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Abstrat

Various lasses of in�nite-state proesses are often spei�ed by rewrite systems.

We extend Mayr's Proess Rewrite Systems (PRS) [13℄ by �nite-state unit whose

transition funtion satis�es some restritions inspired by weak �nite automata. We

lassify these models by their expressiveness and show how the hierarhy of new

lasses (w.r.t. bisimilarity) is related to both PRS hierarhy of Mayr and two other

hierarhies of PRS extensions introdued in [9,22℄.
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1 Introdution

As the state-spae in�niteness of onurrent systems has a various, real-life

soures (e.g. data manipulation, asynhronous ommuniation, et.), a moti-

vation is to provide adequate representations of onurrent systems as well as

to study the possibilities of their formal veri�ation. Conurrent systems an

be modelled in a number of ways (e.g. Proess Algebras, Petri Nets, et.), how-

ever a unifying view is to interpret them as labelled transition systems (LTS)

with possibly in�nite number of states. LTS families are often spei�ed via

a variety of rewrite systems and form hierarhies (w.r.t. bisimulation equiva-

lene), see for example [5,3,15,13℄. Here we employ the lasses of in�nite-state

systems de�ned by Proess Rewrite Systems (PRS, introdued by Mayr in [13℄)

as they ontain a variety of the formalisms studied in the ontext of formal

veri�ation. For surveys of formal veri�ation tehniques and results see for

example [15,4,2,10,20℄.

It is possible to extend rewriting mehanisms by a �nite-state unit [15,9℄.

However this extension is very powerful as the state-extended version of PA
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proesses (i.e. the state-extended (1,G)-PRS) has a full Turing-power [1℄, while

unrestrited PRS is not Turing-powerful [13℄. One of motivations for introdu-

ing state-extended PRS lasses an be seen as follows: it is required to speify

some proess lasses whih are not expliitly present in PRS hierarhy. This

an be exempli�ed by the lass of so alled Parallel Push-Down Automata

(PPDA) introdued by Moller as a state-extended version of BPP in [15℄.

Please note BPP forms a proper sublass of PPDA whih is properly ontained

in Petri nets [16℄. We also note the problem of bisimulation equivalene on

BPP is deidable [6℄ (the reent results [21,8℄ show it is PSPACE-omplete),

while the same problem on their state-extended version is undeidable [15℄.

In this paper we aim at weakening the strength of state-extension by

putting some restritions on (the transition funtion of) �nite-state unit {

we use weak �nite automaton as introdued in [17℄, but used here as a non-

deterministi (NFA) rather than alternating one. A NFA A = (Q;�; Æ; q

0

; F )

is weak if its state spae is partitioned into a disjoint union Q =

S

Q

i

, and

there is a partial order � on the olletion of the Q

i

. The transition funtion

Æ : Q� � ! P(Q) is suh that if q 2 Q

i

and q

0

2 Æ(q; a) then q

0

2 Q

j

, where

Q

i

� Q

j

. The set F of �nal states will not play any role in this paper, however

reall it is required that Q

i

� F or Q

i

\ F = ; for eah Q

i

. Due to their on-

netions to (modal) logis weak (nondeterministi, alternating,...) automata

have been used in several ontexts and in fat their slightly modi�ed variants

have been employed. For example we refer to [12℄ where the ommon fragment

of a linear time logi LTL [18℄ and a branhing time logi ACTL (whih is

a fragment of CTL [7℄) is given by exatly those LTL formulae the negation of

whih an be represented by 1-weak B�uhi automaton (automaton is 1-weak

if eah partition blok ontains exatly one state). We mention the 1-weak

variant only and skip the others as this will serve as a suitable abstration

used in our de�nition of PRS with weak unit.

In state-extended PRS a �nite-state unit keeps a sort of global information

aessible to all parallel (ready to be redued) omponents of a PRS term. For

example di�erent (sub)sets of rewriting rules an be applied depending on the

urrent state of unit. Elsewhere [22℄ one of the authors of this paper enrihed

(pure) PRS by 'monotonially evolving' unit and showed the introdued fPRS

lasses ('f' standing for '�nitely onstrained' { see Setion 3) are stritly more

expressible than the respetive lasses of PRS provided the respetive PRS

lass does not subsume some notion of 'ontrol state' as e.g. PDA or Petri

Nets do.

Some basi de�nitions and properties of PRS (taken from[13℄) and fPRS

([22℄) are realled in Setions 2 and 3. We introdue PRS with weak unit

(wPRS) and mention state-extended PRS in Setion 4. Some relationships

between the respetive new lasses and the already existing ones as well as

the (ombined) hierarhy of PRS and (relevant lasses of) extended PRSs are

shown in Setion 5.
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2 Proess rewrite systems (PRS)

A labelled transition system (LTS) L is a tuple (S;At;�!; �

0

), where S

is a set of states or proesses, At is a set of atomi ations or labels, �!�

S�At�S is a transition relation (written �

a

�! � instead of (�; a; �) 2�!),

�

0

2 S is a distinguished initial state. A state � 2 S is terminal (or deadloked,

written � 6�!) if there is no a 2 At and � 2 S suh that �

a

�! �. We also

use the natural generalization �

�

�! � for �nite sequenes of ations � 2 At

�

.

The state � is reahable if there is � 2 At

�

suh that �

0

�

�! �.

A binary relation R on set of states S is a bisimulation [14℄ i� for eah

(�; �) 2 R the following onditions hold:

�

8�

0

2 S; a 2 At : �

a

�! �

0

=) (9�

0

2 S : �

a

�! �

0

^ (�

0

; �

0

) 2 R)

�

8 �

0

2 S; a 2 At : �

a

�! �

0

=) (9�

0

2 S : �

a

�! �

0

^ (�

0

; �

0

) 2 R)

Bisimulation equivalene on an assumed LTS is the maximal bisimulation

(i.e. union of all bisimulations).

Let Const = fX; : : :g be a ountably in�nite set of proess onstants. The

set T of proess terms (ranged over by t; : : :) is de�ned by the abstrat syntax

t = " j X j t

1

:t

2

j t

1

kt

2

;

where " is the empty term, X 2 Const is a proess onstant (used as an atomi

proess), 'k' and ':' mean parallel and sequential ompositions respetively.

The set Const(t) is the set of all onstants ourring in a proess term t.

We always work with equivalene lasses of terms modulo ommutativity and

assoiativity of 'k' and modulo assoiativity of ':' We also de�ne ":t = t = t:"

and tk" = t.

We distinguish four lasses of proess terms: '1' stands for terms onsist-

ing of a single proess onstant only (i.e. " 62 1), 'S' are sequential terms {

without parallel omposition, 'P' are parallel terms - without sequential om-

position, 'G' are general terms with arbitrarily nested sequential and parallel

ompositions.

De�nition 2.1 Let At = fa; b; � � �g be a ountably in�nite set of atomi

ations, �; � 2 f1; S; P;Gg suh that � � �. An (�; �)-PRS (proess rewrite

system) is a pair � = (R; t

0

), where

�

R is a �nite set of rewrite rules of the form t

1

a

�! t

2

, where t

1

2 �, t

1

6= ",

t

2

2 � are proess terms and a 2 At is an atomi ation,

�

t

0

2 � is an initial state.

Unless stated otherwise we assume a given � as in De�nition 2.1. We de�ne

Const(�) as the set of all onstants ourring in the rewrite rules of � or in

its initial state, and At(�) as the set of all ations ourring in the rewrite

rules of �. We sometimes write (t

1

a

�! t

2

) 2 � instead of (t

1

a

�! t

2

)2R.

The semantis of � is given by the LTS (S;At(�);�!; t

0

), where S =

ft 2 � j Const(t) � Const(�)g and �! is the least relation satisfying the

3
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inferene rules:

(t

1

a

�! t

2

) 2 �

t

1

a

�! t

2

;

t

1

a

�! t

0

1

t

1

kt

2

a

�! t

0

1

kt

2

;

t

1

a

�! t

0

1

t

1

:t

2

a

�! t

0

1

:t

2

:

If no onfusion an arise, we sometimes speak about \proess rewrite system"

meaning \labelled transition system generated by proess rewrite system".

The PRS-hierarhy of (�; �)-PRS is depited as a sub-hierarhy in Figure 1.

Some lasses inluded in the hierarhy orrespond to widely known models

as Finite State systems (FS), Basi Proess Algebras (BPA), Basi Parallel

Proesses (BPP), Proess Algebras (PA), Push-Down Proesses (PDA, see [5℄

for justi�ation), and Petri Nets (PN). The other three lasses were introdued

(and named) by Mayr [13℄. The relationship between the lass name and its

(�; �)-PRS ounter-part is given in Figure 1 as well.

PRS-hierarhy is not strit w.r.t. language equivalene (e.g. both BPA

and PDA de�ne the lass of "-free ontext-free languages). The stritness of

the hierarhy w.r.t. bisimularity follows from the results presented (or ited)

in [3,15℄ and from the following two examples [13℄.

Example 2.2 A PDA system with the initial state U:X whih is not bisimilar

to any PAN system (for proof see [13℄).

U:X

a

�! U:A:X U:A

a

�! U:A:A U:B

a

�! U:A:B

U:X

b

�! U:B:X U:A

b

�! U:B:A U:B

b

�! U:B:B

U:X



�! V:X U:A



�! V:A U:B



�! V:B

U:X

d

�!W:X U:A

d

�!W:A U:B

d

�! W:B

V:X

e

�! V V:A

a

�! V V:B

b

�! V

W:X

f

�!W W:A

a

�!W W:B

b

�!W

Example 2.3 A Petri net given as (P; P )-PRS with the initial state XkAkB

whih is not bisimilar to any PAD proess (for proof see [13℄).

X

g

�! XkAkB Y kA

a

�! Y XkA

d

�! Z Y kA

d

�! Z

X



�! Y Y kB

b

�! Y XkB

d

�! Z Y kB

d

�! Z

3 PRS with �nite onstraint systems (fPRS)

In this setion we reall the extension of proess rewrite systems with �nite

onstraint systems. This extension has been diretly motivated by onstraint

systems used in onurrent onstraint programming (CCP) { see e.g. [19℄.

A onstraint system is a bounded lattie (C;`;^; tt; ff), where C is the set

of onstraints, ` (alled entailment) is an ordering on this set, ^ is the lub

operation, and tt (true), ff (false) are the least and the greatest elements of

C respetively (ff ` tt and tt 6= ff). The onstraint system desribes a state

4
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spae and possible evolution of a unit alled store.

De�nition 3.1 Let �; � 2 f1; S; P;Gg suh that � � �. An (�; �)-fPRS

(PRS with �nite onstraint system) is a tuple � = (C; R; t

0

), where

�

C = (C;`;^; tt; ff) is a �nite onstraint system desribing the store; the

elements of C represent values of the store,

�

R is a �nite set of rewrite rules of the form (t

1

a

�! t

2

; m; n), where t

1

2 �,

t

1

6= ", t

2

2 � are proess terms, a 2 At is an atomi ation, and m;n 2 C

are onstraints,

�

t

0

2 � is a distinguished initial proess term.

The semantis of an (�; �)-fPRS system � = (C; R; t

0

) is given by the

LTS (S;At(�);�!; (t

0

; tt)), where S = ft 2 � j Const(t) � Const(�)g �

(C r fffg) and �! is the least relation satisfying the inferene rules:

(t

1

a

�! t

2

; m; n) 2 �

(t

1

; o)

a

�! (t

2

; o ^ n)

if o ` m and o ^ n 6= ff;

(t

1

; o)

a

�! (t

0

1

; p)

(t

1

kt

2

; o)

a

�! (t

0

1

kt

2

; p)

;

(t

1

; o)

a

�! (t

0

1

; p)

(t

1

:t

2

; o)

a

�! (t

0

1

:t

2

; p)

:

The two side onditions in the �rst inferene rule are very lose to priniples

used in CCP. The �rst one (o ` m) ensures the rule (t

1

a

�! t

2

; m; n) 2 � an

be used only if the urrent value of the store o entails m (it is similar to

ask(m) in CCP). The seond ondition (o ^ n 6= ff) guarantees that the store

stays onsistent after appliation of the rule (analogous to the onsisteny

requirement when proessing tell(n) in CCP).

An important observation is that the value of a store an move in a lattie

only upwards as o ^ n always entails o. Intuitively, partial information an

only be added to the store, but never retrated (the store is monotoni).

Also note that an exeution of a transition whih starts in a state with o on

the store and whih is generated by a rule (t

1

a

�! t

2

; m; n) 2 � implies that

for every subsequent value of the store p the onditions p ` m and p ^ n 6= ff

are satis�ed (and thus the use of the rule annot be forbidden by a value of

the store in future). The �rst ondition p ` m omes from the monotoni

behaviour of the store. The seond ondition omes from the fats that the

onstraint n in the rule an hange the store only in the �rst appliation of

the rule and that for eah subsequent state p of the store p ^ n = p holds.

4 PRS with weak �nite-state unit (wPRS)

De�nition 4.1 Let �; � 2 f1; S; P;Gg suh that � � �. An (�; �)-wPRS

(PRS with weak �nite-state unit) is a tuple � = (Q;�; R;m

0

; t

0

), where

�

(Q;�) is partially ordered �nite set representing states of weak �nite-state

unit ; the elements of Q are alled w-states,

5
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�

R is a �nite set of rewrite rules of the form mt

1

a

�! nt

2

satisfying the

ondition m � n, where m;n 2 Q, t

1

2 �, t

1

6= ", t

2

2 �, and a 2 At,

�

m

0

2 Q; t

0

2 �, and m

0

t

0

is the initial state of the system.

The semantis of an (�; �)-wPRS � = (Q;�; R;m

0

; t

0

) is given by the LTS

(S;At(�);�!; m

0

t

0

), where S = fmt j m 2 Q; t 2 �; Const(t) � Const(�)g

and �! is de�ned as the least relation satisfying the inferene rules:

(mt

1

a

�! nt

2

) 2 �

mt

1

a

�! nt

2

;

mt

1

a

�! nt

0

1

m(t

1

kt

2

)

a

�! n(t

0

1

kt

2

)

;

mt

1

a

�! nt

0

1

m(t

1

:t

2

)

a

�! n(t

0

1

:t

2

)

:

The presented notion of weakness orresponds to 1-weakness ondition in

automata theory (mentioned already in Setion 1; the general weak unit with-

out onsidering �nal states would oinide with standard state-extension as

all the states of Q ould be inluded in one partition blok). In any transi-

tion sequene the w-state omponents of visited states form a non-inreasing

sequene w.r.t. � (i.e. an only hange �nitely many times). However, in

ontrast to fPRS, the weak unit an forbid the appliation of any rewrite

rule.

State Extended PRS If we relax from the onditionm � n imposed on rewrite

rules in De�nition 4.1, we get the de�nition of state-extended (�; �)-PRS

(denoted by pre�x 'se'). Instead of (1; S)-sePRS, (1; P )-sePRS, . . . we also use

more traditional abbreviations seBPA, seBPP, . . . . and we also take up this

notation for all the lasses of both fPRS and wPRS introdued earlier.

We remind a motivation of introduing sePRS given in Setion 1. Of ourse,

seBPA and seBPP oinides with PDA and PPDA respetively. Also reall

that (S,S)-PRS and PDA are equivalent w.r.t. bisimilarity as shown by Cau-

al [5℄, while seBPP has no bisimulation equivalent ounter-part within PRS

hierarhy (it is stritly under (P,P)-PRS as shown by Moller in [16℄).

5 Relations between lasses, re�ning hierarhy

We start with some very obvious observations. Given proess lasses X; Y the

notation X � Y means that every LTS de�nable in lass X an be de�ned (up

to bisimulation equivalene) also in lass Y. We say Y is at least as expressive

as X.

An immediate observation is the lasses FS, PDA and PN have the same

expressiveness as the orresponding ff, w, seg extended lasses. We also note

that

(�; �)-PRS � (�; �)-fPRS � (�; �)-wPRS � (�; �)-sePRS

hold for every (�; �)-PRS lass (even up to isomorphism). For the seond

inlusion take an arbitrary (�; �)-fPRS � with an initial term t

0

and a on-

straint system C = (C;`;^; tt; ff). The orresponding (�; �)-wPRS is �

0

=

(C r fffg;�; R

0

; tt; t

0

), where �= (`)

�1

and R

0

= fot

1

a

�! (o ^ n)t

2

j (t

1

a

�!

6
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wPRS

uuuuuuuuuuuuuuuuuuuu

FFFF
FFFFF

FFFFF
FFFF

F

fPRS

uuuuuuuuuuuuuuuuuuuu

FF
FFF

FFFF
FFFF

FFFF
FF

PRS

(G;G)-PRS

uuuuuuuuuuuuuuuuuuu

FFFFFFFF
FFFFFF

FFFF

wPAD

IIIIIIIIIIIIIIIIIIII
wPAN

xxx
xxxxx

xxxx
xxxxx

xx

fPAD

IIIIIIIIIIIIIIIIIIIII
fPAN

xxx
xxxxxxxxxxx

xxxxx

PAD

(S;G)-PRS

HHHHHHHHHHHHHHHHHHHH

PAN

(P;G)-PRS

yy
yy

yy
yy

yy
yy

yy
yy

yy
y

wPA

vvvvvvvvvvvvvvvvvvvvv

EEEEEEEEEEEEEEEEEEE

wPDA=fPDA=PDA

(S; S)-PRS

fPA

uuuuuuuuuuuuuuuuuuuuu

FFFFFF
FFFFFFFFFFFF

F

wPN=fPN=PN

(P;P )-PRS

PA

(1; G)-PRS

uuuuuuuuuuuuuuuuuuu

FFFFFFFF
FFFFFF

FFFF
PPDA

wBPA wBPP

fBPA fBPP

BPA

(1; S)-PRS

NNNNNNNNNNNNNNNNN

BPP

(1; P )-PRS

sssssssssssssss

wFS=fFS=FS

(1; 1)-PRS

Fig. 1. The hierarhy of lasses de�ned by (extended) rewrite formalisms

t

2

; m; n) 2 � and o ` m and o ^ n 6= ffg. The �rst and third inlusions are

obvious as well.

Relations between the lasses of PRS-hierarhy, the orresponding lasses

extended with �nite onstraint systems or weak state unit, and the PPDA

lass (the only lass of Moller's hierarhy not overed by previous formalisms)

are depited in Figure 1. The shape of the hierarhy follows from the de�-

nitions of inluded lasses and from the relations between onsidered exten-

sions. The stritness of the PRS-hierarhy (w.r.t. bisimulation equivalene)

has been proved by Mayr [13℄. The stritness of the hierarhy overing lasses

from PRS-hierarhy and orresponding lasses with �nite onstraint systems

has been proved in [22℄ (with one exeption { the stritness between PRS and

fPRS is just a onjeture).

In the rest of this setion we show that

�

there is a PDA system whih is not bisimilar to any wPAN system,

�

there is a PPDA system whih is not bisimilar to any wPAD system,

�

there is a wBPP system whih is not bisimilar to any fPAD system (this

proof formulates a property that is a suÆient ondition for a PAD to be

7
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bisimilar to some PDA),

�

there is a wBPA system whih is not bisimilar to any fPAN system.

These proofs together with the fat that PPDA are stritly less expressive

than PN [16℄ will �nish the proof of the stritness of our hierarhy (with two

exeptions { the stritness of the relations between PRS, fPRS, and wPRS re-

mains unproved, although we onjeture the existene of the separating gaps).

5.1 PDA non-bisimilar to wPAN

Example 5.1 Let us onsider a PDA system of Example 2.2 but having

U:X:Y as the initial state and two more rewrite rules: V:Y

x

�! U:X:Y;W:Y

x

�!

U:X:Y . This system, denoted by �

1

, behaves like that de�ned in Example 2.2,

but whenever the original system terminates, the enhaned �

1

is restarted un-

der the ation x.

Lemma 5.2 There is no wPAN � bisimilar to the PDA �

1

of Example 5.1.

Proof. To derive a ontradition assume a wPAN � bisimilar to the PDA

�

1

. As the weak state unit of � is �nite then there exists a reahable state

mt of � suh that every state reahable from mt has also m as its w-state

omponent (the opposite would imply the in�niteness of the weak state unit).

There exists a word w 2 fa; b; ; d; e; fg

�

suh that mt

w:x

�! mt

0

, where mt

0

is bisimilar to the state U:X:Y of the PDA proess �

1

. If the rules labelled

by the ation x are removed from � and mt

0

is taken as the initial state, we

obtain the system whose all reahable states have m as w-state omponent

and whih is bisimilar to the pushdown proess of Example 2.2.

Now let �

0

be a PAN system with the initial state t

0

and with the set of

rewrite rules onsisting of the rules l

v

�! r, where (ml

v

�! mr) 2 � and

v 2 fa; b; ; d; e; fg. It is obvious that this PAN system �

0

is bisimilar to the

PDA system de�ned in Example 2.2 { a ontradition. 2

5.2 PPDA non-bisimilar to wPAD

Example 5.3 Let � be a PPDA proess with the initial state xAkBkC and

the following rewrite rules:

xC

g

�! xAkBkC xA

d

�! z" zA

q

�! z"

xC



�! yC xB

d

�! z" zB

q

�! z"

yA

a

�! y" yA

d

�! z" zC

r

�! xAkBkC

yB

b

�! y" yB

d

�! z"

The rules labelled by g; ; a; b; d orrespond to the rules of the Petri net

given in Example 2.3. Hene the PPDA � behaves as the mentioned Petri

net, but when the Petri net terminates, the PPDA � an remove an arbitrary
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number of A and B symbols from the parallel stak and then \restart" the

system under ation r.

Lemma 5.4 There is no wPAD �

0

bisimilar to the PPDA � of Example 5.3.

The proof is similar to the proof of Lemma 5.2 using the fat the Petri net

of Example 2.3 is not bisimilar to any PAD system.

5.3 wBPP non-bisimilar to fPAD

A rewriting system is deadlokable if for eah reahable nonterminal state

s (of its underlying LTS) there is a transition from s to a terminal state,

i.e.9 a; t : s

a

�! t 6�! .

De�nition 5.5 A sequential subterm t (i.e. t 2 S) of term g 2 G is a ready

parallel omponent i� t is a maximal subtree in the syntax tree of term g suh

that t is not in the right-hand side subtree of any sequential node (i.e. node

orresponding to sequential operator). A ready parallel omponent t is live in

a PAD system � if t is not deadloked (i.e. there is a rule appliable to t).

Intuitively the ready parallel omponents are de�ned as the maximal se-

quential parts of a PAD proess g suh that g an perform an ation a if and

only if some of its ready parallel omponents an perform the same ation a.

Lemma 5.6 Every reahable state of an arbitrary deadlokable PAD system

has at most one live ready parallel omponent.

Proof. Observe that the appliation of a PAD rewrite rule an only modify

one ready parallel omponent. Hene there is no way how to deadlok more

than one live ready parallel omponent by one appliation of a PAD rewrite

rule. 2

Lemma 5.7 Every deadlokable PAD system is bisimilar to a PDA system.

Proof. An idea is to transform PAD rewrite rules onto orresponding PDA

rewrite rules (this is suÆient as for every PAD there is a bisimilar PAD

system with a single proess onstant as the initial proess term).

There is only one way to revive a deadloked parallel omponent, namely to

rewrite adjaent omponents onto ". For example if B:C is a deadloked ready

parallel omponent of (A:CkB:C):D and (A:CkB:C):D

w

�! ("kB:C):D =

B:C:D then the ready parallel omponent B:C:D an be live.

Let � be a PAD system and X 62 Const(�) be a fresh proess onstant.

Let us onsider a rewrite rule of � with the right hand side ontaining a max-

imal subterm of the form l:(t

1

kt

2

):r, where t

1

; t

2

2 S and l; r an be ". In

an arbitrary transition sequene the omponents t

1

; t

2

generated by the appli-

ation of the onsidered rewrite rule beome ready at the same time. Thus

at least one of them is deadloked. Let t

2

be deadloked. We replae the

subterm l:(t

1

kt

2

):r of the rule by l:X:t

1

:X:t

2

:r (or just t

1

:X:t

2

:r whenever l is

9
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"). The proess onstant X eliminates any possible (unwanted) interation of

(the tail of) the term l and (the beginning of) the term t

1

(or the tail of t

1

and the beginning of t

2

respetively). Repeating this proedure eliminates all

parallel operators from rewrite rules. The resulting PDA system �

0

enrihed

by rewrite rules of the form X:s

a

�! s

0

for every rule s

a

�! s

0

2 �

0

is bisimilar

to a given �. 2

Example 5.8 Let �

2

be the wBPP system with the initial state pX and the

rules:

pX



�! pXkAkB pA

a

�! p" pB

b

�! p" pX

d

�! q"

Lemma 5.9 There is no PAD system bisimilar to the wBPP system �

2

of

Example 5.8.

Proof. �

2

is deadlokable. Due to Lemma 5.7 it suÆes to prove there is

no PDA system bisimilar to �

2

. This diretly follows from the fat that the

language L generated by �

2

is not ontext-free (L \ 

�

a

�

b

�

d = f

k

a

l

b

m

d j 0 �

l;m � kg is not a ontext-free language). 2

Lemma 5.10 There is no fPAD system bisimilar to the wBPP system �

2

of Example 5.8.

Proof. For the sake of a ontradition we assume a fPAD � bisimilar to �

2

.

The �niteness of the onstraint system used in � implies that there exists

a reahable non-terminal state (t;m) of � suh that every non-terminal state

reahable from (t;m) has also m on the store (the ontrary would mean the

onstraint system is in�nite). As (t;m) is non-terminal there exists a word

w 2 fa; bg

�

suh that (t;m)

w

�! (s;m) and (s;m) is bisimilar to the initial

state pX of �

2

. The only transitions starting at states reahable from (s;m)

and hanging the value of the store an be the transitions leading to terminal

states, i.e. the transitions labelled by d. Hene we an diretly assume that all

rewrite rules of � labelled with x 2 fa; b; g have the form (t

1

x

�! t

2

; tt; tt).

Let �

0

be a PAD system with the set of rewrite rules as

ft

1

x

�! t

2

j (t

1

x

�! t

2

; tt; tt) 2 �; x 6= dg [

[ ft

1

d

�! Z j (t

1

d

�! t

2

; tt; n) 2 �; n 6= ffg;

where Z 62 Const(�) is a fresh proess onstant. If we restrit the systems �

and �

0

to ations a; b;  then � and �

0

are bisimilar. Furthermore in every

state q of �

0

reahable under w 2 fa; b; g

�

there is atransition labelled by d

and starting at q. It suÆes to show that this transition is leading to a terminal

state.

The state (q; tt) (orresponding to the state q) has a ready parallel ompo-

nent able to perform an ation . This ation annot be disabled by any ation

performed by another ready parallel omponent. Hene there is just one ready

parallel omponent able to perform both  and d. For the same reason this

omponent is the only one whih is able to perform ations a and b if they are

10
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enabled in the state (q; tt). The same holds for the state q of �

0

. Moreover

the ready parallel omponent rewritten by the ation d is deadloked by the

proess onstant Z. Thus the state reahed under d is terminal and we get

a PAD system �

0

bisimilar to the wBPP �

2

of Example 5.8 { a ontradition

(see Lemma 5.9). 2

5.4 wBPA non-bisimilar to fPAN

Example 5.11 Let us onsider the following wBPA system with initial state

pX.

pX

a

�! pAX pX

b

�! pBX pA

a

�! p" pB

b

�! p"

pA

a

�! pAA pA

b

�! pBA pA

a

0

�! q" pB

b

0

�! q"

pB

a

�! pAB pB

b

�! pBB qA

a

0

�! q" qB

b

0

�! q"

Lemma 5.12 There is no fPAN system bisimilar to the wBPA system of

Example 5.11.

The proof employs the notion of ready sequential omponents (an analogue

of ready parallel omponents introdued in De�nition 5.5). As the proof is

muh more tehnially involved we skip it. The full version of the proof is

published in [11℄.

6 Conlusion and future work

We have extended Proess Rewrite Systems (PRS) [13℄ by 'weak' �nite-state

unit and have lassi�ed new lasses by their expressiveness. We have shown

the re�ned hierarhy (w.r.t. bisimilarity) ontaining new lasses as well as

those generated by both PRS and of two other PRS extensions introdued

in [9,22℄.

We emphasize the results showing that BPP lass and its three extensions

form a strit (sub)hierarhy w.r.t. bisimulation,

BPP ( fBPP ( wBPP ( seBPP ( PN

whih is deidable (even PSPACE-omplete) on the BPP lass and undeidable

on the lass of state-extended BPP (i.e. PPDA). It remains open for other two

lasses (i.e. fBPP and wBPP) and is a subjet of our further researh. We

are motivated by the fat the stritness of two leftmost inlusions an be

proved (but is not shown here) even for language equivalene. The stritness

of inlusion between wBPP and seBPP on the language equivalene level is

just our onjeture.
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