
�-OBDD in Symboli Model Cheking

?

Vojt�eh

�

Reh�ak

Department of Computer Siene, Faulty of Informatis

Masaryk University Brno, Czeh Republi

rehak�fi.muni.z

Abstrat. We present a feasibility study of using �-OBDD data stru-

ture in symboli model heking (SMC). �-OBDD has been proposed as

a more suint modi�ation of well known OBDD data struture whih

is of ommon use in nowadays SMC. We introdue three modi�ations

of �-OBDD, analyze their respetive eÆieny, and present some exper-

imental results based on implementations of �-OBDD within a symboli

model heker NuSMV.

1 Introdution

Nowadays, hardware and software systems are widely used in appliations where

failure is unaeptable. As examples an serve systems for eletroni ommere,

air traÆ ontrol, medial instruments, and many others. Hene, methods for

validating these systems are in great demand. This paper fouses on the model

heking approah to automati validation.

Model heking [3℄ is an automati tehnique for verifying �nite state systems.

In this approah, properties are expressed in a temporal logi and systems are

modelled as transition systems. A model heker aepts two inputs, a transition

system and a temporal formula, and returns "true" if the system satis�es the

formula; otherwise it returns "false".

The basi model heking problem is the state explosion problem due to the

fat that the size (number of states) of transition system an be exponential with

respet to the desription of the system. The exponeniality is (mostly) aused

by parallel omposition of interating proesses. Hene, the basi problem is the

spae omplexity of model heking algorithms. One of the most suessful and

widely ommerially used approah to avoid the explosion problem is a symboli

approah. Symboli model heking algorithms are based on manipulations with

sets of states of the transition system where sets of states are represented by

Ordered Binary Deision Diagrams [1℄ (OBDDs).

The �rst step in using OBDDs in the symboli model heking is the represen-

tation of states of transition systems as boolean vetors and the representation

of sets of states as boolean funtions. OBDDs e�etively represent boolean fun-

tions and allow eÆient implementation of omplementation, union and equality

test on sets (of states). In this paper we investigate a possibility of using a novel

?

This work has been partially supported by the GACR grant No. 201/00/1023.

data struture, so alled �-OBDD, and its modi�ations, to redue the spae

omplexity of the symboli model heking algorithm.

2 De�nition of �-OBDD

A �-OBDD [5℄ (alled also Mod2-OBDD or Parity-OBDD) is an extension of

OBDD data struture, namely there are �-nodes in �-OBDD. This innovation

an lead to exponentially more suint representation of sets of states.

Syntax A �-BDD P over a set X

n

= fx

1

; : : : ; x

n

g of boolean variables is a

direted ayli onneted labelled graph P = (V;E) with three types of nodes:

{ a terminal node v has a label l(v) 2 f0; 1g and its out-degree is 0,

{ a variable (branhing) node v has a label l(v) = x

i

(x

i

2 X

n

) and two

suessors denoted by low(v); high(v) 2 V ,

{ a �-node v has a label l(v) = � and two suessors low(v); high(v) 2 V .

Edges from v to low(v) and high(v) are labeled as 0-edge and 1-edge, respe-

tively. A node with in-degree 0 is the root.

A �-BDD is free if eah variable is enountered at most one on eah path

from the root to a terminal node. A �-BDD is ordered if it is free and the

variables are enountered in the same order on eah path from the root to a

terminal node. Ordered �-BDD is denoted as �-OBDD.

Semantis Eah node v of �-BDD represents a boolean funtion f

v

: f0; 1g

n

!

f0; 1g. The de�nition of f

v

is given reursively as follows:

{ If v is a terminal node, then f

v

(x

1

; : : : ; x

n

) = l(v).

{ If v is a branhing (variable) node with l(v) = x

i

, then

f

v

(x

1

; : : : ; x

n

) = (:x

i

^ f

low(v)

(x

1

; : : : ; x

n

)) _ (x

i

^ f

high(v)

(x

1

; : : : ; x

n

)).

{ If v is a �-node, then

f

v

(x

1

; : : : ; x

n

) = f

low(v)

(x

1

; : : : ; x

n

)� f

high(v)

(x

1

; : : : ; x

n

),

where � is a boolean exlusive or (XOR) operator.

A �-BDD with the root v represents the boolean funtion f

v

(x

1

; : : : ; x

n

).

3 Redued Forms of �-OBDD

In order to ahieve even more suint representation several redution rules

are introdued. Dupliate nodes an be uni�ed (merging rule) and redundant

variable nodes an be omitted (elimination rule) [13℄. The semantis of �-nodes

enables many other redutions { some of them are proposed here.

2

Basi �-OBDD The basi form an be obtained by applying the following

three rules for �-nodes.

��?>=<89:;
�

{{
f

)

��

0

��?>=<89:;
�

~~}}}
}

��
>>

>>

0

f

)

��

f

��?>=<89:;
�

~~}}}
}

��
>>

>>

1

f

)

��

:f

�-OBDD with �-meta-nodes A �-meta-node is a �-node whih an have

more than two suessors. Suessors of �-meta-node are sorted. This redution

is based on ommutativity and assoiativity of the boolean operation XOR.

?>=<89:;
�

wwooo
((PPP?>=<89:;

�

~~~~
~~

~
  

@@
@@

@
?>=<89:;
�

~~||
||

| ''OOO ?>=<89:;
�

wwnnn ''PPPGFED@ABC
x

2

�� 22
GFED@ABC
x

3

�� 22
GFED@ABC
x

1

�� 22
GFED@ABC
x

2

�� 22

)

?>=<89:;
�

����
��

�
�� ��

>>
>>

>

GFED@ABC
x

1

�� 22
GFED@ABC
x

2

�� 22
GFED@ABC
x

2

�� 22

Merged �-OBDD This redued form uni�es �-node's suessors with the

same label.

?>=<89:;
�

vvllllllllllll

||zz
zz

zz
�� ""

DD
DD

DD

((QQQQQQQQQQQQ

GFED@ABC
x

1

1

����
�

0

��
--

-
GFED@ABC
x

1

1

����
�

0

��
--

-
GFED@ABC
x

1

1

����
�

0

��
--

-
GFED@ABC
x

1

1

����
�

0

��
,,

,
GFED@ABC
x

2

1

����
�

0

��
--

-

f

1

f

0

g

1

g

0
h

1

h

0

j

1

j

0

k

1

k

0

)

?>=<89:;
�

{{vvv
v

''OO
OOOO

GFED@ABC
x

1

1

{{www
w 0

##H
HHH

GFED@ABC
x

2

1

���� 0

��
66

?>=<89:;
�

����
��
����
�
����
�
�� ��

..
.

?>=<89:;
�

����
�
�� ��

//
/

��
==

==
k

1

k

0

f

1

g

1
h

1

j

1

f

0

g

0
h

0

j

0

Exat de�nitions of these modi�ations are presented in [11℄. The basi dis-

advantage of merged �-OBDD is the loss of stritly bottom-up implementation

of the reduing algorithm. The redution must be performed top-down. Hene,

the areful reation (keeping the redued form) of a new node is not of onstant

omplexity but it has a linear time omplexity.

4 Operations

The simplest operation is the omplementation (negation) whih is implemented

using omplemented edges [7℄.

The implementation of the union (disjuntion) is based on the reursive all

for o-fators for the topmost variable. Co-fators of the union an be omputed

as:

(f _ g)j

x 0

= f j

x 0

_ gj

x 0

and (f _ g)j

x 1

= f j

x 1

_ gj

x 1

where f j

x 0

and f j

x 1

are o-fators of f for x = 0 and x = 1, respetively.

3



Co-fatoring for the topmost variable is easy provided if the root is a variable

node. If the root is �-node then its suessors must be o-fatored.

?>=<89:;
�

{{ww
ww

ww ,,YYYYYYYYYYYY
?>=<89:;
�

uukkkk
))SSSSGFED@ABC

x

1

1

����
0

��
;;

GFED@ABC
x

2

1

�����
0

��
;;;

GFED@ABC
x

1

1

����
0

��
;;

f

1

f

0

g

1

g

0
h

1

h

0

)

?>=<89:;
�

		��
��
��
��

,,YYYYYYYYYYYY
?>=<89:;
�

uukkkk

��
//

//
/GFED@ABC

x

2

1

�����
0

��
;;;

f

0

g

1

g

0
h

0

An example of o-fatoring �-OBDD for x

1

= 0.

Co-fators of the result annot be onneted as in OBDD beause the OBDD

onnetion does not reate�-nodes.�-OBDD onnetion is performed aording

to the positive Davio expansion rule [6℄:

f = f j

x 0

� x(f j

x 1

� f j

x 0

):

Both OBDD and �-OBDD onnetions are presented in the following �gure (f

0

,

f

1

are o-fators of the result).

?>=<89:;
x

1

��













0

��
44

44
44

44

f

1

f

0

?>=<89:;
�

����
��

��
��

((RRR ?>=<89:;
x

1

vvlll
0

��
::

::
::?>=<89:;

�

{{ww
ww

##G
GG

G

f

0

f

1

0

OBDD onnetion �-OBDD onnetion

The most omplex operation is the equality test whih an be performed in

time O(n � (jF j + jGj)

3

) and in spae O((jF j + jGj)

2

), where n is the number

of variables [12℄ and thus it is not eÆient. On the other hand, the probabilisti

equivalene test [4℄ for �-OBDD needs linear time only.

The time omplexities of all operations are presented in Table 1. For detailed

desriptions of algorithms and proofs of its omplexities see [11℄.

OBDD �-OBDD

proedure basi meta nodes merged

areful reation O(1) O(1) O(1) O(jF j)

negation O(1) O(1) O(1) O(1)

F j

x

top

 0

O(1) O(jF j) O(jF j) O(1)

union O(jF j�jGj) O(jF j�jGj) O(jF j

2

�jGj

2

) O(jF j

2

�jGj

2

)

equivalene test O(1) O(jF j+jGj) O(jF j+jGj) O(jF j+jGj)

Table 1. Comparison of the time omplexities.

5 Experimental Results

I have modi�ed the implementation of the widely used OBDD pakage CUDD [10℄

so as it allows manipulations with �-OBDDs. The main reason for hoosing

CUDD pakage is its ompatibility with the symboli model heker NuSMV [2℄.

4



The CUDD pakage has been augmented with a node ounter MaxUsedKey

whih keeps the maximal number of ative nodes during the omputation. A

node is ative if it is reated and it is not designated to be erased. Therefore

MaxUsedKey orresponds to the maximal size of memory whih is oupied

during the omputation of NuSMV.

I have implemented all three types of �-OBDD introdued here into the

CUDD pakage. All new nodes are reated aording to the positive Davio ex-

pansion rule and many �-nodes may be thus superuous. �-meta-nodes were

not implemented as single speial nodes as the original CUDD pakage does not

support meta-nodes. Therefore, �-meta-nodes are implemented as hains of �-

nodes. Even this implementation is bene�ial as it allows eÆient detetion of

redundany. Any heuristis reordering variables have not been implemented.

OBDD �-OBDD

protool basi meta nodes merged

dartes - - - -

ounter 47 54 54 51

dme1 - - - -

mutex 104 145 131 127

mutex1 306 895 573 567

ring 124 252 175 170

semaphore 237 490 376 358

short 22 22 22 22

gigamax 52633 - 127864 191084

hwb6 789 3274 1955 1878

newring 60 97 82 73

p error 8182446 - - -

p 5194783 - - -

philo 5543735 - 8491390 -

robot 33346 - 44723 -

Table 2. The maximal number of ative nodes during the omputation of NuSMV.

I have veri�ed some protools by NuSMV and ompared the MaxUsedKeys

with respet to the representation used. Results of these omparisons are pre-

sented in Table 2. The olumn protool ontains the names of protools whih

have been veri�ed. Next olumns ontain the values of MaxUsedKeys. A dash

indiates the omputation did not �nish in twelve hours. The probabilisti test

of equality did not ause any inorret result.

Results presented in Table 2 indiate that the striter modi�ations of �-

OBDD is used the more suint representation is obtained. Nevertheless, the

OBDD representations remain the best one for the veri�ed protools.

Computation of large protools (philo and robot) did not terminate for the

merged modi�ation. It is a onsequene of the fat that the areful reation

takes a linear time with respet to the size of merged �-OBDD.

5



6 Conlusions

�-OBDDs seem to be a promising alternative to OBDDs beause they admit

a more ompat representation of boolean funtions. However, our omparisons

indiate that the �-OBDDs are not so good for symboli model heking as

OBDDs.

The adverse result of our omparisons may be indued by inompleteness

of our implementation suh as representing �-meta-node as a hain of �-nodes

and absene of heuristi algorithms for reordering and �-node plaement. Elim-

ination of these imperfetions may lead to the appliability of �-OBDDs. Some

elementary heuristi algorithms are presented in [8, 9℄.

�-OBDDs are very suitable for performing boolean operation XOR. Symboli

model heking algorithms are performed aording to the CTL formula whih

is made by a person and people are not austomed to use XOR. So, it is better

to apply �-OBDDs into algorithms where the need for XOR operations springs

up naturally.

Referenes

1. R. E. Bryant. Graph-Based Algorithms for Boolean Funtion Manipulation. In

IEEE Transations on Computers, volume C-35-8, pages 677{691, August 1986.

2. A. Cimatti, E. M. Clarke, F. Giunhiglia, and M. Roveri. NuSMV: A New Symboli

Model Cheker. International Journal on Software Tools for Tehnology Transfer,

2(4):410{425, 2000.

3. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Cheking. The MIT Press,

Cambridge, Massahusetts, 1999.

4. J. Gergov and Ch. Meinel. Frontiers of Feasible and Probabilisti Feasible Boolean

Manipulation with Branhing Programs. In Proeedings of STACS, volume 665 of

LNCS. Springer, 1993.

5. J. Gergov and Ch. Meinel. Mod-2-OBDD's: A Generalization of OBDD's and

EXOR-Sum-of-Produts. Tehnial Report 93{21, Universit�at Trier, 1993.

6. Ch. Meinel and H. Sak. Case Study: Manipulating �-OBDDs by Means of Signa-

tures. In 3rd International Workshop on Appliations of the Reed-Muller Expansion

in Ciruit Design, Oxford, UK, 1997.

7. Ch. Meinel and H. Sak. Parity-OBDDs - a BDD Struture for Probabilisti Ver-

i�ation. In ENTCS, volume 22. Elsevier, 2000.

8. Ch. Meinel and H. Sak. A Heuristi for �-OBDD Minimization. Tehnial report,

Universit�at Trier, 2001.

9. Ch. Meinel and H. Sak. Improving XOR-Node Plaement for �-OBDDs. Tehnial

report, Universit�at Trier, 2001.

10. F. Somenzi. CUDD: CU Deision Diagram Pakage Release, 1998.

11. V.

�

Reh�ak. Randomized symboli model heking. Master's thesis, Masaryk Uni-

versity Brno, 2002.

12. S. Waak. On the Desriptive and Algorithmi Power of Parity Ordered Binary

Deision Diagrams. In Proeedings of STACS, volume 1200 of LNCS. Springer,

1997.

13. I. Wegener. Branhing Programs and Binary Deision Diagrams: Theory and Ap-

pliations. Soiety for Industrial and Apllied Mathematis, 2000.

6


