
INFINITY 2003 Preliminary Version

On Extensions of Pro
ess Rewrite Systems:

Rewrite Systems with Weak Finite-State Unit

1

Mojm��r K�ret��nsk�y

2

Vojt�e
h

�

Reh�ak

2

Jan Strej�
ek

2

Fa
ulty of Informati
s

Masaryk University

Brno, Cze
h Republi


Abstra
t

Various 
lasses of in�nite-state pro
esses are often spe
i�ed by rewrite systems.

We extend Mayr's Pro
ess Rewrite Systems (PRS) [13℄ by �nite-state unit whose

transition fun
tion satis�es some restri
tions inspired by weak �nite automata. We


lassify these models by their expressiveness and show how the hierar
hy of new


lasses (w.r.t. bisimilarity) is related to both PRS hierar
hy of Mayr and two other

hierar
hies of PRS extensions introdu
ed in [9,22℄.

Key words: pro
ess rewrite systems, state extension, in�nite state

1 Introdu
tion

As the state-spa
e in�niteness of 
on
urrent systems has a various, real-life

sour
es (e.g. data manipulation, asyn
hronous 
ommuni
ation, et
.), a moti-

vation is to provide adequate representations of 
on
urrent systems as well as

to study the possibilities of their formal veri�
ation. Con
urrent systems 
an

be modelled in a number of ways (e.g. Pro
ess Algebras, Petri Nets, et
.), how-

ever a unifying view is to interpret them as labelled transition systems (LTS)

with possibly in�nite number of states. LTS families are often spe
i�ed via

a variety of rewrite systems and form hierar
hies (w.r.t. bisimulation equiva-

len
e), see for example [5,3,15,13℄. Here we employ the 
lasses of in�nite-state

systems de�ned by Pro
ess Rewrite Systems (PRS, introdu
ed by Mayr in [13℄)

as they 
ontain a variety of the formalisms studied in the 
ontext of formal

veri�
ation. For surveys of formal veri�
ation te
hniques and results see for

example [15,4,2,10,20℄.

It is possible to extend rewriting me
hanisms by a �nite-state unit [15,9℄.

However this extension is very powerful as the state-extended version of PA

1

This work has been partially supported by GA

�

CR, grant No. 201/03/1161.

2

Emails: fkretinsky,rehak,strej
ekg�fi.muni.
z

This is a preliminary version. The �nal version will be published in

Ele
troni
 Notes in Theoreti
al Computer S
ien
e

URL: www.elsevier.nl/lo
ate/ent
s



K

�

ret

�

�nsk

�

y et al.

pro
esses (i.e. the state-extended (1,G)-PRS) has a full Turing-power [1℄, while

unrestri
ted PRS is not Turing-powerful [13℄. One of motivations for introdu
-

ing state-extended PRS 
lasses 
an be seen as follows: it is required to spe
ify

some pro
ess 
lasses whi
h are not expli
itly present in PRS hierar
hy. This


an be exempli�ed by the 
lass of so 
alled Parallel Push-Down Automata

(PPDA) introdu
ed by Moller as a state-extended version of BPP in [15℄.

Please note BPP forms a proper sub
lass of PPDA whi
h is properly 
ontained

in Petri nets [16℄. We also note the problem of bisimulation equivalen
e on

BPP is de
idable [6℄ (the re
ent results [21,8℄ show it is PSPACE-
omplete),

while the same problem on their state-extended version is unde
idable [15℄.

In this paper we aim at weakening the strength of state-extension by

putting some restri
tions on (the transition fun
tion of) �nite-state unit {

we use weak �nite automaton as introdu
ed in [17℄, but used here as a non-

deterministi
 (NFA) rather than alternating one. A NFA A = (Q;�; Æ; q

0

; F )

is weak if its state spa
e is partitioned into a disjoint union Q =

S

Q

i

, and

there is a partial order � on the 
olle
tion of the Q

i

. The transition fun
tion

Æ : Q� � ! P(Q) is su
h that if q 2 Q

i

and q

0

2 Æ(q; a) then q

0

2 Q

j

, where

Q

i

� Q

j

. The set F of �nal states will not play any role in this paper, however

re
all it is required that Q

i

� F or Q

i

\ F = ; for ea
h Q

i

. Due to their 
on-

ne
tions to (modal) logi
s weak (nondeterministi
, alternating,...) automata

have been used in several 
ontexts and in fa
t their slightly modi�ed variants

have been employed. For example we refer to [12℄ where the 
ommon fragment

of a linear time logi
 LTL [18℄ and a bran
hing time logi
 ACTL (whi
h is

a fragment of CTL [7℄) is given by exa
tly those LTL formulae the negation of

whi
h 
an be represented by 1-weak B�u
hi automaton (automaton is 1-weak

if ea
h partition blo
k 
ontains exa
tly one state). We mention the 1-weak

variant only and skip the others as this will serve as a suitable abstra
tion

used in our de�nition of PRS with weak unit.

In state-extended PRS a �nite-state unit keeps a sort of global information

a

essible to all parallel (ready to be redu
ed) 
omponents of a PRS term. For

example di�erent (sub)sets of rewriting rules 
an be applied depending on the


urrent state of unit. Elsewhere [22℄ one of the authors of this paper enri
hed

(pure) PRS by 'monotoni
ally evolving' unit and showed the introdu
ed f
PRS


lasses ('f
' standing for '�nitely 
onstrained' { see Se
tion 3) are stri
tly more

expressible than the respe
tive 
lasses of PRS provided the respe
tive PRS


lass does not subsume some notion of '
ontrol state' as e.g. PDA or Petri

Nets do.

Some basi
 de�nitions and properties of PRS (taken from[13℄) and f
PRS

([22℄) are re
alled in Se
tions 2 and 3. We introdu
e PRS with weak unit

(wPRS) and mention state-extended PRS in Se
tion 4. Some relationships

between the respe
tive new 
lasses and the already existing ones as well as

the (
ombined) hierar
hy of PRS and (relevant 
lasses of) extended PRSs are

shown in Se
tion 5.

2



K

�

ret

�

�nsk

�

y et al.

2 Pro
ess rewrite systems (PRS)

A labelled transition system (LTS) L is a tuple (S;A
t;�!; �

0

), where S

is a set of states or pro
esses, A
t is a set of atomi
 a
tions or labels, �!�

S�A
t�S is a transition relation (written �

a

�! � instead of (�; a; �) 2�!),

�

0

2 S is a distinguished initial state. A state � 2 S is terminal (or deadlo
ked,

written � 6�!) if there is no a 2 A
t and � 2 S su
h that �

a

�! �. We also

use the natural generalization �

�

�! � for �nite sequen
es of a
tions � 2 A
t

�

.

The state � is rea
hable if there is � 2 A
t

�

su
h that �

0

�

�! �.

A binary relation R on set of states S is a bisimulation [14℄ i� for ea
h

(�; �) 2 R the following 
onditions hold:

�

8�

0

2 S; a 2 A
t : �

a

�! �

0

=) (9�

0

2 S : �

a

�! �

0

^ (�

0

; �

0

) 2 R)

�

8 �

0

2 S; a 2 A
t : �

a

�! �

0

=) (9�

0

2 S : �

a

�! �

0

^ (�

0

; �

0

) 2 R)

Bisimulation equivalen
e on an assumed LTS is the maximal bisimulation

(i.e. union of all bisimulations).

Let Const = fX; : : :g be a 
ountably in�nite set of pro
ess 
onstants. The

set T of pro
ess terms (ranged over by t; : : :) is de�ned by the abstra
t syntax

t = " j X j t

1

:t

2

j t

1

kt

2

;

where " is the empty term, X 2 Const is a pro
ess 
onstant (used as an atomi


pro
ess), 'k' and ':' mean parallel and sequential 
ompositions respe
tively.

The set Const(t) is the set of all 
onstants o

urring in a pro
ess term t.

We always work with equivalen
e 
lasses of terms modulo 
ommutativity and

asso
iativity of 'k' and modulo asso
iativity of ':' We also de�ne ":t = t = t:"

and tk" = t.

We distinguish four 
lasses of pro
ess terms: '1' stands for terms 
onsist-

ing of a single pro
ess 
onstant only (i.e. " 62 1), 'S' are sequential terms {

without parallel 
omposition, 'P' are parallel terms - without sequential 
om-

position, 'G' are general terms with arbitrarily nested sequential and parallel


ompositions.

De�nition 2.1 Let A
t = fa; b; � � �g be a 
ountably in�nite set of atomi


a
tions, �; � 2 f1; S; P;Gg su
h that � � �. An (�; �)-PRS (pro
ess rewrite

system) is a pair � = (R; t

0

), where

�

R is a �nite set of rewrite rules of the form t

1

a

�! t

2

, where t

1

2 �, t

1

6= ",

t

2

2 � are pro
ess terms and a 2 A
t is an atomi
 a
tion,

�

t

0

2 � is an initial state.

Unless stated otherwise we assume a given � as in De�nition 2.1. We de�ne

Const(�) as the set of all 
onstants o

urring in the rewrite rules of � or in

its initial state, and A
t(�) as the set of all a
tions o

urring in the rewrite

rules of �. We sometimes write (t

1

a

�! t

2

) 2 � instead of (t

1

a

�! t

2

)2R.

The semanti
s of � is given by the LTS (S;A
t(�);�!; t

0

), where S =

ft 2 � j Const(t) � Const(�)g and �! is the least relation satisfying the

3



K

�

ret

�

�nsk

�

y et al.

inferen
e rules:

(t

1

a

�! t

2

) 2 �

t

1

a

�! t

2

;

t

1

a

�! t

0

1

t

1

kt

2

a

�! t

0

1

kt

2

;

t

1

a

�! t

0

1

t

1

:t

2

a

�! t

0

1

:t

2

:

If no 
onfusion 
an arise, we sometimes speak about \pro
ess rewrite system"

meaning \labelled transition system generated by pro
ess rewrite system".

The PRS-hierar
hy of (�; �)-PRS is depi
ted as a sub-hierar
hy in Figure 1.

Some 
lasses in
luded in the hierar
hy 
orrespond to widely known models

as Finite State systems (FS), Basi
 Pro
ess Algebras (BPA), Basi
 Parallel

Pro
esses (BPP), Pro
ess Algebras (PA), Push-Down Pro
esses (PDA, see [5℄

for justi�
ation), and Petri Nets (PN). The other three 
lasses were introdu
ed

(and named) by Mayr [13℄. The relationship between the 
lass name and its

(�; �)-PRS 
ounter-part is given in Figure 1 as well.

PRS-hierar
hy is not stri
t w.r.t. language equivalen
e (e.g. both BPA

and PDA de�ne the 
lass of "-free 
ontext-free languages). The stri
tness of

the hierar
hy w.r.t. bisimularity follows from the results presented (or 
ited)

in [3,15℄ and from the following two examples [13℄.

Example 2.2 A PDA system with the initial state U:X whi
h is not bisimilar

to any PAN system (for proof see [13℄).

U:X

a

�! U:A:X U:A

a

�! U:A:A U:B

a

�! U:A:B

U:X

b

�! U:B:X U:A

b

�! U:B:A U:B

b

�! U:B:B

U:X




�! V:X U:A




�! V:A U:B




�! V:B

U:X

d

�!W:X U:A

d

�!W:A U:B

d

�! W:B

V:X

e

�! V V:A

a

�! V V:B

b

�! V

W:X

f

�!W W:A

a

�!W W:B

b

�!W

Example 2.3 A Petri net given as (P; P )-PRS with the initial state XkAkB

whi
h is not bisimilar to any PAD pro
ess (for proof see [13℄).

X

g

�! XkAkB Y kA

a

�! Y XkA

d

�! Z Y kA

d

�! Z

X




�! Y Y kB

b

�! Y XkB

d

�! Z Y kB

d

�! Z

3 PRS with �nite 
onstraint systems (f
PRS)

In this se
tion we re
all the extension of pro
ess rewrite systems with �nite


onstraint systems. This extension has been dire
tly motivated by 
onstraint

systems used in 
on
urrent 
onstraint programming (CCP) { see e.g. [19℄.

A 
onstraint system is a bounded latti
e (C;`;^; tt; ff), where C is the set

of 
onstraints, ` (
alled entailment) is an ordering on this set, ^ is the lub

operation, and tt (true), ff (false) are the least and the greatest elements of

C respe
tively (ff ` tt and tt 6= ff). The 
onstraint system des
ribes a state

4



K

�

ret

�

�nsk

�

y et al.

spa
e and possible evolution of a unit 
alled store.

De�nition 3.1 Let �; � 2 f1; S; P;Gg su
h that � � �. An (�; �)-f
PRS

(PRS with �nite 
onstraint system) is a tuple � = (C; R; t

0

), where

�

C = (C;`;^; tt; ff) is a �nite 
onstraint system des
ribing the store; the

elements of C represent values of the store,

�

R is a �nite set of rewrite rules of the form (t

1

a

�! t

2

; m; n), where t

1

2 �,

t

1

6= ", t

2

2 � are pro
ess terms, a 2 A
t is an atomi
 a
tion, and m;n 2 C

are 
onstraints,

�

t

0

2 � is a distinguished initial pro
ess term.

The semanti
s of an (�; �)-f
PRS system � = (C; R; t

0

) is given by the

LTS (S;A
t(�);�!; (t

0

; tt)), where S = ft 2 � j Const(t) � Const(�)g �

(C r fffg) and �! is the least relation satisfying the inferen
e rules:

(t

1

a

�! t

2

; m; n) 2 �

(t

1

; o)

a

�! (t

2

; o ^ n)

if o ` m and o ^ n 6= ff;

(t

1

; o)

a

�! (t

0

1

; p)

(t

1

kt

2

; o)

a

�! (t

0

1

kt

2

; p)

;

(t

1

; o)

a

�! (t

0

1

; p)

(t

1

:t

2

; o)

a

�! (t

0

1

:t

2

; p)

:

The two side 
onditions in the �rst inferen
e rule are very 
lose to prin
iples

used in CCP. The �rst one (o ` m) ensures the rule (t

1

a

�! t

2

; m; n) 2 � 
an

be used only if the 
urrent value of the store o entails m (it is similar to

ask(m) in CCP). The se
ond 
ondition (o ^ n 6= ff) guarantees that the store

stays 
onsistent after appli
ation of the rule (analogous to the 
onsisten
y

requirement when pro
essing tell(n) in CCP).

An important observation is that the value of a store 
an move in a latti
e

only upwards as o ^ n always entails o. Intuitively, partial information 
an

only be added to the store, but never retra
ted (the store is monotoni
).

Also note that an exe
ution of a transition whi
h starts in a state with o on

the store and whi
h is generated by a rule (t

1

a

�! t

2

; m; n) 2 � implies that

for every subsequent value of the store p the 
onditions p ` m and p ^ n 6= ff

are satis�ed (and thus the use of the rule 
annot be forbidden by a value of

the store in future). The �rst 
ondition p ` m 
omes from the monotoni


behaviour of the store. The se
ond 
ondition 
omes from the fa
ts that the


onstraint n in the rule 
an 
hange the store only in the �rst appli
ation of

the rule and that for ea
h subsequent state p of the store p ^ n = p holds.

4 PRS with weak �nite-state unit (wPRS)

De�nition 4.1 Let �; � 2 f1; S; P;Gg su
h that � � �. An (�; �)-wPRS

(PRS with weak �nite-state unit) is a tuple � = (Q;�; R;m

0

; t

0

), where

�

(Q;�) is partially ordered �nite set representing states of weak �nite-state

unit ; the elements of Q are 
alled w-states,

5



K

�

ret

�

�nsk

�

y et al.

�

R is a �nite set of rewrite rules of the form mt

1

a

�! nt

2

satisfying the


ondition m � n, where m;n 2 Q, t

1

2 �, t

1

6= ", t

2

2 �, and a 2 A
t,

�

m

0

2 Q; t

0

2 �, and m

0

t

0

is the initial state of the system.

The semanti
s of an (�; �)-wPRS � = (Q;�; R;m

0

; t

0

) is given by the LTS

(S;A
t(�);�!; m

0

t

0

), where S = fmt j m 2 Q; t 2 �; Const(t) � Const(�)g

and �! is de�ned as the least relation satisfying the inferen
e rules:

(mt

1

a

�! nt

2

) 2 �

mt

1

a

�! nt

2

;

mt

1

a

�! nt

0

1

m(t

1

kt

2

)

a

�! n(t

0

1

kt

2

)

;

mt

1

a

�! nt

0

1

m(t

1

:t

2

)

a

�! n(t

0

1

:t

2

)

:

The presented notion of weakness 
orresponds to 1-weakness 
ondition in

automata theory (mentioned already in Se
tion 1; the general weak unit with-

out 
onsidering �nal states would 
oin
ide with standard state-extension as

all the states of Q 
ould be in
luded in one partition blo
k). In any transi-

tion sequen
e the w-state 
omponents of visited states form a non-in
reasing

sequen
e w.r.t. � (i.e. 
an only 
hange �nitely many times). However, in


ontrast to f
PRS, the weak unit 
an forbid the appli
ation of any rewrite

rule.

State Extended PRS If we relax from the 
onditionm � n imposed on rewrite

rules in De�nition 4.1, we get the de�nition of state-extended (�; �)-PRS

(denoted by pre�x 'se'). Instead of (1; S)-sePRS, (1; P )-sePRS, . . . we also use

more traditional abbreviations seBPA, seBPP, . . . . and we also take up this

notation for all the 
lasses of both f
PRS and wPRS introdu
ed earlier.

We remind a motivation of introdu
ing sePRS given in Se
tion 1. Of 
ourse,

seBPA and seBPP 
oin
ides with PDA and PPDA respe
tively. Also re
all

that (S,S)-PRS and PDA are equivalent w.r.t. bisimilarity as shown by Cau-


al [5℄, while seBPP has no bisimulation equivalent 
ounter-part within PRS

hierar
hy (it is stri
tly under (P,P)-PRS as shown by Moller in [16℄).

5 Relations between 
lasses, re�ning hierar
hy

We start with some very obvious observations. Given pro
ess 
lasses X; Y the

notation X � Y means that every LTS de�nable in 
lass X 
an be de�ned (up

to bisimulation equivalen
e) also in 
lass Y. We say Y is at least as expressive

as X.

An immediate observation is the 
lasses FS, PDA and PN have the same

expressiveness as the 
orresponding ff
, w, seg extended 
lasses. We also note

that

(�; �)-PRS � (�; �)-f
PRS � (�; �)-wPRS � (�; �)-sePRS

hold for every (�; �)-PRS 
lass (even up to isomorphism). For the se
ond

in
lusion take an arbitrary (�; �)-f
PRS � with an initial term t

0

and a 
on-

straint system C = (C;`;^; tt; ff). The 
orresponding (�; �)-wPRS is �

0

=

(C r fffg;�; R

0

; tt; t

0

), where �= (`)

�1

and R

0

= fot

1

a

�! (o ^ n)t

2

j (t

1

a

�!

6



K

�

ret

�

�nsk

�

y et al.

wPRS

uuuuuuuuuuuuuuuuuuuu

FFFF
FFFFF

FFFFF
FFFF

F

f
PRS

uuuuuuuuuuuuuuuuuuuu

FF
FFF

FFFF
FFFF

FFFF
FF

PRS

(G;G)-PRS

uuuuuuuuuuuuuuuuuuu

FFFFFFFF
FFFFFF

FFFF

wPAD

IIIIIIIIIIIIIIIIIIII
wPAN

xxx
xxxxx

xxxx
xxxxx

xx

f
PAD

IIIIIIIIIIIIIIIIIIIII
f
PAN

xxx
xxxxxxxxxxx

xxxxx

PAD

(S;G)-PRS

HHHHHHHHHHHHHHHHHHHH

PAN

(P;G)-PRS

yy
yy

yy
yy

yy
yy

yy
yy

yy
y

wPA

vvvvvvvvvvvvvvvvvvvvv

EEEEEEEEEEEEEEEEEEE

wPDA=f
PDA=PDA

(S; S)-PRS

f
PA

uuuuuuuuuuuuuuuuuuuuu

FFFFFF
FFFFFFFFFFFF

F

wPN=f
PN=PN

(P;P )-PRS

PA

(1; G)-PRS

uuuuuuuuuuuuuuuuuuu

FFFFFFFF
FFFFFF

FFFF
PPDA

wBPA wBPP

f
BPA f
BPP

BPA

(1; S)-PRS

NNNNNNNNNNNNNNNNN

BPP

(1; P )-PRS

sssssssssssssss

wFS=f
FS=FS

(1; 1)-PRS

Fig. 1. The hierar
hy of 
lasses de�ned by (extended) rewrite formalisms

t

2

; m; n) 2 � and o ` m and o ^ n 6= ffg. The �rst and third in
lusions are

obvious as well.

Relations between the 
lasses of PRS-hierar
hy, the 
orresponding 
lasses

extended with �nite 
onstraint systems or weak state unit, and the PPDA


lass (the only 
lass of Moller's hierar
hy not 
overed by previous formalisms)

are depi
ted in Figure 1. The shape of the hierar
hy follows from the de�-

nitions of in
luded 
lasses and from the relations between 
onsidered exten-

sions. The stri
tness of the PRS-hierar
hy (w.r.t. bisimulation equivalen
e)

has been proved by Mayr [13℄. The stri
tness of the hierar
hy 
overing 
lasses

from PRS-hierar
hy and 
orresponding 
lasses with �nite 
onstraint systems

has been proved in [22℄ (with one ex
eption { the stri
tness between PRS and

f
PRS is just a 
onje
ture).

In the rest of this se
tion we show that

�

there is a PDA system whi
h is not bisimilar to any wPAN system,

�

there is a PPDA system whi
h is not bisimilar to any wPAD system,

�

there is a wBPP system whi
h is not bisimilar to any f
PAD system (this

proof formulates a property that is a suÆ
ient 
ondition for a PAD to be

7



K

�

ret

�

�nsk

�

y et al.

bisimilar to some PDA),

�

there is a wBPA system whi
h is not bisimilar to any f
PAN system.

These proofs together with the fa
t that PPDA are stri
tly less expressive

than PN [16℄ will �nish the proof of the stri
tness of our hierar
hy (with two

ex
eptions { the stri
tness of the relations between PRS, f
PRS, and wPRS re-

mains unproved, although we 
onje
ture the existen
e of the separating gaps).

5.1 PDA non-bisimilar to wPAN

Example 5.1 Let us 
onsider a PDA system of Example 2.2 but having

U:X:Y as the initial state and two more rewrite rules: V:Y

x

�! U:X:Y;W:Y

x

�!

U:X:Y . This system, denoted by �

1

, behaves like that de�ned in Example 2.2,

but whenever the original system terminates, the enhan
ed �

1

is restarted un-

der the a
tion x.

Lemma 5.2 There is no wPAN � bisimilar to the PDA �

1

of Example 5.1.

Proof. To derive a 
ontradi
tion assume a wPAN � bisimilar to the PDA

�

1

. As the weak state unit of � is �nite then there exists a rea
hable state

mt of � su
h that every state rea
hable from mt has also m as its w-state


omponent (the opposite would imply the in�niteness of the weak state unit).

There exists a word w 2 fa; b; 
; d; e; fg

�

su
h that mt

w:x

�! mt

0

, where mt

0

is bisimilar to the state U:X:Y of the PDA pro
ess �

1

. If the rules labelled

by the a
tion x are removed from � and mt

0

is taken as the initial state, we

obtain the system whose all rea
hable states have m as w-state 
omponent

and whi
h is bisimilar to the pushdown pro
ess of Example 2.2.

Now let �

0

be a PAN system with the initial state t

0

and with the set of

rewrite rules 
onsisting of the rules l

v

�! r, where (ml

v

�! mr) 2 � and

v 2 fa; b; 
; d; e; fg. It is obvious that this PAN system �

0

is bisimilar to the

PDA system de�ned in Example 2.2 { a 
ontradi
tion. 2

5.2 PPDA non-bisimilar to wPAD

Example 5.3 Let � be a PPDA pro
ess with the initial state xAkBkC and

the following rewrite rules:

xC

g

�! xAkBkC xA

d

�! z" zA

q

�! z"

xC




�! yC xB

d

�! z" zB

q

�! z"

yA

a

�! y" yA

d

�! z" zC

r

�! xAkBkC

yB

b

�! y" yB

d

�! z"

The rules labelled by g; 
; a; b; d 
orrespond to the rules of the Petri net

given in Example 2.3. Hen
e the PPDA � behaves as the mentioned Petri

net, but when the Petri net terminates, the PPDA � 
an remove an arbitrary

8



K

�

ret

�

�nsk

�

y et al.

number of A and B symbols from the parallel sta
k and then \restart" the

system under a
tion r.

Lemma 5.4 There is no wPAD �

0

bisimilar to the PPDA � of Example 5.3.

The proof is similar to the proof of Lemma 5.2 using the fa
t the Petri net

of Example 2.3 is not bisimilar to any PAD system.

5.3 wBPP non-bisimilar to f
PAD

A rewriting system is deadlo
kable if for ea
h rea
hable nonterminal state

s (of its underlying LTS) there is a transition from s to a terminal state,

i.e.9 a; t : s

a

�! t 6�! .

De�nition 5.5 A sequential subterm t (i.e. t 2 S) of term g 2 G is a ready

parallel 
omponent i� t is a maximal subtree in the syntax tree of term g su
h

that t is not in the right-hand side subtree of any sequential node (i.e. node


orresponding to sequential operator). A ready parallel 
omponent t is live in

a PAD system � if t is not deadlo
ked (i.e. there is a rule appli
able to t).

Intuitively the ready parallel 
omponents are de�ned as the maximal se-

quential parts of a PAD pro
ess g su
h that g 
an perform an a
tion a if and

only if some of its ready parallel 
omponents 
an perform the same a
tion a.

Lemma 5.6 Every rea
hable state of an arbitrary deadlo
kable PAD system

has at most one live ready parallel 
omponent.

Proof. Observe that the appli
ation of a PAD rewrite rule 
an only modify

one ready parallel 
omponent. Hen
e there is no way how to deadlo
k more

than one live ready parallel 
omponent by one appli
ation of a PAD rewrite

rule. 2

Lemma 5.7 Every deadlo
kable PAD system is bisimilar to a PDA system.

Proof. An idea is to transform PAD rewrite rules onto 
orresponding PDA

rewrite rules (this is suÆ
ient as for every PAD there is a bisimilar PAD

system with a single pro
ess 
onstant as the initial pro
ess term).

There is only one way to revive a deadlo
ked parallel 
omponent, namely to

rewrite adja
ent 
omponents onto ". For example if B:C is a deadlo
ked ready

parallel 
omponent of (A:CkB:C):D and (A:CkB:C):D

w

�! ("kB:C):D =

B:C:D then the ready parallel 
omponent B:C:D 
an be live.

Let � be a PAD system and X 62 Const(�) be a fresh pro
ess 
onstant.

Let us 
onsider a rewrite rule of � with the right hand side 
ontaining a max-

imal subterm of the form l:(t

1

kt

2

):r, where t

1

; t

2

2 S and l; r 
an be ". In

an arbitrary transition sequen
e the 
omponents t

1

; t

2

generated by the appli-


ation of the 
onsidered rewrite rule be
ome ready at the same time. Thus

at least one of them is deadlo
ked. Let t

2

be deadlo
ked. We repla
e the

subterm l:(t

1

kt

2

):r of the rule by l:X:t

1

:X:t

2

:r (or just t

1

:X:t

2

:r whenever l is

9



K

�

ret

�

�nsk

�

y et al.

"). The pro
ess 
onstant X eliminates any possible (unwanted) intera
tion of

(the tail of) the term l and (the beginning of) the term t

1

(or the tail of t

1

and the beginning of t

2

respe
tively). Repeating this pro
edure eliminates all

parallel operators from rewrite rules. The resulting PDA system �

0

enri
hed

by rewrite rules of the form X:s

a

�! s

0

for every rule s

a

�! s

0

2 �

0

is bisimilar

to a given �. 2

Example 5.8 Let �

2

be the wBPP system with the initial state pX and the

rules:

pX




�! pXkAkB pA

a

�! p" pB

b

�! p" pX

d

�! q"

Lemma 5.9 There is no PAD system bisimilar to the wBPP system �

2

of

Example 5.8.

Proof. �

2

is deadlo
kable. Due to Lemma 5.7 it suÆ
es to prove there is

no PDA system bisimilar to �

2

. This dire
tly follows from the fa
t that the

language L generated by �

2

is not 
ontext-free (L \ 


�

a

�

b

�

d = f


k

a

l

b

m

d j 0 �

l;m � kg is not a 
ontext-free language). 2

Lemma 5.10 There is no f
PAD system bisimilar to the wBPP system �

2

of Example 5.8.

Proof. For the sake of a 
ontradi
tion we assume a f
PAD � bisimilar to �

2

.

The �niteness of the 
onstraint system used in � implies that there exists

a rea
hable non-terminal state (t;m) of � su
h that every non-terminal state

rea
hable from (t;m) has also m on the store (the 
ontrary would mean the


onstraint system is in�nite). As (t;m) is non-terminal there exists a word

w 2 fa; bg

�

su
h that (t;m)

w

�! (s;m) and (s;m) is bisimilar to the initial

state pX of �

2

. The only transitions starting at states rea
hable from (s;m)

and 
hanging the value of the store 
an be the transitions leading to terminal

states, i.e. the transitions labelled by d. Hen
e we 
an dire
tly assume that all

rewrite rules of � labelled with x 2 fa; b; 
g have the form (t

1

x

�! t

2

; tt; tt).

Let �

0

be a PAD system with the set of rewrite rules as

ft

1

x

�! t

2

j (t

1

x

�! t

2

; tt; tt) 2 �; x 6= dg [

[ ft

1

d

�! Z j (t

1

d

�! t

2

; tt; n) 2 �; n 6= ffg;

where Z 62 Const(�) is a fresh pro
ess 
onstant. If we restri
t the systems �

and �

0

to a
tions a; b; 
 then � and �

0

are bisimilar. Furthermore in every

state q of �

0

rea
hable under w 2 fa; b; 
g

�

there is atransition labelled by d

and starting at q. It suÆ
es to show that this transition is leading to a terminal

state.

The state (q; tt) (
orresponding to the state q) has a ready parallel 
ompo-

nent able to perform an a
tion 
. This a
tion 
annot be disabled by any a
tion

performed by another ready parallel 
omponent. Hen
e there is just one ready

parallel 
omponent able to perform both 
 and d. For the same reason this


omponent is the only one whi
h is able to perform a
tions a and b if they are

10



K

�

ret

�

�nsk

�

y et al.

enabled in the state (q; tt). The same holds for the state q of �

0

. Moreover

the ready parallel 
omponent rewritten by the a
tion d is deadlo
ked by the

pro
ess 
onstant Z. Thus the state rea
hed under d is terminal and we get

a PAD system �

0

bisimilar to the wBPP �

2

of Example 5.8 { a 
ontradi
tion

(see Lemma 5.9). 2

5.4 wBPA non-bisimilar to f
PAN

Example 5.11 Let us 
onsider the following wBPA system with initial state

pX.

pX

a

�! pAX pX

b

�! pBX pA

a

�! p" pB

b

�! p"

pA

a

�! pAA pA

b

�! pBA pA

a

0

�! q" pB

b

0

�! q"

pB

a

�! pAB pB

b

�! pBB qA

a

0

�! q" qB

b

0

�! q"

Lemma 5.12 There is no f
PAN system bisimilar to the wBPA system of

Example 5.11.

The proof employs the notion of ready sequential 
omponents (an analogue

of ready parallel 
omponents introdu
ed in De�nition 5.5). As the proof is

mu
h more te
hni
ally involved we skip it. The full version of the proof is

published in [11℄.

6 Con
lusion and future work

We have extended Pro
ess Rewrite Systems (PRS) [13℄ by 'weak' �nite-state

unit and have 
lassi�ed new 
lasses by their expressiveness. We have shown

the re�ned hierar
hy (w.r.t. bisimilarity) 
ontaining new 
lasses as well as

those generated by both PRS and of two other PRS extensions introdu
ed

in [9,22℄.

We emphasize the results showing that BPP 
lass and its three extensions

form a stri
t (sub)hierar
hy w.r.t. bisimulation,

BPP ( f
BPP ( wBPP ( seBPP ( PN

whi
h is de
idable (even PSPACE-
omplete) on the BPP 
lass and unde
idable

on the 
lass of state-extended BPP (i.e. PPDA). It remains open for other two


lasses (i.e. f
BPP and wBPP) and is a subje
t of our further resear
h. We

are motivated by the fa
t the stri
tness of two leftmost in
lusions 
an be

proved (but is not shown here) even for language equivalen
e. The stri
tness

of in
lusion between wBPP and seBPP on the language equivalen
e level is

just our 
onje
ture.

11



K

�

ret

�

�nsk

�

y et al.

Referen
es

[1℄ Bouajjani, A., R. E
hahed and P. Habermehl, On the veri�
ation problem of

nonregular properties for nonregular pro
esses, in: Pro
. of LICS'95 (1995).

[2℄ Burkart, O., D. Cau
al, F. Moller and B. Ste�en, Veri�
ation on in�nite

stru
tures, in: Handbook of Pro
ess Algebra (2001), pp. 545{623.

[3℄ Burkart, O., D. Cau
al and B. Ste�en, Bisimulation 
ollapse and the pro
ess

taxonomy, in: Pro
. of CONCUR'96, LNCS 1119 (1996), pp. 247{262.

[4℄ Burkart, O. and J. Esparza, More in�nite results, Ele
troni
 Notes in

Theoreti
al Computer S
ien
e 5 (1997).

[5℄ Cau
al, D., On the regular stru
ture of pre�x rewriting, Theoreti
al Computer

S
ien
e 106 (1992), pp. 61{86.

[6℄ Christensen, S., Y. Hirshfeld and F. Moller, Bisimulation is de
idable for all

basi
 parallel pro
esses, in: Pro
eedings of CONCUR'93, LNCS 715 (1993), pp.

143{157.

[7℄ Clarke, E. M. and E. A. Emerson, Design and synthesis of syn
onization

skeletons using bran
hing time temporal logi
, in: Pro
. IBM Workshop on Logi


of Programs, LNCS 131 (1981), pp. 52{71.

[8℄ Jan�
ar, P., Strong bisimilarity on basi
 parallel pro
esses is PSPACE-
omplete,

in: Pro
. of 18th IEEE Symposium on Logi
 in Computer S
ien
e (LICS'03)

(2003), pp. 218{227.

[9℄ Jan�
ar, P., A. Ku�
era and R. Mayr, De
iding bisimulation-like equivalen
es with

�nite-state pro
esses, Theoreti
al Computer S
ien
e 258 (2001), pp. 409{433.

[10℄ Ku�
era, A. and P. Jan�
ar, Equivalen
e-
he
king with in�nite-state systems:

Te
hniques and results, in: Pro
. SOFSEM'2002, LNCS 2540 (2002).

[11℄ K�ret��nsk�y, M., V.

�

Reh�ak and J. Strej�
ek, Pro
ess Rewrite Systems with Weak

Finite-State Unit, Te
hni
al Report FIMU-RS-2003-05, Fa
ulty of Informati
s,

Masaryk University Brno (2003), full version of this paper.

[12℄ Maidl, M., The 
ommon fragment of CTL and LTL, in: Pro
. 41th Annual

Symposium on Foundations of Computer S
ien
e, 2000, pp. 643{652.

[13℄ Mayr, R., Pro
ess rewrite systems, Information and Computation 156 (2000),

pp. 264{286.

[14℄ Milner, R., \Communi
ation and Con
urren
y," Prenti
e-Hall, 1989.

[15℄ Moller, F., In�nite results, in: Pro
. of CONCUR'96, LNCS 1119 (1996), pp.

195{216.

[16℄ Moller, F., Pushdown Automata, Multiset Automata and Petri Nets, MFCS

Workshop on 
on
urren
y, Ele
troni
 Notes in Theoreti
al Computer S
ien
e

18 (1998).

12



K

�

ret

�

�nsk

�

y et al.

[17℄ Muller, D., A. Saoudi and P. S
hupp, Alternating automata, the weak monadi


theory of trees and its 
omplexity, Theoret. Computer S
ien
e 97 (1992),

pp. 233{244.

[18℄ Pnueli, A., The temporal logi
 of programs, in: Pro
. 18th IEEE Symposium on

the Foundations of Computer S
ien
e, 1977, pp. 46{57.

[19℄ Saraswat, V. A. and M. Rinard, Con
urrent 
onstraint programming, in: Pro
. of

17th POPL (1990), pp. 232{245.

[20℄ Srba, J., Roadmap of in�nite results, EATCS Bulletin (2002), pp. 163{175.

[21℄ Srba, J., Strong bisimilarity and regularity of basi
 parallel pro
esses is

PSPACE-hard, in: Pro
. STACS 2002, LNCS 2285 (2002), pp. 535{546.

[22℄ Strej�
ek, J., Rewrite systems with 
onstraints, EXPRESS'01, Ele
troni
 Notes

in Theoreti
al Computer S
ien
e 52 (2002).

13


