
CESNET technical report number 17/2003

Verification of COMBO6 VHDL Design 1

Tomáš Kratochvíla, Vojtěch Řehák, and
Pavel Šimeček
November 19, 2003

1 Abstract

This technical report presents current results and experiences of the formal
verification of VHDL design of Combo6 hardware accelerator card for packet
routing, originating from the Liberouter project. The design is quite difficult to
prove by conventional methods, therefore model checking as a method of formal
verification was employed. We use the symbolic model checker Cadence SMV.
Information about formal verification itself is enriched by description of trans-
formation from VHDL to the Cadence SMV specification language. The last part
shows the system of assertions established as a compact way of communication
with VHDL designers.

2 Introduction

The aim of the Liberouter project [LibWWW] is to design and develop the
hardware accelerated router. The most important part of this project is a devel-
opment of the Combo6 hardware accelerator card [Nov02] allowing to route the
most of traffic of a Gigabit Ethernet in the hardware.

Combo6 is a PCI card based on FPGA (Field Programmable Gate Array) [FPGA].
The programmable hardware technology represents a new generation of hard-
ware development. FPGA is the class of integrated circuits pioneered by Xilinx,
in which the logic function is defined by the developer using Xilinx development
system software. Gate arrays are another type of integrated circuits whose logic
is defined during the manufacturing process.

Developers write the design of Combo6 card in the VHDL (VHSIC Hardware
Description Language) [VHDL]. VHDL can be used at many levels of abstrac-
tion ranging from algorithmic level to the gate level. On the one hand the wide
expressive power is positive for developers, but on the other hand it brings

1This work is supported by the FP5 project No. IST-2001-32603, the CESNET project 02/2003,
and the GACR grant No. 201/03/0509.

great demands on tools supporting VHDL. Hence there are many tools support-
ing different subsets of VHDL and finally, the wide expressibility leads to the
incompatibility of tools working with VHDL.

The following section briefly justifies the choice of the model checker and
describes how to solve problems with incompatibilities between supported lan-
guages. The next section is focused on verification itself using the Cadence SMV

symbolic model checker and there we also mention the system of assertions as
a communication interface solving troubles of collaboration with the hardware
designing team.

3 Translation from VHDL to SMV

VHDL is used by developers of Combo6 card to write down the design loaded
to FPGA. Therefore it is also the input for the formal verification (the model
checking technique in our case) [Bar02]. The most suitable model checking
tools for hardware verification are the symbolic ones (for more details see
Subsection 4.1).

Unfortunately, as VHDL is not an input language of any model checking tool
available to us at this moment, we have to translate VHDL. Currently we do
not know about any translator from VHDL to any model checker specification
language that would be able to translate sufficiently large subset of VHDL. For-
tunately, Cadence SMV model checker installation package [SMV] includes the
translator from Verilog to SMV (the input language of this model checker). The
Verilog HDL [Ver] is a hardware description language of the same power as
VHDL. Hence we could form a translator from VHDL to SMV as a composition
of the Cadence SMV translator (called vl2smv) with a translator from VHDL to
Verilog.

Unfortunately, we have found neither the proper translator from VHDL to Verilog.
We have tried VHDL to Verilog RTL translator v1.0 (made by Ocean Logic)
and VHDL2verilog (demo version made by Alternative System Concepts) but
neither one of them satisfies our needs. One of them do not support sufficiently
large subset of VHDL and the output of the other one was not a proper input for
vl2smv.

3.1 Translation using a synthesis

We found another solution how to translate to Verilog format. The Leonar-

doSpectrum synthesiser [LeoSpec] (currently used by Combo6 hardware de-
velopers) provides ability to write a synthesised code down into Verilog. For that
reason we decided to verify synthesised code instead of the original one. They

CESNET technical report number 17/2003 2

should be functionally equivalent, and hence the verification of such a code is
correct (in a sense of preserving validity of temporal formulas). Synthesised
Verilog code is a correct input for vl2smv except for a few syntax entities. We
run synthesis directed by the following TCL script:

set part 2V3000bf957

set process 4

set modgen_select fastest

load_library xcv2

read -design $DESIGN -technology ”xcv2” -format vhdl { $MODULES }

set extract_ram FALSE

set tristate_map TRUE

optimize -ta xcv2 -hierarchy preserve

write -downto PRIMITIVES -format Verilog $NAME.v

Where $DESIGN contains the name of the top-level design, $MODULES stands for
the list of all modules of the design, and $NAME is the name of the output file
(without an extension).

This TCL script is partially adopted from the synthesis scripts currently used by
our hardware designers. The changes were done in an optimisation parameters
and some special options we use.

3.1.1 line optimize -ta xcv2 -hierarchy preserve

Citation from LeonardoSpectrum User Guide [LSguide]:

When LeonardoSpectrum reads an HDL design, it infers arithmetic
and relational operators (e.g. adders) and implements the operators
as blackboxes (there is no underlying functionality) in the design.
LeonardoSpectrum does not implement operators until global area
optimization when it replaces these blackboxes with technology-
specific netlists (from the Modgen Library).

...

Each blackbox operator uses a naming convention to convey param-
eter information such as (type, size, sign, carry), for example:
add 16u 16u 0 (16 bit adder, unsigned operands, no carryout)

If there is no optimisation used, the synthesiser infers many black boxes (entities
with no description except for their interface) similar to add 16u 16u 0 and
verification is absolutely impossible since the functionality of the most of the
hardware design is undefined.

CESNET technical report number 17/2003 3

We have also tried to change an effort of optimisation to value remap to preserve
more from the original structure of VHDL code, but this level of optimisation
generates black boxes similarly as a synthesis with no optimisation.

The hierarchy preserve option (-hierarchy preserve) is necessary for us,
because we need to preserve the interface of single parts of a design. When this
option is omitted, the synthesiser usually renames the most of signals of used
components and changes their behaviour; in that way it gives no sense to ask to
check their behaviour in temporal formulas.

3.1.2 line set extract ram FALSE

Synthesiser has a capability to recognise (technology specific) blocks of RAM
in a VHDL code - typically the RAM is inferred from large arrays and vectors.
This option disables automatic extraction of RAM from arrays, which are not
accessed and used as RAMs. Disabling RAM extraction causes inferring (usually
flip-flop) registers instead of RAM blocks. Unfortunately, for the arrays which
are inevitably used as RAMs (indexation using a variable) it is inferred a special
black box named CLOCKED RAM * (we write * instead of the suffix of the name,
which differs according to parameters of inferred RAM block).

Nevertheless, these black boxes do not worry us too much because we are
usually unable to verify the systems with large blocks of memory and we abstract
away from them (this is more discussed in Section 4).

3.1.3 line set tristate map TRUE

As it is discussed in Subsection 3.3, we have some troubles with modeling
high impedance signal ’z’ in SMV. Therefore we enable this option in order to
remove all tristate values wherever it is possible. However some tristate signals
are quite often necessary to preserve functionality of the design.

3.1.4 line write -downto PRIMITIVES -format Verilog $NAME.v

This line of TCL code makes the final Verilog output. The most important option
here is the -downto PRIMITIVES option forcing synthesiser to write down
also the behavioural descriptions of basic entities from the library Primitives

(e.g. LATRS, DFFRS, GND, etc.).

3.1.5 Synthesising a signal as a dumb signal

If two signals have the same behaviour, the synthesiser can flatten these signals
to the only single one. If hierarchy preserve option is set, then one such
signal is preserved and the second one is tied to GND component (ground).

CESNET technical report number 17/2003 4

This optimisation can be prohibited by writing attribute preserve signal to
the VHDL code or to the constraint file. As the occurrence of two signals with
the same behaviour is quite rare, we currently solve this situation by using
the name of preserved signal in temporal formulas instead of the name of the
flattened one.

3.2 Further work with a synthesised code

The synthesised code (in a Verilog format) has many advantages, but also some
disadvantages. The main (and very important) advantage is that there is used
only small fragment of Verilog language in a synthesised code. Therefore the
portability of such a code is much better then of the original one. In the
synthesised code we can also trust that every output signal has assigned a
value (0,1, or some special value like ’bz) - this claim holds for the entire
code except for black boxes and behavioural descriptions of components from
included libraries. It is also important that the synthesis encloses the definition
of the most of components used in the design (including those from the library
Primitives).

The main disadvantages are as follows. The code gained from a synthesis is
quite large and untransparent. There are preserved only signals in the interfaces
of entities (except for the signals with the same behaviour which can be flattened
into one signal). Therefore if we want to check the values of inner signals of
entities, we have to work around it.

3.2.1 How to preserve inner signals

The hierarchy preserve option allows us only to preserve the signals in
the interfaces of entities. But we can (mis)use it also for preserving inner
signals of entities. Anyway we can define a new entity (called for example
export signals) with the only one output signal and one input signal for each
signal which should be exported. Architecture of such an entity can be a large
logical AND of input signals.

3.3 Refining Verilog code

As was mentioned above, the synthesised Verilog code is the correct input for
vl2smv except for logical connectives, assignment using buf module, and the
name of the top-level entity. The needed translation from a synthesised Verilog

to the Verilog suitable for vl2smv is shown in Table 1.

The last row of the table is used to translate ’bz signal to the other name. It
is used to get around a bug in vl2smv that translates ‘bz to the meaningless
sequence of zeros finished by so called weak value, whereas we need it to
translate to the single value weak.

CESNET technical report number 17/2003 5

xor(a,b,c) assign a = ~(b j c)

nand(a,b,c) assign a = ~(b & c)

and(a,b,c) assign a = a & c

or(a,b,c) assign a = (b j c)

buf(a,b) assign a = b

the first occurrence of module <name> module main

‘bz bz OUR ALIAS

Table 1: Table of translations

Signal ’bz is usually used to model an access to a bus. We translate it to the weak
signal. But it is not correct when a signal of a bus is declared only as an output
signal of some entity: assigning weak value to such signal causes undefined

value of such signal. We do not know whether it is another bug in Cadence

SMV, but we have to get around this behaviour so that we replace output signals
with input-output signals (it can be simply done by removing keyword output

in the SMV code). There we use the big advantage of synthesised code: value
of each output signal in a synthesised code is defined (except for black boxes
and behavioural descriptions of components from included libraries, e.g. library
Primitives). Therefore we do not change the behaviour of the design (except for
assigning weak values but this change is correct).

3.4 Black boxes

The synthesiser knows the behavioural descriptions of components from the
library Primitives. But it does not know behavioural descriptions of components
from library xcv2 that is used to synthesise our VHDL sources for a Xilinx
platform.

There are two cases for components from xcv2:

� there exists a behavioural description of a component in the documenta-
tion (e.g. entity SRL16E)

� there exists no such a description (e.g. RAMB16 S18 S18 and the rest of
block-RAM components)

In the first case we can (manually) copy the description from the documentation
of xcv2 to the Verilog source and thus we replace the black box by a fully
functional component.

In the second case we have to abstract away from the behaviour of such a
component (and take it into account when we create temporal formulas).

CESNET technical report number 17/2003 6

3.5 Translation of latch registers

As stated, there is no problem with translation of synthesised code because of
its simplicity - synthesised code is composed from a large amount of assign-
ments and many connected copies of components. But when we also include
behavioural descriptions of components from libraries Primitives and xcv2 we
clutter up the Verilog code with a relatively complex codes of included entities.

Therefore there has occurred further (meantime) manual work for us. It is
necessary to check out, whether there is a block of code, from which it is
inferred the latch register. It can be recognised by the keyword reg in a Verilog

source code. vl2smv seems to have no support for a register data type in
Verilog.

If the identifier is declared as a register (reg in Verilog, variable in VHDL) then
its value is changed immediately after any assignment and it is preserved until
next change (independently on a clock edge). Assignment to these registers is
realized in the always blocks (in Verilog). The keyword always is followed by
the sensitivity list with neither posedge nor negedge keyword. Furthermore
the code in the always block need not to assign these registers (because latch
registers should preserve its value). For example the Verilog code of the entity
LATRS is unfortunately translated to the SMV code as follows.

Verilog code:

module LATRS (set, reset, in, clk, out);

input set;

input reset;

input in;

input clk;

output out;

reg out;

always @ (in or clk or reset or set)

begin

if (set) out = 1;

else if (reset) out = 0;

else if (clk) out = in;

end

SMV code:

module LATRS (set, reset, in, clk, out)

CESNET technical report number 17/2003 7

{

input set : boolean resolve;

input reset : boolean resolve;

input in : boolean resolve;

input clk : boolean resolve;

output out : boolean resolve;

out : boolean resolve;

do

{

if (set) out := 1;

else if (reset) out := 0;

else if (clk) out := in;

}

}

The declaration of register out has turned to redeclaration of a signal out (the
redeclaration is not the main mistake in this code - actually it is ignored). The
main mistake in the resulting code is a transformation of the register into the
ordinary signal (that cannot preserve its value).

The only way how to correct this mistake seems to be the simulation of registers
by flip-flop registers (in SMV). We can always store the last value of a signal
to the flip-flop register (previous in our example) and during the next tick of
clock we can assign its value as a default value of the signal representing the
register. Thus the mentioned LATRS example is changed to the following one.

module LATRS (set, reset, in, clk, out)

{

input set : boolean resolve;

input reset : boolean resolve;

input in : boolean resolve;

input clk : boolean resolve;

out : boolean resolve;

previous : boolean resolve; -- flip-flop register

init(previous) := undefined; -- at the first time the notion

-- ’previous’ has no sense

do

{

CESNET technical report number 17/2003 8

out := previous; -- default set to previous

if (set) out := 1;

else if(reset) out := 0;

else if(clk) out := in;

}

next(previous) := out ;

}

After all these translations we can start with a real formal verification. The
way we translated the sources have a significant influence to techniques of
verification.

4 Verification of design in SMV language

This section describes ways how to deal with SMV codes obtained from trans-
lation described in the previous section. Since the synthesis has been already
made, this codes are no longer in the behavioural level. Some problems arise
from the synthesis and the others from the state explosion.

4.1 Model checking

The VHDL tools allow to simulate the system written in VHDL source codes.
Each simulation run of the system checks whether the model is correct in this
particular run. To ensure that our VHDL source code is correct and really works
as it is intended, we need to simulate all possible runs. Using VHDL simulators
one can check only a small test set.

To check all possible runs of the model we use formal methods of verification.
We specialise to model checking methods, which allow to automatically prove
whether a system satisfies the specification at some level of abstraction (for
more details see [Bar02]).

4.1.1 State explosion

The number of states may grow exponentially with respect to the number of
storage elements of a system written in VHDL source codes, and thus even for
small sized examples the state space becomes infeasible. Linear grow up of
variables in SMV may cause the exponential grow up of states in the system,
which has to be checked.

The state explosion problem is inherent to explicit state model checking of
asynchronous concurrent systems. The states can be symbolically represented
such as representing states using a Binary Decision Diagram (BDD).

CESNET technical report number 17/2003 9

In order to handle large designs, we have to abstract away parts of the data path,
or the whole entities, or even the components.

Taking into an account that Cadence SMV for CTL (branching time logic) formula
in the form AG (subformula) has to verify whether subformula is satisfied, it
obviously has to take in notice every possible run of the system. For formula in
the form EF (subformula) it is again necessary to verify that subformula is
not satisfied for every possible run of the system, before concluding that formula
EF (subformula) is not satisfied.

Cadence SMV as a symbolic based model checker has some advantages in
comparison with explicit state approach to model checking. It manipulates with
the set of states with a specific property and not with every state explicitly.

4.2 Providing assertions in VHDL code

4.2.1 Native assertions in VHDL

VHDL itself contains the following command:

assert condition [report error string] [severity severity value]

We can verify this assertions better than VHDL simulators in the sense that
simulator makes only selected runs of the system, whereas we check all possible
runs of the system.

4.2.2 Using special assertion comments

We also support several ways to include verification formulas as comments in
the VHDL design. Briefly we are supporting following forms of comments:

The most simple form is useful when property is very complicated:

-- assert Informal description in English.

For more complicated properties there could be added a LEMMAwith an attached
email and the unique mark referring to that property:

-- assert LEMMA unique mark

The corresponding attached email should have the following form:

To: ipv6-ver@liberouter.org

Subject: LEMMA file.vhd-unique mark

Content: Description of properties of your VHDL code.

Description of properties in the VHDL boolean expressions (extended by impli-
cation, cycle, branching and more) which should be always true:

-- assert globally extended VHDL bool expression

CESNET technical report number 17/2003 10

From others we mention only one example how signals, ports, variables, or
registers, which never falls to have constant value, could be described.

-- assert alive boolean expression

This property is known as a liveness.

We have written a Verification cookbook [VC], the manual for VHDL designers.
It contains detailed information how to write assertions. Its purpose is to help
them to write the assertions down into the code in some of the forms described
above.

4.3 SMV model checker in practice

4.3.1 The automatic tests

There is no need to explicitly write the deadlock free requirement on the mod-
eled system. The Cadence SMV automatically checks whether the system has
a state with no successors.

4.3.2 Using preconditions and lemmas

Except of a command assert the tool Cadence SMV supports more sophisti-
cated constructions.

At first all formulas can be uniquely entitled to enable one to refer to it. For
example:

lemma_RW_mutual_exclusion: assert G (! (\plx_wr & \plx_rd));

There is a need for preconditions on formulas. The most of preconditions we
obtain from the exact position of formulas in VHDL source. The formula have to
be valid in the states of system corresponding to the position in VHDL source.
Rarely it is satisfied even in the other places.

For example lemma1 in the following VHDL code is intended for verification with
a precondition.

if RESET = ’1’ then

WR_REQ <= ’1’;

WR_STATE <= ”1000”;

elsif FSM_RD = ’1’ then -- assert LEMMA lemma1

WR_REQ <= ’0’;

In SMV there can be the proof with precondition expressed as follows.

CESNET technical report number 17/2003 11

precondition_reset: assert (~RESET & FSM_RD)

using precondition_reset prove lemma1;

4.3.3 Disappearing of the inner signals

When we obtain for example this VHDL source code:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity counter is -- configurable counter

Generic (N : integer := 8);

Port (CLK : in std_logic; -- counted signal

AS_RESET: in std_logic; -- asynchronous reset

RESET : in std_logic; -- synchronous reset

CE : in std_logic; -- count enable

OUTPUT : out std_logic_vector(N-1 downto 0)

); -- actual counter value

end counter;

architecture Behavioral of counter is

signal VALUE: std_logic_vector(N-1 downto 0); -- internal value

begin

-- assert active VALUE when CE

process (CLK,AS_RESET)

begin

if AS_RESET=’1’ then

VALUE <= (others => ’0’);

elsif CLK=’1’ and CLK’event then

if RESET=’1’ then

VALUE <= (others => ’0’);

elsif CE=’1’ then

VALUE <= VALUE + 1;

end if;

end if;

end process;

OUTPUT <= VALUE;

end Behavioral;

CESNET technical report number 17/2003 12

We have to deal with the following problem: Our task is to check whether the
formula active VALUE when CE is satisfied or not. The problem is that signal
VALUE is internal only and due to synthesis, it is neither in Verilog, nor in SMV.

One way is to fetch up the signal VALUE to the port list in VHDL source. The
entity counter should contain one of the following lines in the port list:
VALUE : out std logic vector(N-1 downto 0);

VALUE : inout std logic vector(N-1 downto 0);

VALUE : buffer std logic vector(N-1 downto 0);

The problem is that the line
VALUE : out std logic vector(N-1 downto 0);

results in the following error message:
Error, cannot read output: VALUE; use mode buffer or inout.

The other possible lines with inout or buffer works (VHDL source can be
synthesised) and these lines are correct with respect to our actual formula as
it happens. In general this ways of fetching up the signal VALUE are incorrect
as it changes the model of system in a nonequivalent manner. The solution is
described in Part 3.2.1.

The another way is to find out that in VHDL behavioural description of counter
there are two processes:

process (CLK,AS_RESET)

OUTPUT <= VALUE;

These processes run in parallel and the process OUTPUT <= VALUE; causes
that signals OUTPUT and VALUE are connected. This observation could be hard
to find. But when it is found it enables to check the formula without intervention
to VHDL source.

4.3.4 From counterexample to a new precondition

Counterexample gives us a new precondition or a negative result in the following
way:

When we obtain a counterexample, we analyse it and as far as this trace could
not occur in real hardware we add new preconditions to the formula. We may
obtain a counterexample again which often results to many preconditions.

Ordinary counterexample may than have the following effect:
From using pre1, . . . , prek prove lemma; makes
using pre1, . . . , prek, newpre prove lemma;

Than we proceed as long as we obtain a positive or a negative result.

CESNET technical report number 17/2003 13

4.3.5 How to deal with a huge trace table

The counterexample is represented as a trace table. The rows are assigned to
variables of SMV corresponding to signals, ports, variables, or registers of VHDL

and each column contains values of these variables in one state. Values are
expressed by 0, 1, or - (standing for undefined value).

Figure 1: Huge trace in Cadence SMV

If one wants to see only changes, then it is useful to choose view and then zoom

out in the trace table but it helps only a little.

We are working with huge traces and Cadence SMV shows only a very small
part of a trace at once. Therefore we save trace to a file and work on it out of
Cadence SMV. We compare interesting states of a trace using the program diff.

CESNET technical report number 17/2003 14

4.4 XML format for reporting results

We need a uniform format for publishing our results. For this purpose we define
our own XML structure verification. For each version of verified design we
add a verification report (element ver) that contains all important information
about performed verification. Every verification report consist of:

� Tree of files in which the design is described and its time of creation.

� List of preconditions, which could be referred by formulas.

� List of formulas, where each formula contains its code, information about
duration time, detailed description, possible differences from the original
code for verification purposes, and last but not least the result – whether
it is valid or not. If formula is not valid, the counterexample is present as
well.

We have created a verification.dtd and every verification report have to be
valid against it. The following example of verification report should make some
details clear:

<verification>

<ver author=”Tomas Kratochvila” toplevel=”ee”>

<note>Only an example, not real verification.</note>

<vhdlsourcelist src=”liberouter.old/hw/edit_engine/new_cvs/”

exportdate=”2003-10-31”>

<directory name=”edit_engine”>

<directory name=”dram_u”>

<file type=”vhdl” name=”dram_u_fsm_mem.vhd”/>

<file type=”vhdl” name=”dram_u_fsm.vhd”/>

<file type=”vhdl” name=”dram_u.vhd”/>

</directory>

<file type=”vhdl” name=”send_u/send_u.vhd”/>

<file type=”vhdl” name=”alu/alu.vhd”/>

<file type=”vhdl” name=”ee.vhd”/>

</directory>

</vhdlsourcelist>

<preconditions>

<precondition name=”simplepre0”>G (F \START)</precondition>

<precondition name=”pre3”>

G ((\START) -> F (\DRAM_ACK))</precondition>

</preconditions>

<formulas>

CESNET technical report number 17/2003 15

<formula name=”simplerw” result=”true”>

<code>G (! (\plx_wr & \plx_rd))</code>

<description>Simple RW mutual exclusion.</description>

<note></note>

<time>0.1 s</time>

</formula>

<formula name=”hardcorerw”

preconditions=”simplepre0, pre3”

result=”false”>

<code>G (\START -> (! (\plx_wr & \plx_rd)))</code>

<counterexample>not important</counterexample>

<description>Hard-core RW mutual exclusion.</description>

<diff></diff>

</formula>

</formulas>

</ver>

</verification>

5 Conclusion

We have made the translation from VHDL to SMV almost automatic and we
would like to bring the automatisation further. We have successfully verified
various properties of selected parts of a hardware design and we are planning
to verify larger pieces of hardware in order to check the interaction between
selected components. The possible state explosion problems can be reduced
by the symbolic methods of Cadence SMV.

The universal system of verification reports is created to easily report results
using XML.

We provide several ways to write assertions into the VHDL source code. These
assertions are reformulated to temporal formulas and included into the SMV

source code obtained from the translation. Although the system of assertions
is quite comfortable we have to study the informal descriptions of parts of the
design and formulate our own assertions, because hardware designers are often
not aware of all presumptions they use to believe that their source codes are
correct.

References

[Bar02] Barnat J., Brázdil T., Krčál P., Řehák V., and Šafránek D.: Model

checking in IPv6 Hardware Router Design

CESNET technical report number 17/2003 16

CESNET technical report 8/2002

[FPGA] Xilinx, Inc.: DS031-1 Virtex-II 1.5V Field Programable Gate Arrays

October 2001

[LeoSpec] LeonardoSpectrum: LeonardoSpectrum WWW Pages

http://www.mentor.com/leonardospectrum/

[LibWWW] Liberouter: Liberouter Project WWW Pages

http://www.liberouter.org/

[LSguide] Mentor Graphics: LeonardoSpectrum User’s Manual

http://www.mentor.com/leonardospectrum/customer/documentation/

[Nov02] Novotný J., Fučík O., Kokotek R.: Schematics and PCB of COMBO6

card

CESNET technical report 14/2002

[SMV] Cadence SMV: Cadence SMV WWW Pages

http://www-cad.eecs.berkeley.edu/~kenmcmil/smv/

[VC] Tomáš Kratochvíla: Verification cookbook (Liberouter policy WWW

Pages)

http://www.liberouter.org/policy.html

[Ver] Daniel C. Hyde: Handbook on Verilog HDL

www.eg.bucknell.edu/~cs320/1995-fall/manual.pdf

[VHDL] Ashenden Peter J.: The VHDL Cookbook

http://tech-www.informatik.uni-hamburg.de/

vhdl/doc/cookbook/VHDL-Cookbook.pdf

CESNET technical report number 17/2003 17

