INFINITY 2003 Preliminary Version

On Extensions of Process Rewrite Systems:
Rewrite Systems with Weak Finite-State Unit !

Mojmir Kietinsky? Vojtéch Rehdk? Jan Strejcek?

Faculty of Informatics
Masaryk University
Brno, Czech Republic

Abstract

Various classes of infinite-state processes are often specified by rewrite systems.
We extend Mayr’s Process Rewrite Systems (PRS) [13] by finite-state unit whose
transition function satisfies some restrictions inspired by weak finite automata. We
classify these models by their expressiveness and show how the hierarchy of new
classes (w.r.t. bisimilarity) is related to both PRS hierarchy of Mayr and two other
hierarchies of PRS extensions introduced in [9,22].

Key words: process rewrite systems, state extension, infinite state

1 Introduction

As the state-space infiniteness of concurrent systems has a various, real-life
sources (e.g. data manipulation, asynchronous communication, etc.), a moti-
vation is to provide adequate representations of concurrent systems as well as
to study the possibilities of their formal verification. Concurrent systems can
be modelled in a number of ways (e.g. Process Algebras, Petri Nets, etc.), how-
ever a unifying view is to interpret them as labelled transition systems (LTS)
with possibly infinite number of states. LTS families are often specified via
a variety of rewrite systems and form hierarchies (w.r.t. bisimulation equiva-
lence), see for example [5,3,15,13]. Here we employ the classes of infinite-state
systems defined by Process Rewrite Systems (PRS, introduced by Mayr in [13])
as they contain a variety of the formalisms studied in the context of formal
verification. For surveys of formal verification techniques and results see for
example [15,4,2,10,20].

It is possible to extend rewriting mechanisms by a finite-state unit [15,9].
However this extension is very powerful as the state-extended version of PA

1 This work has been partially supported by GACR, grant No. 201/03/1161.
2 Emails: {kretinsky,rehak,strejcek}@fi.muni.cz
This is a preliminary version. The final version will be published in

Electronic Notes in Theoretical Computer Science
URL: wuw.elsevier.nl/locate/entcs

KRETINSKY ET AL.

processes (i.e. the state-extended (1,G)-PRS) has a full Turing-power [1], while
unrestricted PRS is not Turing-powerful [13]. One of motivations for introduc-
ing state-extended PRS classes can be seen as follows: it is required to specify
some process classes which are not explicitly present in PRS hierarchy. This
can be exemplified by the class of so called Parallel Push-Down Automata
(PPDA) introduced by Moller as a state-extended version of BPP in [15].
Please note BPP forms a proper subclass of PPDA which is properly contained
in Petri nets [16]. We also note the problem of bisimulation equivalence on
BPP is decidable [6] (the recent results [21,8] show it is PSPACE-complete),
while the same problem on their state-extended version is undecidable [15].

In this paper we aim at weakening the strength of state-extension by
putting some restrictions on (the transition function of) finite-state unit —
we use weak finite automaton as introduced in [17], but used here as a non-
deterministic (NFA) rather than alternating one. A NFA A = (Q,%,0, qo, F)
is weak if its state space is partitioned into a disjoint union @ = |J @;, and
there is a partial order > on the collection of the (Q;. The transition function
§:Q x X — P(Q) is such that if ¢ € Q); and ¢’ € 6(¢, a) then ¢’ € Q;, where
Qi > Q;. The set F of final states will not play any role in this paper, however
recall it is required that Q; C F or Q; N F = () for each Q;. Due to their con-
nections to (modal) logics weak (nondeterministic, alternating,...) automata
have been used in several contexts and in fact their slightly modified variants
have been employed. For example we refer to [12] where the common fragment
of a linear time logic LTL [18] and a branching time logic ACTL (which is
a fragment of CTL [7]) is given by exactly those LTL formulae the negation of
which can be represented by 1-weak Biichi automaton (automaton is 1-weak
if each partition block contains exactly one state). We mention the 1-weak
variant only and skip the others as this will serve as a suitable abstraction
used in our definition of PRS with weak unit.

In state-extended PRS a finite-state unit keeps a sort of global information
accessible to all parallel (ready to be reduced) components of a PRS term. For
example different (sub)sets of rewriting rules can be applied depending on the
current state of unit. Elsewhere [22] one of the authors of this paper enriched
(pure) PRS by 'monotonically evolving’ unit and showed the introduced fcPRS
classes (’fc’ standing for “finitely constrained’ — see Section 3) are strictly more
expressible than the respective classes of PRS provided the respective PRS
class does not subsume some notion of ’control state’ as e.g. PDA or Petri
Nets do.

Some basic definitions and properties of PRS (taken from[13]) and fcPRS
([22]) are recalled in Sections 2 and 3. We introduce PRS with weak unit
(wPRS) and mention state-extended PRS in Section 4. Some relationships
between the respective new classes and the already existing ones as well as
the (combined) hierarchy of PRS and (relevant classes of) extended PRSs are
shown in Section 5.

KRETINSKY ET AL.

2 Process rewrite systems (PRS)

A labelled transition system (LTS) L is a tuple (S, Act,—>,ap), where S
is a set of states or processes, Act is a set of atomic actions or labels, —C
S x Act x S is a transition relation (written o — 3 instead of (o, a, 3) €—),
ap € S is a distinguished initial state. A state o € S'is terminal (or deadlocked,
written o —£) if there is no a € Act and 3 € S such that o —=+ 3. We also
use the natural generalization ot —— f3 for finite sequences of actions o € Act*.
The state « is reachable if there is o € Act* such that oy — a.

A binary relation R on set of states S is a bisimulation [14] iff for each
(e, B) € R the following conditions hold:

e Vo' €S,acAct:a-"a = 3 €S: 8- AN, 0)€ER)
eV eSacAct: -3 = FdeS:a-"dA([)eER)

Bisimulation equivalence on an assumed LTS is the maximal bisimulation
(i.e. union of all bisimulations).

Let Const = {X, ...} be a countably infinite set of process constants. The
set T of process terms (ranged over by t,...) is defined by the abstract syntax

t=c¢ | X | tl.tQ | t1||t2,

where ¢ is the empty term, X € Const is a process constant (used as an atomic
process), ’||” and ’.” mean parallel and sequential compositions respectively.
The set Const(t) is the set of all constants occurring in a process term t.
We always work with equivalence classes of terms modulo commutativity and
associativity of ’||” and modulo associativity of *.” We also define e.t =t = t.e
and t||e = t.

We distinguish four classes of process terms: ’1’ stands for terms consist-
ing of a single process constant only (i.e. ¢ € 1), ’S’ are sequential terms —
without parallel composition, 'P” are parallel terms - without sequential com-
position, G’ are general terms with arbitrarily nested sequential and parallel
compositions.

Definition 2.1 Let Act = {a,b,---} be a countably infinite set of atomic
actions, o, f € {1, S, P,G} such that « C . An («, 3)-PRS (process rewrite
system) is a pair A = (R, ty), where

R is a finite set of rewrite rules of the form ¢, — t5, where t; € a, t * e,
ty € (B are process terms and a € Act is an atomic action,

e ty € B is an initial state.

Unless stated otherwise we assume a given A as in Definition 2.1. We define
Const(A) as the set of all constants occurring in the rewrite rules of A or in
its initial state, and Act(A) as the set of all actions occurring in the rewrite
rules of A. We sometimes write (£, — t5) € A instead of (¢, — t,) €R.

The semantics of A is given by the LTS (S, Act(A), —, ty), where S =
{t € B | Const(t) C Const(A)} and — is the least relation satisfying the

3

KRETINSKY ET AL.

inference rules:
(t1 2> ty) € A t st t > 1)

=ty bt~ |ty bty —— ity
If no confusion can arise, we sometimes speak about “process rewrite system”
meaning “labelled transition system generated by process rewrite system”.

The PRS-hierarchy of (o,)-PRS is depicted as a sub-hierarchy in Figure 1.
Some classes included in the hierarchy correspond to widely known models
as Finite State systems (FS), Basic Process Algebras (BPA), Basic Parallel
Processes (BPP), Process Algebras (PA), Push-Down Processes (PDA, see [5]
for justification), and Petri Nets (PN). The other three classes were introduced
(and named) by Mayr [13]. The relationship between the class name and its
(o, 3)-PRS counter-part is given in Figure 1 as well.

PRS-hierarchy is not strict w.r.t. language equivalence (e.g. both BPA
and PDA define the class of e-free context-free languages). The strictness of
the hierarchy w.r.t. bisimularity follows from the results presented (or cited)
in [3,15] and from the following two examples [13].

Example 2.2 A PDA system with the initial state U.X which is not bisimilar
to any PAN system (for proof see [13]).

UX S UAX UA-UAA UB-UAB
UX SUBX UASUBA UB-UBB

UX S VX UA- VA UB - V.B
UX L wx UA-L WA UB - W.B
V.X v VALY V.B v
wx Lsw WA W W.B 2w

Example 2.3 A Petri net given as (P, P)-PRS with the initial state X||A||B
which is not bisimilar to any PAD process (for proof see [13]).

XL X|AB YA-SY X[A-LHZ Y)[A-DL2Z
X -5y YIB-LY Xx|B-%Zz Y|B-SZ

3 PRS with finite constraint systems (fcPRS)

In this section we recall the extension of process rewrite systems with finite
constraint systems. This extension has been directly motivated by constraint
systems used in concurrent constraint programming (CCP) — see e.g. [19].
A constraint system is a bounded lattice (C,k, A, tt, ff), where C' is the set
of constraints, - (called entailment) is an ordering on this set, A is the lub
operation, and #t (true), ff (false) are the least and the greatest elements of
C respectively (ffF tt and #t # ff). The constraint system describes a state

4

KRETINSKY ET AL.

space and possible evolution of a unit called store.

Definition 3.1 Let o, € {1,S, P,G} such that « C . An («,(3)-fcPRS
(PRS with finite constraint system) is a tuple A = (C, R, ty), where

e C = (C,F, A tt, ff) is a finite constraint system describing the store; the
elements of C' represent values of the store,

* R is a finite set of rewrite rules of the form (t, - t,m,n), where ¢, € a,
t1 # e, ty € [are process terms, a € Act is an atomic action, and m,n € C
are constraints,

e ty € (8 is a distinguished initial process term.

The semantics of an («, §)-fcPRS system A = (C, R, 1) is given by the
LTS (S, Act(A), —, (to, tt)), where S = {t € | Const(t) C Const(A)} x
(C ~{ff}) and — is the least relation satisfying the inference rules:

(tl L> tg,m,n) €A
(t1,0) == (ts,0 A n)
(tla 0) i> (tllvp) (tla O) i> (tllvp)
(t1]|t2, 0) == (t\||ta,) (tr1.t2,0) —= (t,.t2, p)

The two side conditions in the first inference rule are very close to principles
used in CCP. The first one (o - m) ensures the rule (t; —= t5,m,n) € A can
be used only if the current value of the store o entails m (it is similar to
ask(m) in CCP). The second condition (o A n # ff) guarantees that the store
stays consistent after application of the rule (analogous to the consistency
requirement when processing tell(n) in CCP).

An important observation is that the value of a store can move in a lattice

only upwards as o A n always entails o. Intuitively, partial information can
only be added to the store, but never retracted (the store is monotonic).

if o-m and o A n # ff,

Also note that an execution of a transition which starts in a state with o on
the store and which is generated by a rule (t; —= t5,m,n) € A implies that
for every subsequent value of the store p the conditions p = m and p A n # ff
are satisfied (and thus the use of the rule cannot be forbidden by a value of
the store in future). The first condition p = m comes from the monotonic
behaviour of the store. The second condition comes from the facts that the
constraint n in the rule can change the store only in the first application of
the rule and that for each subsequent state p of the store p A n = p holds.

4 PRS with weak finite-state unit (wPRS)

Definition 4.1 Let o, 8 € {1,S, P,G} such that « C 3. An («,(3)-wPRS
(PRS with weak finite-state unit) is a tuple A = (Q, >, R, mg, ty), where

* (@, >) is partially ordered finite set representing states of weak finite-state
unit; the elements of () are called w-states,

5

KRETINSKY ET AL.

* R is a finite set of rewrite rules of the form mt, — nt, satisfying the
condition m > n, where m,n € Q, t, € a, t; # ¢, to € 3, and a € Act,

e moy € Q, tg € B, and myty is the initial state of the system.
The semantics of an (o, §)-wPRS A = (@, >, R, mq, to) is given by the LTS

(S, Act(A), —, moty), where S = {mt | m € Q,t € 3,Const(t) C Const(A)}
and — is defined as the least relation satisfying the inference rules:

(mt; = nty) € A mt; — nth mt; = nth

mty == nty | mt||t) == n(t][t) mi(tts) == n(t].ty)
The presented notion of weakness corresponds to 1-weakness condition in
automata theory (mentioned already in Section 1; the general weak unit with-
out considering final states would coincide with standard state-extension as
all the states of @ could be included in one partition block). In any transi-
tion sequence the w-state components of visited states form a non-increasing
sequence w.r.t. > (i.e. can only change finitely many times). However, in
contrast to fcPRS, the weak unit can forbid the application of any rewrite
rule.

State Frxtended PRS If we relax from the condition m > n imposed on rewrite
rules in Definition 4.1, we get the definition of state-extended («,3)-PRS
(denoted by prefix ’se’). Instead of (1, 5)-sePRS, (1, P)-sePRS, ... we also use
more traditional abbreviations seBPA, seBPP, and we also take up this
notation for all the classes of both fcPRS and wPRS introduced earlier.

We remind a motivation of introducing sePRS given in Section 1. Of course,
seBPA and seBPP coincides with PDA and PPDA respectively. Also recall
that (S,S)-PRS and PDA are equivalent w.r.t. bisimilarity as shown by Cau-
cal [5], while seBPP has no bisimulation equivalent counter-part within PRS
hierarchy (it is strictly under (P,P)-PRS as shown by Moller in [16]).

5 Relations between classes, refining hierarchy

We start with some very obvious observations. Given process classes X, Y the
notation X C Y means that every LTS definable in class X can be defined (up
to bisimulation equivalence) also in class Y. We say Y is at least as expressive
as X.

An immediate observation is the classes FS, PDA and PN have the same
expressiveness as the corresponding {fc, w,se} extended classes. We also note
that

(a, 3)-PRS C (e, B)-fcPRS C (o, 5)-wPRS C (a, 3)-sePRS

hold for every (o, 3)-PRS class (even up to isomorphism). For the second
inclusion take an arbitrary («, §)-fcPRS A with an initial term ¢, and a con-
straint system C = (C,, A, tt, ff). The corresponding (a, 3)-wPRS is A" =
(C N {ff}, >, R, tt,ty), where >= (F)~" and R' = {ot; - (o An)ts | (t; —

6

KRETINSKY ET AL.

wPRS

fcPRS

PRS
(G, G)-PRS

wPAD
|

fcPAD fcPAN
| |
PAD PAN
(S, G)-PRS

wPDA=fcPDA=PDA wPN=fcPN=PN

(S, S)-PRS | (P, P)|-PRS
PA
(1,G)-PRS PP|DA
wBPA wBPP
| |
fcBPA fcBPP
| |
BPA BPP
(LS>PR§\\\\\\\\\\\ (1, P)-PRS
wFS=fcFS=FS
(1,1)-PRS

Fig. 1. The hierarchy of classes defined by (extended) rewrite formalisms

to,m,n) € A and o = m and o A n # ff}. The first and third inclusions are
obvious as well.

Relations between the classes of PRS-hierarchy, the corresponding classes
extended with finite constraint systems or weak state unit, and the PPDA
class (the only class of Moller’s hierarchy not covered by previous formalisms)
are depicted in Figure 1. The shape of the hierarchy follows from the defi-
nitions of included classes and from the relations between considered exten-
sions. The strictness of the PRS-hierarchy (w.r.t. bisimulation equivalence)
has been proved by Mayr [13]. The strictness of the hierarchy covering classes
from PRS-hierarchy and corresponding classes with finite constraint systems
has been proved in [22] (with one exception — the strictness between PRS and
fcPRS is just a conjecture).

In the rest of this section we show that

e there is a PDA system which is not bisimilar to any wPAN system,
e there is a PPDA system which is not bisimilar to any wPAD system,

e there is a wBPP system which is not bisimilar to any fcPAD system (this
proof formulates a property that is a sufficient condition for a PAD to be

7

KRETINSKY ET AL.

bisimilar to some PDA),

¢ there is a wBPA system which is not bisimilar to any fcPAN system.

These proofs together with the fact that PPDA are strictly less expressive
than PN [16] will finish the proof of the strictness of our hierarchy (with two
exceptions — the strictness of the relations between PRS, fcPRS, and wPRS re-
mains unproved, although we conjecture the existence of the separating gaps).

5.1 PDA non-bisimilar to wPAN

Example 5.1 Let us consider a PDA system of Example 2.2 but having
U.X.Y as the initial state and two more rewrite rules: V.Y - U.X.Y,W.Y -
U.X.Y. This system, denoted by A;, behaves like that defined in Example 2.2,
but whenever the original system terminates, the enhanced A is restarted un-
der the action z.

Lemma 5.2 There is no wPAN A bisimilar to the PDA Ay of Example 5.1.

Proof. To derive a contradiction assume a wPAN A bisimilar to the PDA
Ay. As the weak state unit of A is finite then there exists a reachable state
mt of A such that every state reachable from mt has also m as its w-state
component (the opposite would imply the infiniteness of the weak state unit).
There exists a word w € {a,b,c,d,e, f}* such that mt =% mt', where mt’
is bisimilar to the state U.X.Y of the PDA process A;. If the rules labelled
by the action x are removed from A and mt’ is taken as the initial state, we
obtain the system whose all reachable states have m as w-state component
and which is bisimilar to the pushdown process of Example 2.2.

Now let A’ be a PAN system with the initial state ¢ and with the set of
rewrite rules consisting of the rules [— r, where (mi — mr) € A and
v € {a,b,c,d,e, f}. Tt is obvious that this PAN system A’ is bisimilar to the
PDA system defined in Example 2.2 — a contradiction. 4

5.2 PPDA non-bisimilar to wPAD

Example 5.3 Let A be a PPDA process with the initial state zA||B||C' and
the following rewrite rules:

+C L5 zA||B||C zA Ly ze 2A-L e

zC - yC aB % ze 2B %5 ze
yA s ye yAi>Z6 2C 1 2A||B||C
yB LI ye yB 4y e

The rules labelled by g, ¢, a,b,d correspond to the rules of the Petri net
given in Example 2.3. Hence the PPDA A behaves as the mentioned Petri
net, but when the Petri net terminates, the PPDA A can remove an arbitrary

8

KRETINSKY ET AL.

number of A and B symbols from the parallel stack and then “restart” the
system under action 7.

Lemma 5.4 There is no wPAD A’ bisimilar to the PPDA A of Example 5.3.

The proof is similar to the proof of Lemma 5.2 using the fact the Petri net
of Example 2.3 is not bisimilar to any PAD system.

5.8 wBPP non-bisimilar to fcPAD

A rewriting system is deadlockable if for each reachable nonterminal state
s (of its underlying LTS) there is a transition from s to a terminal state,
ie.Ja,t:s —t—Fs.

Definition 5.5 A sequential subterm ¢ (i.e. t € S) of term g € G is a ready
parallel component iff t is a maximal subtree in the syntax tree of term g such
that ¢ is not in the right-hand side subtree of any sequential node (i.e. node
corresponding to sequential operator). A ready parallel component ¢ is live in
a PAD system A if ¢ is not deadlocked (i.e. there is a rule applicable to t).

Intuitively the ready parallel components are defined as the maximal se-
quential parts of a PAD process ¢g such that g can perform an action a if and
only if some of its ready parallel components can perform the same action a.

Lemma 5.6 Fvery reachable state of an arbitrary deadlockable PAD system
has at most one live ready parallel component.

Proof. Observe that the application of a PAD rewrite rule can only modify
one ready parallel component. Hence there is no way how to deadlock more
than one live ready parallel component by one application of a PAD rewrite
rule. O

Lemma 5.7 Every deadlockable PAD system is bisimilar to a PDA system.

Proof. An idea is to transform PAD rewrite rules onto corresponding PDA
rewrite rules (this is sufficient as for every PAD there is a bisimilar PAD
system with a single process constant as the initial process term).

There is only one way to revive a deadlocked parallel component, namely to
rewrite adjacent components onto €. For example if B.C' is a deadlocked ready
parallel component of (A.C||B.C).D and (A.C||B.C).D - (¢||B.C).D =
B.C.D then the ready parallel component B.C.D can be live.

Let A be a PAD system and X ¢ Const(A) be a fresh process constant.
Let us consider a rewrite rule of A with the right hand side containing a max-
imal subterm of the form [.(#||t3).r, where ¢;,t, € S and [,r can be ¢. In
an arbitrary transition sequence the components 1, t5 generated by the appli-
cation of the considered rewrite rule become ready at the same time. Thus
at least one of them is deadlocked. Let t5 be deadlocked. We replace the
subterm [.(¢||t2).r of the rule by [.X.t;. X .t5.r (or just ¢;.X.ty.r whenever [is

9

KRETINSKY ET AL.

g). The process constant X eliminates any possible (unwanted) interaction of
(the tail of) the term [and (the beginning of) the term #; (or the tail of t;
and the beginning of ¢, respectively). Repeating this procedure eliminates all
parallel operators from rewrite rules. The resulting PDA system A’ enriched
by rewrite rules of the form X.s — s’ for every rule s — s’ € A’ is bisimilar
to a given A. O

Example 5.8 Let Ay be the wBPP system with the initial state pX and the
rules:

pX S pX|A|B pA-Zspe pB l)pe pX i>q<€

Lemma 5.9 There is no PAD system bisimilar to the wBPP system As of
Ezample 5.8.

Proof. A, is deadlockable. Due to Lemma 5.7 it suffices to prove there is
no PDA system bisimilar to A,. This directly follows from the fact that the
language L generated by A, is not context-free (L N c*a*b*d = {cFalb™d | 0 <
[,m < k} is not a context-free language). O

Lemma 5.10 There is no fcPAD system bisimilar to the wBPP system A,
of Example 5.8.

Proof. For the sake of a contradiction we assume a fcPAD A bisimilar to As.
The finiteness of the constraint system used in A implies that there exists
a reachable non-terminal state (¢, m) of A such that every non-terminal state
reachable from (¢,m) has also m on the store (the contrary would mean the
constraint system is infinite). As (f,m) is non-terminal there exists a word
w € {a,b}* such that (t,m) —— (s,m) and (s,m) is bisimilar to the initial
state pX of Ay. The only transitions starting at states reachable from (s, m)
and changing the value of the store can be the transitions leading to terminal
states, i.e. the transitions labelled by d. Hence we can directly assume that all
rewrite rules of A labelled with 2 € {a, b, c} have the form (t, —= t,, tt, tt).
Let A’ be a PAD system with the set of rewrite rules as

{t1 Doty | (ty =25 to, th t) € A # d} U
U{ti =5 Z | (t -5 to, tt,m) € An £ [}

where Z ¢ Const(A) is a fresh process constant. If we restrict the systems A
and A’ to actions a,b,c then A and A’ are bisimilar. Furthermore in every
state ¢ of A’ reachable under w € {a, b, c}* there is atransition labelled by d
and starting at ¢. It suffices to show that this transition is leading to a terminal
state.

The state (g, tt) (corresponding to the state ¢) has a ready parallel compo-
nent able to perform an action ¢. This action cannot be disabled by any action
performed by another ready parallel component. Hence there is just one ready
parallel component able to perform both ¢ and d. For the same reason this
component is the only one which is able to perform actions a and b if they are

10

KRETINSKY ET AL.

enabled in the state (g, tt). The same holds for the state ¢ of A’. Moreover
the ready parallel component rewritten by the action d is deadlocked by the
process constant Z. Thus the state reached under d is terminal and we get
a PAD system A’ bisimilar to the wBPP A, of Example 5.8 — a contradiction
(see Lemma 5.9). 0

5.4 wBPA non-bisimilar to fcPAN

Example 5.11 Let us consider the following wBPA system with initial state
pX.

pX -5 pAX pX LI pBX pA SN pe pB L pe
pA -5 pAA pA LI pBA pA N qe pB LN qe
pB s pAB pB LN pBB qA LN qe qB LN qe

Lemma 5.12 There is no fcPAN system bisimilar to the wBPA system of
Example 5.11.

The proof employs the notion of ready sequential components (an analogue
of ready parallel components introduced in Definition 5.5). As the proof is
much more technically involved we skip it. The full version of the proof is
published in [11].

6 Conclusion and future work

We have extended Process Rewrite Systems (PRS) [13] by 'weak’ finite-state
unit and have classified new classes by their expressiveness. We have shown
the refined hierarchy (w.r.t. bisimilarity) containing new classes as well as
those generated by both PRS and of two other PRS extensions introduced
in [9,22].

We emphasize the results showing that BPP class and its three extensions
form a strict (sub)hierarchy w.r.t. bisimulation,

BPP C fcBPP C wBPP C seBPP C PN

which is decidable (even PSPACE-complete) on the BPP class and undecidable
on the class of state-extended BPP (i.e. PPDA). It remains open for other two
classes (i.e. fcBPP and wBPP) and is a subject of our further research. We
are motivated by the fact the strictness of two leftmost inclusions can be
proved (but is not shown here) even for language equivalence. The strictness
of inclusion between wBPP and seBPP on the language equivalence level is
just our conjecture.

11

KRETINSKY ET AL.
References

[1] Bouajjani, A., R. Echahed and P. Habermehl, On the verification problem of
nonreqular properties for nonreqular processes, in: Proc. of LICS’95 (1995).

[2] Burkart, O., D. Caucal, F. Moller and B. Steffen, Verification on infinite
structures, in: Handbook of Process Algebra (2001), pp. 545-623.

[3] Burkart, O., D. Caucal and B. Steffen, Bisimulation collapse and the process
tazonomy, in: Proc. of CONCUR’96, LNCS 1119 (1996), pp. 247-262.

[4] Burkart, O. and J. Esparza, More infinite results, Electronic Notes in
Theoretical Computer Science 5 (1997).

[5] Caucal, D., On the regular structure of prefiz rewriting, Theoretical Computer
Science 106 (1992), pp. 61-86.

[6] Christensen, S., Y. Hirshfeld and F. Moller, Bisimulation is decidable for all
basic parallel processes, in: Proceedings of CONCUR’93, LNCS 715 (1993), pp.
143-157.

[7] Clarke, E. M. and E. A. Emerson, Design and synthesis of synconization
skeletons using branching time temporal logic, in: Proc. IBM Workshop on Logic
of Programs, LNCS 131 (1981), pp. 52-71.

[8] Jancar, P., Strong bisimilarity on basic parallel processes is PSPACE-complete,
in: Proc. of 18th IEEE Symposium on Logic in Computer Science (LICS’03)
(2003), pp. 218-227.

[9] Jancar, P., A. Kuc¢era and R. Mayr, Deciding bisimulation-like equivalences with
finite-state processes, Theoretical Computer Science 258 (2001), pp. 409-433.

[10] Kucera, A. and P. Jancar, Equivalence-checking with infinite-state systems:
Techniques and results, in: Proc. SOFSEM’2002, LNCS 2540 (2002).

[11] Kfetinsky, M., V. Rehdk and J. Strejéek, Process Rewrite Systems with Weak
Finite-State Unit, Technical Report FIMU-RS-2003-05, Faculty of Informatics,
Masaryk University Brno (2003), full version of this paper.

[12] Maidl, M., The common fragment of CTL and LTL, in: Proc. 41th Annual
Symposium on Foundations of Computer Science, 2000, pp. 643-652.

[13] Mayr, R., Process rewrite systems, Information and Computation 156 (2000),
pp- 264-286.

[14] Milner, R., “Communication and Concurrency,” Prentice-Hall, 1989.

[15] Moller, F., Infinite results, in: Proc. of CONCUR’96, LNCS 1119 (1996), pp.
195-216.

[16] Moller, F., Pushdown Automata, Multiset Automata and Petri Nets, MFCS
Workshop on concurrency, Electronic Notes in Theoretical Computer Science
18 (1998).

12

KRETINSKY ET AL.

[17] Muller, D., A. Saoudi and P. Schupp, Alternating automata, the weak monadic
theory of trees and its complexity, Theoret. Computer Science 97 (1992),
pp- 233-244.

[18] Pnueli, A., The temporal logic of programs, in: Proc. 18th IEEE Symposium on
the Foundations of Computer Science, 1977, pp. 46-57.

[19] Saraswat, V. A. and M. Rinard, Concurrent constraint programming, in: Proc. of

17th POPL (1990), pp. 232-245.
[20] Srba, J., Roadmap of infinite results, EATCS Bulletin (2002), pp. 163-175.

[21] Srba, J., Strong bisimilarity and regularity of basic parallel processes is
PSPACE-hard, in: Proc. STACS 2002, LNCS 2285 (2002), pp. 535-546.

[22] Strejcek, J., Rewrite systems with constraints, EXPRESS’ 01, Electronic Notes
in Theoretical Computer Science 52 (2002).

13

