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Chapter 1

Introduction

An automatic verification of current software systems often needs to model
them as infinite-state systems, i.e. systems with an evolving structure (e.g.
unbounded control structures such as recursive procedure calls and/or dy-
namic creation of concurrent processes) and/or operating on unbounded
data types: a network of mobile phones is a concurrent system with evolv-
ing structure which dynamically changes its size (and can become very
large). Robustness of the network requires that underlying protocols should
work for an arbitrarily large (i.e. potentially infinite) number of client pro-
cesses. A JAVA applet dynamically downloads classes over the network
and executes their methods, the stack of activation records should be seen
as potentially infinite.

Infinite-state systems can be specified in a number of ways with their re-
spective advantages and limitations. Petri nets, pushdown automata, and
process algebras like BPA, BPP, or PA all serve to exemplify this. However
a unifying view is to interpret them as labelled transition systems (LTS)
with possibly infinite number of states. LTS families are often specified
via a variety of rewrite systems and form hierarchies (w.r.t. bisimulation
equivalence), see for example [Cau92, BCS96, Mol96, May00]. Here we em-
ploy the classes of infinite-state systems defined by term rewrite systems
and called Process Rewrite Systems (PRS) as introduced by Mayr [May00].
PRS subsume a variety of the formalisms studied in the context of formal
verification (e.g. all the models mentioned above).

A PRS is a finite set of rules t
a

�! t

0 where a is an action under which
a subterm t can be reduced onto a subterm t

0. Terms are built up from
an empty process " and a set of process constants using (associative) se-
quential “.” and (associative and commutative) parallel “k” operators. The
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semantics of PRS can be defined by labelled transition systems (LTS) – la-
belled directed graphs whose nodes (states of the system) correspond to
terms modulo properties of “.” and “k” and edges correspond to individ-
ual actions (computational steps) which can be performed in a given state.
The relevance of various subclasses of PRS for modelling and analysing
programs is shown e.g. in [Esp02], for automatic verification see e.g. sur-
veys [BCMS01, Srb02, KJ02].

Mayr [May00] has also shown that the reachability problem (i.e. given
terms t; t0: is t reducible to t

0?) for PRS is decidable. Most research (with
some recent exceptions, e.g. [BT03, Esp02]) has been devoted to the PRS
classes from the lower part of the PRS hierarchy, especially to pushdown
automata (PDA), Petri nets (PN) and their respective subclasses. We men-
tion the successes of PDA in modelling recursive programs (without pro-
cess creation), PN in modelling dynamic creation of concurrent processes
(without recursive calls), and CPDS (communicating pushdown systems
[BET03]) modelling both features. All of these formalisms subsume a no-
tion of a finite state unit (FSU) keeping some kind of global information
which is accessible to the redices (the ready to be reduced components) of
a PRS term – hence a FSU can regulate rewriting. On the other hand, us-
ing a FSU to extend the PRS rewriting mechanism is very powerful since
the state-extended version of PA processes (sePA) has a full Turing-power
[BEH95] – the decidability of reachability and other problems relevant for
an automatic verification are lost for sePA, including all its superclasses
(see Figure 2.2), and CPDS as well.

The thesis will present a hierarchy of PRS classes and their respective
extensions of three types: PRS with finite constraint system (fcPRS [Str02],
motivated by concurrent constraint programming, see e.g. [SR90]), state-
extended PRS classes [JKM01], and our new formalism of PRS with weak
finite-state unit (wPRS, introduced in [KŘS03]). In [KŘS03] we have shown
that all the just mentioned extensions increase the expressive power of
those PRS subclasses which do not subsume the notion of finite control.
The classes in the hierarchy (depicted in Figure 2.2) are related by their ex-
pressive power with respect to (strong) bisimulation equivalence.

The notion of a weak FSU within wPRS formalism is inspired by weak
automata as introduced in [MSS92], but used here as a nondeterministic
(NFA) rather than alternating one. A NFA A = (Q;�; Æ; q

0

; F ) is weak if
its state space is partitioned into a disjoint union Q =

S

Q

i

, and there is a
partial order � on the collection of the Q

i

. The set � is the input alphabet
and the transition function Æ : Q � � ! P(Q) is such that if q 2 Q

i

and
q

0

2 Æ(q; a) then q

0

2 Q

j

, where Q
i

� Q

j

(this requirement on the transition

2



structure is also known as an acyclicity condition). The set F of final states
satisfies that Q

i

� F or Q
i

\ F = ; for each Q

i

.
As we are not interested in language equivalence, the set of final states

does not play any role in our application, hence all the states of a weak
NFA could belong to one class and the formalism would coincide with an
arbitrary NFA. Thus we have chosen to employ a 1-weak (also known as
very weak) variant of the restriction where each partition block contains
exactly one state. In other words, although a weak FSU can cycle in any
of its control state, each wPRS rewriting sequence can only change its state
a finitely many times.

The wPRS classes refine the presented hierarchy of extended PRS for-
malisms and so it motivates us to focus on borders of decidability and com-
plexity of some interesting problems. By interesting problems we mean
reachability, strong and weak bisimulation equivalence, model checking
problems, etc. For surveys of formal verification techniques and results see
for example [Mol96, BE97, BCMS01, KJ02, Srb02].

Besides of the results on the classification of expressive power of ex-
tended PRS classes [KŘS03, KŘS04], we have shown that the reachability
problem remains decidable for the very expressive class of wPRS [KŘS04].
In the context of reachability analysis one can see at least two approaches:
(i) abstraction (approximate) analysis techniques on stronger ’models’ such
as sePA and its superclasses with undecidable reachability problem, e.g. see
a recent work [BET03], and (ii) precise techniques for ’weaker’ models,
e.g. PRS classes with decidable reachability, e.g. [LS98] and another recent
work [BT03]. In the latter one, symbolic representations of set of reach-
able states are built with respect to various term structural equivalences.
Among others it is shown that for the PAD class and the same equivalence
as in the setting presented here, when properties of sequential and parallel
compositions are taken into account, one can construct nonregular repre-
sentations based on counter tree automata.

In our future work we will continue in research on the refined hierar-
chy to obtain refined borders of decidability and complexity of some other
decidability and complexity issues relevant for an automatic verification.
For example, the wBPP class stands between the less expressive BPP class
and the expressively stronger seBPP (the state-extended variant of BPP).
On the one hand, it was proved that the strong bisimulation equivalence is
in PSPACE for BPP [Jan03], on the other hand, the same problem is unde-
cidable for the seBPP class [Mol96] (by a modification of the proof for Petri
nets [Jan95b]). We conjecture that the strong bisimulation equivalence is
decidable for wBPP.
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By our opinion (sub)classes of wPRS are suitable for modelling some
of the software systems which can be found in real-time control programs
as well as in communication and cryptographic protocols. Let us mention
that Hüttel and Srba [HS04] define a replicative variant of a calculus for
Dolev and Yao’s ping-pong protocols [DY83]. They show that the reacha-
bility problem for these protocols is decidable as it can be reduced to the
reachability problem for wPRS, more precisely their replicative ping-pong
protocols belong to the wPAD class.

Finally we mention another application of our decidability result exem-
plifying that the introduction of wPRS was well-motivated and contributes
to the results on infinite-state systems. The decidability of the reachability
for wPRS opens an easy way how to solve an open problem of a weak trace
non-equivalence for wPRS and its subclasses.

The weak trace equivalence is defined as follows. Given a labelled tran-
sition system (S;At;�!; �

0

) with a distinguished action � 2 At, we de-
fine a weak trace set of a state s 2 S (see e.g. [JEM99]) as

wtr(s) = fw 2 (Atr f�g)

�

j s

w

=) t for some t 2 Sg;

where s
w

=) t means that there is some w0

2 At

� such that s
w

0

�! t and w

is equal to w0 without � actions. Two systems are weak trace equivalent if the
weak trace sets of their initial states are the same.

Using the decidability of reachability for wPRS, it is easy to show that
the weak trace set is recursive for every state of any wPRS. In other words,
for every given trace w and wPRS �, we can decide whether w is a weak
trace of � or not. The solution of this (i.e. weak trace set) problem for
a given wPRS � is based on the fact that one can solve the reachability
problem for a modified wPRS �

0 where the weak FSU is changed in such
a way that only the traces corresponding to the weak trace w can be pre-
formed. So far it has been known that the weak trace non-equivalence is
semi-decidable for Petri nets (see e.g. [Jan95a]), pushdown processes (due
to [Büc64]), and PA processes (due to [LS98]). It follows from our result
that the weak trace non-equivalence is semi-decidable for wPRS. Hence,
the border of the semi-decidability was moved up to the class of wPRS
in the hierarchy. Let us note that the semi-decidability result is new for
some classes of the “non-extended” PRS hierarchy, too; namely PAN, PAD,
and PRS. As other classes of our refined hierarchy (i.e. sePA and its su-
perclasses) have a full Turing-power, the problem is undecidable for them.
Hence, the problem is solved for all classes of the refined hierarchy.
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Chapter 2

State of the Art

In this chapter we briefly review some of the results concerning process
rewrite systems and we also mention our results so far achieved in the con-
text of PRS. Namely we refer to the introduction of wPRS (see Section 2.2),
the results forming the expressiveness hierarchy (see Section 2.3), and the
proof that the reachability problem is decidable for wPRS (see Section 2.4).

2.1 Preliminaries

A labelled transition system (LTS)L is a tuple (S;At;�!; �

0

), whereS is a set
of states or processes, At is a set of atomic actions or labels, �!� S �At� S

is a transition relation (written �

a

�! � instead of (�; a; �) 2�!), �
0

2 S is
a distinguished initial state.

We use the natural generalisation �
�

�! � for finite sequences of actions

� 2 At

�. The state � is reachable if there is � 2 At

� such that �
0

�

�! �.
A binary relation R on set of states S is a bisimulation [Mil89] iff for each

(�; �) 2 R the following conditions hold:

� 8�

0

2 S; a 2 At : �

a

�! �

0

=) (9�

0

2 S : �

a

�! �

0

^ (�

0

; �

0

) 2 R)

� 8�

0

2 S; a 2 At : �

a

�! �

0

=) (9�

0

2 S : �

a

�! �

0

^ (�

0

; �

0

) 2 R)

Bisimulation equivalence (or bisimilarity) on a LTS is the union of all bisimu-
lations (i.e. the largest bisimulation).

Let Const = fX; : : :g be a countably infinite set of process constants. The
set T of process terms (ranged over by t; : : :) is defined by the abstract syn-
tax t = " j X j t

1

:t

2

j t

1

kt

2

, where " is the empty term, X 2 Const is a
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process constant (used as an atomic process), ’k’ and ’:’ mean parallel and
sequential compositions respectively.

The set Const(t) is the set of all constants occurring in a process term t.
We always work with equivalence classes of terms modulo commutativity
and associativity of the parallel operator and modulo associativity of the
sequential operator. We also define ":t = t = t:" and tk" = t.

We distinguish four classes of process terms as: ’1’ stands for terms con-
sisting of a single process constant only (e.g. " 62 1), ’S’ are sequential terms
– without parallel composition, e.g. X:Y:Z , ’P’ are parallel terms – without
sequential composition, e.g. XkY kZ , and ’G’ are general terms – with arbi-
trarily nested sequential and parallel compositions, like (X:(Y kZ))kW .

Definition 2.1. Let At = fa; b; � � � g be a countably infinite set of atomic ac-
tions, �; � 2 f1; S; P;Gg such that � � �. An (�; �)-PRS (process rewrite
system) � is a pair (R; t

0

), where

� R is a finite set of rewrite rules of the form t

1

a

�! t

2

, where t
1

2 �, t
1

6= ",
t

2

2 � are process terms and a 2 At is an atomic action,

� t

0

2 � is an initial state.

Given PRS � we define Const(�) as the set of all constants occurring
in the rewrite rules of � or in its initial state, and At(�) as the set of all
actions occurring in the rewrite rules of �. We sometimes write (t

1

a

�!

t

2

) 2 � instead of (t
1

a

�! t

2

)2R.

The semantics of � is given by the LTS (S;At(�);�!; t

0

), where S =

ft 2 � j Const(t) � Const(�)g is the set of states, t
0

is the initial state, and
�! is the least relation satisfying the inference rules: 1

(t

1

a

�! t

2

) 2 �

t

1

a

�! t

2

;

t

1

a

�! t

0

1

t

1

kt

2

a

�! t

0

1

kt

2

;

t

1

a

�! t

0

1

t

1

:t

2

a

�! t

0

1

:t

2

:

where t
1

; t

2

; t

0

1

2 T .
If no confusion arises, we sometimes speak about a “process rewrite

system” meaning a “labelled transition system generated by process rewrite
system”.

Obviously, it can be assumed (w.l.o.g.) the initial state t

0

of a (�; �)-
PRS is a single constant as there are only finitely many terms t

i

such that

t

0

a

i

�! t

i

.

1Note that parallel composition is commutative and, thus, the inference rule for parallel
composition also holds with t

1

and t

2

exchanged.
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Figure 2.1 contains a graphical description of the hierarchy of (�; �)-
PRS, simply called PRS-hierarchy. Some classes included in the hierarchy
correspond to widely known models as finite state systems (FS), basic pro-
cess algebras (BPA), basic parallel processes (BPP), process algebras (PA),
pushdown processes (PDA, see [Cau92] for justification), and Petri nets
(PN). The other three classes were introduced (and named) by Mayr [May00].
The hierarchy is strict w.r.t. bisimulation equivalence [May00], while it is
not strict w.r.t. language equivalence. For example, both BPA and PDA de-
fine exactly the class of ("-free) context-free languages. For more comments
see the Section 2.3.
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Figure 2.1: The PRS-hierarchy

2.2 Extended PRS

In this section we recall the definitions of three different extensions of pro-
cess rewrite systems, namely state-extended PRS (sePRS) [JKM01], PRS with
a finite constraint system (fcPRS) [Str02], and PRS with a weak finite-state unit
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(wPRS) [KŘS03]. In all cases, the PRS formalism is extended with a finite
state unit of some kind.

sePRS State-extended PRS corresponds to PRS extended with a finite
state unit without any other restrictions. The well-known example of this
extension is the state-extended BPA class (also known as pushdown pro-
cesses).

wPRS The notion of weakness employed in the wPRS formalism cor-
responds to that of weak automaton [MSS92] in automata theory. The be-
haviour of a weak state unit is acyclic, i.e. states of state unit are ordered
and non-increasing during every sequence of actions. As the state unit is
finite, its state can be changed only finitely many times during every se-
quence of actions.

fcPRS The extension of PRS with finite constraint systems is motivated
by concurrent constraint programming (CCP) (see e.g. [SR90]). In CCP the pro-
cesses work with a shared store (seen as a constraint on values that variables
can represent) via two operations, tell and ask. The tell adds a constraint to
the store provided the store remains consistent. The ask is a test on the store
– it can be executed only if the current store implies a specified constraint.

Formally, values of a store form a bounded lattice (called a constraint
system) with the lub operation ^ (least upper bound), the least element tt,
and the greatest element ff. The execution of tell(n) changes the value of the
store from o to o ^ n (provided o ^ n 6= ff – consistency check). The ask(m)
can be executed if the current value of the store o is greater than m.

The state unit of fcPRS has the same properties as the store in CCP. We
add two constraints (m;n) to each rewrite rule. The application of a rule
corresponds to the concurrent execution of ask(m), tell(n), and rewriting:

� a rule can be applied only if the actual store o satisfies m � o and
o ^ n 6= ff,

� the application of the rule rewrites the process term and changes the
store to o ^ n.

We first define the common syntax of the aforementioned extended PRS
and then we specify the individual restrictions on state units.

Definition 2.2. Let At = fa; b; � � � g be a countably infinite set of atomic ac-
tions, �; � 2 f1; S; P;Gg such that � � �. An extended (�; �)-PRS � is a tuple
(M;�; R;m

0

; t

0

), where
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� M is a finite set of states of the state unit,

� � is a binary relation over M ,

� R is a finite set of rewrite rules of the form (m; t

1

)

a

�! (n; t

2

), where
t

1

2 �, t
1

6= ", t
2

2 �, m;n 2M , and a 2 At,

� Pair (m
0

; t

0

) 2M � � forms a distinguished initial state of the system.

The specific type of an extended (�; �)-PRS is given by further require-
ments on �. An extended (�; �)-PRS is

� (�; �)-sePRS without any requirements on �.2

� (�; �)-wPRS iff (M;�) is a partially ordered set.

� (�; �)-fcPRS iff (M;�) is a bounded lattice. The lub operation (least
upper bound) is denoted by ^, the least and the greatest elements are
denoted by tt and ff, respectively. We also assume that m

0

6= ff.

To shorten our notation we prefer mt over (m; t). As in the PRS case,

instead of (mt
1

a

�! nt

2

) 2 R where � = (M;�; R;m

0

; t

0

), we usually write

(mt

1

a

�! nt

2

) 2 �. The meaning of Const(�) (process constants used in
rewrite rules or in t

0

) and At(�) (actions occurring in rewrite rules) for a
given extended PRS � is also the same as in the PRS case.

The semantics of an extended (�; �)-PRS system � is given by the cor-
responding labelled transition system (S;At(�);�!;m

0

t

0

), where3

S =M � ft 2 � j Const(t) � Const(�)g

and the relation �! is defined as the least relation satisfying the inference
rules corresponding to the application of rewrite rules (and dependent on
the concrete formalism):

sePRS
(mt

1

a

�! nt

2

) 2 �

mt

1

a

�! nt

2

wPRS
(mt

1

a

�! nt

2

) 2 �

mt

1

a

�! nt

2

if n � m

fcPRS
(mt

1

a

�! nt

2

) 2 �

ot

1

a

�! (o ^ n)t

2

if m � o and o ^ n 6= ff

2In this case, the relation� can be omitted from the definition.
3If� is an fcPRS, we eliminate the states with ff from S as they are unreachable.
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and two common inference rules

mt

1

a

�! nt

0

1

m(t

1

kt

2

)

a

�! n(t

0

1

kt

2

)

;

mt

1

a

�! nt

0

1

m(t

1

:t

2

)

a

�! n(t

0

1

:t

2

)

;

where t
1

; t

2

; t

0

1

2 T and m;n; o 2M .

Instead of (1; S)-sePRS, (1; S)-wPRS, (1; S)-fcPRS, . . . we use a more nat-
ural notation seBPA, wBPA, fcBPA, etc. The class seBPP is also known as
multiset automata (MSA) or parallel pushdown automata (PPDA), see [Mol96].

2.3 Expressiveness

Figure 2.2 describes the hierarchy of PRS classes and their extended coun-
terparts with respect to bisimulation equivalence. If any process in class
X can be also defined (up to bisimilarity) in class Y we write X � Y . If
additionally Y 6� X holds, we write X ( Y and say X is less expressive
than Y . This is depicted by the line(s) connecting X and Y with Y placed
higher than X in Figure 2.2. The dotted lines represent the facts X � Y ,
where we conjecture that X ( Y hold.

Some observations (even up to isomorphism) are immediate, for ex-
ample (i) collapses of the classes FS, PDA and PN with their extended
analogues, (ii) if X � Y then fse,w,fcgX is less expressible then the corre-
sponding extension of Y, and (iii) (�; �)-PRS � (�; �)-fcPRS � (�; �)-
wPRS � (�; �)-sePRS for every (�; �)-PRS class.

The strictness (’(’) between the PRS-hierarchy classes has been proved
by Mayr [May00], the strictness between the corresponding classes of PRS
and fcPRS has been proved in [Str02], and the strictness relating fcPRSs and
wPRSs is shown in [KŘS03] (by proving there are the following system: a
PDA which is not bisimilar to any wPAN, a MSA which is not bisimilar to
any wPAD, a wBPP which is not bisimilar to any fcPAD and to any PAD as
well, and wBPA which is not bisimilar to any fcPAN). Note the strictness
relations wX ( seX hold for all X = PA, PAD, PAN, PRS due to our reacha-
bility result for wPRS given in [KŘS04] and due to the full Turing-power of
sePA [BEH95].

These proofs together with Moller’s result establishing that MSA (

PN [Mol98] complete the justification of Figure 2.2 – with one exception,
namely the relation between the PN and sePA classes. Looking at two lines
leaving sePA down to the left and down to the right, we note the “left-
part collapse” of (S; S)-PRS and PDA proved by Caucal [Cau92] (up to
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Figure 2.2: The hierarchy of classes defined by extended process rewrite
systems with respect to the strong bisimulation equivalence.

isomorphism). The right-part counterpart is slightly different due to the
previously mentioned result that MSA ( PN. In [KŘS04] we proved that
PN ( sePA (in fact it suffices to demonstrate PN � sePA as the strictness is
obvious).
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2.4 Reachability Problem

By the reachability problem we mean to decide for a wPRS� with an initial
state rt

0

and a given state st, whether the state st is reachable from the
initial state rt

0

or not (st is reachable from rt

0

if a sequence of actions �

such that rt
0

�

�! st exists).
It was proved by Mayr [May00] that the reachability problem is decid-

able for PRS. In [MR98] Mayr and Rusinowitch present a simpler and more
readable proof in the framework of ground AC rewrite systems. Bouaj-
jani and Touili [BT03] develop automata techniques allowing to build finite
representations of the forward and backward sets of reachable configura-
tions of PRS modulo various term structural equivalences (corresponding
to properties of the sequential operator and the parallel operator).

As already mentioned, we have shown the reachability problem for
wPRS remains decidable. Our proof exhibits a similar structure to the proof
of decidability of the reachability problem for PRS [May00]; first we re-
duce the general problem to the reachability problem for wPRS in so-called
normal form (i.e. PRS with rules containing at most one occurrence of a
sequential or parallel operator), and then we solve this subproblem using
the fact that the reachability problems for both PN and PDA are decid-
able [May81, Büc64]. The latter part of Mayr’s proof for PRS transforms
the PRS � in normal form into the PRS �0 in so-called transitive normal form
satisfying (X �! Y ) 2 �

0 whenever X �

�

Y . This step employs the lo-
cal effect of rewriting under sequential rules in a parallel environment and
vice versa. Intuitively, whenever there is a rewriting sequence

XkY �! (X

1

:X

2

)kY �! (X

1

:X

2

)kZ �! X

2

kZ

in a PRS in normal form, then the rewriting of each parallel component
is independent in the sense that there are also rewriting sequences X �!

X

1

:X

2

�! X

2

and Y �! Z . This does not hold for wPRS in normal form
as the rewriting in one parallel component can influence the rewriting in
other parallel components via a weak state unit. To get this independence
back we introduced the concept of passive steps emulating the changes of a
weak state produced by the environment. For more details see [KŘS04].

To sum up, we proved that the reachability problem for wPRS is decid-
able. As “stronger” classes (i.e. sePA and its superclasses) of the hierarchy
are Turing powerful (thus the problem is undecidable for them), the prob-
lem is solved for all the classes in the refined hierarchy.

Consequences and applications of our result on the reachability for wPRS
are discussed in the introduction and Section 2.3.
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2.5 History and Related Results

The first approach to process rewrite system relating various classes of PRS
can be mentioned as Caucal works [CM90, Cau92]. [CM90] shows that BPA
are strictly less expressive than PDA with respect to strong bisimulation.
[Cau92] studies so called ”prefix rewriting system” (which are also known
as sequential PRS [May00]) and implicitly contains their hierarchy. To men-
tion some early works on parallel PRS we note the results [Huy83, Huy85]
for “commutative grammars” covering both BPP and PN. Later the systems
were studied as generators of transition systems, rather than language gen-
erators. Let us refer to the work [CHM93] describing BPP as a subclass of
CCS process algebra. In [Hir94, Esp97] the BPP class was also studied as a
subclass of Petri nets.

First Chomsky-like hierarchy classification of rewrite systems can be
found in [Cau92]. Moller presented the hierarchy enlarged by the parallel
dimension in [Mol96]. The general process rewrite hierarchy with all com-
binations of the sequential operator and the parallel operator was intro-
duced by Mayr in his PhD thesis [May98] and later published in [May00].

As the range of rewrite systems is very large, results are shattered in
plenty of papers. In spite of this, there are some papers that survey the
area. The first overview was done by Moller in his paper “Infinite re-
sults” [Mol96]. The paper was followed by Burkart and Esparza “More
Infinite Results” paper [BE97] focused on the model checking problem. As
later survey papers see “Verification on Infinite Structures” in handbook of
process algebra [BCMS01], overview paper ”Equivalence-Checking with
Infinite-State Systems: Techniques and Results” [KJ02] written by Kučera
and Jančar, and “Roadmap of Infinite results” [Srb02] built by Srba.

Besides of the summarisations containing some outdated information,
the “Roadmap of Infinite results” is still keep up to date (see electronic
version at http://www.brics.dk/˜srba/roadmap/or new published
version in [Srb04]) and surveys all known results for PRS hierarchy con-
cerning decidability and complexity of strong and weak bisimilarity, strong
and weak bisimilarity with finite-state systems, and strong and weak regu-
larity.
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Chapter 3

Aim of the Thesis

3.1 Objectives

The thesis will gather results related to my work on various extensions of
process rewrite systems especially those extended with weak finite-state
unit (see Section 2.2). It will include the just mentioned results (see Sec-
tion 2.3 and Section 2.4); namely the results forming the expressiveness
hierarchy with respect to the strong bisimulation [KŘS03, KŘS04] and the
proof that the reachability problem is decidable for wPRS [KŘS04]. The the-
sis will be also composed of new topics I will focus on in my future work.
For more detailed description of the future work see Section 3.3.

3.2 Progression Schedule

I have already passed a doctoral (PhD) examination in April 2003. My plan
of progression (besides of other publication activity) is as follows.

� Defence of this thesis proposal - January 2005

� Final version of thesis - January 2006

� Defence of the thesis - May 2006

3.3 Expected Results and Outputs

I will study the expressiveness and the other properties of the extended
process rewrite systems. I would like to refine decidability and complexity
borders of some interesting problems on various subclasses of wPRS and
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fcPRS; such as strong and weak bisimulations, the reachability problem, the
reachability property problem (i.e. question if there is a reachable state that
has certain properties, see [May00]), model checking LTL or other logics,
etc. As the work is focused on topics of basic research, it is very hard to
predict future results. Nevertheless, in the near future I will focus on the
reachability property problem for wPRS and the (un)decidability question
of strong bisimulation. I hope for decidability of strong bisimulation for
the wBPP class using the proof technique published in [Jan03].

I expect at least two other reviewed publications related to the topic of
the thesis.
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Chapter 4

Current Results

This chapter consists of three sections. The first section summarises my
previous research on binary decision diagrams, the basic data structure for
symbolic model checkers, while the second contains the results related to
the topic of the intended PhD thesis. The last section covers other publica-
tions related to my work on hardware design verification.

4.1 Symbolic Model Checking

My master thesis [1] studies improvements of the symbolic model check-
ing algorithm. I investigated possible substitutions of the currently used
OBDD data structure. Two data structures,�-OBDDs and BEDs, are tested.
The benefit of the thesis consists of accumulating the relevant theoretical
knowledge, introduction of merged �-OBDD, practical implementation of
�-OBDDs into the NuSMV model checker, and interpretation of the ac-
quired facts. The second publication [2] is a conference paper which sum-
marise some of the results achieved in my master thesis.

[1] V. Řehák. Randomized Symbolic Model Checking. Master’s thesis,
Masaryk University Brno, 38 pages, 2002.

[2] V. Řehák. �-OBDD in Symbolic Model Checking. In M. Bielikova,
editor, Proceedings of SOFSEM’02 Student Research Forum, pages 41–46.
Milovy (Czech Republic): Slovak University of Technology, 2002.
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4.2 Extended Process Rewrite Systems

Publications given in this part are related to my PhD research and contains
partial results that will be included in my PhD thesis. The first paper [1]
is an introduction of process rewrite systems with weak finite-state unit
presented at Infinity’03 workshop (also it should appear in post-workshop
proceedings within a volume of ENTCS - accepted for publication). The full
version of the paper is presented as a local technical report [2]. The BRICS
technical report [3] contains results achieved during the stay at Aarhus and
forms a preliminary version of the last paper [4] presented at CONCUR
2004.

[1] M. Křetı́nský, V. Řehák, and J. Strejček. On Extensions of Process
Rewrite Systems: Rewrite Systems with Weak Finite-State Unit. In
Philippe Schnoebelen, editor, Prelim. Proc. of the 5th International Work-
shop on Verification of Infinite-State Systems (INFINITY’2003), pages 73–
86. Marseille, France: Universite de Provence, Marseille, 2003. To
appear in Electronic Notes in Theoretical Computer Science. Elsevier
Science Publishers.

[2] M. Křetı́nský, V. Řehák, and J. Strejček. Process Rewrite Systems with
Weak Finite-State Unit. Technical Report FIMU-RS-2003-05, Faculty
of Informatics, Masaryk University Brno, 23 pages, 2003. (full version
of the INFINITY’2003 paper).

[3] M. Křetı́nský, V. Řehák, and J. Strejček. On the Expressive Power
of Extended Process Rewrite Systems. Technical Report RS-04-07, 18
pages. Basic Research in Computer Science, Aarhus, Denmark, 2004.

[4] M. Křetı́nský, V. Řehák, and J. Strejček. Extended Process Rewrite
Systems: Expressiveness and Reachability. In Philippa Gardner and
Nobuko Yoshida, editors, CONCUR 2004 – Concurrency Theory: 15th
International Conference, volume 3170 of Lecture Notes in Computer Sci-
ence, pages 355–370. Elsevier Science Publishers, 2004.

4.3 Other Publications

The following publications are related to my work in the verification group
focused on model checking the Liberouter design. The Liberouter project
develops a dual-stack (IPv6 and IPv4) router based on the standard PC
architecture.
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[1] J. Barnat, T. Brázdil, P. Krčál, V. Řehák, and D. Šafránek. Model
Checking in IPv6 Hardware Router Design. Technical Report 07,
CESNET, 8 pages, July 2002.

[2] D. Antoš, J. Kořenek, K. Minařı́ková, and V. Řehák. Packet Header
Matching in Combo6 IPv6 Router. Technical Report 01, CESNET, 15
pages, January 2003.

[3] D. Antoš, J. Kořenek, and V. Řehák. Vyhledávánı́ v IPv6 směrovači
implementovaném v hradlovém poli. In EurOpen, Sbornı́k přı́spěvků
XXIII. konference. Strážnice: EurOpen, pages 91–102. Strážnice, 2003.

[4] D. Antoš, V. Řehák, and J. Kořenek. Hardware Router’s Lookup Ma-
chine and its Formal Verification. In ICN’2004 Conference Proceedings,
pages 1002–1007. Gosier, Guadeloupe, French Caribbean, 2004.

[5] T. Kratochvı́la, V. Řehák, and P. Šimeček. Verification of COMBO6
VHDL Design. Technical Report 17, CESNET, 17 pages, November
2003.
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[Jan95a] P. Jančar. High Undecidability of Weak Bisimilarity for Petri
Nets. In Proceedings of TAPSOFT, volume 915 of Lecture Notes in
Computer Science, pages 349–363. Springer-Verlag, 1995.
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Appendix A

Summary / Souhrn

The intended thesis will be focused on properties of Process Rewrite Sys-
tems (PRS). Namely, it will introduce an extension of PRS, so called Process
Rewrite Systems with Weak Finite-State Unit (wPRS). The thesis will com-
pare the expressiveness of wPRS with original PRS classes and their known
extensions. In addition, it will study decidability and complexity of prob-
lems related to model checking and other formal verification procedures
such as weak and strong bisimulation, the reachability problem, etc. The
aim of the thesis is to extend expressive power of known modelling facili-
ties while preserving decidability and maintaining complexity of problems
in reasonable bounds.

Zamýšlená disertačnı́ práce se zaměřı́ na vlastnosti procesových přepisova-
cı́ch systémů (PRS). Práce představı́ nové rozšı́řenı́ hierarchie procesových
přepisovacı́ch systémů o konečně stavovou jednotkou (wPRS) a porovná
vyjadřovacı́ sı́lu těchto třı́d s dosud známými rozšı́řenı́mi. Dále bude práce
studovat hranice rozhodnutelnosti a složitosti zajı́mavých problémů vzta-
hujı́cı́ch se k ověřovánı́ vlastnostı́ modelů, či jiným metodám formálnı́ veri-
fikace. Ze zajı́mavých problémů jmenujme napřı́klad problém dosažitelno-
sti, či problémy rozhodovánı́ silné a slabé bisimulace. Cı́lem práce je rozšı́řit
vyjadřovacı́ sı́lu známých modelů o přirozeně motivované možnosti, které
však v rozumné mı́ře zachovajı́ rozhodnutelnost zmiňovaných problémů a
složitostnı́ odhady algoritmů řešı́cı́ch tyto problémy.
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