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In this paper, a novel computational technique for finite discrete approximation of continuous dy-
namical systems suitable for a significant class of biochemical dynamical systems is introduced. The
method is parameterized in order to affect the imposed level of approximation provided that with
increasing parameter value the approximation converges to the original continuous system. By em-
ploying this approximation technique, we present algorithms solving the reachability problem for
biochemical dynamical systems. The presented method and algorithms are evaluated on several ex-
emplary biological models and on a real case study.

1 Introduction

Under the modern holistic paradigm provided by systems biology [5], genome-scale knowledge of in-
dividual components is combined with knowledge of interactions underlying the physiology of living
organisms. The central goal of systems biology is to integrate all available biological data and to re-
construct executable models [20] which allow to investigate complicated behaviour emerging from the
underlying biochemistry. An important dimension is the quantitative aspect of the data and processes
being modeled.

With respect to [19], we consider biological models to be captured by the notion of a biochemical
dynamical system consisting of variables describing a certain quantity of the respective species in time
(e.g., number of molecules or molar concentration). Variable values evolve in time with respect to rules
modeling the effect of reactions. The space of all possible configurations of variable values is referred as
the state space.

There exist several modeling approaches that differ in abstraction employed for modeling of time,
variable values, and molecular interaction effects. The most commonly used approach concerns systems
of ordinary differential equations (ODE) [28] where both time and model variables are interpreted as
continuous quantities. Effects of interactions are modeled in terms of continuous deterministic updates
of variables. Variable values represent molar concentrations of the species. In general, the ODE ap-
proach relies on many physical and chemical assumptions simplifying thermodynamic conditions under
which particular biochemical phenomena can be modeled correctly [25]. It is important to note that even
simple interactions such as second order reactions lead to non-linear ODEs. However, under certain as-
sumptions, biological systems make specific subclasses of general non-linear dynamical systems. Such
a specialization motivated development of specific analysis techniques [19, 7, 4, 24].
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2 Reachability in Biochemical Dynamical Systems

Nevertheless, dimensionality and complexity of biological models preclude satisfactory application
of analysis methods implying that to explore the model dynamics the only practicable method is numeri-
cal simulation. Since numerical simulation generates an approximate solution (a trajectory) starting from
a single initial point in the continuous state space, the scope of such exploration is limited to the partic-
ular trajectory only. This is sufficient for “local” analysis provided that initial conditions are precisely
known. However, studied systems are typically under-determined in terms of uncertain quantitative pa-
rameters and initial conditions. Therefore generalization of the exploration scope is necessary to reveal
and understand the complicated emergent behaviour. An important example of a problem which cannot
be effectively solved by local methods is global temporal property – the problem to decide whether a
given dynamical phenomenon, e.g., oscillation or variables correlation, is globally present/absent for all
considered initial conditions [17, 9].

In this paper we limit ourselves to a subclass of dynamical phenomena representing reachability of
a given portion of the state space. Example of a global temporal property problem that belongs to this
subclass is to identify minimal or maximal concentration of species reachable from a particular set of
initial conditions.

In general, the reachability problem is undecidable due to unboundedness and uncountability of the
state space. However, since concentrations of species cannot expand infinitely, state spaces of biologi-
cal systems dynamics can be considered bounded in most cases. Analysis can be therefore considered
indirectly on suitable finite discrete approximations of continuous state spaces [24, 3].

For a significant class of biochemical dynamical systems determined by multi-affine vector fields
(i.e., affine in each variable), there has been developed an over-approximative abstraction technique
based on partitioning the continuous state space by a finite set of rectangles. Rectangles determine states
of a rectangular transition system representing the finite discrete (over)approximation of the continuous
state space [14], as shown in Figure 1a. The rectangular abstraction has been employed in [24] for
reachability analysis and further elaborated by model checking methods in [6]. The results show that the
extent of spurious behaviour introduced by the abstraction is typically very high thus limiting satisfactory
application of the method. The problem is based mainly on the fact that a transition between any two
individual rectangles over-approximates the vector field on the border between the rectangles (a so-
called facet, see Figure 1b) provided that the information regarding which trajectories starting in an
entry facet evolve through a particular exit facet is abstracted out. This causes the rectangular transition
system to generate many rectangle sequences in which there is no corresponding trajectory of the original
continuous system embedded. Moreover, the extent of such spurious behaviour is not directly eliminated
by increasing the partition density.

When analysing approximate models as in systems biology, the need for precise results critically
required in systems verification can be relaxed provided that a suitable approximation of the solution can
be even more efficient to obtain useful results. Henceforth, in the field of complex systems exhaustive
techniques are often combined with approximative methods thus making a certain shift in the way of
applying formal methods [29, 11, 10].

1.1 Our Contribution

We present a new technique for discrete approximation of biochemical systems with dynamics given by a
system of ODEs with multi-affine right hand side. Our discrete approximation is not an exact abstraction
wrt the original continuous system, but rather an approximation that approaches exact reachability with
decreasing approximation granularity. While still assuming the rectangular partition at the background,
we employ a measure that enables local quantification of the amount of trajectories evolving on a rectan-
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gle in a particular facet-to-facet direction. To this end, every rectangle is augmented with a local memory
representing the information at which part (entry set) of the entry facet it has been entered. On each
entry set, we identify focal subsets from which all trajectories lead to the same exit facet. In Figure 1c,
there are two different states of a quantitative discrete approximation automaton (QDAA) depicted. Both
states share the same rectangle [1,1.5]× [1,1.5] and they differ in entry sets (marked yellow). The upper
state with entry set {1.5}× [1,1.5] has only one focal set - all trajectories from its entry set exit the state
through the facet [1,1.5]×{1}. The second state with entry set [1,1.5]×{1.5} has two focal subsets
made by the green and the red part of the entry facet, respectively.

Transitions from a state with given entry set have weights assigned to themselves. Consider a tran-
sition from a state A to a state B. The transition exists if there is a part P of the entry set of A such that
the trajectories of ODE solutions go from P to B. Weight of a transition from A to B corresponds to
the (n− 1-dimensional) volume of P divided by the volume of the entry set of A. In this manner, the
measure reflects amounts of trajectories proceeding in a particular direction. Rectangle regions related
by weighted transitions make the QDAA which is a discrete-time Markov chain. (See Theorem 3.2 and
its proof in the full version of this paper available at [16].)

From a computational viewpoint, the continuous volumes are finitely approximated by discretization
on a uniform grid. Local numerical simulations are employed to identify the entry regions and focal
subsets. The density of facet discretization grid is considered as the method parameter. Because of com-
bining numerical simulation with rectangular abstraction, the resulting QDAA makes neither an over-
nor an under-approximation of the original continuous system. Since for every sequence of states the ap-
proximate volume measure converges to the continuous volume with increasing discretization parameter,
the parameter indirectly affects the correspondence between the original continuous behaviour and its ap-
proximation. This makes the method sufficient for approximating reachability in complex biochemical
dynamical systems.

In general, the following main contributions are brought by this paper.

1. A novel computational technique for finite discrete approximation of multi-affine dynamical sys-
tems by means of QDAA.

2. Showing that QDAA converges to the original continuous system behaviour. (See Theorem 3.3
and its proof in the full version of this paper [16].)

3. A reachability algorithm for QDAA.

4. Evaluation on elementary models and an E. Coli case study.

Since the most common application of the considered systems class is the domain of biochemical
dynamical systems modeled directly by rules of mass action kinetics [23], evaluation of the method and
algorithms is realized on biological models fitting this framework.

1.2 Related Work

Discrete approximation methods are commonly used in continuous and hybrid systems analysis (see [2]
for an overview regarding reachability) to handle the uncountability of the state space. Direct methods
work on the original system and rely on a successor operation iteratively computing the reachable set
whereas indirect methods abstract from the continuous model by a finite structure for which the anal-
ysis is simpler. Our method belongs to the latter class, since it uses numerical simulations and creates
the abstraction automaton. Considering a fixed set of initial conditions, there is a certain overhead with
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Figure 1: (a) Vector field of a linear system partitioned by thresholds, (b) the principle of rectangular
abstraction, (c) and quantification of the extent of over-approximation in terms of transition weights.
The dashed line inside the rectangle demonstrates the approximate border separating trajectories exiting
through different facets.

generating states of the automaton in comparison with simple numerical simulations. However, the ad-
vantage of constructing the automaton is obtaining a global view of the dynamics. Moreover, in addition
to rectangular abstraction, the automaton is augmented with weighted transitions which represent quan-
titative information describing volumes of subsets of initial conditions belonging to attraction basins of
different parts of the phase space.

An indirect method based on rectangular abstraction automaton making the finite quotient of the
continuous state space has been employed, e.g., in [24, 1, 3]. In general, these methods rely on re-
sults [14, 21] and are applicable to (piece-wise) affine or (piece-wise) multi-affine systems. Although
not addressed formally in this paper, our technique can be considered as a refinement of [24]. However,
we focus on obtaining satisfactory approximate results eliminating the extent of spurious behaviour com-
ing from conservativeness of rectangular abstraction. Our technique can be employed for the recognition
of spurious behaviour of the rectangular abstraction transition system.

The technique presented in [27] employes timed automata for the finite quotient of a continuous
system as an alternative to piece-wise linear approximations. Another indirect technique adapted to
multi-affine biological models is [15]. The approach also employes rectangular abstraction, but results
in less conservative reachable sets by means of polyhedral operations. In [2, 8] there are techniques pro-
posed for rectangular refinement that go towards reduction of over-conservativeness. These techniques
work fine for linear systems while leaving the non-linear systems as a challenge.

Direct methods are mostly based on hybridization realized by partitioning the system state space into
domains where the local continuous behaviour is linearized [12]. This method, in an improved form, has
been applied to non-linear biochemical dynamical systems [18]. In general, direct methods give good
results for low-dimensional systems and small initial sets. In comparison with indirect approaches, they
are computationally harder. From this viewpoint, our approach lies between both extremes.

2 Preliminaries

2.1 Basic definitions and facts

Let N denote the set of positive integers, N0 the set N∪{0}, and R+
0 the set of nonnegative real numbers.

For n ∈N, denote Rn the standard n-dimensional Euclidean space with standard topology and Euclidean
norm |·| :Rn→R+

0 . For an arbitrary function f we use the common notation dom( f ) for the domain of f .
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For every i ∈ {1, . . . ,n} assume ai,bi ∈R such that ai ≤ bi. Denote I = ∏
n
i=1[ai,bi] an n-dimensional

closed interval in Rn and vol(I) the n-dimensional volume of I defined as vol(I) = ∏
n
i=1(bi−ai). Further

denote Inter(I) the interior of I, defined as the cartesian product of open intervals ∏
n
i=1(ai,bi).

For any X ⊆ Rn denote λ ∗n (X) the Lebesgue outer measure (on Rn) of the set X . Basically λ ∗n (X)
is the minimal nonnegative real number such that whenever X can be covered by a sequence of closed
intervals in Rn the sum of volumes of these intervals is greater then or equal to λ ∗n (X). (For precise
definitions see [30].) Note that λ ∗n (X) < ∞ for every bounded set X and λ ∗n (I) = vol(I) for every n-
dimensional interval I.

Let n≥ 2, i≤ n,c∈R. We use Rn−1
i (c) to denote the hyper-plane Rn−1

i (c) = {〈x1, . . . ,xn〉 ∈Rn | xi =
c}. Denote π̂i :Rn→Rn−1 the projection omitting the ith variable, π̂i(〈x1, . . . ,xn〉)= 〈x1, . . . ,xi−1,xi+1, . . .xn〉.
Let X ⊆ Rn−1

i (c). We extend the notion of the (n−1)-dimensional Lebesgue outer measure to such sets
X and denote λ ∗n−1(X) the (n−1)-dimensional Lebesgue outer measure of π̂i(X).

Let f : Rn→ Rn be a continuous function (an autonomous vector field). We say that

ẋ = f (x) (1)

is an autonomous ODE system. An important property of autonomous systems is the fact that if y(t) is a
solution of (1) on an open interval (a,b), then y(t + t0) is also a solution (defined on interval (a− t0,b−
t0)).

A function f : Rn→Rn satisfies the Lipschitz condition locally on Rn, if for every x∈Rn there exists
an open set U ⊆ Rn, x ∈U and a constant L ∈ R such that for every two points x1,x2 ∈U the inequality
| f (x1)− f (x2)| ≤ L · |x1− x2| holds.

Theorem 2.1 (Trajectories of solutions of an autonomous system) Let (1) be an autonomous ODE sys-
tem, where f is defined on Rn and let f satisfy the Lipschitz condition locally on Rn. Let x be an inex-
tendible solution of system (1). Then dom(x) is an open interval, and for every point α ∈ Rn there exists
exactly one trajectory of an inextendible solution x(t) of system (1) coming through α .

Theorem 2.2 (Continuous dependency on initial conditions) Let f : Rn → Rn be continuous on an
open set E ⊆Rn with the property that for every y0 ∈ E, the initial value problem ẋ = f (x),x(0) = y0 has
a unique solution y(t) = η(t,y0) (η is a function of variables t,y0 ). Let w⊥,w> ∈ R such that (w⊥,w>)
is the maximal interval of existence of y(t) = η(t,y0).

Then the bounds w⊥,w> are (lower, resp. upper semicontinuous) functions of y0 in E and η(t,y0) is
continuous on the set {〈t,y0〉 | y0 ∈ E,w⊥(y0)< t < w>(y0)} ⊆ Rn+1.

We restrict ourselves to multi-affine autonomous systems. That is, systems of the form (1), such
that the vector field f is a multi-affine function, defined as a polynomial of variables x1, . . . ,xn ∈ Rn of
degree at most one in every variable. The assumptions of Theorems 2.1 and 2.2 (from [22]) are satisfied
for systems of this class, therefore the properties stated in the above theorems can be used for reasoning
about autonomous systems with multi-affine vector fields.

2.2 Biochemical dynamical system

According to [19], by a biochemical dynamical system we understand a collection of n biochemi-
cal species interacting in biochemical reactions. Species concentrations are represented by variables
x1, . . . ,xn attaining values from R+

0 . If the stoichiometric coefficients in reactions do not exceed one
and the reaction dynamics respects the law of mass action kinetics [23], the dynamical system can be
described by a multi-affine autonomous system in the form (1).
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In a biochemical dynamical system we are typically interested in a bounded part (n-dimensional in-
terval) of the phase space in Rn. Further, we consider the phase space partitioned by a (non-uniform)
rectangular grid. In particular, for each variable there is defined a finite set of thresholds, making the sys-
tem partition. Thresholds determine (n−1)-dimensional hyper-planes in Rn and can be freely specified
according to particular questions that should be addressed by the model analysis, e.g., specification of
unsafe or attracting sets. Cells laid out by 2n adjacent threshold hyper-planes (cells are again intervals in
Rn) are called hyper-rectangles, for short we refer to them as rectangles.

Definition 2.1 Define a biochemical dynamical system (biochemical system for short) as a tuple B =
〈n, f ,T ,IC〉, where

• n ∈ N is the dimension of B,

• f : Rn→ Rn is the multi-affine vector field of B,

• T = 〈T1, . . . ,Tn〉 is the partition of B where each Ti is a finite subset of R+
0 , and define the set of

rectangles given by T as

Rect(T ) = {
n

∏
j=1

I j | ∀ j∃a,b ∈ Tj : I j = [a,b],∀c ∈ Tj : c≤ a∨ c≥ b},

• IC ⊆ Rect(T ) is the set of initial conditions (initial set) of B.

Definition 2.2 Let B = 〈n, f ,T ,IC〉 be a biochemical system and let H ∈ Rect(T ) be a rectangle such
that H = I1× . . .× In, where Ii = [ai,bi]. For every i ∈ {1, . . . ,n} define the lower (resp. upper) facet of
H wrt the ith variable:

Facet⊥i (H) = {〈x1, . . . ,xn〉 ∈ H | xi = ai},
Facet>i (H) = {〈x1, . . . ,xn〉 ∈ H | xi = bi}.

Denote Facetsi(H) the set of ith dimension facets of H, Facetsi(H) = Facet⊥i (H)∪Facet>i (H), and
Facets(H) the set of (all) facets of H, Facets(H) =

⋃n
i=1 Facetsi(H).

Definition 2.3 Let H, H ′ ∈ Rect(T ). We say that H is a neighbour of H ′, denoted H ./ H ′, if there exists
F ∈ Facets(H) such that H ∩H ′ = F.

3 Quantitative Discrete Approximation

Given a biochemical system B = 〈n, f ,T ,I 〉, we aim to define a finite automaton reflecting the be-
haviour of B, and for each state, to assign every transition a weight quantifying probability of proceeding
to a particular successor.

A state is defined as a pair 〈H,E〉 – a rectangle H, and a subset E of a particular facet of H. The set
E represents a so-called entry set, a region through which trajectories of the system (1) enter the interior
of H. Intuitively, we can say that E encodes the history of previous evolution of the system from initial
set IC to H. Entry sets are either subsets of (n−1)-dimensional facets of H or (in case of initial states)
the whole n-dimensional rectangle H.

Since entry sets can be arbitrary sets in Euclidean space, we approximate them by a finite discrete
structure. Each facet is provided with a uniform grid on which we approximate any subset of the facet
by the set of rectangular fragments, so-called tiles (Figure 3). The grid is n-dimensional or (n− 1)
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A 0.5→ B

B 0.8→ A

d[A]
dt =−0.5 · [A]+0.8 · [B]
d[B]
dt = 0.5 · [A]−0.8 · [B]

thresholds on [A] : {0,2.5,5}
thresholds on [B] : {0,2.5,5}

[A]

[B]

[A]

[B]

Figure 2: Example of a biochemical system with two species and two reactions. Dynamics given by
a system of two ODEs and the system of thresholds are in the left part of the figure. Vector field is
visualized in the middle, and its Rectangular Abstraction Transition System on the right.

dimensional depending on the dimension of approximated entry sets. When following the trajectories of
solutions of differential equations of the models dynamics in time, entry sets are identified by trajectories
of solutions passing through them on their way from preceding rectangles. In following definitions we
treat this intuitive perception of entry sets formally.

Let κ ∈N, let B = 〈n, f ,T ,IC〉 be a biochemical system, H ∈ Rect(T ), and F ∈ Facets(H) for all
definitions and theorems from this section.

Definition 3.1 Let H be of the form H = ∏
n
j=1 I j, where ∀ j : I j = [a j,b j]. Let B ∈ {H}∪Facets(H). Set

either n′ = n, if B = H, or n′ = (n−1), if B ∈ Facetsi(H) for some 1≤ i≤ n (in this case ∃c ∈ {ai,bi} :
B⊂ Rn−1

i (c)).
Define the set of κ-tiles of B as Tilesκ

n′(B) = {A ⊆ B | A = ∏
n
j=1 A j}, where Ai = {c}, if B ∈

Facetsi(H), and otherwise ( j 6= i or B=H) A j is a closed interval in R+
0 of the form [a j+

k j
κ
(b j−a j),a j+

k j+1
κ

(b j−a j)], where for all j ∈ {1, . . . ,n}, j 6= i the nonnegative integer k j ∈ N0 satisfies k j < κ .

The following definition introduces the notion of general entry sets.

Definition 3.2 Define the set of entry points into a rectangle H through facet F, as the set Entry(F,H) ={
y0 ∈F | ∃ a trajectory y(t) of a solution of (1) such that y(0)= y0 and ∃ε > 0 : y(t)∈H for ∀t ∈ (0,ε)

}
.

Next we define the approximation of entry sets on a grid of κ-tiles. Additionally, we define the
respective (discrete) volume measure of a set (see Figure 3 c),d)).

Definition 3.3 Let X ⊂ H. Let n′ = n−1, if there exists i ∈ {1, . . . ,n},F ∈ Facetsi(H) such that X ⊆ F,
and let n′ = n, otherwise. Let M = F, if X ⊆ F, and let M = H, if there is no such facet F. Define

• the set of κ-tiles approximating the set X as

Tilesκ
n′(X) =

{
A ∈ Tilesκ

n′(M) |
λ ∗n′(A∩X)

λ ∗n′(A)
≥ 1

2

}
,

• the rectangular κ-grid measure of the set X as λ κ
n′(X) = ∑A∈Tilesκ

n′ (X) vol(A).

The following definition declares the set of all discretized entry sets for a given rectangle.

Definition 3.4 For H, define set of (approximate) entry sets EntrySetsκ(H) ={
E ⊆ H | E = /0∨E = H ∨∃F ∈ Facets(H),E ⊆ Tilesκ

(
Entry(F,H)

)
: E =

⋃
E
}
.
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Figure 3: a) Let H = [0,2.5]× [0,2.5] be a rectangle. The blue areas depict elements of Tiles3
2(H).

b) Let F = Facet>1 (H) = {2.5}× [0,2.5]. The red line segments are elements of Tiles3
1(F).

The set EntrySets3(H) has 2+4 ·(1+
(3

2

)
+
(3

1

)
) = 30 elements: /0,H, and 7 for every facet of H (the facet

itself, 3 segments and 3 unions of pairs of segments of the facet).
c) Let X be a subset of H (the shaded polygon). Let κ = 5.
d) The set of κ−tiles approximating X is the set of five blue intervals (each satisfying that at least half of
its area is in X). The cardinality of Tilesκ

2 (X) is 5. Thus λ κ
2 (X) = 5 · (0.5 ·0.5) = 1.25.

For an example of a set of (approximate) entry sets of a rectangle see Figure 3 a),b). Note that set
of approximate entry sets is always finite. Further note that also the empty set and the entire rectangle
are considered as entry sets. These represent singular cases needed in the subsequent construction of
the automaton. In particular, states with the empty entry set approximate fixed point behaviour not
leaving the rectangle (steady state memory) whereas the rectangle-form entry set is employed for initial
rectangles.

Definition 3.5 Let E ∈ EntrySetsκ(H),H ′ ∈ Rect(T ),F ′ ∈ Facets(H) such that H ′ ./ H,F ′ = H ∩H ′.
Define the focal subset of E on H targeting F ′, denoted Focal(H,E,F ′), as the set of all y0 ∈ E

such that there exist ε,ε ′,c > 0 and a trajectory of a solution y(t) of system (1) with inital conditions
y(0) = y0 satisfying y(t) ∈ H for t ∈ (0,c),y(t) ∈ Inter(H) for t ∈ (0,ε), y(c) ∈ F ′, and y(t) ∈ Inter(H ′)
for t ∈ (c,c+ ε ′). Let ExitSet(H,E,F ′) denote the set of all such (targeted) points y(c) ∈ F ′.

Define focal subset of E on H not leaving H, Focal(H,E, /0), as the set of all points y0 ∈ E such
that there exists a trajectory of a solution y(t) of system (1) with initial conditions y(0) = y0 satisfying
y(t) ∈ H for all t > 0.

Next we define the successor function for any pair 〈H,E〉 and subsequently the quantitative discrete
approximation automaton.

Definition 3.6 Let E ∈ EntrySetsκ(H). Define the successors of 〈H,E〉 as the set of pairs 〈H ′,E ′〉 with
H ′ ∈ Rect(T ),E ′ ∈ EntrySetsκ(H

′) such that

Succs(〈H,E〉) =
{
〈H ′,E ′〉 | H ′,E ′ satisfy one of conditions 1.−3. below

}
1. H ′ ./ H, E 6= /0. Denote F ′ the facet of H satisfying F ′ = H ∩H ′. Let n′ = n, if E = H, and

n′ = (n−1), otherwise. Moreover, E ′ =
⋃

Tilesκ

(
ExitSet(H,E,F ′)

)
and λ κ

n′
(
Focal(H,E, /0)

)
> 0.

2. H ′ = H, E 6= /0, and E ′ = /0. Further, it holds that either E ⊆ F and λ κ
n−1
(
Focal(H,E, /0)

)
> 0, or

E = H and λ κ
n
(
Focal(H,E, /0)

)
> 0.

3. H ′ = H and E ′ = E = /0.

Definition 3.7 (The Quantitative Discrete Approximation Automaton) Let κ,B be as above. The
quantitative abstraction automaton QDAAκ(B) of a biochemical system B with parameter κ is a tu-
ple QDAAκ(B) = 〈S,IC,δ , p〉, where
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• the set of states S = {〈H,E〉 | H ∈ Rect(T ),E ∈ EntrySetsκ(H)},
• the set of initial conditions IC = {〈H,H〉 | H ∈IC},
• the transition function δ : S→ 2S is defined as δ (〈H,E〉) = Succs(〈H,E〉),
• the weight function p : S×S→ [0,1] is defined by the following expression, where S = 〈H,E〉,S′ =
〈H ′,E ′〉. Suppose n′ = n, in case E = H, and n′ = n−1, otherwise.

p(S,S′) =



1, if H = H ′, E = E ′ = /0,
λ ∗n′
(
Focal(H,E, /0)

)
∑A∈Facets(H)∪{ /0}λ ∗n′

(
Focal(H,E,A)

) , if H = H ′, E 6= /0,E ′ = /0,

λ ∗n′(Focal(H,E,F ′))

∑A∈Facets(H)∪{ /0}λ ∗n′
(
Focal(H,E,A)

) , if H ./ H ′,E ′ ⊆ F ′ = H ∩H ′,

0, otherwise.

Example 3.1 Assume the biochemical system from Figure 2. See Figure 4 a) for an example of fo-
cal subsets described below. Let R = [0,2.5]× [2.5,5] be a rectangle and let F0 = Facet>2 (R),F1 =
Facet>1 (R),F2 = Facet⊥2 (R),F3 = Facet⊥1 (R). For the state 〈R,F0〉 the focal set of F1 equals F0, whereas
Focal(F0) = Focal(F2) = Focal(F3) = /0.

Let H = [0,2.5]× [0,2.5] and F = Facet>1 (R). For the state 〈H,H〉 the set Focal(F) is the blue area
inside H and Focal( /0) is the yellow area. All the solutions of the biochemical systems dynamics with
initial conditions in Focal( /0) approach the yellow line of fixed points and stay in H forever. All the
solutions starting in the blue area leave H in finite time through F.

In the right part of Figure 4 is the set of reachable states of the quantitative discrete approximation
automaton (QDAA) obtained from the biochemical system described in Figure 2 with initial conditions
IC = {[0,2.5]× [0,2.5]}.

Let H,R be the same as above. Let S = [2.5,5]× [0,2.5] and let IC = {H}. The QDAA successor
states of 〈H,H〉 are 〈H, /0〉 (a selfloop state) and 〈S,E〉 (where E denotes the κ-tiles approximation of the
red segment in Facet⊥1 (S)). For κ → ∞ the weights of these two transitions approach the area ratios of
yellow and blue regions of H respectively. The only successor of 〈H, /0〉 is (by definition) itself. The state
〈S,E〉 has one successor 〈S, /0〉, since all the trajectories beginning in E approach the line of fixed points
and stay inside S forever.

Therefore the set of concentrations reachable from initial rectangle H is [0,5]× [0,2.5]. See the rect-
angular abstraction transition system from Figure 2 where the set reachable from H is [0,5]× [0,2.5]∪
[2.5,5]× [2.5,5], although there exists no trajectory of a solution of the biochemical systems dynamics
that starts in H and reaches a point inside [2.5,5]× [2.5,5].

On the other hand, if κ is too small, some behaviours of the system are not reflected in QDAA,
because the set of κ-tiles corresponding to the entry set may be empty. With finer partition into κ-tiles
smaller entry sets can be captured and approximation of the biochemical system by a QDAA is more
realistic.

In the next theorem we ensure correctness of using the Lebesque measure in Definition 3.7. We
ensure that there is no non-zero volume entry set such that all trajectories from this set lead to a facet
without entering the interior of a neighbouring rectangle. For the proofs of following three theorems see
the full version of this paper available at [16].
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a) b)

Figure 4: a) Focal sets examples, b) QDAA example.

Theorem 3.1 Let E ∈ EntrySetsκ(H),E 6= /0. Further, let n′ = n, if E = H, and n′ = (n−1), otherwise.
Then

∑
A∈Facets(H)∪{ /0}

λ
∗
n′
(
Focal(H,E,A)

)
> 0, (2)

Theorem 3.2 The quantitative abstraction automaton QDAAκ(B) of a biochemical system B is a dis-
crete time Markov chain.

Finally, we provide a theorem suggesting that for sufficiently large values of parameter κ , the rectan-
gular κ-grid measure of a bounded set X contained in the phase space of biochemical system approaches
its Lebesque outer measure. For proof of this theorem see [16].

Theorem 3.3 Let X ⊆ H ∈ Rect(T ). Then

lim
K→∞

λ
κ
n (X) = λ

∗
n (X). (3)

Note that the result applies also to the case with X ⊆ F ∈ Facets(H) and λ κ
n−1,λ

∗
n−1.

4 Algorithm

This section introduces procedures for obtaining the reachable state space of the quantitative discrete
approximation automaton. Algorithm 1 is a procedure of computing the set of reachable states. Al-
gorithm 2 describes the computation of transitions from one state (i.e. successors) together with their
weights using numerical simulations.

The procedure of computing reachable state space (Algorithm 1) is based on breadth first search.
States corresponding to initial conditions of the biological system are enqueued first and a list of states
already visited is maintained. The computation is always finite, because there are only finitely many
possible states of the automaton and each of them can be at most once added and after the computation
of its successors removed from the queue.
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Algorithm 1 Computing the set of reachable states
Require: B = (n, f ,T ,IC), κ ∈ N
Ensure: Reachable = set of all reachable states of the automaton QDAAκ (B)

1: Reachable← /0
2: for all H ∈IC do
3: s← 〈H,H〉
4: Reachable← Reachable ∪{s}
5: Queue.pushBack(s)
6: while Queue 6= /0 do
7: s← Queue.firstElement
8: A← getSuccessors(s)
9: for all a ∈ A do

10: if a /∈ Reachable then
11: Reachable← Reachable ∪{a}
12: Queue.pushBack(a)

13: return Reachable

Computation of the successors (Algorithm 2) of one state requires determining the rectangles and
the entry sets of the successors and weights of the transitions. This can be done approximately using
numerical simulations. We sample the entry set of the state and perform numerical simulations with
the sampled points as initial conditions and the dynamics of the given biological system as the vector
field. For each simulated trajectory we watch whether it leaves the rectangle before given maximal time
interval elapses. If this is the case then the location of the exit point through which the trajectory leaves
the rectangle is of interest.

Entry sets of the successor states are also determined within Algorithm 2. If the successor is a
selfloop state the entry set is empty. For a neighbouring rectangle successor with one common facet the
entry set is computed using the exit points locations and more numerical simulations. From the set of
exit points in a facet we can estimate the set of κ-tiles of the facet that surely have nonempty intersection
with the exit set. It remains to decide in which of the κ-tiles the intersection of the tile with the exit set
takes at least one half of the volume of the tile.

To this end we use numerical simulations and the fact that for an autonomous system of ODEs
ẋ = f (x) with a solution x(t) the function x(−t) is a solution of autonomous system ẋ = − f (x). For
determining whether to include a κ-tile in the entry set of a successor state, we sample the tile and
perform numerical simulations of the trajectories of system ẋ = − f (x). If more than one half of the
simulated trajectories go through the rectangle and the entry set of the original state, then the κ-tile is
included in the entry set of successor state, otherwise the κ-tile is not included.

Weights of the transitions correspond to portions of the set of performed simulations that leave the
rectangle to the respective neighbouring rectangles. Weight of the transition from the state to the so-
called selfloop state with the same rectangle is determined as the portion of trajectories that do not leave
the rectangle in given maximal time interval.

Performing backward simulations (lines 16–24 of Algorithm 2) can be switched off. The resulting
transition system differs from the QDAA in the entry sets, that can be larger. Difference of the outputs
can be seen on Figure 5. The algorithm with backward simulations computes the QDAA and for (κ→∞)
approaches the real behaviour of the solutions of dynamics ODE system. On the other hand the algorithm
without backward simulations overapproximates the entry sets, therefore the transitions are included
even if the entry set of a state is smaller than half of one κ-tile. Both options still lead to automatons
with reachable states whose rectangles are included in the set of reachable rectangles of the rectangular
abstraction with the same initial rectangles.

The worst case complexity of the algorithms follows. There are at most kn rectangles in the phase
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Algorithm 2 Procedure getSuccessors
Require: B = (n, f ,T ,I ), κ,M ∈ N, H ∈ Rect(T ), E ∈ EntrySets(H)
Ensure: Successors = Succsκ (〈H,E〉)

1: if E = /0 then
2: Successors←{〈H, /0〉}
3: return Successors
4: A← set of M random points in E
5: ExitPoints← /0
6: StaysInside← 0
7: for all x0 ∈ A do
8: simulate trajectory from x0 until it leaves H through a point x1 or given time elapses
9: if x1 exists then

10: ExitPoints← ExitPoints ∪{x1}
11: else
12: StaysInside← StaysInside +1
13: for all F∈ Facets(H), F= H ∩H ′ do
14: if ExitPoints ∩ F 6= /0 then
15: EntryTiles←{Z ∈ Tilesκ (F) | Z∩ ExitPoints 6= /0}
16: for all Z ∈ EntryTiles do
17: B← set of M random points in Z
18: RealPointsCount← 0
19: for all y0 ∈ B do
20: simulate trajectory from y0 until it leaves H through a point y1 or given time elapses
21: if y1 ∈ E then
22: RealPointsCount← RealPointsCount +1
23: if RealPointsCount < M

2 then
24: EntryTiles← EntryTiles \{Z}
25: if EntryTiles 6= /0 then
26: Successors← Successors ∪〈H ′,EntryTiles〉

27: Weight[〈H,E〉][〈H,EntryTiles〉]← |ExitPoints∩F|
|A|

28: return Successors

space of the biochemical system, where k is the maximal number of thresholds on one variable. The
maximal number of states of QDAA of the form 〈H,E〉 for a fixed rectangle H is 2n ·

(
2κn−1−1

)
, where

n is the dimension of the biochemical system. For the average numbers of visited different states of
QDAA with the same rectangle encountered while analysing our evaluation models see the line labeled
ρ in Table 1. Complexity of the computation of successors of a given state depends on the dimension
of the system, the κ parameter and on the number of simulations M used per one tile. In the worst case
when all the tiles are examined (either as a part of entry set or potential exit set) there are 2n ·κn−1 ·M
simulations.

Visualization of the state space of QDAA involves highlighting the borders of the rectangles H such
that there is at least one state 〈H,E〉 visited during the computation. The intensity of the fill colour of
a rectangle H is calculated proportional to the sum of weights of all possible paths from initial set IC

to the first appearance of states with H as the rectangle. The weight of a finite path is obtained as the
product of weights of the subsequent transitions in the path. The sum is always between zero and one.

5 Evaluation and Case Study

In this section the state spaces of several biological models (of dimensions two, four and seven) are
explored. Using our prototype implementation of the algorithms from Section 4 implemented in C++,
we evaluate our approach on two exemplary biochemical systems. Additionally, we provide a case study
held on a biochemical pathway studied in E. coli and compare the reachability results of the case study
and one of the smaller models with results obtained using the rectangular abstraction approach.
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κ = 4 κ = 16 κ = 60

Figure 5: Reachability in oscillatory model and comparison with numerical simulation, first two figures
were obtained using the full version of Algorithm 2, the third one with lines 16–24 omitted. For com-
parison: using the rectangular abstraction transition system on this biochemical model, the whole phase
space [0,30]× [0,12] is reachable from the same inital conditions.

Oscillatory Enzyme
κ 4 8 16 32 64 128 4 5 6 7

|R(IC)| 52 46 40 39 37 35 76 104 123 166
ρ 1.63 2.2 3.78 2.9 4.57 6 4.36 10.76 16.8 53.6

Table 1: Results for the two models and several different settings of the discretization parameter κ .

Before we proceed with the models, let us introduce several terms useful for the evaluation. For a
biochemical system B = 〈n, f ,T ,IC〉 we denote R(IC)⊆ Rect(T ) the set of all rectangles reachable
from initial set IC. For each H ∈ Rect(T ) we denote mem(H) the subset of R(IC) consisting of
all states reachable from the initial set with H as rectangle, the so-called memory of the rectangle H,
mem(H) = {〈R,E〉 ∈ R(IC) | R = H}. Further we denote ρ the average number of memory states
(cardinality of mem(H) averaged over all H ∈R(IC)). The number of QDAA states representing the
memory of a rectangle is in the worst case equal to the number of all its possible entry sets. However,
the actual values of ρ in our examples are much smaller (see Table 1).

Let us focus on the effect of parameter κ on cardinality of R(IC) and on ρ . Expected behaviour of
the approximation is the following. Every facet is divided into κn−1 tiles. A tile is included in the entry
set E of some reachable state 〈H,E〉 if the focal subset Focal(H,E,A) fills at least half of the volume of
the tile. For higher values of κ , the set Tilesκ

n′(Focal(H,E,A)) better approximates the set Focal(H,E,A)
because of the higher κ-grid resolution. Thus with increasing κ , the quantitative information denoting
the probability of reaching states in R(IC) can be computed more precisely. We demonstrate that on
models examined below.

First, we consider a 2-dimensional model which is a variant of Lotka-Volterra model with oscil-
latory behaviour. Details of the dynamics, threshold concentration values and initial conditions of all
experimented models can be found in the full version of this paper [16]. Results achieved on our im-
plementation are presented in Table 1 and visualized in Figure 5. Black rectangles denote the initial set.
Similarly, we examined a 4-dimensional model of basic enzyme kinetics. Projection of the approximated
phase space to the enzyme/substrate plane is shown in Figure 6. For both the oscillatory model and the
enzyme kinetics model full version of Algorithm 2 (with backward simulations) was used.
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κ = 4 κ = 6 Numerical simulation

Figure 6: Enzyme kinetics model – projection of the reachable set to the enzyme/substrate plane and
comparison with numerical simulation.

AmtB+NH4ex k1← k2→ AmtB : NH4 k1 = 5 ·108,k2 = 5 ·103

AmtB : NH4
k3→ AmtB : NH3 +Hex k3 = 50

AmtB : NH3
k4→ AmtB+NH3in k4 = 50

NH4in
k5→ k5 = 80

NH3in+Hin
k6← k7→ NH4in k6 = 1 ·1015,k7 = 5.62 ·105

NH3in
k8← k9→ NH3ex k8 = k9 = 1.4 ·104

Figure 7: Ammonium transport model (left). Simulations of the ammonium assimilation model from 20
randomly sampled points in IC projected on the concentration of NH4in, blue lines represent bounds on
this concentration found by the QDAA - two subsequent thresholds 10−6,10−5 (right).

5.1 Case Study on E.Coli Ammonium Assimilation Model

We consider a model specifying the ammonium transport from the external environment into cells of
E. Coli [26]. The model describes the ammonium transport process that takes effect at very low ex-
ternal ammonium concentrations. In such conditions, the transport process complements the deficient
ammonium diffusion. The process is driven by a membrane-located ammonium transport protein AmtB
that binds external ammonium cations NH4ex and uses their electrical potential to conduct NH3 into
the cytoplasm. In Figure 7, biochemical reactions of this model and the scheme of the transport chan-
nel are shown (left and middle). The initial conditions of the species concentrations considered for the
ammonium transport model:

IC : NH3ex ∈ 〈28 ·10−9,29 ·10−9〉,NH4ex ∈ 〈49 ·10−7,5 ·10−6〉,
AmtB ∈ 〈0,1 ·10−5〉,AmtB : NH3 ∈ 〈0,1 ·10−5〉,AmtB : NH4 ∈ 〈0,1 ·10−5〉,
NH3in ∈ 〈1 ·10−6,11 ·10−7〉,NH4in ∈ 〈2 ·10−6,21 ·10−7〉.

The level of pH and external ammonium concentration are considered constant. For the system of
ODEs and list of thresholds of this biological model see the the full version of this paper [16].

The upper bounds on concentrations of NH3in and NH4in considering the biological system with
given initial conditions were estimated as 1.1 · 10−6 (NH3in does not exceed the initial concentration)
and 5.4 ·10−4 by the rectangular abstraction (overapproximation).

Reachable intervals using Algorithm 2 without the backward simulations were [10−8,1.1 ·10−6] for
NH3in (NH3in does not exceed the initial concentration), and [10−6,10−5] for NH4in. This results are in
agreement with simulated data and in the case of the concentration of NH4in the QDAA results are by
one order closer to numerical simulations than the rectangular abstraction results as can be seen in the
right part of Figure 7.
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6 Conclusion

We have presented a new theoretical method for finite discrete approximation of autonomous contin-
uous systems equipped with a measure that indirectly quantifies correspondence of the approximated
behaviour with the original continuous behaviour. We have provided a computational technique which
we implemented in a prototype software. We have examined the implementation on small dimensional
models which showed satisfactory results for computing reachability.

The method can be either used as a parameterized simulation technique or employed with rectangular
abstraction to quantify the extent of spurious counterexamples. Thus the method can improve the current
possibilities of analysis based on model checking techniques. We leave for future work integration of
this method into the software for model checking of biochemical dynamical systems [13].

At the theoretical side, we leave for future work precise clarification of our method wrt the rectangu-
lar abstraction. From the computational viewpoint, we aim to develop a parallel reachability algorithm
that would make the method scalable and applicable to systems of larger dimensions.

References

[1] A. Halász et al. (2007): Analysis of lactose metabolism in E.coli using reachability analysis of hybrid systems.
Systems Biology, IET 1(2), pp. 130 –148.

[2] E. Asarin et al. (2006): Recent progress in continuous and hybrid reachability analysis. In: Computer Aided
Control System Design, IEEE International Conference on Control Applications. pp. 1582 –1587.

[3] G. Batt et al. (2008): Symbolic reachability analysis of genetic regulatory networks using discrete abstrac-
tions. Automatica 44, pp. 982–989.

[4] G. Batt et al. (2008): Temporal Logic Analysis of Gene Networks under Parameter Uncertainty. IEEE
Transactions of Automatic Control 53, pp. 215–229.

[5] H. Kitano et al. (2001): Foundations of Systems Biology. The MIT Press.
[6] J. Barnat et al. (2009): Computational Analysis of Large-Scale Multi-Affine ODE Models. In: 2009 In-

ternational Workshop on High Performance Computational Systems Biology (HiBi 2009). IEEE Computer
Society Press, pp. 81–90.

[7] J. Tyson et al. (1996): Chemical kinetic theory: understanding cell-cycle regulation. Trends in Biochemical
Sciences 21, pp. 89–96.

[8] L. Doyen et al. (2005): Automatic Rectangular Refinement of Affine Hybrid Systems. In: Formal Modeling
and Analysis of Timed Systems, LNCS 3829. Springer Berlin / Heidelberg, pp. 144–161.

[9] P.T. Monteiro et al. (2008): Temporal Logic Patterns for Querying Qualitative Models of Genetic Regulatory
Networks. In: ECAI, Frontiers in Artificial Intelligence and Applications 178. IOS Press, pp. 229–233.

[10] S. Jha et al. (2009): A Bayesian Approach to Model Checking Biological Systems. In: CMSB’09, LNCS.
Springer, pp. 218–234.

[11] G. Antoine & G. Pappas (2006): Verification Using Simulation. In: HSCC’06, LNCS 3927. Springer, pp.
272–286.

[12] E. Asarin, T. Dang & A. Girard (2007): Hybridization methods for the analysis of nonlinear systems. Acta
Inf. 43, pp. 451–476.
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