6.18, such a transition can be generated only from a
cooperation generator of the form i[";*℄[k;�℄=� where the square bracket
notation encodes either symbol in the respective brackets. However, ac-
cording to Algorithm 6.18 the semantics of any of such generators com-
prises a transition leading to a state qxy where x and y are determined with
respect to the following forms:� If the generator has one of the forms determined by the schemei"[k;�℄=� then y < Vp(apaity) and x is either k or Vp(rank)(Vv(i))

where Vp is a parameter interpretation and Vv some allowed variable
interpretation induced by Vp. Note that from definition of interpre-
tation of bus classes with memory it follows Vp(apaity) > 0. As
the machine has only two states, the parameter interpretation must
satisfy Vp(apaity) = 1. Hence we get y = 0. Now as the initial
state is qx0 because of the step (4) of the Algorithm 6.18, we have a
contradiction.� If the generator is of the form given by the scheme i*[k;�℄=� theny = Vp(apaity) and x is either k or Vp(rank)(Vv(i)) where Vp is a

132 VCN: COORDINATION MODEL

parameter interpretation and Vv some allowed variable interpretation
induced by Vp. With respect to the definition of the relation T 01 in the
Algorithm 6.18, the supposed transition must be a self-transition. But
the considered cooperation machine has no self-transitions. Thus we
have encountered a contradiction.

The previous result implies that the bus class specification language is
incomplete in the sense of the capability to encode every finite cooperation
machine. As the purpose of bus classes is compact parameterised descrip-
tion of typical communication media, we believe that the language is still
expressible enough to describe the standard kinds of communication me-
dia. Roughly saying, the above mentioned expressiveness limitation is a
penalty of the abstractness of bus class specifications given by the variety
of considered parameters.

To conclude, let us recall that we had to compare all the bus class types
from the semantic viewpoint. We measured the expressiveness of the lan-
guages with respect to what class of objects they allow to specify. There
are other ways of comprehending the language expressiveness [AFV01].
We discuss the most significant measure — the universal computational
power (the power of Turing machines). As our languages come under fi-
nite transition systems, they all do not have such universal power. If we
permit the state space to be infinite, e.g., if we set the capacity of memory to
be unbounded, then the bus specification language BSTIn;Out;apaity, and
hence also its superior language BSTIn;Out;rank;apaity, will have the power
of unbounded channels. A language which has the universal power must
be capable of encoding of a universal two counter machine [Vaa93]. How-
ever, it will be still impossible to directly encode a universal two-counter
machine into such an extended bus specification language. The problem is
that it is impossible to capture the control mechanism of the machine, as
the bus specification language contains no primitives for encoding of the
recursive counter behaviour. However, if we add a finite state machine
to control the unbounded cooperation machine, then we can intuitively get
the universal power. As models of bus specifications are aimed to represent
coordination models and to be used in context of some behavioural model,
their unboundedness can lead to universal power of the entire specification
language.

Chapter 7

VCN: Behavioural Model

The work presented in this chapter is an extended version of the results
published in [Saf03] and [Saf04].

In Chapter 3 and Chapter 4, the visual notation for structural descrip-
tion of system architecture has been introduced, and its formal representa-
tion has been given in the form of structural terms in Chapter 5. In Chap-
ter 6, a behavioural semantics for the coordination model of buses has been
given. In this chapter, a complete behavioural model of VCN architec-
tures is established. More specifically, to each structural term a so-called
behavioural term is assigned providing an operational semantics for a par-
ticular VCN architecture. The behavioural model allows formal analysis
of VCN architectures, i.e., it enables architectural compatibility checking.
This phenomenon is introduced in the next chapter, where a specific equiv-
alence checking framework is developed for behavioural terms.

7.1 Principles of Behavioural Model

The behavioural model of VCN is based on action-based state transition
operational semantics. In this section, its basic principles are briefly intro-
duced.

The most characteristic property of VCN structure is separation of co-
ordination and computational layers of the design. Each network consists
of some components and buses. From the behavioural point of view, com-
ponents are elements encapsulating computational behaviour, while buses
are elements which encapsulate coordinative behaviour. Putting both these
classes of different behavioural elements together the behavioural model of
entire network is established. There is a notable difference concerning the
hierarchical aspects of these two classes of behavioural elements. Com-
ponents allow hierarchical refinement of the design because they can en-
capsulate lower level coordination layers (networks), whereas buses are
indivisible atomic elements.

134 VCN: BEHAVIOURAL MODEL

With respect to the hierarchical structure of VCN components, the be-
havioural model has various levels of abstraction. At the bottom most level,
semantics of leaves is defined. Lifting up one step in the hierarchy, the se-
mantics of components is defined. At this point, the white box view of a
component is transformed to the black box view. Finally the semantics of
buses and the black box component semantics are put together to define
semantics of entire networks.

7.1.1 Computational Layer

In Section 5.1.4, leaves have been introduced as cornerstones of the VCN
computational layer. VCN leaves represent atomic computational compo-
nents. They are defined as atoms in the VCN hierarchy. Each leaf is charac-
terised by a set of all its observable events. Formally, as it has been defined
in the previous chapter, there is a finite alphabet �(S) � evP of events
assigned to each leaf S 2 Leaves. In Section 7.2 we establish operational
semantics which extends leaves with behavioural model in terms of transi-
tion systems. In this thesis, we define an operational semantics for leaves
which is asynchronous in the way how the model interact with its environ-
ment. However, in [Saf02] and [SS05] we have also elaborated on the topic
of synchronous semantics. The two possible models of computation can be
characterised by the following aspects:� asynchronous model

In this setting, the chosen class of transition systems allows modelling
of components with strict atomic interaction behaviour with inter-
leaving semantics of concurrent component execution. Intuitively,
each observable event of any model component occurs as a single dis-
crete event of the entire model. The interaction with the environment
is the following. The model waits (possibly infinitely long time) until
the environment emits an event. If the event is emitted, the model
immediately realises the computation step and changes its state. On
the contrary, whenever the model is going to perform an action which
emits an event, it waits until the environment is capable of receiving
it. After the event is successfully emitted, the model continues its
computation and changes immediately its state. This model of inter-
action works also among the particular components inside the model
provided that each particular cooperation among any components of
the model occurs as a single atomic internal event of the entire model.� synchronous model

Here the respective class of transition systems satisfies the character
of non-strict non-atomic interaction behaviour. In this model, observ-
able events of components in the system occur in discrete time in-

7.2 BEHAVIOURAL MODEL OF NETWORKS 135

stants. The interaction with the environment is such that the model
reacts immediately to events emitted by the environment. The com-
putation itself is considered to take zero time. This assumption is also
called a zero-delay abstraction or synchronous hypothesis. Moreover,
in the same sense like the model reacts to events of the environment
the environment is supposed to react to events of the model, and
also this is the way of interaction of particular components inside the
model. There is no atomicity of particular cooperation among com-
ponents in the model.

7.1.2 Coordination Layer

Considering the coordination layer, in Section 5.1.4 there have been intro-
duced buses as atomic elements of the VCN coordination layer. Buses are
closely related to other elements — links and ports. In contrast to these el-
ements which passively represent static topologies of bus and component
mutual interconnections, buses play an active role in the coordination layer.
More precisely, buses represent behavioural aspects of particular coordina-
tion mechanisms. In the next section, we give buses operational semantics
to capture their active role in general way.

Hierarchy of Networks

After choosing one of the two mentioned semantic models for component
computation, the semantics of both VCN layers can be put together. More
precisely, both the semantics of buses and leaves are combined to infer the
behaviour of the entire network. The respective network transition sys-
tem reflects the semantic model chosen for computation layer. Then by
constructing a higher-level component (a component of a higher-level net-
work) by network encapsulation, the behaviour of the network is lifted to
define white box semantics of the higher-level component. In the scope
of the higher-level network, black box semantics of the component is con-
sidered, which means that the component behaviour is abstracted with re-
spect to the particular component interface (black box). Iterating this in-
tuition, semantics of the entire system is inferred traversing the hierarchy
from leaves to the top-most network.

7.2 Behavioural Model of Networks

In the asynchronous behavioural model, the semantic domain for VCN
leaves and networks is defined in terms of traditional labelled transition
systems with a single discrete event making a label of each transition. For-
mally, we take labelled transition systems of Definition 2.1 hQ;At; T; q0i

136 VCN: BEHAVIOURAL MODEL

in which the alphabet At is given as some finite subset of the set of anno-
tated events At � E ℄. Event annotation is important for transition systems
of networks to distinguish homonymous events of different components in
a network.

To give a VCN diagram its behavioural model we need to construct
a labelled transition system for the respective structural term. Note that
structural terms are static in a sense that they do not consider the actual
state (configuration) of a respective leaf or network. To assign the dynamic
behavioural semantics to the static structural terms, we follow the tradi-
tional process algebraic approach of developing a structural operational
semantics and introduce the agent language of behavioural terms to capture
specification of the behavioural model. For each kind of structural terms
we define a specific kind of behavioural terms which represent configura-
tions of the respective structural term. Behavioural terms then represent di-
rectly states of the labelled transition system which defines the behavioural
model of a particular structural term. This way we assign behavioural
models to VCN diagrams.

In this section we define a term algebra of behavioural terms for each
category of structural terms and give the respective transition system spec-
ifications.

Notation 7.1 Formally we denote the language of (asynchronous) behavioural
terms Tabhv as a union of the language LTabhv of leaf behavioural terms and the

language NTabhv of network behavioural terms, Tabhv df= LTabhv [NTabhv.

Assigning of the behavioural model to structural terms is realised for-
mally as a mapping denoted �a, having the signature �a : Tst ! Tabhv ,
and defined in such a way that to every structural term there is assigned
a behavioural term containing the initial state of the particular transition
system (initial configuration).

7.2.1 Leaf Configurations

As leaves are cornerstones of VCN computation layer, we set up the lan-
guage of behavioural terms for leaves to be abstract enough to encode a
wide range of formalisms for behavioural description of computation with
strict model of interaction (w.r.t. environment).

Definition 7.2 Let V countable set of leaf term variables. Define the set of asyn-
chronous leaf behavioural terms (leaf configurations) LTabhv as the least set
of finite guarded terms having the following form:� A ::=� k w! k r? is atomic statement

where w! 2 EW and r? 2 ER

7.2 BEHAVIOURAL MODEL OF NETWORKS 137� S ::= nilkA; SkS+ SkXk�x(X df= S) is asynchronous leaf behavioural
term where X 2 V .

We say that a term S is guarded iff in each its subterm of the form �x(X df= S0)
each occurrence of X in the term S0 has the context A; X for some atomic statement A.

A term S is closed iff each occurrence of a variable X 2 V in any subterm S0 ofS has the context �x(X df= S0).S[�x(X df= S)=X℄ e!S S0�x(X df= S) e!S S0 w!; S w!!S SS1 e!S S01S1 + S2 e!S S01 r?; S r?!S SS2 e!S S02S1 + S2 e!S S02 � ; S �!S S
Table 7.1: Operational semantics of asynchronous leaf behavioural terms

From the same reasons as in CCS and in other De Simone languages, the
requirement of guardedness ensures recursive definitions to have unique
solution. The rules in Table 7.1 define the operational semantics for the
language LTabhv of asynchronous leaf behavioural terms.

By Definition 7.2 we have defined an abstract language for description
of VCN behavioural layer. We believe our definition is abstract enough
to encode a satisfactorily large variety of computational models where the
level of abstraction which is typical for architectural specification. Each
potential candidate for computational model incorporable into VCN is ar-
bitrary language semantically compatible with this setting of LTabhv . For
details on specific properties of such a compatibility, we refer the reader to
Section 7.2.6.

In the following definition, the set of all observable events which hap-
pen during computation of some asynchronous leaf term is defined. This
set will be used further in this section for capturing of leaf alphabets.

Definition 7.3 Let S 2 LTabhv . Define the set of observable events of S, denotedevents(S), by induction:� events(nil) df= ;� events(w!; S) df= fw!g [events(S)� events(r?; S) df= fr?g [events(S)� events(S+ S0) df= events(S) [events(S0)

138 VCN: BEHAVIOURAL MODEL� events(�x(X df= S)) df= events(S)
Note that the � event is not included in the set of observable events of a

leaf in the definition above. This is a natural requirement which goes with
the intention to keep internal actions invisible by the environment.

Finally, we have to show how the operational semantics defined above
is related with the notion of leaf structural terms. More precisely, it re-
mains to be specified what kind of leaf configurations can be assigned to
leaf structural terms to define their asynchronous behavioural model. In
particular, a closed term representing the initial configuration of the re-
spective leaf computation is assigned to a leaf structural term. This initial
configuration represents the behavioural model — a particular leaf transi-
tion system given by the operational semantics defined above. Formally,
we realise this assignment by the semantic mapping �a defined for leaves
as the function �a : Leaves ! LTabhv
such that for each S 2 Leaves we assign �a(S) = S if and only if� S 2 LTabhv is a closed term,� �(S) = events(S).
Notation 7.4 By convention, the initial behavioural term of the leaf S is denotedS.

7.2.2 Component Configurations

In the previous chapter we have defined the auxiliary kind of structural
terms, so-called component terms. Their main purpose is to glue together
two subsequent coordination layers in the VCN hierarchy. From the be-
havioural point of view, the purpose of the component element is trans-
formation of the component white box view into the black box view. As
it has been stated in Section 4.3, this transformation is determined by the
component gate and the component interface. Both these constructs are en-
capsulated in the component structural term together with the component
body (a leaf or a network term).

To capture operational semantics of the component black box view,
we introduce the auxiliary notion of (asynchronous) component behavioural
terms (component configurations). The set of these terms is denotedCTabhv.
Component terms have a specific role in the hierarchy of behavioural terms.
They serve as basic elements for construction of network behavioural
terms. Similarly as in the case of component structural terms, the set

7.2 BEHAVIOURAL MODEL OF NETWORKS 139

of component behavioural terms is not included in the overall set of be-
havioural termsTabhv . Intuitively, a component behavioural term is a three-
tuple containing a behavioural term of the component body (a leaf or net-
work configuration), a component interface, and a gate. The former el-
ement represents dynamic information and the other two elements carry
static information about the component structure. Because the structural
information is important in order to establish a transition relation among
component configurations, it is included there in spite of its static nature
(neither the gate nor the interface change during the component computa-
tion).

Definition 7.5 For each component C = hS; I;Gi 2 CTst and each behavioural
term S 2 Tabhv define the component behavioural term hS; I;Gi 2 CTabhv.
Further define component semantic mapping �aC : CTst ! CTabhv as a func-
tion satisfying: �aC(hS; I;Gi) df= hS; I;Gi
where S = �a(S).
Notation 7.6 The members of CTabhv will be denoted 1; 2; ::: Moreover, the set
of configurations of a particular component C is denoted Q(C), Q(C) � CTabhv.

7.2.3 Network Configurations

To represent the behavioural model for the set of network structural termsNTst, we introduce the language of network configurations. Intuitively,
a network configuration is determined by a vector of current component
configurations and a vector of current bus states. Additionally, the struc-
tural information comprised in the link relation is also considered as a part
of each network configuration to simplify inference of network transition
systems.

Definition 7.7 Define the language of network behavioural terms (network
configurations) as the least set of terms having the following syntax:N := hh1; :::; ni; hq1; :::; qmi; Li
where� n;m 2 N� 1; ::; n 2 CTabhv� q1 2 Q(B1); ::; qm 2 Q(Bm) for some B1; :::; Bm 2 Buses� L � (Smi=1 In(Bi) [Smi=1Out(Bi))� fB1; :::; Bmg a link relation

140 VCN: BEHAVIOURAL MODEL

Define the semantic mapping �a for each network term N =hhC1; ::; Cni; hB1; ::; Bmi; L; Lranki 2 NTst in the following way:�a(N) df= hh�aC(C1); :::;�aC(Cn)i; h�B(B1); :::;�B(Bm)i; Li
Note 7.8 Similarly as in the case of component configurations, we include the
static information concerning the link relation in network behavioural terms.
This information is important for construction of the transition relation over
network configurations. However, in cases when the information about links
is clear from the context or is not important at all, we will write simplyhh1; :::; ni; hq1; :::; qmii instead of hh1; :::; ni; hq1; :::; qmi; Li.

It is worth discussing the fact that in contrary to link relation we have
not considered link ranks as a part of a network configuration. However,
omitting of this structural information is absolutely correct, because pres-
ence of link ranks is necessary only for generation of bus instances. For
building of the network behavioural model we use just these pregenerated
bus instances (finite coordination machines).

The following notation is established due to formal capturing of spe-
cific forms of network configurations. More precisely, before we introduce
SOS rules for network transition systems, we say how we formally write a
network configuration which differs from another one in some particular
component states or in a bus state.

Notation 7.9 Let N = hh1; ::; ni; hq1; :::; qmii a network configuration. By the
notation N[i := 0℄ denote the network configuration which differs from N only in
its ith component configuration, so that the component configuration i is replaced

with 0i. Formally, N[i := 0℄ df= hh1; ::; i�1; 0; i+1; ::; ni; hq1; ::; qmii.
Similarly, by the notation N[qj := q0℄ denote the network configuration which

differs from N only in its jth bus state, so that the bus state qj is replaced with q0.
Formally, N[qj := q0℄ df= h~; hq1; ::; qj�1; q0; qj+1; ::; qmii.

For some � � f1; :::; ng denote N[Vi2� i := 0i℄ the network configuration
which differs from N in all component positions included in �, so that each com-
ponent configuration i for some i 2 � is replaced with a new configuration 0i.
Moreover, the network configuration which differs from N in all component posi-
tions included in � and additionally in jth state of the bus Bj which has moved to
state q0 is denoted N[Vi2� i := 0i; qj := q0℄.

By convention, the initial behavioural term of the network N will be denotedN.

7.2.4 Structural Operational Semantics

In this section, the transition system specification of the VCN asynchronous
behavioural model is given. More specifically, two layers of transition sys-
tems are defined by a set of SOS rules specifying the respective transition

7.2 BEHAVIOURAL MODEL OF NETWORKS 141

relation — a transition system over component configurations and a tran-
sition system over network configurations. The former treats lifting of leaf
and network transitions to the component (black box) level. The latter com-
bines such local component transitions to form a global network transition
(which can be further lifted to the higher component level w.r.t. the VCN
hierarchy).

To establish some of the higher level transitions from a transition lead-
ing from a particular lower level configuration, we sometimes need to look
for information about what labels appear on other transitions enabled from
that lower level configuration. To this end, we define for each configurationt of arbitrary kind a set xev(t) of all events appearing on transitions which
evolve from t (the acronym xev abbreviates “next events”).

Definition 7.10 For an arbitrary behavioural term t of any kind define xev(t) the

set of all events which can occur on all single transitions starting from t, xev(t) df=fe k 9t0: t e! t0g where ’!’ represents the relevant transition relation for the
particular class of behavioural terms.

Now we present the individual SOS inference rules. We start with rules
for component configurations. The first rule defines the operational seman-
tics of the bottom most components. LetC = hS; I;Gi 2 CTst a component
structural term, and S 2 Leaves a leaf term. The operational semantics ofC is defined by the transition relation ’!C ’ over the relevant component
behavioural terms which is given by the inference rule:(1) S e!S S0hS; I;Gi gateG(e)�!C hS0; I;Gi
Note 7.11 The rule (1) is correct with respect to the gate semantics, because in the
case of a leaf the type of all the gate mappings is implicitly ? and their character is
one-to-one (see Notation 5.6).

Next rule lifts leaf internal transitions to component internal transitions.(2) S �!S S0hS; I;Gi ��!C hS0; I;Gi
Let now C = hN; I;Gi 2 CTst be a component structural term built

over a network term N = hhC1; C2; :::; Cni; hB1; :::; Bmi; L; Lranki 2 Tst.
The operational semantics ofC is more complicated in this case because the
various types of gates have to be considered. More specifically, a gate has
a crucial influence on how the respective network transitions can be lifted
to higher level component transitions. Formally, this situation is treated by
the following four rules:

142 VCN: BEHAVIOURAL MODEL(3) N e℄i!N N0hN; I;Gi gateG(e℄i)�!C hN0; I;Gi � type(gateG(e℄i)) 2 f?;+g �
This rule (3) treats the case when the gate is of the trivial or the alterna-

tive type. In this situation there is a single network transition in the premise
of the rule which is lifted to the component transition with the event rela-
belled with respect to the relevant gate specification.(4) 8e℄i 2 dom(g): N e℄i!N N0ihN; I;Gi p�!C hN[Vi2� i := 0i℄; I;Gi 24 g 2 mapG; ran(g) = fpgtypeG(g) = �� df= fi k 9e 2 E :e℄i 2 dom(g)g 35

The rule (4) deals with the situation when the component contains a
synchronous gate. In this case each instance of this rule contains finite num-
ber of network transitions (just those the labels of which are in the domain
of the gate). The universal quantifier in the premise ensures that the com-
ponent transition is realised only in the case when all the components in
the network which are connected to the gate G can evolve from their actual
configurations under the respective gated event. This behaviour conforms
to the specification of synchronous gate described in Chapter 4. The re-
sulting higher-level component transition then controls the change of the
attached network configuration. More particularly, the respective network
configuration included in the source component configuration changes all
its component configurations related with the gate. This way, all transi-
tions of the respective lower-level components are synchronised in a single
atomic higher-level component transition.(5) 8e℄i 2Mg: N e℄i!N N0ihN; I;Gi p�!C hN[Vi2� i := 0i℄; I;Gi 26664 g 2 mapG; ran(g) = fpgtypeG(g) = [Mg df= fe℄i 2 dom(g) k e℄i 2 xev(N)g� df= fi k e℄i 2Mgg 37775

The rule (5) treats the situation when the gate is of the universal type.
The principle is analogous to the previous rule. The only difference is that
here the synchronisation controlled by the universal gate G comprises the
maximal set, denoted Mg, of gated component actions which are enabled
in the current network configuration N. The maximality is given directly by
the definition of Mg in the third side condition. This way, properties of the
universal gate stated in Chapter 4 are satisfied.

The following rule is the last rule which is responsible for lifting of net-
work transitions to higher-level component transitions. In particular, lifting
of network internal � -transitions to component � -transitions is realised by
this rule.

7.2 BEHAVIOURAL MODEL OF NETWORKS 143(6) N �!N N0hN; I;Gi �!C hN0; I;Gi
The next four rules specify transition systems over network configu-

rations. In other words, these rules capture the behavioural model of a
network. More specifically, transitions of components in the network are
taken as premises and are combined to form the resulting transition of the
entire network.

The first rule of this group is responsible for interleaving of compo-
nent actions which are not involved in any gate or bus synchronisation in
a network. More precisely, each action which occurs on a free port of some
component is lifted to a single action of the entire network.(7) i e!C 0N e℄i!N N[i := 0℄ � N = hh1; ::; i; ::; ni; ~q; Lie℄i 2 E(freeports(Ci; L)) �

As internal � -transitions may happen at arbitrary level of VCN hierar-
chy, they must be captured also at the component level. By the following
rule, each internal transition of a component is lifted to an internal transi-
tion of the network in which the respective component is included.(8) i �!C 0N �!N N[i := 0℄ � N = hh1; ::; i; ::; ni; ~q; Li �

Finally we focus on synchronisation of components in a network. More
specifically, we define a synchronisation rule which takes as a premise a
particular cooperation of some bus in a network and a particular set of
component transitions chosen w.r.t. a network link relation. Moreover,
such a rule results in a single � -transition at the network level denoting the
internal synchronisation of relevant component transitions. Each such a
synchronisation is considered as an atomic transition at the level of network
transitions and labelled similarly as in CCS by the internal � -event.

To establish the respective SOS rule for such synchronisations, at first
we have to treat the semantics of cooperations because cooperations initiate
and control synchronisation of components in a network. Note that there
can be many cooperations which can be realised in a particular network
configuration. Thus we need to choose one of them. Properly speaking, we
need some classification of cooperations relative to a particular network
configuration. As we have stated in Chapter 4, only cooperations which
contain events of transitions evolving from current component configu-
rations can be considered. Moreover, from such cooperations only those
which contain maximal number of component transitions in the specific
network configuration can be realised. To capture both the former and the
latter phenomenon, we introduce the notion of so-called enabled cooperation
and maximal enabled cooperation.

144 VCN: BEHAVIOURAL MODEL

Definition 7.12 Let N = hh1; :::; ni; hq1; :::; qmii a network configuration. Fur-
ther let Bj for some j 2 f1; :::;mg some bus of N and qj the current state
of m(Bj). Define the set of cooperations enabled for qj in N, writtenenabled(N; qj), as the set of cooperations enabled(N; qj) � Coops satisfying:� hW=Ri 2 enabled(N; qj) if and only if both of the following conditions hold:

1. There exists a transition qj W=R! q0 for some q0 2 Q(Bj).
2. Whenever e℄i 2 E ℄(W) or e℄i 2 E ℄(R) for some i 2 f1; :::; ng thene℄i 2 xev(i).

We say that hW=Ri is maximal enabled cooperation for qj in N and writemaxenabled(hW=Ri; N; qj) if and only if hW=Ri 2 enabled(N; qj) and for eachhW 0=R0i 2 enabled(N; qj) the following condition holds:(W 0 �W ^R0 � R) _ (W 0 \W = ; ^R0 \R = ;)
Note 7.13 Note that for any network configuration N and any of its bus states qj
it holds that h;=;i 2 enabled(N; qj) just if there exists an internal bus transitionqj ;=;! q0 for some q0 2 Q(Bj). In other words, if an internal cooperation occurs in
the label of some transition leading from a particular state of a cooperation machine
then it is automatically enabled for that state.

Using the notion of maximal enabledness, we can now establish the
most complicated rule of VCN asynchronous behavioural model specifica-
tion.(9) qj W=R!Bj q0j 8e℄i 2MBj : i e!C 0iN �!N N[Vi2� i := 0i; qj := q0j ℄ 26664 N = hh1; ::; ni; hq1; ::; qj ; ::; qmiimaxenabled(hW=Ri; N; qj)MBj df= E(W) [E(R)� df= fi k e℄i 2MBjg 37775

This rule implements the intuition about the meaning of cooperations
which has been described in Chapter 4. The first premise of the rule de-
notes the coordination machine transition which is supposed to control the
respective atomic coordination action determined by the particular coop-
eration. The universally predicated premise on the right represents the
particular finite number of premises all of which determine the respective
transitions of components participating in the coordination action. In the
side condition of the rule, the assumption of maximal enabledness is im-
posed on the respective cooperation. This way, the choice of the right co-
operation from all the cooperations enabled in the particular bus state is
achieved. More precisely, from the set of all the cooperations enabled in
the particular bus state a tighter set containing only maximal cooperations
is considered. From that set one particular cooperation is then chosen non-
deterministically (all “maximal” instances of the rule are valid and hence
any of them can be applied).

7.2 BEHAVIOURAL MODEL OF NETWORKS 145

Note 7.14 It is worth discussing how possible internal (empty) cooperations are
treated by the previous rule. More specifically, we focus on the preemptive power
of this kind of cooperations. If in a particular bus state some non-internal coopera-
tions are enabled and so is also a h;=;i-cooperation, then the expected meaning of
this situation is internally non-deterministic choice of evolving the internal coop-
eration or one of the non-internal cooperations.

Formally, according to the definition of maximal enabledness, the internalh;=;i-cooperation is a maximal enabled cooperation only if there is no other co-
operation enabled in the respective bus state. We consider this feature of internal
cooperation exclusion because of making the VCN behavioural model (i.e., the SOS
rules) human readable. In such a setting, to capture the expected preemptive power
of internal cooperations, we introduce an explicit SOS rule which separately treats
the situation when some bus is changing its state by performing an internal action.(10) qj ;=;!Bj q0jN �!N N[qj := q0j ℄

The intuitive purpose of this rule is to transform occurrence of an empty
cooperation h;=;i in some bus Bj to an internal network level action � .
However, in the case when enabled(N; qj) = fh;=;ig for some N and qj , this
rule coincides with the respective instance of the previous rule.

To sum up, this section gives ten rules specifying the VCN asyn-
chronous behavioural model. These rules comprise the specification of
component transition systems as well as network transition systems. Both
kind of transition systems interleave in layers traversing the VCN hierar-
chy from the bottom-most components to the top-most network of a par-
ticular VCN model. That way, the behavioural model reflects the recursive
definition of VCN structural terms (Definition 5.27).

7.2.5 Properties of the Behavioural Model

Herein we analyse some properties of the rules declared above. In partic-
ular, we focus on the rule format with respect to congruence property of
weak bisimulation equivalence, as we use this kind of equivalence in the
next chapter for architectural compatibility analysis of asynchronous VCN
specifications.

It is worth noting that the format of the rules (4) and (5) does not fit the
requirements of any congruence format for weak bisimulation. The reason
for that is full use of so-called implicit variable copying [UP97]. In partic-
ular, let us consider for example the rule (4). The variable N representing a
network behavioural term is contained in every premise generated by the
universal quantifier which ranges over the domain of the respective gate.
Moreover, this variable is also contained in the source and in the target of

146 VCN: BEHAVIOURAL MODEL

the rule. Hence the variable N is being fully implicitly copied, which im-
plies that the weak bisimulation equivalence might be not compositional
with respect to the asynchronous semantics of VCN. In the next chapter
we show by a counter example that a situation in which the congruence
property is violated exactly exists for both rules. The question is, if such
a complicated rule format is necessary for implementing semantics of syn-
chronous and universal gates. However, if we relaxed the implicit copying
and defined any rule for this kinds of gates in the style of the rule (9) which
does not suffer from the mentioned problem and let the gates to be sensed
already at the network level, we would violate the required feature of gates
to be applied at the level of component encapsulation. Next, if we defined
the rules to infer semantics of component encapsulation directly from se-
mantics of components (both the conclusion and premises would be com-
ponent configuration transitions), then the basic assumption of the general
panth rule format which requires that the source contains only one function
symbol would be violated [AFV01]. In particular, in such a case the source
would contain the operator of network composition nested inside the com-
ponent encapsulation operator. We did not find any other possibility how
to implement the gate semantics without the use of full copying, thus we
believe it is an unavoidable property which is characteristic for this kind of
component encapsulation.

Concerning formats of the other rules of network and component tran-
sition system specification, it is worth noting that representation of the side
condition (i.e., the assumption of maximal enabledness) of the rule (9) has
to necessarily include negative premises, while all the other rules avoid
of negative premises. As we suppose the cooperation machines to be fi-
nite, i.e., finitely branching, each instance of the rule (9) must be finite.
The reason for that is finiteness of the set enabled(N; qj) (Definition 7.12)
for any network configuration and any state of the considered cooperation
machine. Hence the side condition expands into a union of finite sets of
negative transitions where each set represents the condition providing that
the respective enabled superset of the considered cooperation is not en-
abled. Formally, if we mark H the set of premises of a particular instance
of the rule (9), then we get:H � fqj W=R! q0jg [Sp℄i2W[R i p!Ci 0i[S hW 0=R0i�hW=RihW 0=R0i2enabled(N;qj)fi p9Ci kp℄i 2 (W 0 nW) [(R0 nR)g (7.1)

The form of the premise H implies that the rule (9) fits the ntyft/ntyxt
format [AFV01] — at first, the rule contains no predicates, at second, all
positive premises have a single variable in their right-hand sides, at third,
the source contains only one function symbol, and finally, right-hand sides

7.2 BEHAVIOURAL MODEL OF NETWORKS 147

of all positive premises contain mutually distinct variables. Note that the
rule does not fit the constraints imposed by GSOS format which is a strict
subformat of ntyft/ntyxt. The reason for that lies in the fact that the second
union in the expression (7.1) can contain more than one negative transi-
tions which evolve from the same particular component configuration. An
example of a network behavioural model which violates this property is
demonstrated in Figure 7.1 and 7.2. The bus in this model allows multicas-
ting of an event produced by the component C1 to the other two compo-
nents C2 and C3. The component C3 allows receiving of the event from
the bus in two ways (by either one of the two input ports in a and in b).
The respective instance of the rule (9) for the situation where the network
is in configuration N, denoted by darkened states, leads to the following set
of premises:H � fq0 fout℄1g=fin℄2g! q0g [f1 out!!C1 01; 2 in?!C2 02g [f3 in b?9C3 ; 3 in a?9C3g
The reason why H has just this form follows from the fact that for the con-
sidered cooperation fout℄1g=fin℄2g the set of all its sup-cooperations en-
abled in N is just the following set:fhfout℄1g=fin℄2 ; in b℄3gi; hfout℄1g=fin℄2 ; in a℄3gig
Note that H contains two different transitions evolving from 3, thus the
GSOS format is violated.

MCSTin

C1

out out

out

in

C2 C3

in_a

in_b

Figure 7.1: A network behavioural model which violates GSOS format

Note that the fundamental consistency requirement in definition of co-
operation (Definition 5.19), stating that any two ports in each cooperation
must be of different components, avoids of direct violation of the GSOS
format. However, the counterexample above shows that despite the con-
sistency requirement the GSOS format is not satisfied by the asynchronous

148 VCN: BEHAVIOURAL MODEL

behavioural model of VCN. Hence we cannot apply the results [Blo95]
and [UP97] which imply congruence results for weak bisimulation by im-
posing other restrictions to GSOS format. However, as all the rules of the
asynchronous behavioural model fall under the ntyft/ntyxt format, the
asynchronous behavioural model of VCN is compositional with respect to
strong bisimulation.

C3:
in_a?

out! out!

in_b?

out_1/in_2 out_1/in_2,in_a_3

out_1/in_2,in_b_3

MCST:C1:

in?

C2:

in?out! out!

c’1 c’2

c1 c2

q0

c3

c’3 c’’3

Figure 7.2: Behavioural model of components and the bus from Figure 7.1

7.2.6 Expressiveness

In this subsection we discuss some expressiveness issues of the transition
system specification for the asynchronous behavioural model given above.
We consider measuring of expressiveness in two aspects. The first aspect
concerns the domain of structures which can be described by various lan-
guages up to strong bisimulation equivalence, whereas the second aspect
asks which operations of one language are realisable in terms of the opera-
tions of other language up to strong bisimulation equivalence.

With respect to the rule (9), the structural operational semantics of net-
works is based on composition of two kinds of transition systems — co-
operation machines and transition systems of leaf configurations, given by
the rules in Table 7.1. Concerning the expressiveness issues, it is worth not-
ing that combination of these two kinds of transition systems determines
the expressive power of the entire asynchronous version of VCN. As the
primary aim of VCN is description of finite state component-based archi-
tectures, and in such architectures features of connectors are typically of
greater interest than features of components, we focus especially on analy-
sis of expressive power of the coordination layer.

However, as the language of leaf configurations is a cornerstone of the
VCN semantics, let us give some notes concerning the leaf configurations at
first. The specification of leaf transition systems has been defined by SOS
rules given in Section 7.2. All those rules in Table 7.1 have the structure
which fits the requirements of the De Simone rule format with recursion.
More precisely, all the rules have positive premises with different variables
and the target has no multiple occurrences of variables and does not con-
tain any of the source variables. Together with the recursion rule and the

7.2 BEHAVIOURAL MODEL OF NETWORKS 149

assumption of guarded recursion the language of leaf configurations can be
classified as a finitary De Simone language (in terms of [AFV01]) with finite
guarded recursion and hence its semantic domain corresponds to regular
transition systems. This fact follows from [vG95]. This result also implies
that the language of leaf configurations can be embedded into CCS [Mil89]
or CSP [Hoa85] and is strictly less expressive than full versions of these pro-
cess languages. Especially, in LTabhv only finite recursion is allowed. From
the point of view of the second expressiveness aspects mentioned above,LTabhv does not contain any counterpart to parallel composition, renaming,
and restriction operators of the mentioned process languages.

In consequence, we analyse the expressiveness of the coordination
layer. First of all, concerning the first mentioned aspect of expressiveness,
the language NTabhv of network behavioural terms is expressible in the do-
main of regular transition systems. The reason for that is the fact that LTabhv
is a modular sublanguage ofNTabhv and coordination layer operators do not
increase its expressiveness. This is due to finiteness aspects of all the com-
ponent encapsulation and network composition rules, and the fact that also
the cooperation machines used for the semantics of buses are considered to
be finite (it does not matter which type of bus class language is chosen for
specification of buses).

More interesting is to analyse the power of coordination layer with re-
spect to the second expressiveness aspect. Let us consider the operator of
network composition given by the rule (9) at first. Here the expressive-
ness of the network composition operator depends on the type of bus class
specification language chosen for generating of buses. Let us denote each
of the respective family of languages NTabhv(BIn;Out), NTabhv(BIn;Out;rank),NTabhv(BIn;Out;apaity), and NTabhv(BIn;Out;rank;apaity). If we take the family
of languages NTabhv(BIn;Out), then we find out that the network composition
operator of the sublanguage NTabhv(BHSK) determined by the synchronous
handshake bus class, defined in Chapter 6, corresponds to the parallel com-
position of CCS language. However, as CCS allows parallel composition to
occur in the context of prefix operator (i.e., process expressions of the forma:(P j Q)), parallel composition of NTabhv(BHSK) is less expressive in this
aspect. Note that the inability to fork threads of parallel processes is the
common restriction of static architectural languages, thus we find it nat-
ural. In this way, NTabhv(BHSK) corresponds to GCCS — a graphical ver-
sion of CCS which also implements such a restriction. On the contrary,
a language of the family NTabhv(BIn;Out) which considers the synchronous
atomic broadcasting bus class, denotedNTabhv(BBCST), has more expressive
network composition operator which cannot be realised in (asynchronous)
CCS. Moreover, if we consider the language NTabhv(BMCST) determined
by atomic multicasting bus class, we get a network composition operator
which is inexpressible even in SCCS and CSP. The reason for that is the
principle of maximal enabledness which is not present in SCCS and CSP.

150 VCN: BEHAVIOURAL MODEL

The family of languages NTabhv(BIn;Out;apaity) determined by buses
equipped with bounded memory does not increase expressiveness of the
network composition operator with respect to any language considered
above. This is due to the possibility of realising the bounded memory in
terms of other primitives of the language. However, what comes here to
concern is the feature of simultaneous reading from different memory lo-
cations at a single atomic computation step. Here a comparison with Linda-
like coordination languages is relevant.

Concerning the language families NTabhv(BIn;Out;rank) andNTabhv(BIn;Out;rank;apaity), i.e., by taking the link ranking into account,
expressiveness is added to network composition in the way of what kind
of cooperations can be defined. As link ranking increases expressiveness
of the abstract bus specification language, the increase of expressiveness
concerns the feature of greater control over addressing the ports of the
cooperating components. For details see Chapter 6.

The operator of component encapsulation has two purposes. At first,
it allows relabelling and hiding of events occurring inside the component
body. In this sense its expressiveness is fully comparable with the rela-
belling operator of CCS and other process algebras. At second, it brings be-
havioural features to the network hierarchy. In particular, synchronous and
universal gates allow to control coordination of lower level components in
the network which is nested inside the component body. In this way, an
event occurring outside of a component can atomically (in one step) cause
cooperation in the subsystem inside the component body. This feature is
not expressible by the event relabelling operators present in traditional pro-
cess algebras such as CCS or CSP. In this aspect is VCN behavioural model
also more expressive than the architectural languages AID and Wright, and
to our best knowledge, we do not know about any architectural language
which would contain such an operator.

7.3 Additional Notes

Because of the close relations between VCN and AID [RC03], we addition-
ally compare the behavioural model of the two languages here.

In contrast to VCN, the formal semantics of AID components is defined
directly in terms of labelled transition systems. Semantics of connectors is
also defined as a state-transition system. Such a transition system differs
from the VCN cooperation machine in the format of transition labels. Each
AID transition is equipped with a trigger and an effect. The trigger is a set
of actions which has the meaning of a condition imposed on the connec-
tor environment provided that each component which should participate
in a particular synchronisation by evolving action a must be in the state in
which the action a is enabled, and moreover, action a must be included in

7.3 ADDITIONAL NOTES 151

the trigger. The principle of matching a trigger with a set of enabled com-
ponent actions is similar to VCN — the principle of maximal enabledness is
applied. However, the synchronisation comprises only those actions which
are included in the effect. This feature makes the AID behavioural model
more expressive than VCN in this particular sense. I.e., by this inherently
intricated coordination model AID allows modelling of synchronous lossy
cooperations which cannot be expressed in VCN. Another application of
this trigger/effect cooperation model is to enable generic definitions of AID
buses. However, using the bus class specification language together with
VCN link ranking which is not present in AID, the most of reasonable co-
ordination models can be expressed in a generic way. Thus we avoided of
such a complicated behavioural model as in AID.

In spite of higher expressiveness power of AID bus transitions, the AID
behavioural model is defined by very complicated SOS rules (viz. Defini-
tion 3:6 in [RC03]) about which it is difficult to discuss if they satisfy the
restrictions of some suitable congruence rule format. Especially, it is worth
noting that in AID, the condition of so-called independency is introduced as a
premise of the respective synchronisation rule, additionally to maximal en-
abledness. This condition requires at most one action of each participating
component to be considered for synchronisation. Note that in VCN such
a condition is implicitly satisfied by cooperations in labels of cooperation
machines.

Another difference between AID and VCN is in the semantics of gates.
In AID there is no counterpart to the notion of synchronous and universal
gates.

Chapter 8

Architectural Interoperability
Checking

This chapter contains the results which have been published in [Saf06].

The behavioural model defined in the previous chapter has been es-
tablished to support bottom-up design methodology in VCN. In this chap-
ter, a framework for automatic verification of behavioural correctness of
VCN networks is developed with respect to that behavioural model. In
this sense, issues regarding design-by-correctness introduced in Chapter 5
are further extended here.

To reason about correctness of VCN networks, we utilise the process-
algebraic approach of behavioural equivalence based on bisimulation of
behavioural models. The notion of bisimulation-based comparison of be-
havioural models of concurrent systems has been firstly introduced by Mil-
ner [Mil89]. Various kinds of bisimulation equivalences and simulation
preorders have been studied during the last two decades [vG01]. An im-
portant kind of bisimulation equivalence is weak bisimulation. The most
significant properties of this kind of behavioural equivalence are the fol-
lowing:

1. Weak bisimulation is not sensitive to internal behaviour of compo-
nents which allows only the relevant behaviour to be considered for
some particular kind of behavioural reasoning.

2. For finite state systems there are efficient algorithms with polynomial
complexity [CS01b] which automatise the process of checking that
two systems are equivalent w.r.t. weak bisimulation.

In order to utilise the notion of weak bisimulation for the setting of
VCN, we have to deal with more intricated kind of transition labels than
in traditional labelled transition systems. More specifically, for behavioural
comparison of buses we customise the notion of weak bisimulation to cap-

154 ARCHITECTURAL INTEROPERABILITY CHECKING

ture cooperation machines which are cooperation-labelled transition sys-
tems. With respect to the fact that cooperations can be comprehended as
sets of ports, we naturally consider two labels to be equivalent if the respec-
tive cooperations contain the same input and output ports. Additionally,
we consider a transition labelled by the empty cooperation h;=;i as internal
transition of cooperation machines. Hence weak bisimulation of coopera-
tion machines, so-called cooperation-labelled weak bisimulation, is established
w.r.t. this setting.

Concerning the congruence results, we have to deal with the fact that
VCN terms differ from traditional process algebraic terms (e.g., agents of
CCS or processes of CSP) in the way of how the static parallel composition
operator is defined.

8.1 Behavioural Equivalence of Cooperation Ma-

chines

Cooperation machines are transition systems with cooperations appearing
in transition labels. To capture the notion of behavioural equivalence of co-
operation machines, we utilise the traditional (weak) bisimulation equiva-
lence to the notion of cooperation-labelled weak bisimulation.

Notation 8.1 Let 2 Coops� a sequence of cooperations. Denote ̂ the following
sequences of cooperations:� ̂ df= �, if = h;=;i;� ̂ df= ̂0, if = h;=;i� � 0 � h;=;i� where 0 6= �.

Denote
)B the following sequence of succeeding transitions:)B df= (;=;!B)� !B (;=;!B)�

Definition 8.2 Let B1 and B2 2 Buses with Q(B1) and Q(B2) sets of states of
the respective cooperation machines.� A relation R � Q(B1)�Q(B2) is a (weak) cooperation-labelled bisim-

ulation if whenever hb1; b2i 2 R then for each hW=Ri 2 oop(B1) [oop(B2) both of the following holds:

1. If b1 !B1 b01 then 9b02 2 Q(B2): b2 ̂)B2 b02 and hb01; b02i 2 R.

2. If b2 !B2 b02 then 9b01 2 Q(B1): b1 ̂)B1 b01 and hb01; b02i 2 R.� We say b1 and b2 are (weakly) bisimulation equivalent and write b1 �lb2 if there exists a cooperation-labelled bisimulation R such that hb1; b2i 2R.

8.2 BEHAVIOURAL EQUIVALENCE OF STRUCTURAL TERMS 155� We say that buses B1; B2 2 Buses are behaviourally equivalent and
write B1 �=l B2 if and only if �B(B1) �l �B(B2).

8.2 Behavioural Equivalence of Structural Terms

To introduce the notion of behavioural equivalence of VCN behavioural
terms, we employ the traditional weak bisimulation approach. The defini-
tion of weak bisimulation has been recalled in Chapter 2.

Definition 8.3 Let S1; S2 2 Leaves leaves, C1; C2 2 CTst components, andN1; N2 2 Tst networks.
We say that leaves S1 and S2 are behaviourally equivalent, and writeS1 �= S2, if and only if �a(S1) � �a(S2). Analogously, components C1; C2 2CTst are said to be behaviourally equivalent, written C1 �= C2, and networksN1; N2 2 Tst are said to be behaviourally equivalent, written N1 �= N2, iff�aC(C1) � �aC(C2) and �a(N1) � �a(N2), respectively.

In the following theorem we study the congruence property of bisimu-
lation with respect to component encapsulation. In [AB05], the congruence
property is the fundamental tool for checking of architectural interoperabil-
ity.

Theorem 8.4 Let I 2 Infaes an interface, and G 2 Gates a gate satisfying that
each mapping in mapG has the type ? or +. The following implications hold:

1. For all leaves S1; S2 2 Leaves it holds thatS1 �= S2) hS1; I;Gi �= hS2; I;Gi
2. For all networks N1; N2 2 Tst it holds thatN1 �= N2) hN1; I;Gi �= hN2; I;Gi

Proof: 1. We prove Rel df= fhhs1; I;Gi; hs2; I;Gii k s1 � s2g is a weak
bisimulation.

Let hs1; I;Gi e! hs0; I;Gi for some leaf configurations s1; s0 of the leaf S1
and some event e 2 E . From bisimulation equivalence of leaves S1 and S2 it
follows that there must exist configurations s2 and s00 of S2 and a transitions2 e0) s00 such that s0 � s00 where gateG(e0) = e. Note that G contains only

one-to-one or asynchronous mappings. Thus hs0; I;Gi e) hs00; I;Gi andhhs2; I;Gi; hs00; I;Gii 2 Rel. We have proved the first condition of weak
bisimulation for the case of noninternal events. The second condition of
bisimulation is symmetric and hence is the proof.

Let hs1; I;Gi �! hs0; I;Gi for some leaf configurations s1; s0 of the leafS1. Now there are two possibilities:

156 ARCHITECTURAL INTEROPERABILITY CHECKING� s1 �! s0
In this case suppose s2 is a configuration of S2 by the equivalence ofS1 and S2 it follows that S2 does not perform any transition from s2.
Thus there is no transition from hs2; I;Gi and we have s0 � s2. Hencehhs0; I;Gi; hs2; I;Gii 2 Rel. The opposite simulation is symmetric.� s1 e! s0 where e 2 E such that gateG(e) is not defined

Here by the equivalence of S1 and S2 there exist configurations s2, s00
and a transition s2 e) s00 such that s0 � s00. As gateG is not defined
for the event e, from the rule (1) it follows that hs2; I;Gi �! hs00; I;Gi.
Hence hs2; I;Gi �) hs00; I;Gi and hhs0; I;Gi; hs00; I;Gii 2 Rel. The
opposite case can be proved symmetrically.

2. We have to prove that the following relation is weak bisimulation:Rel df= fhhN1; I;Gi; hN2; I;Gii k N1 � N2g
Suppose hN1; I;Gi e! hN0; I;Gi for some network configurations N1; N0 of
the network N1 and some event e 2 E . All the gate mappings g 2 mapG
satisfy the assumption typeG(g) 2 f+;?g, hence no synchronisation can
arise by employing the gate G. Let g 2 mapG a gate mapping satisfying e 2ran(g). The supposed transition can be inferred only by the rule (2). Hence

there exists i such that N1 e0℄i! N0 where gateG(e0℄i) = e. Equivalence of N1
and N2 gives existence of configurations N2 and N00 of N2 and a transitionN2 e0℄i) N00 such that N0 � N00. Thus hN2; I;Gi e) hN00; I;Gi by the rule (2) being
employed again and we have hhN0; I;Gi; hN00; I;Gii 2 Rel. The opposite
simulation is symmetric. 2

The assumption limiting the type of the gate function in the above men-
tioned theorem is crucial. In Figure 8.1 and Figure 8.2 there is an example
which demonstrates that the claim of this theorem does not hold in general
in cases when the gate contains a synchronous or universal gate mapping.
In Figure 8.1 there are depicted two networks N1 and N2 which have the
same structure (a) and differs only in definition of leaves (b;). In spite of
the difference in their leaf behaviour, both networks have the same seman-
tics up-to weak bisimulation.

However, if we encapsulate each of the networks in a component with
a synchronous gate G as is depicted in Figure 8.2 (a), the behaviour of the
component created from N1 is not equivalent with behaviour of the respec-
tive component created from N2. More precisely, we have N1 �= N2 and
on the contrary, hN1; I;Gi � hN2; I;Gi. Hence the congruence property is
violated for such network encapsulation.

The following theorem focuses on the congruence property with respect
to modular component and network interchange.

8.2 BEHAVIOURAL EQUIVALENCE OF STRUCTURAL TERMS 157

N1,N2

L1 HSK
s2

s1

r3
r4

ba

r1

r2
L2

s3
s4(a) shared topology of networks N1 and N2

s1!

r3?

r4?

s2!

HSK:L1: L2:

s2/r2

s1/r1

s3/r3

s4/r4a! b!

r1?

s3!

s4!

r2?(b) semantics of N1’s bus and leaves

HSK: L2: L1:

s2/r2

s1/r1

s3/r3

s4/r4

r1?

s2!

a!

a!

s1!

r4?

s3!r3?

b! b!

s4!

r2?

() semantics of N2’s bus and leaves

N2:

b!

N1:

b!

tau

a!

taua!

b!

tau

a!

tau

b! a!

tau

tau tau

tautau

tau
tau

tau

(d) semantics of N1 and N2 (both coincide)

Figure 8.1: Bisimilar nets which violate congruence for a �-gate operator

Theorem 8.5 Let N = hhC1; ::; Ci; ::; Cni; hB1; ::; Bj ; ::; Bmi; L; Lranki 2 Tst
a network. The following implications hold:

158 ARCHITECTURAL INTEROPERABILITY CHECKING

L1 HSK
s2

s1

ba

r1

r2
L2

x
c

s3
s4

r3
r4(a) applying �-gate operator G := fL1:a� L2:b 7! g

<N1,I,G>: <N2,I,G>:

c! tau tau

tau

tau
tau

tau(b) inequivalent semantics of N1 and N2 after application of G
Figure 8.2: Violation of congruence property for a �-gate operator� For an arbitrary component C 0 2 CTst it holds thatC 0 �= Ci) N �= N [Ci := C 0℄� For an arbitrary bus B0 2 Buses it holds thatB0 �=l Bj) N �= N [Bj := B0℄

Proof: Both cases are similar. The only difference is that in the case of
buses the cooperation-labelled weak bisimulation is considered whereas in
the case of components classic notion of weak bisimulation is applied. As
it can be seen in Section 8.4.3 of this chapter, in particular in lemma 8.7,
the classic weak bisimulation can be lifted to a special case of cooperation-
labelled bisimulation. Therefore here it suffices to prove only the case of
buses.

In particular, we prove that the relationRel df= f(hh1; ::; ni; hq1; ::; q1j ; ::; qmii| {z }N1 ; hh1; ::; ni; hq1; ::; q2j ; ::; qmii| {z }N2)kq1j �l q2jg
is (weak) bisimulation.

8.3 SATURATED COOPERATION MACHINES 159

1. At first suppose the transition N1 e℄i! N01 for some configuration N01 wherei 2 f1; :::; ng. Such a transition must be inferred according to the rule (7)
and hence by the respective decomposition there exists a component con-

figuration 0i such that N01 � N1[i := 0i℄ and i e!Ci 0i. As i is included

also in N2 it follows w.r.t. composition according to the rule (7) that N2 e℄i! N02
and N02 � N2[i := 0i℄. As no cooperation occurs, all the buses remain in their
current states, i.e., the bus Bj remains in the state q1j . Hence (N01; N02) 2 Rel.
The respective opposite direction of the bisimulation proof is symmetric.

2. Now suppose the transition N1 �! N01 for some configuration N01. Such a
transition must be inferred according to the rule (8) or (9). In the former
situation the prove is similar to the previous case. In the latter situation,
there must exist k 2 f1; :::;mg and � � f1; :::; ng such that N01 � N1[Vi2� i :=0i; qk := q0k℄. Two cases have to be distinguished here:� If k = j then w.r.t. the rule (9) there is a transition q1j !Bj q01j where := fe℄i k i 2 �g. From Bj �=l B0 follows there exists a state of the busB0 such that q2j !Bj q02j . As all the component configurations of N1

are included also in N2 and there is no more component configuration
introduced in N2, the cooperation must be maximally enabled in N2.
As additionally q01j �l q02j , it follows (N01; N02) 2 Rel. The opposite
situation is symmetric.� If k 6= j then by the arguments that all the components configurations
involved in the cooperation are included in N1 and so is the bus stateqk, we achieve the required result. Note that the Bj remains in the
state q1j . 2

8.3 Saturated Cooperation Machines

Note that the cooperation-labelled transition relation of cooperation ma-
chines can be comprehended formally as an extension of the classical tran-
sition relation which is used for determining the operational semantics of
VCN terms. By the following lemma this classical transition relation can be
lifted to the format of cooperation-labelled transition relation. More pre-
cisely, we can take the operational semantics of a VCN term as a so-called
saturated cooperation machine. That way we achieve uniform framework
for behavioural analysis of VCN structural terms and their parts in terms
of cooperation machines.

Definition 8.6 The cooperation machine m(B) is called saturated if each
transition of m(B) has the form hq; b; q0i satisfying just one of the following pos-
sibilities:

160 ARCHITECTURAL INTEROPERABILITY CHECKING� b � hfwg=;i for some w 2 W℄;� b � h;=frgi for some r 2 R℄;� b � h;=;i.
Lemma 8.7 Let t 2 Tast an arbitrary structural term. There exists a saturated
cooperation machine, denoted m(t), which is isomorphic to the transition system�a(t) up to the format of transition labels.

Proof: With respect to the form of the term t, there are two cases which
have to be treated separately.� If t � S is a leaf term S 2 Leaves then we construct the m(t) df=hQ;T; q0i cooperation machine in the following way. First of all, as-

sume without loss of generality some annotation index i 2 N . Assign

the initial state q0 df= S and declare q0 2 Q. The other states in Q are
determined together with transitions of T by slightly modified rules
of the leaf operational semantics defined in Table 7.1. The modified
set of rules is the following:S[�x(X df= S)=X℄ !T S0�x(X df= S) !T S0 w!; S ;=fw℄i !g!T S SS1 !T S01S1 + S2 !T S01 r?; S fr℄i?g=;!T S SS2 !T S02S1 + S2 !T S02 � ; S ;=;!T S
Because of the format of labels in the transition relation defined by the
rules above, the resulting cooperation machine is saturated. For the
initial leaf configuration t comparing its two operational semantics,
one given by transition system constructed by the rules of Table 7.1
and the other by the rules above, we can conclude that both transition
systems are isomorphic up to format of transition labels. Hence the
alternative semantics of t, m(t), is equivalent to �a(t).� When t � S is a network configuration then the proof is achieved
analogously to the previous case. Instead of the rules for leaf con-
figurations the rules (7 � 10) defined for network configurations in
Section 7.2.4 are taken into account. Note that event annotation is in-
herent to the network transition relation !N . The rules (7 � 10) are
modified in the following way:

8.4 ARCHITECTURAL INTEROPERABILITY FAILURE FREEDOM 161(70) i E(p)!C 0N !L N[i := 0℄ 2664 N = hh1; ::; i; ::; ni; ~qip℄i 2 freeports(Ci; L(N)) df= � hp℄i=;i; if e 2 W;h;=p℄ii; if e 2 R: 3775(80) i �!C 0N ;=;!N N[i := 0℄ � N = hh1; ::; i; ::; ni; ~qi �(90) qj W=R!Bj q0j 8e℄i 2MBj : i e!C 0iN ;=;!N N[Vi2� i := 0i; qj := q0j℄ 26664 N = hh1; ::; ni; hq1; ::; qj ; ::; qmiimaxenabled(hW=Ri; N; qj)MBj df= E(W) [E(R)� df= fi k e℄i 2MBjg 37775(100) qj ;=;!Bj q0jN ;=;!N N[qj := q0j℄
Note that the only changes in the rules comprise the labels of the tran-
sition relation being inferred. Moreover, modification of only these
rules is sufficient. Rules of component configurations can be left with-
out any modifications as we are interested only in transitions of net-
work configurations. By the same reasons as in the previous case,m(t) is saturated and equivalent to �a(t) considering isomorphism
of the relevant transition systems up to the format of transition labels.2

8.4 Architectural Interoperability Failure Freedom

8.4.1 Gate Interoperability

To achieve interoperability correctness of the behavioural model at the level
of component black box view with respect to its white box view, we have
to look into the way how the operational semantics of black box model is
inferred from the white box model of a component. In particular, we have
to focus on the rules (1�5) of the operational semantics and investigate po-
tential possibility of introducing any interoperability correctness violation.

Taking the rule (1) into account, we have to emphasise the fact that
the only allowed form of gate mappings for leaf encapsulation is one-to-
one mapping. Therefore, no interoperability failure can arise by invoca-
tion of this rule. Whenever the leaf performs some action e, its black box
view performs the relevant action gateG(e) which denotes renaming of e or
transforms e to the internal � -action of the component black box view.

The situation of the rule (2) is trivial and no interoperability failure can
arise here.

162 ARCHITECTURAL INTEROPERABILITY CHECKING

The situation of the rules (3�5) treat the cases when the white box view
has form of the network. In this case the black box comprises hierarchical
embedding of that network to form a component which encapsulates its
behaviour. In this situation, gate mappings can be of arbitrary type.

When the action of the encapsulated network is mapped to a one-to-one
or asynchronous gate mapping, the relevant action of the component black
box view is inferred by the rule (3). By the similar reasons as in the case of
the rule (1), this situation does not introduce any interoperability failure.
More precisely, in the case of one-to-one mapping the situation is just the
same as in (1). In the case of asynchronous mapping, the network event
which causes the relevant black box action is chosen nondeterministically
from all events from the domain of the particular gate mapping which are
enabled in the current network configuration.

The situation of the rule (4) is more complicated. It treats the case when
the gate mapping is synchronous. In contrast to previous situations, here
the potential violation of interoperability correctness can arise. Assume a
simple example of a network depicted in Figure 8.3. The problem which
arises here is deadlock which occurs just in the network configuration il-
lustrated by the darkened states of the respective leaves. The reason for
this deadlock situation is that the component REG1 behaves incorrectly
with respect to gate synchronisation with REG2 on the full signal. REG1
engages in the full signal in a consequence to reception of the set event,
whereas the REG2 component can engage in full signal after it receivesout from REG1 by its set input event. Both the components are deadlock
free if they are taken standalone, also the network of both components co-
ordinated by the bus HSK is deadlock free. However, encapsulating such
an interoperably correct network to the synchronous gate, the interoper-
ability correctness is violated. Later on in this section we develop a general
solution for checking such kind of correctness violation.

Finally, the rule (5) treats the case when the gate mapping is of uni-
versal type. The situation here is similar to the situation of the rule (3).
The only difference is, that the nondeterministic choice of the component
interaction with respect to the gate mapping comprises maximal number
of components which can synchronise in a particular network configura-
tion. No interoperability failure can arise here, because the universal gate
mapping does not strictly force any synchronisation.

8.4.2 Network Interoperability

In the scope of network, mutual interoperability of components is con-
trolled by behavioural model of buses which realise component intercon-
nection. The only rules responsible for derivation of component coopera-
tion behaviour are (9) and (10). There are several cases when cooperation
of interoperably correct components can lead to interoperability failure of

8.4 ARCHITECTURAL INTEROPERABILITY FAILURE FREEDOM 163

REG2
set

out set outout
in

full full

full
x

REG1 HSK

out/set

full!

REG1: HSK: REG2:

out!

full!

set? out!set?

Figure 8.3: Violation of gate interoperability correctness by deadlock

the entire network topology composed of such components. These cases
are characterised by the shape of the particular network topology.

To capture the network topology shape, we introduce the notion of net-
work elements dependency graph (abbreviated dependency graph). It is
defined as a bipartite graph in which the nodes are just buses and compo-
nents of a particular network. Each edge in such a graph represents the
fact that there is at least one link between a specific pair of a bus and a
component. The information about multiple links between a component
and a bus is abstracted and so is the information about link direction. De-
pendency graph of some network can contain cycles. Cycles are the main
source of possible network interoperability failure, as it can be seen in Fig-
ure 8.4.

8.4.3 Formal Solution

Our formal solution for checking of interoperability correctness of VCN
asynchronous behavioural model revisits and extends the approach previ-
ously presented and proved by Bernardo et.al. in [AB05]. Similarly to that
work, we establish the solution of checking for arbitrary interoperability-
critical property which is preserved by specific behavioural equivalence of
VCN structural terms. This equivalence is just the behavioural equivalence
of structural terms stratified w.r.t. the particular interoperability property.

164 ARCHITECTURAL INTEROPERABILITY CHECKING

C1 C2

in
out

out
in

ackout
ackin ackinackout

B2

B1

B1,B2:C1: C2:

out/inin/out
in?

ackout!

ackin? out! ackout!

in?
ackin?

out!

Figure 8.4: Violation of network interoperability correctness by deadlock

With respect to the inductive definition of structural terms the particular
interoperability check traverses the hierarchy from leaves to the top-most
network.

Note that the approach of Bernardo et.al. deals with design architec-
tures composed of uniform components connected by links which can be
of one-to-many character. Anyway, those links are static (stateless) con-
nectors. There is no explicit notion of a connector like in Wright or in our
approach. However, connectors can be there still modelled explicitly as
components which are logically treated differently than common compo-
nents. What is not possible there is modelling of connector dynamism
concerning atomic many-to-many cooperations, as our approach allows
by the behavioural model of buses. This is the reason why the results
of [AB05] cannot be directly applied for developing the interoperability
checking framework for the behavioural model of VCN (for technical de-
tails see Note 8.15). Therefore we follow the way of utilising and extending
those results to fit the character of behavioural model of buses.

Notation 8.8 For a component Ci and a bus Bj of some networkh ~C; ~B;L;Lranksi 2 Tst denote Llinks(Ci; Bj) the set of all links between Ci
and Bj :Llinks(Ci; Bj) df= fl 2 links(L;Bj) k 9p 2 ports(I(Ci)): port(l) = p℄ig
Definition 8.9 Let N = hhC1; :::; Cni; hB1; :::; Bmi; L; Lranki a network. De-

fine the dependency graph of N , denoted G(N), as the bipartite graph G(N) df=

8.4 ARCHITECTURAL INTEROPERABILITY FAILURE FREEDOM 165hfC1; :::; Cng [fB1; :::; Bmg; Ei where E is defined in the following way:E df= fhCi; Bji k Llinks(Ci; Bj) 6= ;g
Denote ndC(G(N)) the set of all component nodes of G(N), ndC(G(N)) df=fC1; :::; Cng, and ndB(G(N)) the set of all its bus nodes, ndB(G(N)) df=fB1; :::; Bmg.

In the following part, we will assume ' a formula of modal �-calculus
expressing some interoperability safety property. An example of such a
property can be the deadlock freedom expressed by the formula:�Z:hh�iitt ^ [[�℄℄Z
Notation 8.10 Denote �' weak bisimulation stratified by the property '. Such
an equivalence relation is coarser than the original � in that it additionally distin-
guishes states which satisfy ' and states which do not. The relevant behavioural
equivalence of structural terms is denoted �='.

Definition 8.11 Let C 2 CTst a component, T 2 Tst a network or a leaf, andB 2 Buses a bus. Further let ' be a property expressed in AFMC with weak box
and weak diamond operators.

We say C satisfies ' if �C(C) j= ', T satisfies ' if �a(T) j= ', and B
satisfies ' if �B(B) j= '.

We begin with the very basic kind of networks. In particular, we focus
on two cases of network topologies in which the dependency graph is con-
nected. The purely acyclic case is treated at first, the solution for a purely
cyclic topology is discussed consequently. Finally the solution is extended
to arbitrary topology.

In [BCD02] it has been proved that for checking of an acyclic component
topology it suffices to check interaction compatibility of all pairs of mutu-
ally connected components. The notion of such compatibility is based on
a weak bisimilarity of the two components in a pair. Abstraction of both
components is taken comprising only the actions of mutual interaction,
while all the other actions are hidden. To overcome the potential problem
with internal nondeterminism of components, the compatibility checking
is realised in such a way that one of the components is checked on weak
bisimilarity against the behaviour of its parallel composition with the other
component.

We show that the similar approach can be extended to the behavioural
model of VCN. As the dependency graph of a VCN network is bipartite
and the notion of network composition is more intricated than the parallel
composition operator in pure process algebraic approaches, we have at first

166 ARCHITECTURAL INTEROPERABILITY CHECKING

to establish the notion of compatibility between its arbitrary two adjacent
nodes, which are always a bus and a component.

In order to establish the interoperability checking methodology, we
need to analyse networks in the sense of inferring the validity of some
property ' for the entire network from validity of ' computed for its non-
trivial sub-parts, so-called subnetworks. Subnetwork is intuitively a network
smaller than the mother network and consists of a subset of components,
subset of buses, and subset of the link relation of the mother network.
Subnetwork can also contain a bus which is connected to some compo-
nent outside of the subnetwork. In this case all cooperations of such a bus
are restricted only to events of components inside the subnetwork. For a
link relation L of a particular subnetwork, such a restricted bus is calledL-projection of the original bus. Formal definitions of the notion of bus pro-
jection and the notion of subnetwork are the following.

Definition 8.12 Let N = hC1; :::; Cni; hB1; :::; Bmi; L; Lranki a network, and
let Bj for some j 2 f1; :::;mg its bus, m(Bj) = hQ;T; q0i its cooperation
machine, and L0 � L a link relation. Define L0-projection of Bj , denoted�(Bj; L0), as the bus B0 2 Buses with semantics defined by the cooperation ma-

chine m(B0) df= hQ;T 0; q0i where T 0 is defined in the following way:hq; hW 0=R0i; q0i 2 T 0 df, hq; hW=Ri; q0i 2 T
where� W 0 df=W \ ports(Bj; L0)� R0 df= R \ ports(Bj; L0)

The set of cooperations oop(B0) is defined as the set of all cooperations appear-
ing in labels of T 0.
Definition 8.13 Let N = hhC1; :::; Cni; hB1; :::; Bmi; L; Lranki 2 Tst a net-
work. For some n0 � n and m0 � m define the subnetwork N 0 of N as an
arbitrary network N 0 = hhC 01; :::; C 0n0i; hB01; :::; B0m0i; L0; Lrank0i 2 Tst satisfy-
ing:� fC 01; ::::; C 0n0g � fC1; :::; Cng� fB01; ::::; B0m0g � fB1; :::; Bmg� L0 df= fl 2 Lkl 2 Llinks(C;B)^C 2 fC 01; ::::; C 0n0g^B 2 fB01; ::::; B0m0gg� Each B0 2 fB01; ::::; B0m0g is defined as �(Bj ; L0) for some j 2 f1; :::;mg.� Lrank0 df= LrankkL0 is restriction of Lrank to L0

8.4 ARCHITECTURAL INTEROPERABILITY FAILURE FREEDOM 167

Further define for some i 2 f1; :::; ng star topology of Bj in N as a subnet-
work N 0 of N having the following form:N 0 df= hhC 01; :::; C 0n0i; hB0i; L0; Lrank0i 2 Tst
where� Each C 0i 2 fC 01; :::; C 0n0g satisfies Llinks(C 0i; Bj) 6= ;� L0 df= fl 2 L k 9i 2 f1; :::; n0g: l 2 Llinks(C 0i; Bj)g� Lrank0 df= LrankkL0 is restriction of Lrank to L0� B0 df= �(Bj ; L0)
Note 8.14 To avoid the problems which could be caused by changing the compo-
nent annotation indeces when taking a subnetwork as a standalone network an-
notated by f1; :::; n0g for some n0, we rather assume the annotation of subnetwork
components to be the same as in the original network. Hence if we have for ex-
ample a subnetwork N 0 containing components C2; C4 of the original networkN = hhC1; C2; C3; C4i; ~B;L; Lranki, we do not change the annotation of events
in bbox(C2) and bbox(C4) when considering the subnetwork N 0 as a standalone

network. Thus the set of annotation indeces of N 0 = hhC2; C4i; ~B0; L0; Lrank0i isf2; 4g � f1; :::; 4g.

Note 8.15 Because of the complexity of internetwork relationships (i.e., cyclic de-
pendency of components), behavioural equivalence of two networks might not be
in general a congruence w.r.t. subnetwork interchange as it is demonstrated in
Figure 8.5 and Figure 8.6. In those figures, there are two networks N1 and N2
satisfying N1 �= N2 taken as a subnetwork of a particular network N . If we denoteM1 the network N containing N1 and M1 the network N containing N2 then we
get M1 � M2. The fact that behavioural equivalence is not a congruence w.r.t.
subnetwork interchange leads us to development of specific techniques for interop-
erability checking of VCN networks. In other words, this is the main reason why
the techniques of Bernardo et.al. cannot be employed in VCN.

To analyse interoperability of buses and particular components in a net-
work we need to look into the network internal behaviour. More specifi-
cally, cooperations cannot be hidden in such analysis. In particular, we
need to observe cooperations occurring on the network link relation or on
its specific subset. To capture this kind of observation of network behaviour
with respect to some link relation L, we define L-observable model of the
network. This operational model is based on the cooperation-labelled tran-
sition relation.

168 ARCHITECTURAL INTEROPERABILITY CHECKING

N

SYNC

L1 HSK
s2

s1

r3
r4

ba

r1

r2
L2

s3
s4(a) a sub-topology of a network N (subnet denoted as a dashed box)

N1,N2

L1 HSK
s2

s1

r3
r4

ba

r1

r2
L2

s3
s4(b) shared topology of some two subnetworks of N — N1 and N2,N1 � N2 � hhL1; L2i; hHSKi; fL1:s1! 7! HSK;L1:s2! 7! HSK;L1:r3? 7! HSK;L1:r4? 7! HSK;L2:r1? 7! HSK;L2:r2? 7! HSK;L2:s3! 7! HSK;L2:s4! 7! HSKg; ;i

s1!

r3?

r4?

s2!

HSK:L1: L2:

s2/r2

s1/r1

s3/r3

s4/r4a! b!

r1?

s3!

s4!

r2?() semantics of N1’s bus and leaves

HSK: L2: L1:

s2/r2

s1/r1

s3/r3

s4/r4

r1?

s2!

a!

a!

s1!

r4?

s3!r3?

b! b!

s4!

r2?

(d) semantics of N2’s bus and leaves

Figure 8.5: Example of two different subnetworks of a network N

8.4 ARCHITECTURAL INTEROPERABILITY FAILURE FREEDOM 169

N2:

b!

N1:

b!

tau

a!

taua!

b!

tau

a!

tau

b! a!

tau

tau tau

tautau

tau
tau

tau

(a) semantics of subnetworks N1 and N2 (considered as separate
networks)

SYNC:

{L1.a,L2.b}/−() semantics of the bus SYNC included in the main network N
tau tautau

M2:=N[N2]:M1:=N[N1]:

tau

tautau

tau() inequivalent semantics of N with N1 and N with N2
Figure 8.6: Violation of congruence property w.r.t subnetwork interchange

Definition 8.16 Let N = hhC1; :::; Cni; hB1; :::; Bmi; L; Lranki 2 Tst a net-
work and let L0 � L link relation. Define L0-observation of network N
by a transition relation !L0 defined over network configurations by the rules(70; 80; 100) from the proof of lemma 8.7 and the following rule:(90) qj W=R!Bj q0j 8e℄i 2MBj : i e!C 0iN W 0=R0!L0 N[Vi2� i := 0i; qj := q0j℄ 266666664 N = hh1; ::; ni; hq1; ::; qj ; ::; qmiimaxenabled(hW=Ri; N; qj)MBj df= E(W) [E(R)� df= fi k e℄i 2MBjgW 0 df=W \ ports(L0)R0 df= R \ ports(L0)

377777775

170 ARCHITECTURAL INTEROPERABILITY CHECKING

The L0-observation of network N , denoted �aL0(N), is determined as in the
case of the common behavioural model by the initial network configuration �a(N),
but the transition relation !L0 is taken instead of !N .

Definition 8.17 Let N = hhC1; :::; Cni; hB1; :::; Bmi; L; Lranki a network, and
let Ci = hT; I;Gi and Bj (for i 2 f1; :::; ng; j 2 f1; :::;mg) adjacent nodes ofG(N). Further let L0 � L defined as a link relation L0 df= fl 2 links(L;Bj)k9p 2I(Ci): p℄i = port(l)g.

We say Ci is compatible in N withBj w.r.t. property', written Ci 1N' Bj ,
if and only if the following equation holds:�B(B0) �l' �aL0(hhT; I 0; G0i; hB0i; L0; Lrank0i)
where� I 0 df= IkP where P df= fp 2 ports(I) k 9l 2 L0: p℄i = port(l)g� G0 df= GkI0� B0 df= �(Bj ; L0)� Lrank0 df= LrankkL0
Lemma 8.18 Let N = hhC1; :::; Cni; hB1; :::; Bmi; L; Lranki 2 Tst a network
with G(N) acyclic, where each Ci = hTi; Ii; Gii for some Ti 2 Tst. Let Bj a bus
for some j 2 f1; :::;mg. For each star topology hhC 01; :::; C 0n0i; hB0i; L0; Lrank0i
of Bj in N , if C 0i 1N' Bj for all i 2 f1; :::; n0g then�B(B0) �l' �aL0(hhC 001 ; :::; C 00n0i; hB0i; L0; Lrank0i) (8.1)

where� B0 df= �(Bj ; L0)� For each i 2 f1; :::; n0g C 00i df= hTi; I 0i; G0ii
– I 0i df= IikP where P df= fp 2 ports(I) k 9l 2 L0: p℄i = port(l)g
– G0i df= GikI0i

Proof: Throughout the proof we use the following notation:� !�[n℄ denotes the transition of the bus projection �(B;L0) where L0
is the link relation L restricted to contain only all the links of eachCi 2 fC1; :::; Cng with Bj ;� !�n denotes the transition of the bus projection �(B;L0) where L0
contains only the links between Cn and Bj ;

8.4 ARCHITECTURAL INTEROPERABILITY FAILURE FREEDOM 171� := denotes the technical fact that cannot be directly treated as a set of
events, but the events must be formally divided into the output and
input group to match the syntax of cooperations.

We follow the proof by induction on n0. Not to unnecessarily over-
complicate the notation, n0 is abbreviated n in the proof. In this way, all
the primed symbols from the lemma are taken unprimed here, as only the
star topology subnetwork is relevant for proving the claim of the lemma
and therefore the symbols cannot be mixed with those in N .� If n = 1 then the situation is degraded for some i 2 f1; :::; ng to Ci 1N'Bj which is trivially satisfied by the assumption of compatibility ofCi and Bj .� If n > 1 assume that the equation 8.1 holds for n� 1.

We prove that the following relation is (weak) bisimulation.Reln df= f(q; hh1; :::; ni; hqii) k 8i 2 f1; :::; ng: q �l' hhii; hqiig
If hh1; :::; n�1; ni; hqii ! N0 then must be of one of the following
forms:

– := fe℄ik i 2 Ig where I � f1; :::; n � 1g some nonempty index
set

As we take take the open behavioural model of the star topology,
the only possible engaging in such a transition under implies

that i ei!C 0i for all e℄i 2 , where ei℄i = e℄i (ei is unanno-
tated e℄i). Note that n does nothing, so that N0[n := n℄. More-

over, q !�[n℄ q0. From that follows hh1; :::; n�1i; hqii ! N00.
As (q; hh1; :::; n�1i; hqii) 2 Reln�1, by the induction hypothe-

sis q)�[n�1℄ q0 and q0 �l' N00. Compatibility of Cn and Bj givesq0 �l' q �l' hhni; hqii. Hence, (q0; N0) 2 Reln.

– := fe℄ik i 2 Ig [fe℄ng where I � f1; :::; n� 1g some nonempty
index set

Here, similarly as in the previous case, performing of such tran-

sition means that i ei!C 0i must be fired for all e℄i 2 , whereei℄i = e℄i . Note that also n en!C 0n. This is only possible if the

bus engages in the relevant transition, hence q !�[n℄ q0 too. From

that follows hhni; hqii e℄n! hh0ni; hq0ii and hh1; :::; n�1i; hqii 0!N00 where 0 := n fe℄ng. This action restriction occurs by hiding
of the component Cn and removing all links betweenCn and Bj .

172 ARCHITECTURAL INTEROPERABILITY CHECKING

As Cn 1N' Bj , we have q e℄n)�n q0 and q0 �l' hh0ni; hq0ii. Moreover(q; hh1; :::; n�1i; hqii) 2 Reln�1 and hence by the induction hy-

pothesis q 0)�[n�1℄ q0 and q0 �l' N00. Thus (q0; N0) 2 Reln.

– � h;=;i
In this case either i �!C 0i for some i 2 f1; :::; ng or q ;=;!�[n℄ q0.
The requirement of weak transition in B is satisfied trivially in
both cases.

If q !�[n℄ q0 then we have to distinguish cases where component con-
figuration n is involved in or not. Therefore we follow in the simi-
lar way like in the previous case.

– := fe℄ik i 2 Ig where I � f1; :::; n � 1g some nonempty index
set

We have by induction hypothesis hh1; :::; ni; hqii) N0 andq0 �l' N0. By the compatibility ofCn andBj follows hhni; hqii �l'q �l' q0. Therefore hh1; :::; n�1; ni; hqii) N00 and (q0; N00) 2Reln.

– := fe℄ik i 2 Ig [fe℄ng where I � f1; :::; n� 1g some nonempty
index set

Here by compatibility of Cn and Bj we have hhni; hqii e℄n)hh0ni; hq0ii and q0 �l' hh0ni; hq0ii. Let 0 := n fe℄ng. By the in-

duction hypothesis q 0!�[n�1℄ q0 implies hh1; :::; n�1i; hq; ii 0)N0 and q0 �B' N0. As is a maximal enabled cooperation in
that situation, the premise of the rule (5) is satisfied and hencehh1; ::::; n� 1; ni; hqii) N00. Recall that q0 �l' hh0ni; hq0ii. Thus(q; N00) 2 Reln.

– � h;=;i
In this case the claim holds trivially. 2

The key property which allows the previous lemma to hold is hid-
ing of all component actions with the only exception of those connected
to the bus making the centre of the star topology. Such an abstraction
cannot be used when dealing with a cyclic network topology. An ex-
ample of the interoperability correctness violation in the cyclic topology
is depicted in Figure 8.4. Note that if we take only the star topologyhhC 01; C 02i; h�(B1; L)i; L � fhin℄1 ; B1i; hout℄1 ; B1i; hin℄2 ; B1i; hout℄2 ; B1ig; ;i
where the components C 01; C 02 are C1; C2 projected to links in L then such a

8.4 ARCHITECTURAL INTEROPERABILITY FAILURE FREEDOM 173

subnetwork is deadlock free. The similar situation holds for the star topol-
ogy of the bus B2. However, taking the whole cyclic topology deadlock can
arise, as is depicted by the darkened states.

Theorem 8.19 Let N = hhC1; :::; Cni; hB1; :::; Bmi; L; Lranki 2 Tst a net-
work with G(N) cyclic, where each Ci = hTi; Ii; Gii is connected by some se-
quence of edges with each component of fC1; ::; Ci�1; Ci+1; Cng and each bus offB1; :::; Bmg. If there exists i 2 f1; :::; ng such that�ahhC 0ii; hi; ;; ;i �l' �aL0(hhC 01; :::; C 0ni; hB1; :::; Bmi; L; Lranki)
where� L0 df= Sj2f1;:::;mgLlinks(Ci; Bj)� For each i 2 f1; :::; ng C 0i df= hTi; I 0i; G0ii

– I 0i df= IikP where P df= fp 2 ports(Ii) k 9l 2 L: p℄i = port(l)g
– G0i df= GikI0i

and for all i 2 f1; :::ng and j 2 f1; :::;mg Ci, Bj satisfy ' then N satisfies '.
Additionally, converse of this implication also holds.

Proof: The relation �l' preserves the property '. Hence, the claim holds.2
Note 8.20 It is worth noting that a stronger version of the previous theorem where
the existential quantification is changed to the universal quantification also holds.
The reason is that if for some component of the cycle the theorem was not satisfied
then we would achieve a contradiction with the assumption that N satisfies '.
However, the existential condition stated in the theorem 8.19 is necessary and also
sufficient for the cycle interoperability result.

Finally, we extend our solution to analysis of arbitrary network topol-
ogy.

Definition 8.21 Let N = h ~C; ~B;L;Lranki a network. Define cycle covering
strategy � for N by the following algorithm:

1. Initially let all components and buses of N unmarked.

2. If there is an unmarked bus B in some cycle of G(N), mark it and mark all
components and buses which form a cycle with B in G(N).

174 ARCHITECTURAL INTEROPERABILITY CHECKING

Definition 8.22 Let N df= h ~C; hB1; ::; Bj ; ::; Bmi; L; Lranki a network. Define
cyclic N -neighbourhood of Bj , denoted �(Bj ; N), as the setf
 k
 a maximal yli subgraph of �-overing of G(N) ontaining Bjg

The set of all maximal cyclic subgraphs of G(N) is denoted �(N) and defined�(N) df= f�(B;N) kB 2 fB1; :::; Bmgg:
Maximality of the cycles detected by the �-covering in the definition

of �(N) is important. It ensures that if we replace each cycle of �(N)
with an acyclic subnetwork which has behavioural model isomorphic with
behaviour of the original cycle, the dependency graph of the resulting net-
work is acyclic. In the following part, we focus on relations which can
exist among such maximal cycles in the network. Moreover, we define
the replacements which reduce the cyclic dependency graph to the acyclic
graph corresponding to a network which is behaviourally isomorphic with
the original network containing cycles. By that way, we establish an algo-
rithm for checking architectural interoperability of networks having arbi-
trary topologies.

Lemma 8.23 Let N a network. For any two cyclic subgraphs
1;
2 2 �(N)
such that
1 6=
2. Just one of the following situations is the way how
1 and
2
are directly connected.

1. There is a bus B which belongs to both
1 and
2.

2. There is a component C which belongs to both
1 and
2.

3. There is a bus B in
1 and a component C in
2 and there exists some link
between B and C .

4. There is a component C in
1 and a bus B in
2 and there exists some link
between C and B.

Definition 8.24 Let N = hhC1; :::; Cni; hB1; :::; Bmi; L; Lranki a network and
 2 �(N) some (maximal) cycle of G(N). Define border of
, denoted �(
),
as a union of the set of components in
 each of which has at least one port not
connected to any bus in
, and the set of buses each of which has at least one
cooperation containing a port not belonging to any component in
:�(
) df=fC 2 ndC(
) k 9p 2 ports(I(C));8B 2 ndB(
): p =2 ports(Llinks(B;C))g[fB 2 ndB(
) k 9 2 oop(B); p℄ 2 ;8C 2 ndC(
): p =2 ports(Llinks(B;C))g
Definition 8.25 Let N = hhC1; :::; Cni; hB1; :::; Bmi; L; Lranki a network and
 2 �(N) some (maximal) cycle of G(N). Define
-subnetwork as a subnetworkhhC 01; :::; C 0n0i; hB01; :::; B0m0i; L0; Lrank0i 2 Tst of N satisfying:

8.4 ARCHITECTURAL INTEROPERABILITY FAILURE FREEDOM 175� fC 01; :::; C 0n0g = ndC(
)� fB01; :::; B0m0g = f�(B;L0) k B 2 ndB(
)g
Note that the link relation L0 and the corresponding ranking Lrank0 in

the previous definition is uniquely determined by the vectors of compo-
nents and buses in terms of definition 8.13.

In the following theorem, there is declared a set of conditions which are
both necessary and sufficient to ensure an arbitrary network topology to
satisfy some property '.

Theorem 8.26 Let N = hhC1; :::; Cni; hB1; :::; Bmi; L; Lranki a network withG(N) which is a connected graph of arbitrary shape, and let ' a property. N
satisfies ' if and only if the following conditions hold:

1. Each bus Bj 2 fB1; :::; Bmg satisfies '.

2. Each component Ci 2 fC1; :::; Cng satisfies '.

3. Each bus B which is not included in any cycle of �(N) satisfies C 1' B
for each C such that Llinks(C;B) 6= ;.

4. Each bus B 2 �(
) of an arbitrary cycle
 2 �(N) satisfies C 1' B for
each C such that Llinks(C;B) 6= ; and C is not included in
.

5. For each cycle
 2 �(N) it holds that the
-subnetwork of N satisfies '.

To constructively prove this crucial theorem, we apply the idea of step-
by-step reduction of the entire potentially cyclic topology to a smaller
acyclic topology which has the behavioural model observationally equiv-
alent to the original topology. This reduction is realised with respect to
the relations among cycles in the topology declared in lemma 8.23. The
intuition about such an observational behaviour preserving reduction of
cyclic topologies to acyclic topologies is the following. Each cycle in the
entire network is replaced with a star topology which has the behaviour
model equivalent to the cyclic topology. This star topology is defined in
such a way that all the relevant links leading from components and buses
of the cycle to the buses and components outside the cycle are remapped
to equivalent links leading from components and buses of the star topol-
ogy. The important property that must be satisfied by such a replacement
is mutual compatibility of those components and buses. Moreover, the star
topology must itself satisfy compatibility of its components with the bus
forming its centre. Then by replacing all the cyclic subnetworks with such
compatible star topologies the acyclicity and intercompatibility of the en-
tire network is achieved. The interoperability result is then established by
extending the lemma 8.18 to a general acyclic topology.

176 ARCHITECTURAL INTEROPERABILITY CHECKING

In order to substitute a cyclic subnetwork with the respective acyclic
subnetwork, at first we need to capture observational behaviour of the
original cyclic subnetwork. As some buses of the cyclic subnetwork may
be linked to an acyclic part of the entire network or to another cyclic sub-
network in terms of lemma 8.23, we have to include the relevant (open)
parts of cooperations of such buses into the behavioural model of the de-
sired acyclic subnetwork. We call such a kind of observation an open be-
havioural model.

Secondly we need to define the desired acyclic subnetwork in such
a way that it is equivalent to the original cyclic subnetwork in terms of
the open behavioural model and hence we achieve mutual interchange-
ability of the two subnetworks with respect to bisimulation of their open
behavioural models. We define the desired acyclic subnetwork as a star
topology consisting of just the components which are included in the bor-
der of the cycle of the original subnetwork. The centre of this star topology
is defined by additionally introducing a bus B0 which represents the open
behavioural model of the relevant subnetwork of the original cycle. We
call such a subnetwork an internal subnetwork of the cycle. The internal
subnetwork is constructed from the original cyclic topology by removing
all the bordering components. Hence its open behavioural model contains
only the behaviour observed in the relevant parts of the cycle which is nec-
essary for establishing the required bisimulation relationship between the
original cyclic topology and the respective star topology. Transitions in-
cluded in the internal subnetwork directly reflect cooperations of buses
from the cycle border. More specifically, each cooperation in which some
component of the cycle border or some component outside the entire cy-
cle is involved, is directly reflected in the open behavioural model of the
internal subnetwork. Therefore the bus B0 directly reflects all the internal
behaviour of the original cyclic topology which is observed at the level of
the cycle border.

In contrary, the internal cycle behaviour which is not observed at the
level of the cycle border is hidden in B0 (i.e., represented by internal transi-
tions). This comprises the following cooperations:� Each cooperation in which only internal components of the cycle are

involved is hidden (represented as an internal h;=;i-transition of B0).� If a cooperation contains events of some components included in the
cycle border and also some components which are not included there
then we consider in B0 the projection of such a cooperation that is
restricted to events of bordering components.� Transitions of internal components (components not included in the
cycle border) are hidden (represented as internal h;=;i-transitions ofB0).

8.4 ARCHITECTURAL INTEROPERABILITY FAILURE FREEDOM 177

Note that behaviour of bordering components is not reflected in B0
because these components are contained themselves in the resulting star
topology.

In the following paragraphs we introduce formally the notion of open
network, the open behavioural model, and the L-observation of the open
behavioural model. In consequence, we formulate the lemma capturing the
cycle reduction. Next we show that the construction in this lemma satisfies
the required bisimulation relationship. Finally we prove the theorem 8.26.

Definition 8.27 Define the open network N as a network N =hhC1; :::; Cni; hB1; :::; Bmi; L; Lranki 2 Tst in which there exists at least
one port p℄ included in a cooperation of oop(Bj) for some bus Bj such that there
is no link for this port in L, p℄ =2 ports(links(L;Bj)).

Define behavioural model of open networkN , denoted �ao(N), by a transi-
tion relation !o defined over network configurations by the rules (70; 80; 100) from
the proof of lemma 8.7 additionally extended with the following rule:(9�) qj W=R!Bj q0j 8e℄i 2MBj : i e!C 0iN W 0=R0!o N[Vi2� i := 0i; qj := q0j ℄

266666666664
N = hh1; ::; ni; hq1; ::; qj ; ::; qmiiW 0 df= fw℄ 2Wkw℄ =2 ports(links(L;Bj))gR0 df= fr℄ 2 Rkr℄ =2 ports(links(L;Bj))gmaxenabled(hW 00=R00i; N; qj)MBj df= E(W 00) [E(R00)whereW 00 df=W nW 0 andR00 df= R nR0� df= fi k e℄i 2MBjg

377777777775
Let L0 � L a link relation. Define L0-observation of open network N ,

denoted �aoL0(N), by a transition relation !oL0 given by the rules (70; 80) and the
following rule:

(9+) qj W=R!Bj q0j 8e℄i 2MBj : i e!C 0iN W 0=R0!oL0 N[Vi2� i := 0i; qj := q0j℄
266666666666666666664

N = hh1; ::; ni; hq1; ::; qj ; ::; qmiiW 0 df=W1 [W2 whereW1 df= fw℄ 2Wkw℄ =2 ports(links(L;Bj))gW2 df=W \ ports(L0)R0 df= R1 [R2 whereR1 df= fr℄ 2 Rkr℄ =2 ports(links(L;Bj))gR2 df= R \ ports(L0)maxenabled(hW 00=R00i; N; qj)MBj df= E(W 00) [E(R00)whereW 00 df=W nW1 andR00 df= R n R1� df= fi k e℄i 2MBjg

377777777777777777775
In the prove of the following lemma we use the L0-observation of the

original cyclic network to show star compatibility of the resulting acyclic
network.

Definition 8.28 Let N = hhC1; :::; Cni; hB1; :::; Bmi; L; Lranki 2 Tst a net-
work. For some nk � n and m0 � m define the open subnetwork N 0 of N as a
network N 0 = hhCn1 ; :::; Cnk i; hBm1 ; :::; Bmk i; L0; Lrank0i 2 Tst satisfying:

178 ARCHITECTURAL INTEROPERABILITY CHECKING� fCn1 ; ::::; Cnkg � fC1; :::; Cng� fBm1 ; ::::; Bmkg � fB1; :::; Bmg� L0 df= fl 2 L k l 2 Llinks(C;B) ^ C 2 fCn1 ; ::::; Cnkg ^ B 2fBm1 ; ::::; Bmkgg� Lrank0 df= LrankkL0 is restriction of Lrank to L0
Note 8.29 Similarly as in the case of a common subnetwork, we assume the an-
notation of components in the open subnetwork N 0 to be equal to the annotation
of the relevant component in the original network N . Hence the set of annotation
indeces of components in N 0 satisfies fn1; :::; nkg � f1; :::; ng.

We follow with definition of the internal subnetwork. The main moti-
vation for such a notion is capturing of the internal behaviour of a network
having the cyclic shape. As we have explained above, the internal network
is the cornerstone of transforming cyclic topologies to behaviourally equiv-
alent acyclic topologies.

Definition 8.30 Let N = hhC1; :::; Cni; hB1; :::; Bmi; L; Lranki a network withG(N) purely cyclic. Define internal subnetwork of N , denoted N:� , as an open

subnetwork N:� df= hhC 01; :::; C 0n0i; hB1; :::; Bmi; L0; Lrank0i of N where� fC 01; :::; C 0n0g = �(G) \ ndC(G)� L0 df= L nSBj2ndB(G)SCi =2�(G) Llinks(Ci; Bj)� Lrank df= LrankkL0
Note 8.31 Note that for a particular network N satisfying the assumption of the
previous definition the internal subnetwork is defined uniquely. The reason for that
is that the internal subnetwork must contain all the bordering components and all
the buses of the respective cyclic network.

The following lemma is used in the proof of the succeeding lemma and
characterises the fact that if we take a cyclic network and remove a border-
ing component then such a modification preserves the open behavioural
model of the respective internal network.

Lemma 8.32 Let N = hhC1; :::; Cni; hB1; :::; Bmi; L; Lranki a network withG(N) purely cyclic. For each component Ci for some i 2 f1; :::; ng such thatCi 2 �(G) the following claim holds:�ao(N:�) �l' �ao(N 0:�)
where N 0 df= hhC1; :::; Ci�1; Ci+1; :::; Cni; hB1; :::; Bmi; L0; Lrank0i such that

8.4 ARCHITECTURAL INTEROPERABILITY FAILURE FREEDOM 179� L0 df= L nSmj�1 Llinks(Ci; Bj)� Lrank0 df= LrankkL0
Proof: By definition of internal subnetwork, the component Ci is not in-
cluded in both N:� and N 0:� . Hence both subnetworks have isomorphic
open behavioural models. 2

At next the crucial lemma the intuition of which has been given above
is presented. This lemma realises the reduction of a cyclic subnetwork to
an acyclic subnetwork preserving the behavioural model.

Lemma 8.33 Let N a network of an arbitrary topology containing at least one
cycle
 2 �(N). Let N
 the open
-subnetwork of N having the formN
 = hhC1; :::; Cni; hB1; :::; Bmi; L; Lranki. Suppose M is an open networkM df= h ~C; ~B;L0; ;i where� If �(
) contains no component then ~C = ;, otherwise ~C = hCn1 ; :::; Cnk i

where fCn1 ; :::; Cnkg = �(
) \ ndC(
).� ~B = hB0i with behaviour defined by m(B0) df= �ao(N:�) where N:� is the
internal subnetwork of N
.� L0 df= fhp℄; B0i k hp℄; Bi 2 Llinks(C;B); B 2 ndB(
); C 2 �(
) \ ndC(
)g

Then the following properties hold:

1. �ao(M) �l �ao(N
)
2. If N
 satisfies ' then Cni 1M' B0 for each ni 2 fn1; :::; nkg

Proof: At first we prove (1). We begin with characterisation of the relation
among configurations of �ao(N:�) and states of the cooperation machinem(B0). Note that as m(B0) is defined just as the open behavioural model
of the internal subnetwork of N
, the both cooperation machines are iso-
morphic. This is crucial argument which allows us to prove the required
bisimulation stated in the claim (1).

Another important fact which enables the claim (1) to be satisfied con-
cerns the relationship between the link relation of N
 and the link relation
of M . Especially, each free port of every bordering component in N
 is also
a free port of the respective component in M . Moreover, there is no other
free port introduced in M . Additionally, each component which has a free
port is included in the cycle border. Hence the following equation holds:freeports(N
) = freeports(M)
Focusing on links between each bordering component and every bus inN
,
we have that those links are bijectively remapped to relevant links between

180 ARCHITECTURAL INTEROPERABILITY CHECKING

each respective component of M and the bus B0. Links leading from inter-
nal components in N
 are the only links lost by the construction of M . This
is an expected fact.

We prove that the following relation is (strong) bisimulation:Rel df= f(hhn1 ; ::; nki; hqii| {z }M ; hh1; ::; ni; hq1; ::; qmii| {z }N) kN:� � qg
where N:� � hhn01 ; ::; n0k0 i; hq1; ::; qmii for fn01; :::; n0k0g � fn1; :::; nkg satisfy-

ing fCn01 ; :::; Cn0k0 g = �(
) \ ndC(
).
Suppose M ! M0 for some configuration M0. There are following possibilities
of the form of :� � hW=Ri where W 6= ; and R 6= ;

In this situation the supposed transition must be inferred according to
the rule (9�). With respect to the structure of the open network M , in par-
ticular the fact that there is only one bus B0, it follows that this bus must
be involved in the supposed transition. Hence there exist W 0 � W andR0 � R such that q W 0=R0!B0 q0 for some q; q0 2 Q(B0). Note that the setsW 0 nW and R0 n R are given by ports of the surrounding components in-
volved in the cooperation implied by the supposed transition. Therefore
for each p℄ni 2 (W 0 nW)[(R0 nR) there must exist a transition in nith com-

ponent such that ni E(p)! 0ni for the respective component configuration
included in M. As M consists only of components which were originally
included in N
 and the annotation of the components is preserved in M
with respect to note 8.29, the configuration ni is directly contained in N,ni = j where j = ni.

In general, the cooperation hW 0=R0i is union of two mutually disjoint
cooperation parts hW 0=R0i = 1 [2 such that 1 := fp℄ni 2 hW 0=R0i k ni 2fn1; :::; nkgg and 2 df= hW 0=R0i n 1. Note that 1 � hW 0 nW=R0 n Ri and2 � hW=Ri. Moreover, the cooperation part 2 can be further divided into

another two cooperation parts, 2 = Æ1 [Æ2 where Æ1 df= fp℄ni 2 2 k ni 2f1; :::; ng n fn1; :::; nkgg and Æ2 df= 2 n Æ1. Ports in the cooperation part Æ1
correspond w.r.t. construction of M to ports of those components in N

which are not included in the border �(
). In contrary, ports included in Æ2
correspond to ports of components outside of the
-subnetwork which are
connected to B0. Hence Æ2 is given just by openness of N
.

Note that 1 might not be necessarily non-empty. The situation when1 = h;=;i implies W 0 = W and R0 = R. Such a situation corresponds to a
cooperation imposed by a bus Bj of N
 satisfying Bj 2 �(
) in which no
component included in �(
) is involved. However, this particular situation
is included in the general arguments which follows below.

8.4 ARCHITECTURAL INTEROPERABILITY FAILURE FREEDOM 181

By isomorphism of the state q ofB0 and the configuration N:� , it follows:q W 0=R0����! B0 q0 N:� W 0=R0����!o N0:�
where N0:� is a configuration of N:� and q0 a state of B0 such that N0:� � q0
w.r.t. isomorphism of the open behavioural model of N:� and the coop-
eration machine m(B0). Moreover, the configuration N0:� must have the
following form: N0:� � N:�[^i2an(Æ1) i := 0i; qj := q0j℄
where j 2 f1; :::;mg.

Hence we have a transition in the internal subnetwork of N
. The only
rule which can be employed for inference of the respective cooperation of
components of N:� controlled by the bus Bj is the rule (9�). By decompo-

sition w.r.t. this rule we have a transition i E(p)!Ci 0i for each componentCi such that i 2 an(Æ1) and p℄i 2 Æ1. Moreover, the cooperation hW 0=R0i is
maximally enabled in the open behavioural model of N:� .

Now we follow by arguing that just the transition discussed above can
be extended to the requested transition of N
. Note that as we have stated
before, each configuration ni for ni 2 Æ1 is directly contained in N. These
are just the configurations which have been removed in construction ofm(B0). We know that the configuration N has the form:N � hh1; ::; ni; hq1; ::; qmii
From what has been inferred above we know that qj has an enabled
transition under hW 0=R0i and that each component configuration i fori 2 an(1 [Æ1) involved in the cooperation controlled by this transition
of Bj is contained in N. As also qj is contained in N, we only need to argue
that the cooperation hW 0=R0i is maximally enabled in N. Then we achieve
according to the rule (9�) the required transition of N
 under hW=Ri.

Note that the configuration N is constructed from N:� by adding of a
configuration of each bordering component. Especially, the configurationi for each i 2 1 is included in such an extension. Hence we have all the
component transitions required by 1 [2 enabled in N and we know that1 [2 is maximally enabled i N:� . Because there are no other ports in 1
and an(2) \ fn1; :::; nkg = ; because of the definition of 2, it follows that

182 ARCHITECTURAL INTEROPERABILITY CHECKINGhW 0=R0i is maximally enabled in N. Note that each port in Æ2 is by definition
unlinked in N
 w.r.t. openness of the bus Bj . Thus we have a transition:N W=R!o N0 � N[^i2an(1) i := 0i; ^i2an(Æ1) i := 0i; qj := q0j℄
With respect to the arguments above it additionally holds that (M0; N0) 2 Rel.� � hfw℄ig=;i for some i 2 fn1; :::; nkg

Performing the supposed transition in this situation employs either the
rule (70) or (9�). In the latter case, the supposed transition implies a state
change of the bus B0 and the proof follows the same steps as in the pre-
vious situation. In contrary, in the former case no cooperation occurs.

Hence there must be a transition ni E(w)!Ci 0ni of the component Cni . But
as Cni 2 �(
) and freeports(Cni; L(M)) = freeports(Cni; L(N
)) we have
according to the rule (70) a transition:N � hh1; ::; ni; hq1; ::; qmii fw℄ig=;�!o N0 � N[ni := 0ni ℄

As ni is a bordering component and thus not included in N:� , the re-
spective subconfiguration N�
 of the internal subnetwork is not changed inN0. The bus B0 does not change its state q because no cooperation is per-
formed. Hence (M0; N0) 2 Rel.� � h;=fr℄igi for some i 2 fn1; :::; nkg

This situation is analogous to the previous case.� � h;=;i
If this situation is caused by a � -transition of some component Cni then

the proof is analogous to the previous case with the only difference that the
rule (80) is taken into account instead of the rule (90).

If the rule (9�) is considered then by decomposition we achieve a tran-

sition q 0!B0 q0 and there are two possibilities.

1. 0 � h;=;i
In this situation by the isomorphism of q and N:� it follows:q ;=;����! B0 q0 N:� ;=;����!o N0:�
where N0:� is a configuration of N:� and q0 a state of B0 such thatN0:� � q0 Moreover, the configuration N0:� must have either one of the
following forms:

8.4 ARCHITECTURAL INTEROPERABILITY FAILURE FREEDOM 183� N0:� � N:�[i := 0i℄ where i 2 f1; :::; ng n fn1; :::; nkg� N0:� � N:�[qj := q0j℄ where j 2 f1; :::;mg
As i (the former case) or q (the latter case) is directly included in the

configuration N we have the required transition N ;=;! N0 and by the
arguments above also (M0; N0) 2 Rel.

2. 0 6� h;=;i
In this case the proof follows similar steps as in the case � hW=Ri.

Now suppose N � hh1; ::; ni; hq1; :::; qmii !o N0 for some configurationN0. Similarly as in the opposite situation, there are following possibilities of
the form of :� � hW=Ri where W 6= ; and R 6= ;

As both W and R are non-empty, the supposed transition must be de-
rived in terms of the rule (9�). Hence according to decomposition w.r.t.
this rule there must be a bus Bj for some j 2 f1; :::;mg such that Bj 2 �(
)
which performs a transition qj W 0=R0!Bj q0j where W 0 � W and R0 � R. Addi-
tionally, for each p℄i 2 (W 0 nW) [(R0 n R) there must exist a transition inith component such that i E(p℄i)! 0i for the respective component configu-
ration included in N. Note that the components involved in the cooperation
can be of two kinds — components which are included in the border of
 and components which are not. Components of the former kind are di-
rectly included in M and, as the annotation is preserved with respect to
note 8.29, the configuration i is directly contained in M for each of these
components. In contrary, components of the latter kind are not included
in M . Each component of the latter kind has a behavioural model which
contains either internal transitions or transitions which are involved in the
considered cooperation. By definition of M , internal transitions of these
components are not reflected in the open behavioural model of M .

In general, similarly as in the opposite case the cooperation hW 0=R0i is
union of two mutually disjoint cooperation parts hW 0=R0i = 1 [2 such

that 1 := fp℄i 2 hW 0=R0i k i 2 f1; :::; ngg and 2 df= hW 0=R0i n 1. The
cooperation part 1 can be further divided into another two cooperation

parts, 1 = Æ1 [Æ2 where Æ1 df= fp℄i 2 1 kCi 2 �(
)g and Æ2 df= 1 n Æ1. Ports
in the cooperation part Æ1 correspond to ports of those components in N

which are included in the border �(
). In contrary, ports of Æ2 correspond
to components of N
 not included in the cycle border. Cooperation part 2
corresponds to ports of those components of the entire network N which
are not included in N
 and which are connected to some bus of N
. In
other words, 2 is given by openness of N
.

With respect to the decomposition of the supposed transition discussed
above, it follows according to the transition (9�) that the respective tran-

184 ARCHITECTURAL INTEROPERABILITY CHECKING

sition of N:� can be composed back. More particularly, there must be a
cooperation hW 00=R00i satisfyinghW=Ri � hW 00=R00i � hW 0=R0i
such that hW 00=R00i is maximally enabled in N:� . Note that this cooperation
corresponds just to the part Æ2 of the original cooperation. Hence the side-
condition of the rule (9�) is satisfied and we have the following transitions:N:� W 0=R0����!o N0:� q W 0=R0����! B0 q0

Note that if we consider a cooperation part 0 satisfying 0 � hW 0=R0i,0 df= hW 0=R0i n (Æ1 [2), then from the fact that component configurations
of M are just the bordering component configurations of N involved in the
supposed transition and that there is no other component configuration
with any enabled transition under some port of hW 0=R0i it follows 0 must
be maximally enabled in M. Hence we can finally conclude that with respect
to the rule (9�) and the arguments above it follows thatM W=R)o M0 � M[^ni2an(Æ1) ni := 0ni ; q := q0℄
and (M0; N0) 2 Rel.� � hfw℄ig=;i for some i 2 fn1; :::; nkg

The result follows symmetrically to the respective opposite case.� � h;=fr℄igi for some i 2 fn1; :::; nkg
This case is analogous to the previous situation.� � h;=;i
There are several possibilities of how the supposed transition is inferred

in this case. If the rule (80) is employed then we have the result by the same
arguments as in the previous case with the only difference that the rule (80)
is considered instead of the rule (70).

If the rule (9�) is employed then there exists a bus Bj , j 2 f1; :::;mg
which causes a cooperation. There are two possibilities depending on the
fact if Bj performs the h;=;i-transition itself or it is a result of some non-
trivial cooperation.

8.4 ARCHITECTURAL INTEROPERABILITY FAILURE FREEDOM 185

If there exists a state q0 ofBj and a transition qj ;=;!Bj q0j then we achieve
with respect to definition of N:� and isomorphism of N:� and B0 the fol-
lowing transition: N:� ;=;����!o N0:� q ;=;����! B0 q0
Hence we have the transition M ;=;!o M0 � M[q := q0℄ and (M0; N0) 2 Rel.

If the supposed transition is inferred on the base of a nontrivial co-

operation 0 such that qj 0!Bj q0j then by the rule (9�) each componentCi, i 2 f1; :::; ng involved in such a cooperation performs a transitioni e!Ci 0i where P(e℄i) 2 0. The result follows by similar reasons as in
the first case of the bisimulation direction just being proved.

Finally we prove (2). Let Cni be a component of M for someni 2 fn1; :::; nkg. By definition 8.17 we need to prove �aLK (K) �l�B(�(B0; LK)) where K df= hhCKi; h�(B0; LK)i; LK ; ;i satisfying� LK df= LM links(Cni ; B0)� CK is defined asCni with the interface and gate restricted to ports(LK)
As Cni is included in N
 and all relevant links are with respect to the defi-
nition of �(
) and L(M) remapped to the respective links between Cni andB0, if we denote L00 � m[j�1LN
links(Cni ; Bj)
the link relation containing all the links of the component Cni in N
 then
we have the following equation satisfied:ports(L00) = ports(LM links(CK ; B0)) = ports(LK)

Let N df= hhC 0n1 ; :::; C 0nki; hB01; :::; B0mi; LN
 ; Lranki a network where for
each i 2 f1; :::; kg the component C 0ni is defined as Cni with the interface
and gate restricted to ports(L(N
)) and for each j 2 f1; :::;mg the bus B0j is

defined as L(N
)-projection of Bj , B0j df= �(Bj; L(N
)). By the assumptionN
 satisfies', and according to cycle interoperability stated in theorem 8.19
and note 8.20 we have the following equation:�a(hhCKi; hi; ;; ;i) �l' �aL00(N)

As all the buses in N are closed, we can rewrite the previous equality
in the following form:�a(hhCKi; hi; ;; ;i) �l' �aoL00(N)

186 ARCHITECTURAL INTEROPERABILITY CHECKING

Note that if we remove the component C 0ni � CK from N and consider
the respective subnetwork as an open network then the openness of such a
network is given just by the ports in ports(L00). Hence the cycle intercom-
patibility can be further transcribe in terms of the following equality:�a(hhCKi; hi; ;; ;i) �l' �ao(N�)
where N� df= hhC 0n1 ; ::; C 0ni�1 ; C 0ni+1 ; ::; C 0nki; hB01; :::; B0mi; LN
 ; Lranki.

Next from lemma 8.32 the following equation follows:�ao(N�:�) �l' �ao(N :�)
The cycle interoperability additionally implies the equality�ao(N�) �l' �(�ao(N�:�); ports(L00)) �l' �(�ao(N :�); ports(L00))
and hence by isomorphism of N:� and B0 semantics and the fact that LK is
given by bijective remapping of L00 we achieve�(�ao(N :�); ports(L00)) �l' �B(�(B0; LK))
DenoteB a bus satisfying m(B) df= �ao(N�) and B0 a bus satisfying m(B0) df=�(�ao(N :�); ports(L00)). Then by transitivity of �l' it holds that m(B) �l'm(B0). From lemma 8.5 follows�aLK (hhCKi; hBi; LK ; ;i) �l' �aLK (hhCKi; hB0i; LK ; ;i) �l' �aLK (K)
By cycle interoperability we have�aL00(N) �l' �aLK (hhCKi; hBi; LK ; ;i
and thus �a(hhCKi; hi; ;; ;i)) �l' hhCKi; hBi; LK ; ;i

Finally by transitivity of �l' it follows that �aLK (K) �l' �B(�(B0; LK))
and hence Cni 1M' B0. 2
Proof: (of Theorem 8.26) Assume that the conditions (1 � 5) are satisfied
by N . We show that also the entire network N satisfies '. We proceed the

proof by induction on the number k df= k�(N)k of cycles in G(N) and we
use lemma 8.33 to realise the inductive step.

8.4 ARCHITECTURAL INTEROPERABILITY FAILURE FREEDOM 187� k = 0
In this case the G(N) is acyclic. Hence only the conditions (1 �3) are relevant for such situation. If N contains only one component

then the claim that N satisfies ' holds trivially. Assume that N =hhC1; :::; Cni; hB1; :::; Bmi; L; Lranki is such that both n;m � 1. The result
of lemma 8.18 gives that for establishing the fact that a star topology N 0
centred around some bus Bj satisfies ' if all the components of N 0 are com-
patible with Bj . Therefore we focus on proving that if all star topologies ofN satisfy ' then also entire network N satisfies '. We follow the proof by
induction on the number of star topologies in N . This number is equal to
the number of buses m.� m = 0

In this situation there is only one star topology, hence the condition (3)
is satisfied by virtue of lemma 8.18.� m > 0

Suppose that arbitrary subnetwork of N consisting of m star topolo-
gies satisfies '. Let S = hhC 0nM+1; :::; C 0n0i; hBm+1i; LS ; LrankSi be a star
topology of N which satisfies that nodes of G(S) are disjunct with nodes
of G(M). We prove that the subnetwork M of N which is constructed by
adding the star topology S to some subnetwork of N having m star topolo-

gies, M df= hhC 01; :::; C 0nM ; C 0nM+1; :::; C 0n0i; hB1; :::; Bm; Bm+1i; LM ; LrankM i
where LS � LM , also satisfies '.

We proceed the proof by transforming the network M to a network M 0
in which the subnetwork corresponding to the star topology S is replaced
with a single component CS that has the entire star topology S embedded
as its component body. If we prove that such a transformation preserves
the property ' then we reach the expected result by application of the in-
duction hypothesis to M 0 consisting of only m star topologies.

Let the component CS df= hS; I;Gi where ports(I) df= fpi 2 P k p℄i 2freeports(S)g and G is defined in the following way:� For each p℄i 2 freeports(S) there is a mapping g 2 mapG satisfyingg(p℄i) = pi.� For each g 2 mapG the type of g is defined as typeG(g) = ?.� The gate mappings defined above are the only gate mappings in mapG.

Note that the gate function gateG of the gate defined above is bijection. To
ensure that the validity of ' is preserved from S to CS we have to dis-
cuss the rules (2) and (5) of the network operational semantics from Sec-
tion 7.2.4. Note that because of the form of G these are the only rules
which can be employed for inferring the transition system of CS . All
the observable actions of S are directly visible on the interface of CS ,kbbox(CS)k = kwbox(CS)k, and moreover �a(S) is strongly bisimulation

188 ARCHITECTURAL INTEROPERABILITY CHECKING

equivalent with �aC(CS) up to the gate mapping function gateG, denoted�aC(S) �gateG �aC(CS), because of the rules (2; 5). Thus it follows that if S
satisfies ' then also CS satisfies '. We define the network M 0 in the follow-
ing way: M 0 df= hhC 01; :::; C 0nM ; CSi; hB1; :::; Bmi; LM 0 ; LrankM 0i
where LM 0 df= LM n (LS [fl k l 2 LM links(C 0i; Bj); i 2 fnM + 1; :::; n0g; j 2f1; :::;mgg)[fhpi℄` ; Bjik hp℄i ; Bji 2 LM ; i 2 fnM +1; :::; n0g; j 2 f1; :::;mgg,` df= nM + 1 denotes index of the component CS in M 0.

It remains to be proved that the following claim holds:�a(S) �gateG �aC(CS)) �a(M) �gateG �a(M 0)
We prove that relation Rel df= f(hh1; ::; nM ; nM+1; ::; n0i; hq1; ::; qm; qm+1iiM ;hh1; ::; nM ; si; hq1; :::; qmiiM 0)khhnM+1; ::; n0i; hqm+1ii �gateG sg is (strong)
bisimulation.

Assume M � hh1; ::; nM ; nM+1; ::; n0i; hq1; ::; qm; qm+1ii e℄!M M1 for somee℄ 2 obs(M) and M1 a configuration of M . With respect to the rule (7)
of Section 7.2.4, such a transition can be performed only if i e!Ci 0
for some i 2 f1; :::; n0g and 0 2 Q(Ci). The configuration M1 has the
form M1 � M[i := 0℄. If i � nM then M 0 can perform the transitionM0 � hh1; ::; nM ; si; hq1; :::; qmii e℄!M 0 M01 � M0[i := 0℄ and we have(M1; M01) 2 Rel.

If nM < i � n0 then the star topology S can perform the transition S e℄!SS0 � S[i := 0℄ where the configuration S includes i. As �a(S) �gateG�aC(CS), there must be a transition s ei!CS 0 of the component CS such
that gateG(e℄i) = ei and S0 �gateG 0. Hence we have a network transitionM0 ei℄`!M 0 M01 � M0[` := 0℄ where ` df= nM + 1 and also (M1; M01) 2 Rel.

Now suppose M �!M M1. There are two possibilities of which rule can
cause such a network transition. If the rule (8) is employed then the situ-
ation is similar to the previous case. As the � action is preserved by any
gate mapping function, the proof is even simpler. However, when the rule(9) is employed then the circumstances under which the transition occurs
are different. Especially, there must be a transition in a bus Bj for somej 2 f1; :::;m+1g which causes synchronisation of some components of M .
According to the rule (9) the group of components involved in synchroni-
sation is characterised by an index set � � f1; :::; n0g.

If j � m then the bus Bj is contained also in M 0. Here it depends if
there is some i 2 � such that i > nM . If there is no such i all the compo-
nents involved in synchronisation are contained also in the networkM 0. As
the subnetwork of M containing those components is isomorphic to the re-
spective subnetwork of M 0, the result is achieved trivially. However, when

8.4 ARCHITECTURAL INTEROPERABILITY FAILURE FREEDOM 189

there is some component Ci such that i 2 � and i > nM , we have to ensure
that the relevant transition of Ci can be realised also by the component CS
in M 0 and that all links between Bj and Ci are contained also in the link
relation LM 0 of the network M 0. The former is achieved by the same ar-
guments like in the case when the rule (7) has been treated. The latter is
satisfied directly looking into the definition of LM 0 . Note that no matter
how many of the synchronised components are contained in the subnet-
work of M which coincides with S, there can be always only one compo-
nent such as that one discussed above. The reason for that is that G(M)
is acyclic and if there was more than one component of index greater thannM then the acyclicity of G(M) would be contradicted. Thus under these

circumstances, for each transition M �!M M1 � M[Vi2� i := 0i; qj := q0j℄ there

can be a transition M0 �!M 0 M01 � M0[Vi2�0 i := 0i; qj := q0j℄ inferred where�0 df= fi 2 � k i � nMg [�0 and�0 df= � ; if 8i 2 �: i � nMfig if 9i 2 �: i > nM
By similar arguments as in the case in which the rule (7) has been discussed
we also have (M1; M01) 2 Rel.

If j = m+1 then each component which is involved in synchronisation
must be a component of the star topology S. Hence the index set � which
characterises the group of synchronising components satisfies � � fnM +1; :::; n0g in this case. The transition M �!M M1 � M[Vi2� i := 0i; qj := q0j℄
implies the following transition of S:S � hhnM+1; :::; n0i; hqii �! S0 � S[î2� i := 0i; q := q0℄
Therefore there is a transition of the component CS , s �!CS 0 and thusM0 �!M 0 M01 � M0[` := 0; qm := q0℄ where ` df= nM + 1. From the structure
of the reached configurations and the fact that S0 �gateG 0 it follows that(M1; M01) 2 Rel.

Now we prove the opposite direction of the bisimulation. SupposeM0 � hh1; ::; nM ; si; hq1; :::; qmii e℄i!M 0 M01 for some e℄i 2 obs(M 0) and a con-
figuration M01 of M 0. Such a transition can be inferred only in terms of the
rule (7). Hence there is a component Ci for some i 2 f1; :::; nM + 1g such

that i e!Ci 0. If i � nM then the relevant transition of M is inferred triv-
ially because i is also included in M and the link relation LM leaves the
port of e℄i free. If i = nM + 1 then by equivalence of �a(S) and �a(CS)
we have a transition S � hhnM+1; :::; n0i; hqii e0℄j! S0 � S[j := 0℄ satisfy-
ing gateG(e0℄j) = e for some j 2 fnM + 1; :::; n0g. Moreover, S0 �gateG 0.

190 ARCHITECTURAL INTEROPERABILITY CHECKING

In M we can infer a transition M e0℄j!M M1 � M[j := 0℄ and we also have(M1; M01) 2 Rel by the arguments above.

Now suppose M0 �!M 0 M01. Similarly as in the opposite direction proved
above, there are two possibilities of which rule can cause such a network
transition. If the rule (8) is employed then the situation is similar to the
previous case. Note that the � action occurring in the component CS can
be also caused by synchronisation of some components in the star topol-
ogy. Such a situation corresponds just to synchronisation of the relevant
components in M by the bus Bm+1 and hence the result is also achieved.
When the rule (9) is employed then there must exist a transition in a busBj for some j 2 f1; :::;mg which causes synchronisation of some compo-
nents of M 0. According to the rule (8) the group of components involved
in synchronisation is characterised by the index set � � f1; :::; nM ; nM +1g.

The group of components synchronised by the transition of the bus Bj
can include the component CS . If it does not contain this component, the
result follows trivially. Similarly to the opposite case, to the subnetworkA of M 0 containing the relevant components and the bus Bj there exists a
corresponding subnetwork B of M such that behaviour of A is isomorphic
to the behaviour of B.

When nM + 1 2 � the supposed � transition in M 0 represents synchro-
nisation of a group of components including CS . In more particular, we

have M0 �! M01 � M0[Vi2� i := 0i; qj := q0℄. Such a transition according to

the rule (8) implies the transition q W=R!Bj q0 of the bus Bj . Assume that the

transition of CS involved in the synchronisation has the form ` eu!CS 0̀ for

some u 2 fnM + 1; :::; n0g where ` df= nM + 1 and eu 2 E(W) [E(R). We
have to show that there is a component C 0u in the star topology S involved

in the same synchronisation instead of CS so that S e℄u! S0 � S[u := 0℄
and S0 �gateG 0̀ . But from the equivalence of �a(S) and �aS(CS) up to
the gate mapping function it follows that such a transition exists. Accord-
ing to definition of LM 0 and with respect to the fact that hpu℄` ; Bji 2 LM 0
where E(fpug) = feug we have that hp℄u ; Bji 2 LM . Thus there exist

for each i 2 � an event e 2 E(W) [E(R) and a transition i e!C 0i.
Moreover, maxenabled(hW=Ri; M; q) is true because all the component con-
figurations i for i � nM were also contained in M0 and the configura-
tion s has been replaced with an equivalent subnetwork configurationhhnM+1; :::; n0i; hqii and by the acyclicity of G(M) no of the componentsfC 0nM+1; :::; C 0n0g with the exception of C 0u which is connected to Bj by links
of LM . Hence we have according to the rule (8) the required transitionM �! M1 � M[Vi2�0 i := 0i; qj := q0℄ of M where �0 df= fi 2 � k i � nMg [fug.
Moreover, (M1; M01) 2 Rel because of the arguments above.

Finally we have that M 0 is a network with m star topologies which by

8.4 ARCHITECTURAL INTEROPERABILITY FAILURE FREEDOM 191

the induction hypothesis satisfies '. As M 0 �=' M , it follows that M satis-
fies '.� k > 0

In this case G(N) is cyclic and hence all the conditions (1 � 5) must
be taken into account. Let the result hold for some k � 0 and let N be a
network satisfying (1� 5) which has the following form:N df= hhC1; :::; Cnk ; Cnk+1; :::; Cni; hB1; :::; Bmk ; Bmk+1; :::; Bmi; L; Lranki
where� 1 � nk < n� 1 � mk < m� k�(N)k = k + 1.

Further let S df= hhCnk+1; :::; Cni; hBmk ; :::; Bmi; LS ; LrankSi be an open
-
subnetwork ofN for some cycle
 2 �(N). Note that nk andmk are chosen
in such a way that S must contain at least two components and at least two
buses. This property is consistent with the fact that G(S) is required to be
purely cyclic. We virtue of the condition (5) we know that S satisfies ' and
we have to prove that also the entire network N satisfies '.

We follow the proof by transforming the network N to a network N 0 in
which the
-subnetwork S is replaced with a star topology S0. If we prove
that such a transformation preserves the property' and the conditions (1�5) we achieve the result by application of the induction hypothesis to N 0
having only k cycles.

Let N 0 be defined in the following way:N 0 df= hhC1; :::; Cnk ; C�nk+1; :::; C�n0i; hB1; :::; Bmk ; B0i; LN 0 ; LrankN 0i
where� S0 � hhC�nk+1; :::; C�n0i; hB0i; L0; ;i is an open network satisfying the

conditions of lemma 8.33;� LN 0 df= (L(N) n L(S)) [L0;� LrankN 0 df= LrankkLN0 .
Note that S0 is a star topology of N 0 and k�(N 0)k = k. Moreover, ac-
cording to definition of the link relation LN 0 the equation freeports(N) =freeports(N 0) holds.

From the lemma 8.33 it follows that the reduction of S to S0 preserves '
as �ao(S) �l �ao(S0). Hence we prove that the following claim holds:�ao(S) �l �ao(S0)^N satis�es (1� 5)) �a(N) �l �a(N 0)^N 0 satis�es (1� 5)

192 ARCHITECTURAL INTEROPERABILITY CHECKING

At first we prove that the transformation from N to N 0 preserves con-
ditions (1 � 5). Recall the assumption that conditions (1 � 5) are satisfied
in N .

1. Each component of N 0 is included also in N and there are no more
components introduced in N 0. Hence the condition (1) is satisfied inN 0.

2. For each j 2 f1; :::;mkg the bus Bj of N 0 is also included in N . It
remains to be proved that �B(B0) satisfies '. Note that �B(B0) =�arLB0 (S) according to the construction in lemma 8.33. By the ini-

tial assumption the conditions (1; 2; 5) hold in N . Therefore each bus
and component of S satisfies ' and moreover the entire S satisfies '.
Hence we have �a(S) satisfies ' and we need �arLB0 (S) satisfies '.

Note that it follows from the construction in lemma 8.33 that �arLB0 (S)
is isomorphic with �a(S) up to bijection of transition labels. Hence
with respect to the format of the property ', its validity is preserved.
Thus B0 satisfies ' and the condition (2) holds in N 0.

3. Let j � mk and i > nk such that Llinks(Ci; Bj) 6= ;. This choice of i
and j implies that Bj is directly connected to some component of the
cycle S. Such a situation corresponds just to the condition (3). By the
initial assumption we know that (3) holds in N and therefore Ci 1'Bj . As Ci 2 �(
), we have that Ci must be included also in N 0 asC�i � Ci. Moreover, Llinks(Ci; Bj) = LN 0links(C�i ; Bj). Note that by
lemma 8.33 there cannot exist another link of Bj to some component
of S different from Ci. Therefore the arguments above are sufficient
and the condition (3) is satisfied in N .

4. Let j > mk and i � nk such that Llinks(Ci; Bj) 6= ;. Such a choice
of i and j corresponds to the situation when Bj contained in the cycleS is directly connected to some component outside of S. Hence the
condition (4) is employed here. By the initial assumption the con-
dition (4) is satisfied in N and therefore Ci 1N' Bj . Note that Ci
must be included also in the network N 0. However, this is not the
case of Bj . By the construction in lemma 8.33, there is a bus B0 in N 0
which satisfies Llinks(Ci; Bj) = LN 0 links(Ci; B0). We have to proveCi 1N 0' B0. By definition 8.17 we need �aLM (M) �l' �B(�(B0; LM))
where M df= hhC 0i; h�(B0; LM)i; LM ; LrankM i satisfying� LM df= fl 2 links(LN 0 ; B0)k9p 2 I(Ci):p℄i = port(l)g� LrankM is Lrank restricted to LM� C 0 is defined as Ci with the interface and gate restricted to LM
As LM = Llinks(Ci; Bj) = LN 0 links(Ci; B0), it suffices to prove that�(B0; LM) �l' �(Bj ; LM). But this follows from lemma 8.33. We only
sketch the crucial arguments. Note that each transition of Bj which is

8.4 ARCHITECTURAL INTEROPERABILITY FAILURE FREEDOM 193

taken into account is just an open transition of �ao(S) and by the con-
struction ofS0 there must be an equivalent transition in �ao(S0) inferred
only of the transition in B0 in terms of the rule (8�). The opposite di-
rection is symmetric.

Note that by lemma 8.33 there exists no another link of Bj to some
component of S different from Ci. Therefore the arguments above are
sufficient and the condition (4) is satisfied in N .

5. The condition (5) is satisfied in N 0 because for each cycle
 2 �(N)
the respective
-subnetwork is also
-subnetwork of N 0 with the only
exception of S and there are no more cycles introduced in N 0.

Subsequently we prove that the relation Rel df= f(hh1; :::; nk ;nk+1; :::; ni; hq1; :::; qmk ; qmk+1; :::; qmii; hh1; :::; nk ; �nk+1; :::; �n0i; hqii) khhnk+1; :::; ni; hqmk+1; :::; qmii �l hh�nk+1; :::; �n0 i; hqiig is weak bisimula-
tion.

First of all suppose the transition:N � hh1; :::; nk ; nk+1; :::; ni; hq1; :::; qmk ; qmk+1; :::; qmii e℄i! N1 � N[i := 0℄
for some i 2 f1; :::; ng. If i � nk then by the argument that each free port ofN is also a free port of N 0 the same component transition is performed inN 0 and hence we have the transition in N 0:N0 � hh1; :::; nk ; �nk+1; :::; �n0 i; hqii e℄i) N01 � N0[i := 0℄
Moreover, configurations of S and S0 do not contain the component config-
uration i, hence no transition occurs there and we have (N1; N01) 2 Rel. If
we take an internal action � instead of the action e℄i of the component Ci
then the result is achieved by the same arguments as above.

If i > nk the supposed transition causes a transition of S of the formS � hhnk+1; :::; ni; hqmk+1; :::; qmii ! S1 � S[i := 0℄ where := fe℄ig.
Note that S0 is constructed from S by the lemma 8.33 and such construction
ensures that all free ports of S are preserved in S0. Moreover, no free port
of S can be included in some cooperation of B0 because of the definition of
the link relation L(S0). Thus by equivalence of �a(S) and �a(S0) we have

a transition S0 � hh�nk+1; :::; �n0i; hqii) S01 � S0[�i := 0℄ and S1 �l S01.

Hence N0 e℄i) N01 � N0[�i := 0℄ and (N1; N01) 2 Rel. If we take an internal
action � instead of the action e℄i of the component Ci then we have one of
the following two situations:

1. If Ci 2 �(
) then the result is achieved by the same arguments as
above.

194 ARCHITECTURAL INTEROPERABILITY CHECKING

2. If Ci =2 �(
) then by construction in the lemma 8.33 the inter-
nal action of Ci is not simulated by the bus B0. Hence S �hhnk+1; :::; ni; hqmk+1; :::; qmii ;=;! S1 � S[i := 0℄ implies S0 �hh�nk+1; :::; �n0i; hqii � S01 and S1 �l S01. Thus we have N0 � N01 and(N1; N01) 2 Rel.

Now suppose the transition:N � hh1; ::; nk ; nk+1; ::; ni; hq1; ::; qmk ; qmk+1; ::; qmii �!N1 � N[Vi2� i := 0i; qj := q0℄
where � � f1; :::; ng and j 2 f1; :::;mg. Here we distinguish three different
situations determined by the actual choice of j and �.

1. If j � mk and moreover � � f1; :::; nkg then we reach the result by
isomorphism of the relevant subnetworks of N and N 0 containingfCiki 2 �g and the bus Bj .

2. Let j � mk and there is some u 2 � such that u > nk. Note that by
lemma 8.33 there can be at most one such u. In order to realise the
supposed transition the bus Bj must perform qj !Bj q0 for some 2oop(Bj) and Cu must evolve u e! 0 for some e such that P(e℄u) 2 .
As Cu 2 �(
) and links between Cu and Bj are preserved also inN 0, it follows that C�u � Cu and there exists a transition N0 �! N01 �N0[Vi2�0 i := 0i; �u := 0; qj := q0℄ where �0 df= � n fug and moreover(N1; N01) 2 Rel because S 0! S1 � S[u := 0℄ implies S0 0) S01 � S0[u :=0℄ where 0 := fe℄ug and S1 �l S01.

3. Let j > mk and � of the form � = �1 [�2 such that � 6= ;, �1 �f1; :::; nkg, and �2 � fnk + 1; :::; ng. Furthermore, denote the index set
of components forming the cycle border �(
) as �� satisfying �� � �2,�� df= fi 2 �2 k Ci 2 �(
)g. The supposed � transition implies that Bj
must change its state according to the rule (8) by transition qj !Bj q0
for some 2 oop(Bj) which has the form = 1 [� [0 where
the cooperation parts 1, � , 0 � are distinguished in the following
way:� 1 := fp℄i 2 k i 2 �1g� � := fp℄i 2 k i 2 ��g� 0 := fp℄i 2 k i 2 �2 n ��g
By the rule (8�) we have in S a transition S �hhnk+1; :::; ni; hqmk+1; :::; qmii 1[�[00�! S1 � S[Vi2�2 i := 0i; qj := q0℄
where 00 df= � 0 Bj 2 �(
); Bj =2 �(
)

8.4 ARCHITECTURAL INTEROPERABILITY FAILURE FREEDOM 195

By S �l S0 from lemma 8.33 it follows that there exists a config-

uration S01 of S0 and a transition S0 � hh�nk+1; :::; �m0i; hqii 1[�[00)S01 � S0[Vi2�� �i := 0i; q := q0℄ such that S1 �l S01. Moreover,m(B0) = �aoLB0 (S) with respect to lemma 8.33 and hence it must hold

that q 1[�[00!B0 q0.
If Bj 2 �(
) then 00 = 0. As for each i 2 �1 the component Ci is
involved in the respective synchronisation in N , Ci must perform the

transition i e! 0i for some e such that P(e℄i) 2 1. Note that for eachi 2 �1 the configuration i is directly included in N0 because of the defi-
nition of N 0. Moreover, the relevant links between each component Ci
and the bus Bj are remapped to links between Ci and B0 by construc-
tion of N 0. Similarly, for each u 2 �2 the component Cu performs the

transition u e! 0u for some e satisfyingP(e℄u) 2 �[0. Note that here
we cannot say in general that Cu is directly included in N 0. It happens
only in the case when Cu 2 �(
). In that case Cu is included in N 0 asC�u � Cu. Moreover, the relevant links between Cu and the bus Bj are
remapped to links between C�u and B0 by construction of N 0. There-

fore there is a transition �u � u e! 0u for some e such thatP(e℄u) 2 � .
In the case of Cu =2 �(
) the respective transition of Cu is according
to definition of m(B0) reflected in 00 because it is included in LB0-
observation of S. As all the relevant links between Cu and the bus Bj
are remapped to links between C�u and B0 by construction of N 0, we

have a transition N0 �! N01 � N0[Vi2�1 i := 0i;Vi2�� �i := 0i; q := q0℄
and by the arguments above also (N1; N01) 2 Rel.
If Bj =2 �(
) then 1 [� = h;=;i and 00 = h;=;i. Hence �1 = �� = ;
and in this case S01 � S0[q := q0℄. Thus there must be according to the

lemma 8.33 a transition q ;=;!B0 q0 in B0. From that follows by the rule(10) a transition N0 �! N01 � N0[q := q0℄ and by the arguments above also(N1; N01) 2 Rel.
The opposite simulation is proved similarly. At first we suppose the

transition:N0 � hh1; ::; nk ; �nk+1; ::; �n0i; hq1; ::; qmk ; qii e℄i! N01 � N0[i := 0i℄
Both cases when i � nk or i > nk are symmetric to the respective cases
of the opposite simulation proved above. When we take the � action of
the ith component instead of e℄i then in the case i � nk the proof is also
symmetric. If i > nk then we have C�i � Ci where Ci 2 �(
) of the networkN and hence N 0 can perform the required � transition and we establish the
needed arguments for the respective simulation in similar way like in the
opposite case.

196 ARCHITECTURAL INTEROPERABILITY CHECKING

Now suppose the transition:N0 � hh1; ::; nk ; �nk+1; ::; �n0i; hq1; ::; qmk ; qii �!N01 � N0[Vi2� i := 0i; q := q0℄
The case when � � f1; :::; nkg and j � mk is treated symmetrically to

the respective case (1) of the opposite simulation. The same holds for the
case of � \ fnk; :::; n0g 6= ; and j � mk, here the situation is symmetrical to
the case (2) of the opposite simulation.

In the case when the bus B0 causes the supposed transition and � =�1 [�2 where �1 � f1; :::; nkg and �2 � fnk + 1; :::; n0g, the proof is dif-
ferent than in the respective situation of the opposite simulation. Note
that in contrary to the opposite case we have all the component config-
urations of N 0 which are involved in the particular synchronisation in-

cluded also in N . If we denote the cooperation := fp℄iki 2 �1; i p!Ci0ig [fp℄iki 2 �2; �i p!C�i 0ig containing the relevant ports currently in-
volved in the synchronisation then there exists 0 2 Coops such that � 0
and B0 performs just the transition q 0!B0 q0. Suppose 0 6= h;=;i. Note
that each p℄u of the cooperation part 0 n for some u =2 � corresponds
to a particular port of component Cu in N which satisfies Cu =2 �(
).
The transition of B0 implies by the rule (8�) an open transition of S0 such

that S0 � hh�nk+1; :::; �n0i; hqii 0! S01 � S0[Vi2�2 �i := 0i; q := q0℄. ByS0 �l S we have a transition S � hhnk+1; :::; ni; hqmk+1; :::; qmii 0) S1 �S[Vi2�2 i := 0i;Vi2�0 i := 0i; qj := q0℄ for some j 2 fmk + 1; :::;mg where�0 df= fi 2 f1; :::; n0g k 9p 2 ports(I(Ci)):p℄i 2 0 n g and S01 �l S1.

By the construction in lemma 8.33 all relevant links between each com-
ponent Ci, i 2 � and the bus B0 are bijectively remapped to links betweenCi and Bj and moreover for each port p℄u 2 0 n there must be a link from
some component C 0u =2 �(
) of N to the bus Bj . It follows by the rule (8)
that there is a transition of N such that N �) N1 � N[Vi2� i := 0i;Vi2�0 i :=0i; qj := q0℄ and by the arguments above (N1; N01) 2 Rel.

If 0 = h;=;i then the h;=;i-transition of B0 implies by the rule (8�)
that S0 � hh�nk+1; :::; �n0i; hqii ;=;! S01 � S0[q := q0℄. By S0 �l S we have

a transition S � hhnk+1; :::; ni; hqmk+1; :::; qmii ;=;) S1 for some S01 such thatS01 �l S1. Hence we have a transition N �) N0[Vi2�0 i := 0i; qj := q0j℄ where�0 � fnk + 1; :::; ng n �2 and j 2 fmk + 1; :::;mg such that Bj =2 �(
)g. By
the arguments above it holds that (N1; N01) 2 Rel. Note that qj may not be
necessarily different from q0j . The situation when qj � q0j corresponds to
internal transition of some component Cu where fug = �0.

Finally we have a network N 0 with �(N 0) = k and satisfying all the

8.4 ARCHITECTURAL INTEROPERABILITY FAILURE FREEDOM 197

conditions (1 � 5). Hence by the induction hypothesis N 0 satisfies '. We
have just proved that N 0 �=' N and thus N satisfies ' too. 2

We follow with discussion of synchronous gate interoperability correct-
ness. More precisely, we show that the problem of checking if the gate does
not violate some property ', which has been illustrated in Section 8.4.1,
can be reduced to the network interoperability checking problem already
treated in previous paragraphs.

We begin with the situation when some synchronous gate relates com-
ponents which are of independent partitions of the network dependency
graph. As the following statements follow from the fact that a universal
and synchronous gates can be considered as particular memory-less buses,
we only present the lemmas end the theorem without proofs.

Lemma 8.34 Let N = hhC1; :::; Cni; hB1; :::; Bmi; L; Lranki 2 Tst a network
and C = hN; I;Gi 2 CTst a component with an interface I including the portp 2 ports(I) and G a gate. Furthermore, let I � f1; :::; ng some nonempty index
set satisfying fCi k i 2 Ig � fC1; :::; Cng so that each Ci (i 2 I) is included
in G(N) in a separate maximally connected partition than each component offCj k j 2 I n figg. Moreover, let g 2 mapG a gate mapping which has the
following properties:� type(g) = �� For each i 2 I there exists e 2 bbox(Ci) so that g(e℄i) = p.� For each i 2 f1; :::; ng n I it holds that g(e℄i) is not defined for all e 2bbox(Ci).

Let Bg = hQ;T; q0i 2 Buses a bus defined in the following way:� Q df= fq0g� T df= fhq0; ; q0i k := Si2Ife℄ik g(e℄i) = pgg
If for each i 2 I component Ci satisfies ' and the compatibility Ci 1N' Bg

then the gate mapping g preserves the property '.

Lemma 8.35 Let N = hhC1; :::; Cni; hB1; :::; Bmi; L; Lranki 2 Tst a network
and C = hN; I;Gi 2 CTst a component with an interface I including the portp 2 ports(I) and G a gate. Furthermore, let I � f1; :::; ng some nonempty
index set satisfying fCi k i 2 Ig � fC1; :::; Cng so that each Ci (i 2 I) is
included in G(N) in the same maximally connected partition as each component
of fCj k j 2 I n figg. Moreover, let J � f1; :::;mg an index set defined as the setfj 2 J k 9i 2 I: Llinks(Ci; Bj) 6= ;g. Finally, let g 2 mapG a gate mapping
which has the following properties:

198 ARCHITECTURAL INTEROPERABILITY CHECKING� type(g) = �� For each i 2 I there exists e 2 bbox(Ci) so that g(e℄i) = p.� For each i 2 f1; :::; ng n I it holds that g(e℄i) is not defined for all e 2bbox(Ci).
Let Bg = hQ;T; q0i 2 Buses a bus defined in the following way:� Q df= fq0g� T df= fhq0; ; q0i k := Si2Ife℄ik g(e℄i) = pgg
Furthermore let N 0 df= hhC 01; :::; C 0n0i; hB01; :::; B0m0 ; Bgi; L0; Lrank0i a subnet-

work of N satisfying� n0 df= kIk� L0 df= L [fhe℄i ; Bgi k g(e℄i) de�ned g� Lrank0 df= LrankkL0� fB01; :::; B0m0g = fBj k j 2 J g� For each i 2 I , Ci = hTi; Ii; Gii is transformed to C 0i df= hTi; I 0i; G0ii where

– I 0i df= IikP where P df= fp 2 ports(Ii) k 9l 2 L0: p℄i = port(l)g
– G0i df= GikI0i

If N 0 satisfies ' then the gate mapping g preserves the property '.

Theorem 8.36 Let C = hN; I;Gi 2 CTst a component. If each gate mappingg 2 mapG such that type(g) = � preserves ' and N satisfies ' then C satisfies'.

8.5 Additional Notes

There is an exhaustive piece of work by Bernardo et al. on the topic of
interoperability checking of architectural descriptions formalised in tradi-
tional process algebraic framework. In [BCD02] it has been proved that for
checking of an acyclic component topology it suffices to check interaction
compatibility of all pairs of mutually connected components. The notion
of such compatibility is based on a weak bisimilarity of the two compo-
nents in a pair. Abstraction of both components is taken comprising only
the actions of mutual interaction, while all the other actions are hidden. To

8.5 ADDITIONAL NOTES 199

overcome the potential problem with internal nondeterminism of compo-
nents, the compatibility checking is realised in such a way that one of the
components is checked on weak bisimilarity against the behaviour of its
parallel composition with the other component.

We show that the similar approach can be applied to the behavioural
model of VCN. In contrast to [BCD02], dependency graph of an architec-
ture in VCN is bipartite, as VCN distinguishes connectors and components
as two semantically different members of the architecture. In other words,
we have to define the notion of architectural compatibility between its two
arbitrary adjacent nodes, which are always a connector and a component.
Moreover, VCN introduces set-labelled transition operational semantics to
capture behavioural model of connectors. This extension lifts the expres-
siveness of the coordination model. In this paper, the notion of architec-
tural interoperability is revisited and extended to fulfil the needs of such a
setting. Especially, there is no traditional notion of the parallel composition
operator in VCN and therefore the congruence results applied in [BCD02]
cannot be used here. However, the main result of this paper shows that the
framework of [BCD02] applies with some extension also to the VCN setting
of an architectural description.

Chapter 9

Prototype Implementation

To support the visual design in VCN, especially in terms of primary eval-
uation of VCN features, we have developed VCNE [Sim, Reh, Reh06] —
a prototype of an editor for Visual Coordination Networks. This editor is
implemented in Java and hence allows multi-platform use. An example of
a specification in this editor is depicted in Figure 9.1.

Figure 9.1: An example of a network in VCNE

Currently supported features of VCNE are as follows, concerning the
particular features of VCN.

Visual Notation

With the exception of port roles, full graphical notation of VCN is sup-
ported by VCNE.

202 PROTOTYPE IMPLEMENTATION

Representation of Networks

Networks are represented in XML format which allows modular embed-
ding of subnetworks. An entire architecture architecture is represented in
VCNE directly as a tree and can be stored in just one XML file (*.pat).
This way of representing VCN networks also enables reuse of architectures
as component attached to other architectures.

Hierarchy

The hierarchy is supported with respect to the tree representation men-
tioned above. However, concerning the kind of supported gates, only one-
to-one mapping are currently supported.

Figure 9.2: XML representation of leaf behavioural model in VCNE

Behavioural Model

The behavioural model is represented in terms of labelled transition sys-
tems implemented in XML format, as it is demonstrated in Figure 9.2. Spec-
ification of leaves is currently supported only in terms of direct specifica-
tion of the transition system. Similarly, also the behaviour of buses has
to be explicitly given provided that cooperation machines are also repre-
sented in XML. VCNE implements the semantics of network composition
operator and offers automatised construction of a transition system for any
level of the specification. Moreover, the generated transition system can
be stored as a set of CCS expressions in the syntax of Concurrency Work-

PROTOTYPE IMPLEMENTATION 203

bench of New Century [CS96], which allows model checking and equiva-
lence checking to be applied on architectures.

Concerning the possibility of visual specification of leaf behaviour, we
aim to adapt the visual editor PAXION [dM04] for description of state-
transition systems. Although PAXION has been originally developed for
the purpose of visual description of Buchi automata, it has tight relations
with XML structures of VCNE.

Support for Consistency and Compatibility Checking

At first, static consistency analysis of architectures is implemented, pro-
vided that designer cannot specify a VCN which does not conform to the
definition given in Chapter 5.

For the purpose of behavioural analysis, i.e., the architectural compat-
ibility checking in terms of Chapter 8, VCNE supports synthesis of all the
transition systems needed for respective bisimulation checking. The re-
sult is stored as a definition of CWB-NC CCS processes, hence this way
the compatibility test can be applied on an architecture. VCNE currently
allows checking of acyclic topologies only.

Chapter 10

A Case-Study: Rail Line
Signalling

In this chapter, we evaluate the VCN language on a real example of a
railway automatic line signalling system. In design of automatic railway
systems, ad hoc methods are typically applied. There are approaches to
employ formal methods in design of such systems [Pen06, BCJ+04]. To
our knowledge, none of such approaches uses an architectural description
method. However, embedded railway systems such as line segmentation
and signalling are composed of a number of components. We demonstrate
how the VCN language can be employed for formalization of such systems.

10.1 Automatic Line Signalling

A typical problem with high-speed trains is that drivers cannot stop their
trains within sighting distance of another train or within sighting distance
of a signal [Pen06]. Therefore, automatic signalling is used on some railway
lines.

A line is considered to be divided into segments l =hs1; s2; :::; si�1; si; si+1; :::; sni. Such a line l connects two stations A
and B. The line can be in just one of three modes – opened in direction
from A to B, opened in the opposite direction, or closed. Each segment of a
line can be in two states – segFree, when no train is present in the segment,
and segOupied, if a train is detected in the segment. The signal of each
segment can have one of three colours for the currently set direction, or it
can be switched off.

10.1.1 First Segment of the Line

The first segment of the line (s1) has attached only a one automatically con-
trolled signal. In particular, this is the signal of the B ! A direction. The

206 A CASE-STUDY: RAIL LINE SIGNALLING

signal of the opposite direction is controlled manually from the station A.
There are four possible states of the signal have the following specifica-

tion:

1. Red – if and only if the line l is opened in the B ! A direction and
the segment s1 is occupied;

2. Green – if and only if the line is opened in B ! A direction, the
segment s1 is free, and the station A is opened for receiving trains
from B;

3. Y ellow – if and only if the line is opened in B ! A direction, the
segment s1 is free, and the station A is closed for receiving trains fromB;

4. O� – if and only if the line is opened in A ! B direction or when it
is closed.

10.1.2 Inner Segments of the Line

Each inner segment si for i 2 f2; :::; n� 1g is equipped with two automatic
signals each for the particular direction. Specification of the ith A ! B
signal is the following:

1. Red – if and only if the line l is opened in the A ! B direction and
the segment si is occupied;

2. Green – if and only if the line is opened in A ! B direction, the
segments si and si+1 are free;

3. Y ellow – if and only if the line is opened in A ! B direction, the
segment si is free, and the segment si+ 1 is occupied;

4. O� – if and only if the line is opened in B ! A direction or when it
is closed.

States of the ith B ! A signal are the following:

1. Red – if and only if the line l is opened in the B ! A direction and
the segment si is occupied;

2. Green – if and only if the line is opened in B ! A direction, the
segments si and si�1 are free;

3. Y ellow – if and only if the line is opened in B ! A direction, the
segment si is free, and the segment si� 1 is occupied;

4. O� – if and only if the line is opened in A ! B direction or when it
is closed.

10.1 AUTOMATIC LINE SIGNALLING 207

10.1.3 Last Segment of the Line

The last segment of the line has only one automatic signal in the A ! B
direction. The opposite signal is controlled manually from the station B.
The signal has the following specification:

1. Red – if and only if the line l is opened in the A ! B direction and
the segment sn is occupied;

2. Green – if and only if the line is opened in A ! B direction, the
segment sn is free, and the station B is opened for receiving trains
from A;

3. Y ellow – if and only if the line is opened in A ! B direction, the
segment sn is free, and the station B is closed for receiving trains
from A;

4. O� – if and only if the line is opened in B ! A direction or when it
is closed.

10.1.4 Architecture of the Line Signalling System

The architecture of the line signalling system for two inner segments is for-
malized by VCN networks depicted in Figure 10.1 and Figure 10.2. The two
buses appearing in both networks of the architecture hierarchy employs the
same coordination model. A bus class for this coordination model has the
following specification:B(In; Out; rank; apaity) := fIn; Out; rank 6= ; ^ apatity = 1i*ab=?ba; fo1; :::; ong ^ rank(i) = 1 ^Vnj=1 rank(oj) = 1i*ab=#ba; fo1; :::; ong ^ rank(i) = 1 ^Vnj=1 rank(oj) = 1i*ba=?ab; fo1; :::; ong ^ rank(i) = 2 ^Vnj=1 rank(oj) = 2i*ba=#ab; fo1; :::; ong ^ rank(i) = 2 ^Vnj=1 rank(oj) = 2i=?ba; o ^ rank(i) = 3 ^ rank(o) = 3i=?ab; o ^ rank(i) = 4 ^ rank(o) = 4g

Particular leaves are specified by the statecharts depicted in Figure 10.3.
Note that these statecharts contain two internal actions – segOup andsegFree which model the arrival and departure of a train to/from a par-
ticular segment, respectively. Additionally, the lower-level componentDirController is assumed to behave as a one-place buffer for incoming
direction setting requests provided that only a single particular request can

208 A CASE-STUDY: RAIL LINE SIGNALLING

2
1

1
1 2

2

3

3
4

2
1

4

Figure 10.1: Top-most network of the line signalling system

be stored inside the buffer. The top-most DirController component is as-
sumed to be modelled as a nondeterministic transmitter of direction setting
requests.

10.1 AUTOMATIC LINE SIGNALLING 209

se
tA

B
se

tB
A

O
cc

up
ie

d
C

lo
se

d

sw
O

n
sw

O
ff

x
x

+
+

1
2

1
1 2

2 3

3
4

4
fr

ee
P

rv
fr

ee
N

xt

Figure 10.2: Network of inner segments of the line signalling system

2
1

0
A

C
A

S
E

-S
T

U
D

Y
:R

A
IL

L
IN

E
S

IG
N

A
L

L
IN

G

Off Line

SigGreen

SigYellow

SigRed

SigOff

1stSeg

SigOn

Off Line Off Line

SigGreen

SigYellow

SigRed

SigOff

SigOn

SigGreen

SigYellow

SigRed

SigOff

SigOn

ABdirection BAdirection
Seg_i

SigGreen

SigYellow

SigRed

SigOff

SigOn

LastSeg

setBAsetAB

openA

swOff swOn

segOccup segFree

Closed

Occupied

Free

swOff swOn

Closed

setBAsetAB

segOccup segFree

Occupied

Free

setABsetBA

freeNxt

segOccup

Occupied

Free

segFree

freePrv

setBA

swOff swOn

segOccup segFree

Closed

Occupied

Free

setAB

openB

F
ig

u
re

10.3:
S

tatech
arts

rep
resen

tin
g

all
k

in
d

s
o

f
lin

e
seg

m
en

ts

Chapter 11

Conclusion

In this thesis, we have introduced Visual Coordination Diagrams (VCN),
a visual formalism for architectural description of reactive and interactive
systems. In contrary to common visual notations, the language is founded
on a precise formal base in two aspects:� It has defined a precise mapping from graphical notation to mathe-

matical structures (so-called structural terms).� The behavioural model of the language is also formal, it is based on
the notion of labelled state-transition systems.

With respect to the above mentioned aspects, the language VCN satisfies
the needs for formal architectural design of interactive and reactive sys-
tems. VCN employs results of two research communities — research on
architectural description languages (ADLs) and research on coordination.
From the former, it takes the aspects of components/connectors distinction
and hierarchal component-based comprehension of system architecture.
From the latter, the notion of exogenous coordination is applied. In con-
sequence of both, VCN allows high-level description of component-based
topologies of systems, on the one hand. On the other hand, a method for
abstract description of connector types employing coordination models of
both asynchronous and synchronous kinds is provided.

All the above mentioned aspects of the language VCN enables it for
application in architectural description of interactive and reactive systems.
As the framework for behavioural consistency of architectures is developed
in terms of equivalence checking, VCN supports also the correctness-by-
construction feature of modern component-based design.

11.0.5 Future Work

However, there are still many aspect in which the language has to be im-
proved in order to be satisfactorily applied for description of real systems.

212 CONCLUSION

First of all, the implementation of the VCNE — the prototype editor of
VCN architectures — has to be extended to capture all the aspects of the
language defined and discussed throughout the thesis.

The following aspects has to be implemented:� Value-passing behavioural model.� Support for all the features of gates, i.e., synchronous and universal
types of gates has to be implemented.� Architectural interoperability checking of cyclic architectures.� The results of Chapter 6 — implementation of the bus specification
language and of the algorithm for bus instance construction.

Implementation of the above mentioned features would enable realisa-
tion of exhaustible evaluation of the language, which is necessary for sat-
isfying of the main aim of the language — to be practical used by system
developers.

Concerning the theoretical questions, we believe that the general coor-
dination framework defined in Chapter 6 gives a unified fundamental base
for comparative study of different coordination models. We plan to extend
comparison results achieved in [BJ03] to other models of coordination.

Finally, another future research topic concerning this work is develop-
ment of an interface-oriented operational model of VCN architectures, as it
was described in Section 5.2 of Chapter 5.

Bibliography

[AB05] Alessandro Aldini and Marco Bernardo. On the usability of pro-
cess algebra: An architectural view. Theor. Comput. Sci., 335(2-
3):281–329, 2005.

[AFN03] D. Antoš, O. Fučı́k, and J. Novotný. Project of IPv6 Router with
FPGA Hardware Accelerator. In Proceeding of 13th International
Conference on Field-Programmable Logic and Applications, volume
2778, pages 964–967. LNCS, Springer-Verlag, 2003.

[AFV01] L. Aceto, W.J. Fokkink, and C. Verhoef. Structural Operational
Semantics. In Handbook of Process Algebra, pages 197–292. Else-
vier, 2001.

[AG97] R. Allen and D. Garlan. A formal basis for architectural connec-
tion. ACM Trans. Softw. Eng. Methodol., 6(3):213–249, 1997.

[AP05] J. Adamek and F. Plasil. Component composition errors and up-
date atomicity: static analysis: Research articles. J. Softw. Maint.
Evol., 17(5):363–377, 2005.

[APF00] Charles Andre and Marie-Agnes Peraldi-Frati. Behavioral Spec-
ification of a Circuit Using SyncCharts: A Case Study. In Proc.
of EUROMICRO’00. IEEE Computer Society, 2000.

[AR02] F. Arbab and J. Rutten. A coinductive calculus of component
connectors, 2002.

[Arb98] F. Arbab. What do you mean, coordination? Bulletin of the Dutch
Association for Theoretical Computer Science (NVTI), 1998.

[Arb04] Farhad Arbab. Reo: a channel-based coordination model for
component composition. Mathematical. Structures in Comp. Sci.,
14(3):329–366, 2004.

[Bal02] D. Balek. Connectors in Software Architectures. PhD thesis,
Charles University, Prague, 2002.

214 BIBLIOGRAPHY

[BCD02] Marco Bernardo, Paolo Ciancarini, and Lorenzo Donatiello. Ar-
chitecting families of software systems with process algebras.
ACM Trans. Softw. Eng. Methodol., 11(4):386–426, 2002.

[BCJ+04] Dines Bjørner, Peter Chiang, Morten S. T. Jacobsen, Jens Kiels-
gaard Hansen, Michael P. Madsen, and Martin Penicka. To-
wards a formal model of cyberrail. In IFIP Congress Topical Ses-
sions, pages 657–664, 2004.

[Ber98] Gerard Berry. The Foundations of Esterel. In Proof, Language and
Interaction: Essays in Honour of Robin Milner. MIT Press, 1998.

[BG92] Gerard Berry and Georges Gonthier. The Esterel Synchronous
Programming Language: Design, Semantics, Implementation.
Science of Computer Programming, 19(2):87, 1992.

[BJ03] Antonio Brogi and Jean-Marie Jacquet. On the expressiveness
of coordination via shared dataspaces. Sci. Comput. Program.,
46(1-2):71–98, 2003.

[BK98] J. A. Bergstra and P. Klint. The discrete time ToolBus — a soft-
ware coordination architecture. Science of Computer Program-
ming, 31(2–3):205–229, 1998.

[Blo95] B. Bloom. Structural Operational Semantics for Weak Bisimula-
tions. Theor. Comput. Sci., 146(1-2):25–68, 1995.

[BM93] Jean-Pierre Banatre and Daniel Le Métayer. Programming by
multiset transformation. Commun. ACM, 36(1):98–111, 1993.

[BRS93] G. Berry, S. Ramesh, and R. K. Shyamasundar. Communicat-
ing reactive processes. In Conference Record of the Twentieth An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 85–98, Charleston, South Carolina,
1993.

[CDS00] R. Cleaveland, X. Du, and S. A. Smolka. GCCS: A Graphical
Coordination Language for System Specification. In Proceedings
of COORD’00. LNCS, Springer Verlag, 2000.

[CES06] CESNET, z.s.p.o. Liberouter project home page, 2006.
http://www.liberouter.org/.

[CG89] Nicholas Carriero and David Gelernter. Linda in context. Com-
mun. ACM, 32(4):444–458, 1989.

[Cia96] P. Ciancarini. Coordination Models and Languages as Software
Integrators. ACM Computing Surveys, 28(2):300, 1996.

BIBLIOGRAPHY 215

[Cle96] Paul C. Clements. A survey of architecture description lan-
guages. In IWSSD ’96: Proceedings of the 8th International Work-
shop on Software Specification and Design, page 16, Washington,
DC, USA, 1996. IEEE Computer Society.

[CS96] R. Cleaveland and S. Sims. The NCSU Concurrency Work-
bench. In Computer-Aided Verification (CAV ’96), page 394. LNCS
1102, Springer-Verlag, 1996.

[CS01a] R. Cleaveland and O. Sokolsky. Equivalence and preorder
checking for finite-state systems. In Handbook of Process Algebra.
North-Holland, 2001.

[CS01b] R. Cleaveland and O. Sokolsky. Equivalence and Preorder
Checking for Finite-State Systems. In Handbook of Process Al-
gebra, pages 391–424. Elsevier, 2001.

[dAH01a] Luca de Alfaro and Thomas A. Henzinger. Interface automata.
In Proceedings of the Ninth Annual Symposium on Foundations of
Software Engineering. ACM Press, 2001.

[dAH01b] Luca de Alfaro and Thomas A. Henzinger. Interface theories
for component-based design. In EMSOFT ’01: Proceedings of
the First International Workshop on Embedded Software, pages 148–
165, London, UK, 2001. Springer-Verlag.

[dM04] G. de Menten. Graphical Environment for Buchi Automata.
Master’s thesis, University of Namur (FUNDP), Namur, 2004.

[DS97] I. Lee D.Clarke, H. Ben-Abdallah and O. Sokolsky. PARAGON:
A Paradigm for the Specification, Verification, and Testing of
Real-Time Systems. In IEEE Aerospace Conference, 1997.

[EMCP99] Orna Grumberg Edmund M. Clarke and Doron A. Peled. Model
Checking. Cambridge : MIT Press, 1999.

[Geh84] N.H. Gehani. Broadcasting Sequential Processes. Transactions
on Software Engineering, SE-10(4):343–351, 1984.

[Gra99] D. Gray. Introduction to the Formal Design of Real-Time Systems.
Springer, 1999.

[Har87] D. Harel. Statecharts: A Visual Formalism for Complex Sys-
tems. Technical report, The Weizmann Institute, 1987.

[HC01] George T. Heineman and William T. Councill. Component-Based
Software Engineering: Putting the Pieces Together. Addison Wes-
ley, 2001.

216 BIBLIOGRAPHY

[HKR+04] J. Holecek, T. Kratochvila, V. Rehak, D. Safranek, and P. Sime-
cek. How to Formalize FPGA Hardware Design. Technical Re-
port 4/2004, CESNET z.s.p.o., 2004.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-
Hall, 1985.

[KB99] M. Koutny and E. Best. Operational and denotational semantics
for the box algebra. Theoretical Computer Science, 211, 1999.

[Leu94] S. Leue. Methods and Semantics for Telecommunications Systems
Engineering. PhD thesis, University of Berne, 1994.

[Mar91] F. Maraninchi. The Argos language: Graphical Representation
of Automata and Description of Reactive Systems. In IEEE
Workshop on Visual Languages, Kobe, Japan, 1991.

[Mic] Microsoft. Microsoft COM Technology. http://www.microsoft.com/com.

[Mil83] R. Milner. A Calculus for Synchrony and Asynchrony. Theoreti-
cal Computer Science, 25, 1983.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[Mil99] R. Milner. Communicating and Mobile Systems: the Pi-Calculus.
Cambridge University Press, 1999.

[MK96] J. Magee and J. Kramer. Dynamic Structure in Software Archi-
tectures. SIGSOFT Softw. Eng. Notes, 21(6):3–14, 1996.

[OMG] OMG. CORBA Component Model Specification. http://www.omg
.org/technology/documents/formal/components.htm.

[OMG03] OMG. Unified Modeling Language. Version 2.0. OMG, 2003.

[PBJ98] F. Plasil, D. Balek, and R. Janecek. SOFA/DCUP: Architecture
for Component Trading and Dynamic Updating. In Proceedings
of the International Conference on Configurable Distributed Systems,
page 43. IEEE Computer Society, 1998.

[Pen06] Martin Penicka. Towards a Theory of Railways. PhD thesis, Czech
Technical University, 2006.

[Pla05] F. Plasil. Enhancing component specification by behavior de-
scription - the sofa experience. In Proceedings of the 4th Interna-
tional Symposium on Information and Communication Technologies
(WISICT 2005), pages 185–190. ACM, 2005.

BIBLIOGRAPHY 217

[Pra91] K. V. S. Prasad. A calculus of broadcasting systems. In TAP-
SOFT ’91: Proceedings of the international joint conference on theory
and practice of software development on Colloquium on trees in al-
gebra and programming (CAAP ’91): vol 1, pages 338–358, New
York, NY, USA, 1991. Springer-Verlag New York, Inc.

[RC03] A. Ray and R. Cleaveland. Architectural Interaction Diagrams:
AIDs for System Modeling. In Proc. of ICSE 2003. IEEE, 2003.

[Reh] Z. Rehak. Visual Coordination Diagrams Editor. Bachelor’s
Thesis, Masaryk University, Brno, 2006.

[Reh06] Z. Rehak. Visual Coordination Networks Editor (VCNE) project
home page. ParaDiSe Laboratory, Masaryk University Brno,
2006. http://anna.fi.muni.cz/�xrehak5/vcne/.

[Saf01] D. Safranek. Graphical Specification of Concurrent Systems (in
Czech). Master’s thesis, Faculty of Informatics, Masaryk Uni-
versity Brno, 2001.

[Saf02] D. Safranek. SGCCS: A Graphical Language for Real-Time Co-
ordination. In Proceedings of FOCLASA’02, volume 68 of ENTCS.
Elsevier Science, 2002.

[Saf03] D. Safranek. Visual Specification of Concurrent Systems. In Pro-
ceedings of 18th IEEE International Conference on Automated Soft-
ware Engineering, pages 369–375. IEEE Computer Society, 2003.

[Saf04] D. Safranek. Visual Specification of Systems with Heteroge-
neous Coordination Models. In 3st International Workshop on
Foundations of Coordination Languages and Software Architectures,
volume 68 of ENTCS. Elsevier Science, 2004.

[Saf06] D. Safranek. Architectural Interoperability Checking in Visual
Coordination Networks. In Proceedings of 2nd International Work-
shop on Methods and Tools for Coordinating Concurrent, Distributed
and Mobile Systems. Elsevier, 2006. to appear in ENTCS.

[SDK+95] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young, and
G. Zelesnik. Abstractions for Software Architecture and Tools
to Support Them. IEEE Trans. Softw. Eng., 21(4):314–335, 1995.

[Sif05] Joseph Sifakis. A framework for component-based construction
extended abstract. In SEFM ’05: Proceedings of the Third IEEE In-
ternational Conference on Software Engineering and Formal Meth-
ods, pages 293–300, Washington, DC, USA, 2005. IEEE Com-
puter Society.

218 BIBLIOGRAPHY

[Sim] J. Simsa. Implementation of a Graphical Editor for Specification
of Concurrent Systems (in Czech). Bachelor’s Thesis, Masaryk
University, Brno, 2004.

[SRV+06] A. Smrcka, V. Rehak, T. Vojnar, D. Safranek, P. Matousek, and
Z. Rehak. Verifying VHDL Designs with Multiple Clocks in
SMV. In Proceedings of 11th International Workshop on For-
mal Methods for Industrial Critical Systems, LNCS, to appear.
Springer, 2006.

[SS05] D. Safranek and J. Simsa. VCD: A Visual Formalism for Specifi-
cation of Heterogeneous Software Architectures. In Theory and
Practice of Computer Science: 31st Conference on Current Trends in
Theory and Practice of Computer Science, volume 3381 of LNCS,
pages 320–329. Springer, 2005.

[UP97] I. Ulidowski and I. Phillips. Formats of Ordered SOS Rules with
Silent Actions. In TAPSOFT ’97: Proceedings of the 7th Interna-
tional Joint Conference CAAP/FASE on Theory and Practice of Soft-
ware Development, pages 297–308, London, UK, 1997. Springer-
Verlag.

[Vaa93] F. Vaandrager. Expressiveness Results for Process Algebras.
Technical report, No. CS-930, CWI, University of Amsterdam,
1993.

[vEVD89] P. H. J. van Eijk, C. A. Vissers, and M. Diaz. The Formal Descrip-
tion Technique LOTOS. Elsevier Science Publishers B.V., 1989.

[vEVD90] P. H. J. van Eijk, C. A. Vissers, and M. Diaz. VHDL Cookbook.
Dept. of Computer Science, University of Adelaide, South Aus-
tralia, 1990.

[vG95] R. van Glabbeek. On the Expressiveness of ACP. In A. Ponse,
C. Verhoef, and S. F. M. van Vlijmen, editors, Algebra of Commu-
nicating Processes: Proc. of the 1st Workshop on the Algebra of Com-
municating Processes (ACP-94), pages 188–217. Springer, Berlin,
Heidelberg, 1995.

[vG01] R.J. van Glabbeek. The Linear Time - Branching Time Spectrum
I. In Handbook of Process Algebra, pages 3–99. Elsevier, 2001.

[Win93] Glynn Winskell. The formal semantics of programming languages:
an introduction. MIT Press, 1993.

