
}w��������
��
������������� !"#$%&'()+,-./012345<yA| Masaryk University, Brno
Faculty of Informatics

On Extensions of
Process Rewrite Systems
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Abstract

The thesis studies properties of Process Rewrite Systems (PRS) and their
extensions. Namely, it introduces an extension of PRS, so called weakly ex-
tended Process Rewrite Systems (wPRS). This work compares the expres-
siveness of wPRS with original PRS classes and their known extensions. In
addition, it studies decidability of problems related to model checking and
other formal verification procedures such as weak and strong bisimulation,
the reachability problem, etc. We aim to extend expressive power of known
modelling facilities while preserving decidability and maintaining reason-
able complexity bounds for problems related to (automatic) verification.

Disertačnı́ práce je zaměřena na vlastnosti procesových přepisovacı́ch
systémů (PRS) a jejich rozšı́řenı́. Práce představuje nové rozšı́řenı́ hierar-
chie procesových přepisovacı́ch systémů o slabou konečně stavovou jed-
notkou (wPRS) a porovnává vyjadřovacı́ sı́lu těchto třı́d s dosud známými
rozšı́řenı́mi. Dále práce studuje hranice rozhodnutelnosti zajı́mavých
problémů vztahujı́cı́ch se k ověřovánı́ vlastnostı́ modelů, či jiným metodám
formálnı́ verifikace. Ze zajı́mavých problémů jmenujme napřı́klad problém
dosažitelnosti, či problémy rozhodovánı́ silné a slabé bisimulace. Cı́lem
práce je rozšı́řit vyjadřovacı́ sı́lu známých modelů o přirozeně mo-
tivované možnosti, které však v rozumné mı́ře zachovajı́ rozhodnutel-
nost zmiňovaných problémů a složitostnı́ odhady algoritmů řešı́cı́ch tyto
problémy.
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Chapter 1

Introduction

The need for formal modelling of systems and subsequent more or less
automatic verification is indisputable. There have been many words writ-
ten about model checking [CGP99] being a suitable automatic method for
model verification.

When choosing a modelling formalism we need to have in mind two
features going against each other. On the one hand, we want such a for-
malism to be expressive enough to model as much system behaviour
as possible. This is the most important parameter for users of a mod-
elling/verification tool. On the other hand, the more powerful the formal-
ism is, the more complex verification algorithms are.

Basic model checking algorithms are based on exhaustive searching of
a system state space. As the state space is usually huge, this approach
leads to large computational requirements. A significant advancement
was achieved by so called symbolic approach [McM93] that was success-
fully applied to hardware design verification. Unfortunately, the sym-
bolic model checking did not achieve such great success in case of soft-
ware verification. Currently, several interesting approaches are investi-
gated in order to improve the applicability of model checking. The most
useful technique is an application of abstraction to reduce the size of state
space of the model. There are two basic approaches to abstraction, over-
approximation and under-approximation. Over-approximation can possi-
bly introduce new behaviour to the model, while under-approximation can
possibly remove some valid behaviour of the modelled system. Hence, an
over-approximation approach is suitable for proving correctness, since cor-
rectness of the abstract model implies correctness of the original system.
On the other hand, an under-approximation approach works very well for
bug hunting, as every incorrect behaviour in the abstract model has some,
also incorrect, counterpart in the original system.

Even though software systems are usually of a finite size, they can be
parametrised. The parameter can be maximal stack size, number of pro-
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cesses running in parallel, etc. This quite naturally suggests to abstract
away from these parameters and instead consider an infinite state system
that is an over-approximation of the original one. In that case the state
space increases its size, but the system can get more regular structure.
Therefore focusing on the structure, rather than state by state exploration
of the whole state space, can bring considerable improvement. The crucial
difference follows from the fact that in such an abstract system the com-
plexity of model checking depends on the size of the specification rather
than on the size of the state space.

1.1 Subject of This Thesis

In this thesis we focus on infinite state structures defined by a finite num-PRS
ber of rules, which in turn induce an infinite transition relation of the sys-
tem. We use the concept of Process Rewrite Systems (PRS) introduced by
Mayr in his PhD thesis [May98]. Process rewrite systems are an elegant and
unified approach that subsumes many of the important infinite state for-
malisms studied before, for example Petri nets (PN), pushdown automata
(PDA), and various process algebras (BPA, BPP, PA). Process rewrite sys-
tems form a strict hierarchy with respect to strong bisimulation equiva-
lence. This hierarchy is called the PRS-hierarchy. It is worth mentioning
that the PRS-hierarchy subsumes hierarchies of infinite systems defined by
Stirling, Caucal, and Moller [Cau92, Mol98].

It is well known that PA can model both parallel and sequential pro-sePRS
cesses but without any communication among them. Let us mention that
even the most general class of the PRS-hierarchy does not support an ar-
bitrary kind of communication between processes. Some kind of global
control is a very natural and useful instrument from the model designer
point of view. Let us mention the success of PDA in modelling recur-
sive programs or of PN in modelling dynamic creation of concurrent pro-
cesses. In both these formalisms we have a notion of a finite-state control
unit (FSU) which can keep global information and thus provide means
of communication between modelled recursive programs or concurrent
processes. Process rewrite systems extended with an FSU, called state-
extended PRS, first appeared in [JKM01]. Unfortunately, using an FSU to
extend the PRS rewriting mechanism is too powerful, since the reachabil-
ity problem becomes undecidable even for a state extended version of PA
processes (sePA) [BEH95].

In [Str02], Strejček transferred some principles of Concurrent ConstraintfcPRS
Programming (CCP) [SR90] to the formalism of process rewrite systems.
The mechanism of rewrite systems is extended with a very restricted form
of finite state unit. The unit behaves as a shared CCP store which is seen as
a constraint on the values that common variables can represent. Strejček
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has also shown that his definition of PRS with finite constraint systems
(fcPRS) brings new classes lying strictly (with respect to strong bisimula-
tion) between each original PRS class and its non-equivalent state extended
counterpart – with one exception of PRS/sePRS, where the situation is not
clear. Unfortunately, the finite constraint specification is quite complicated
and so it is unhandy for modelling systems of processes. More precisely, it
remains “too close” to its initial motivation (coming from CCP) to be useful
for modelling different kind of FSU.

In this thesis we introduce yet another extension lying between the fi- wPRS
nite constraint extension and the state extension. A definition of our ex-
tension is very close to the state extension and at the same time it keeps
advantages of the less expressive classes (esp. decidability of the reacha-
bility problem). We define weakly extended PRS (wPRS) classes where the
FSU is subject to some restrictions inspired by weak finite automata intro-
duced in [MSS92]. (Here we use a nondeterministic automata rather than
alternating ones.) Roughly speaking, weakly extended PRS formalism is
a state extended PRS where the FSU contains no cycles except self loops; in
other words, the state of FSU changes only finitely many times during an
execution.

Weakly extended PRS formalism proves to be a very good compromise
standing in between very expressible, but Turing powerful, sePRS and non-
extended PRS lacking the advantage of global communication. Hence, this
formalism provides the best comfort to system designers while still pre-
serving some algorithmic verification abilities essential for developers of
a potential verification tool. Moreover, the weak extension makes it easy
to come up with some of the constructive proofs. It is worth mentioning
that some of these proofs bring new results also for the non-extended PRS
classes.

1.2 Thesis Organisation and Contribution

Besides introducing weakly extended PRS itself, we have proved the strict-
ness of an extended PRS-hierarchy with respect to strong bisimulation equiv-
alence. The extended PRS-hierarchy consists of all PRS, fcPRS, wPRS, and
sePRS classes. The following four chapters are devoted to these (extended)
PRS formalisms. Each chapter defines one of the formalisms and includes
results proving strictness of the relations between the classes introduced so
far. The results are published in [May98], [Str02], and our papers [KŘS04b]
and [KŘS04a]. Some of the strictness problems are still open. In these cases
we provide our conjectures supported by intuitive explanations only — see
“Intuition and Conjectures” parts of Chapter 3, 4, and 5.

In the remaining chapters we focus on some interesting problems re-
lated to model checking and other formal verification procedures such
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as weak and strong bisimulation checking. Chapter 6 reviews (un)decid-
ability as well as complexity boundaries of strong bisimilarity between two
states of a given extended PRS. As we have not reached any new results,
this chapter only summarises all known results in this area.

Chapter 7 studies a weak bisimilarity problem. After a listing of all
known results, we show our results of [KŘS06] stating that the problem
is undecidable for weakly extended versions of BPA and BPP. We also
strengthen the result by proving that the weak bisimilarity problem is un-
decidable even for normed subclasses of BPA and BPP extended with finite
constraint systems.

A reachability problem (i.e. given two states α, β, the problem is
whether the state β is reachable by some computation starting in the state
α) can be considered as a basis for all model checking problems. In Chap-
ter 8 we show that the reachability problem remains decidable for the class
of wPRS and thus we determine the decidability borderline of the reacha-
bility problem in whole extended PRS-hierarchy. This result was published
in [KŘS04a].

Chapter 9 is concentrated on the model checking problem for branching
time logics. We deal with model checking for some simple branching time
logics, namely EF and EG, and their fragments. We examine the problem
whether a given weakly extended process rewrite system (wPRS) contains
a reachable state satisfying a given formula of Hennessy–Milner logic. The
main result of this chapter is that this problem is decidable. As a corol-
lary we observe that also the problem of strong bisimilarity between wPRS
and finite-state systems is decidable. Decidability of the same problem for
wPRS subclasses, namely PAN and PRS, has been formulated as an open
question. This chapter incorporates our contribution published in [KŘS05].

The model checking problem for Lineal Time Logic (LTL) is studied in
Chapter 10. Most of the contents of this chapter was published in [BKŘS06].
We show that the LTL model checking problem is decidable for wPRS if
we consider properties defined by formulae only with the strict eventually
and strict always modalities. In the following section, we show that the
model checking problem is decidable even for wPRS and LTL fragment
based on modalities strict eventually, strict always, eventually in the strict past
and always in the strict past. We establish the exact decidability border of
model checking of wPRS classes and all basic modality fragments of LTL
by showing that the model checking problems for PA and LTL(U), and for

PA and LTL(
∞
F ,X), are undecidable.

Chapter 11 is devoted to model checking problems for LTLdet and ex-
tended process rewrite systems. LTLdet (introduced in [Mai00]) is a com-
mon fragment of CTL and LTL. Using some results of the previous chapter
we show that the model checking problem for wPRS and LTLdet is decid-
able. Our results of this chapter have not been published yet.
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and T. Vojnar. CRC64 Algorithm Analysis and Verification.
Technical Report 27, 7pp, CESNET, December 2005.



8 INTRODUCTION
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[25] J. Holeček, T. Kratochvı́la, V. Řehák, D. Šafránek, and
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Chapter 2

Process Rewrite Systems (PRS)

In this chapter we recall a definition of Process Rewrite Systems (PRS). PRS
were introduced in [May97b] and a compact summary of the topic is nicely
presented in [May98]. In Section 2.1 we introduce some basic notions be-
hind are needed to define PRS in Section 2.2. In the next section we com-
pare an expressive power of the defined PRS formalisms with respect to the
strong bisimulation equivalence.

2.1 Basic Definitions

Labelled Transition System

We use a common notion of Labelled Transition System (LTS) for semantic
definitions of infinite state systems. LTS is a well known formalism defined
as follows.

Definition 2.1. A labelled transition system (LTS) L is defined as a tuple
(S,Act ,−→, α0), where

• S is a set of states or processes,

• Act is a set of atomic actions or labels,

• −→⊆ (S ×Act × S) is a transition relation,

• α0 ∈ S is a distinguished initial state.

We write α a−→ β instead of (α, a, β) ∈−→. A state α ∈ S is terminal (or
deadlocked, written α 6−→) if there is no a ∈ Act and β ∈ S such that α a−→ β.

The transition relation −→ can be in a homomorphic way extended to
finite sequences of actions σ ∈ Act∗ so as to write α ε−→∗ α and α

aσ−→∗ β
whenever α a−→ γ

σ−→∗ β for some state γ. A state β is reachable from a state
α, written α −→∗ β, if there is σ ∈ Act∗ such that α σ−→∗ β. We say that
a state is reachable if it is reachable from the initial state.
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Equivalences on LTS

In this thesis we define some classes of infinite state systems and natu-
rally we would like to compare their expressive power. For the sake of
the comparison an equivalence on the systems has to be chosen. We take
into account isomorphism, strong bisimulation, and trace equivalence (also
known as language equivalence).

An isomorphism is the strongest relation of those mentioned above.

Definition 2.2. A binary relation R on set of states S is an isomorphism if and
only if it is a bijection and for each (α, β) ∈ R the following conditions hold:

• ∀α′ ∈ S, a ∈ Act : α a−→ α′ implies (∃β′ ∈ S : β a−→ β′ ∧ (α′, β′) ∈ R)

• ∀β′ ∈ S, a ∈ Act : β a−→ β′ implies (∃α′ ∈ S : α a−→ α′ ∧ (α′, β′) ∈ R)

If an isomorphism can be constructed between the initial states of two labelled
transition systems then we say those labelled transition systems are isomorphic.

The strong bisimulation is the second strongest relation of those we con-
sider here. In context of studying process behaviour we are not interested
in whether the relation between the systems is a bijection or not. Therefore
the strong bisimulation does not have to be a bijection.

Definition 2.3. A binary relation R on set of states S is a (strong) bisimula-
tion [Mil89] if and only if for each (α, β) ∈ R the following conditions hold:

• ∀α′ ∈ S, a ∈ Act : α a−→ α′ implies (∃β′ ∈ S : β a−→ β′ ∧ (α′, β′) ∈ R)

• ∀β′ ∈ S, a ∈ Act : β a−→ β′ implies (∃α′ ∈ S : α a−→ α′ ∧ (α′, β′) ∈ R)

(Strong) bisimulation equivalence on an assumed LTS is the maximal bisimula-
tion (i.e. union of all bisimulations). If a bisimulation can be constructed between
the initial states of two labelled transition systems then we say those labelled tran-
sition systems are (strongly) bisimilar.

In the case of trace equivalence we abstract away from the branching
structure of a system and compare all possible executions only.

Definition 2.4. A binary relation R on set of states S is a trace equivalence if
and only if for each (α, β) ∈ R the following conditions hold:

• ∀α′ ∈ S,w ∈ Act∗ : α w−→∗ α′ implies (∃β′ ∈ S : β w−→∗ β′)

• ∀β′ ∈ S,w ∈ Act∗ : β w−→∗ β′ implies (∃α′ ∈ S : α w−→∗ α′)
If a trace equivalence can be constructed between the initial states of two labelled
transition systems then we say those labelled transition systems are trace equiv-
alent.

As we work with systems describing processes in the thesis, we put the
emphasise on strong bisimulation equivalence. We refer to [vG93] for more
equivalences on processes.
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Process Terms

The concept of Process Rewrite Systems (PRS) formalism is based on
rewriting of process terms. Therefore, being able to define PRS, we have
to define process terms at fist.

Definition 2.5. Let Const = {X, . . .} be a countably infinite set of process
constants. The set T of process terms (ranged over by t, . . .) is defined by the
abstract syntax

t ::= ε | X | t1.t2 | t1‖t2,

where

• ε is the empty term,

• X ∈ Const is a process constant (used as an atomic process),

• ’‖’ mean a parallel composition, and

• ’.’ mean a sequential composition.

We always work with equivalence classes of terms modulo commutativity and
associativity of ’‖’ and modulo associativity of ’.’ We also define ε.t = t = t.ε and
t‖ε = t.

For every process term t, we define a set Const(t) to be the set of all
constants occurring in the process term t.

For the sake of the following definition we define four classes of process
terms depending on whether the parallel composition and/or the sequen-
tial composition has been used in it.

Definition 2.6. We distinguish four classes of process terms as:

“1” terms consisting of a single process constant only (i.e. ε 6∈ 1),

t ::= X

“S” sequential terms without parallel composition, e.g. X.Y.Z,

t ::= ε | X | t1.t2

“P” parallel terms without sequential composition. e.g. X‖Y ‖Z,

t ::= ε | X | t1‖t2

“G” general terms with arbitrarily nested sequential and parallel compositions.

t ::= ε | X | t1.t2 | t1‖t2
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2.2 Definition of Process Rewrite Systems

In this section, we recall the definition of Process Rewrite Systems (PRS) as
introduced by Mayr in his Ph.D. thesis [May98].

Definition 2.7. Let Act = {a, b, · · · } be a countably infinite set of atomic ac-
tions and α, β ∈ {1, S, P,G} such that α ⊆ β. An (α, β)-PRS (process rewrite
system) is a pair ∆ = (R, t0), where

• R ⊆ ((αr {ε})×Act × β) is a finite set of rewrite rules, and

• t0 ∈ β is an initial term.

We write (t1
a
↪→ t2) ∈ R instead of (t1, a, t2) ∈ R.

Let ∆ be a PRS as defined in Definition 2.7. We define Const(∆) as the
set of all constants occurring in the rewrite rules of ∆ or in its initial state,
and Act(∆) as the set of all actions occurring in the rewrite rules of ∆. We
sometimes write (t1

a
↪→ t2) ∈ ∆ instead of (t1

a
↪→ t2) ∈ R.

Definition 2.8. The semantics of ∆ is given by the LTS (S,Act(∆),−→∆, t0),
where

• the set of states S = {t ∈ β | Const(t) ⊆ Const(∆)},

• the initial state of LTS t0 is formed by the initial term of ∆, and

• the transition relation −→∆ is the least relation satisfying the following in-
ference rules for all t1, t2, t ∈ S and a ∈ Act(∆).

(t1
a
↪→ t2) ∈ ∆

t1
a−→∆ t2

t1
a−→∆ t2

t1‖t
a−→∆ t2‖t

t1
a−→∆ t2

t1.t
a−→∆ t2.t

Note that parallel composition is commutative and, thus, the inference rule
for parallel composition also holds with t1 and t exchanged.

If no confusion arises, we sometimes speak about a “process rewrite
system” meaning the “labelled transition system generated by a process
rewrite system”.

We use −→∆ or −→R to emphasise that we mean the transition relation
generated by a set of rules R and we also write −→ instead of −→∆ if ∆ is
clear from the context.

Remark 2.9. As there are only finitely many terms ti and atomic actions ai such
that t0

ai−→∆ ti, it can be assumed without loss of generality that the initial state
t0 of an (α, β)-PRS is a single constant, say X0.
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Every pair α, β ∈ {1, S, P,G} induces a class of all labelled transition
systems that can be expressed by an (α, β)-PRS. Some of the classes corre-
spond to LTS classes of widely known models. In what follows we quote
an apt descriptions of PRS classes as it was published in [Str02]:

• (1, 1)-PRS are equivalent to finite-state systems (FS). Every process
constant corresponds to a state and the state space is bounded by
|Const(∆)|. Every finite-state system can be encoded as a (1, 1)-PRS.

• (1, S)-PRS are equivalent to Basic Process Algebra processes (BPA)
defined in [BK85], which are the transition systems associated with
Greibach normal form (GNF) context-free grammars in which only
left-most derivations are allowed.

• (1, P )-PRS are equivalent to communication-free nets, the subclass
of Petri nets where every transition has exactly one place in its pre-
set [BE97]. This class of Petri nets is equivalent to Basic Parallel Pro-
cesses (BPP) [CHM93].

• (1, G)-PRS are equivalent to PA-processes, Process Algebras with se-
quential and parallel composition, but no communication (see [BK85]
for details).

• It is easy to see that pushdown automata can be encoded as a sub-
class of (S, S)-PRS (with at most two constants on the left-hand side
of rules). Caucal [Cau92] showed that any unrestricted (S, S)-PRS can
be presented as a pushdown automaton (PDA), in the sense that the
transition systems are isomorphic up to the labelling of states. Thus
(S, S)-PRS are equivalent to pushdown processes (which are the pro-
cesses described by pushdown automata).

• (P, P )-PRS are equivalent to Petri nets (PN). Every constant corre-
sponds to a place in the net and the number of occurrences of a con-
stant in a term corresponds to the number of tokens in this place. This
is because we work with classes of terms modulo commutativity of
parallel composition. Every rule in ∆ corresponds to a transition in
the net.

• (S,G)-PRS is the smallest common generalisation of pushdown
processes and PA-processes. They are called PAD (PA + PDA)
in [May97b].

• (P,G)-PRS are called PAN-processes in [May97a]. It is the smallest
common generalisation of Petri nets and PA-processes and it strictly
subsumes both of them (e.g. PAN can describe all Chomsky-2 lan-
guages while Petri nets cannot).
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• The most general case is (G,G)-PRS (here simply called PRS). PRS
have been introduced in [May97b]. They subsume all of the previ-
ously mentioned classes.

For some other intuition into the topic of PRS we refer to a very com-
prehensible introduction published by Esparza [Esp02] or Mayr’s the-
sis [May98].

2.3 Hierarchy of Process Rewrite Systems

Figure 2.1 describes a hierarchy of (α, β)-PRS classes with respect to strong
bisimulation equivalence (bisimilarity). We call this hierarchy the PRS-
hierarchy. More precisely, the classes of PRS systems are interpreted as the
sets of their underlying labelled transition systems. The depicted hierar-
chy is then the upward oriented Hasse diagram of a partial order relation
‘⊆’ between these sets of labelled transition systems modulo bisimulation
equivalence. In other words, a line connecting X and Y with Y placed
higher than X means that every transition systems definable in X can be
(up to bisimulation equivalence) defined in Y while the reverse does not
hold – we write X ( Y . Moreover, the classes that are not connected by
any sequence of upward going lines are incomparable.

The strictness of the hierarchy with respect to strong bisimulation
equivalence follows from the results presented (or cited) in [BCS96, Mol96,
May00], where the following systems are presented:

• a BPP system which is not bisimilar to any PDA system,

• a PN system which is not bisimilar to any PAD system,

• a BPA system which is not bisimilar to any PN system, and

• a PDA system which is not bisimilar to any PAN system.

These systems imply strictness of all relations of the PRS-hierarchy.
Moreover, they also show incomparability of all non-related classes of the
PRS-hierarchy. In what follows we exemplify the four aforementioned sys-
tems. To make references to these systems human readable, we assign in-
tuitive acronyms to the systems; e.g. the system of Example 2.10 is called
BPP non-PDA as it represents a BPP system which is not bisimilar to any
PDA system.

Example 2.10. (BPP non-PDA) A BPP system with the initial state X that is
not bisimilar to any PDA system (for the proof see [Mol96]).
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PRS
(G,G)-PRS

xxxxxxxxxxxxxxxxxx

FFFFFFFFFFFFFFFFFF

PAD
(S,G)-PRS

GGGGGGGGGGGGGGGGGG

PAN
(P,G)-PRS

xxxxxxxxxxxxxxxxxx

PDA
(S, S)-PRS

PA
(1, G)-PRS

xxxxxxxxxxxxxxxxxx

GGGGGGGGGGGGGGGGGG

PN
(P, P )-PRS

BPA
(1, S)-PRS

FFFFFFFFFFFFFFFFFF

BPP
(1, P )-PRS

xxxxxxxxxxxxxxxxxx

FS
(1, 1)-PRS

Figure 2.1: The PRS-hierarchy
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X
a
↪→ X‖B X

c
↪→ X‖D X

e
↪→ ε B

b
↪→ ε D

d
↪→ ε

It follows from Example 2.10 that classes BPP, PA, and PAD are not con-
tained (6⊆) in any of classes FS, BPA, and PDA. We write

BPP,PA,PAD 6⊆ FS,BPA,PDA.

Example 2.11. (PN non-PAD) A Petri net given as (P, P )-PRS with the initial
state X‖A‖B that is not bisimilar to any PAD process (for the proof see [May00]).

X
g
↪→ X‖A‖B Y ‖A a

↪→ Y X‖A d
↪→ Z Y ‖A d

↪→ Z

X
c
↪→ Y Y ‖B b

↪→ Y X‖B d
↪→ Z Y ‖B d

↪→ Z

Intuitively, the system models two counters running in parallel with a syn-
chronised increasing (action g) and a synchronised switching to decreasing phase
(action c) and deadlock state (action d).

It follows from Example 2.11 that classes PN, PAN, and PRS are not
contained (6⊆) in any of classes BPP, PA, and PAD. We write

PN,PAN,PRS 6⊆ BPP,PA,PAD.

Example 2.12. (BPA non-PN) A BPA system with the initial state X that is not
bisimilar to any PN system (for the proof see [Mol96]).

X
a
↪→ X.A X

b
↪→ X.B X

c
↪→ ε A

a
↪→ ε B

b
↪→ ε

It follows from Example 2.12 that classes BPA, PA, and PAN are not
contained (6⊆) in any of classes FS, BPP, and PN. We write

BPA,PA,PAN 6⊆ FS,BPP,PN.

Example 2.13. (PDA non-PAN) A PDA system with the initial state U.X that
is not bisimilar to any PAN system (for the proof see [May00]).

U.X
a
↪→ U.A.X U.A

a
↪→ U.A.A U.B

a
↪→ U.A.B

U.X
b
↪→ U.B.X U.A

b
↪→ U.B.A U.B

b
↪→ U.B.B

U.X
c
↪→ V.X U.A

c
↪→ V.A U.B

c
↪→ V.B

U.X
d
↪→W.X U.A

d
↪→W.A U.B

d
↪→W.B

V.X
e
↪→ V V.A

a
↪→ V V.B

b
↪→ V

W.X
f
↪→W W.A

a
↪→W W.B

b
↪→W

Intuitively, the system behaves as a pushdown automaton with control states
U, V,W and stack alphabet {X,A,B}. Symbol X marks the bottom of the stack
and symbols A and B save sequential information.
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It follows from Example 2.13 that classes PDA, PAD, and PRS are not
contained (6⊆) in any of classes BPA, PA, and PAN. We write

PDA,PAD,PRS 6⊆ BPA,PA,PAN.

Concerning the other equivalences, let us note that strictness of the PRS-
hierarchy with respect to strong bisimulation implies strictness also with
respect to isomorphism. Contrary to this, the PRS-hierarchy is not strict
with respect to trace equivalence, e.g. both BPA and PDA define the class
of ε-free context-free languages.
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Chapter 3

State Extended PRS (sePRS)

Most research (with some recent exceptions, e.g. [BT03, Esp02]) has been
devoted to the PRS classes from the lower part of the PRS-hierarchy de-
picted in Figure 2.1, especially to pushdown processes (PDA), Petri nets
(PN) and their respective subclasses. Let us recall the successes of PDA
in modelling recursive programs with value passing from callee to caller
(without process creation), PN in modelling dynamic creation of commu-
nicating concurrent processes (without recursive calls), and communicating
pushdown systems (CPDS) [BET03] as an example of modelling both fea-
tures. All of these formalisms subsume a notion of a finite-state control unit
keeping some kind of global information which is accessible to the redexes
(the components that can be reduced) of a PRS term – hence a finite-state
control unit (FSU) can regulate rewriting.

3.1 Definition of State Extended PRS

In this section, we introduce an extension of process rewrite system formal-
ism that enriches every PRS system with an FSU, as given in [JKM01]. We
call these systems state extended PRS and define them as follows.

Definition 3.1. Let Act = {a, b, · · · } be a countably infinite set of atomic ac-
tions and α, β ∈ {1, S, P,G} such that α ⊆ β. An (α, β)-sePRS ∆ is a tuple
(M,R,m0, t0), where

• M is a finite set of states of a control unit,

• R ⊆ ((M × (αr{ε}))×Act × (M × β)) is a finite set of rewrite rules,

• m0 ∈M is an initial state of the control unit, and

• t0 ∈ β is an initial term.

We write ((m, t1)
a
↪→ (n, t2)) ∈ R instead of ((m, t1), a, (n, t2)) ∈ R.
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To shorten our notation we write mt instead of (m, t). As in the PRS
case, instead of (mt1

a
↪→ nt2) ∈ R where ∆ = (M,R,m0, t0), we usually

write (mt1
a
↪→ nt2) ∈ ∆. The meaning of Const(∆) (process constants used

in rewrite rules or in t0) and Act(∆) (actions occurring in rewrite rules) for
a given state extended PRS ∆ is also the same as in the PRS case. Moreover,
we use M (∆) to denote the finite set of control states which occur in ∆.

Definition 3.2. The semantics of a state extended (α, β)-PRS system ∆ is given
by the corresponding labelled transition system (S,Act(∆),−→∆,m0t0), where

• S = M (∆)× {t ∈ β | Const(t) ⊆ Const(∆)},

• m0t0 is the initial state composed of the initial control statem0 of the control
unit M (∆) and the initial term t0, and

• the transition relation −→∆ is defined as the least relation satisfying the fol-
lowing inference rules for allmt1, nt2, m(t1‖t), m(t2‖t), n(t1.t), n(t2.t) ∈
S and a ∈ Act(∆).

(mt1
a
↪→ nt2) ∈ ∆

mt1
a−→∆ nt2

mt1
a−→∆ nt2

m(t1‖t)
a−→∆ n(t2‖t)

mt1
a−→∆ nt2

m(t1.t)
a−→∆ n(t2.t)

Note that parallel composition is commutative and, thus, the inference rule
for parallel composition also holds with t1 and t exchanged.

Instead of (1, 1)-sePRS, (1, S)-sePRS, (1, P )-sePRS, (S, S)-sePRS, (1, G)-
sePRS, (P, P )-sePRS, (S,G)-sePRS, (P,G)-sePRS, and (G,G)-sePRS we use
a more natural notation seFS, seBPA, seBPP, sePDA, sePA, sePN, sePAD,
sePAN, and sePRS respectively. The class seBPP is also known as multiset
automata (MSA) or parallel pushdown automata (PPDA), see [Mol96].

3.2 Hierarchy of State Extended PRS

In this section we present an overview of expressive power of the defined
classes. Figure 3.1 shows a graphical description of the PRS-hierarchy en-
riched by the state extended (α, β)-PRS classes. We call the hierarchy the
state extended PRS-hierarchy. The dotted lines represent the relations where
the strictness is only our conjecture.

An immediate observation is that the classes FS, PDA, and PN have
exactly (i.e. up to isomorphism) the same expressive power as the corre-
sponding state extended classes. We note some other trivial observations
also even up to isomorphism:

X ⊆ Y implies seX ⊆ seY for every two classes X and Y of PRS
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sePRS

sePAD PRS
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JJJJJJJJJJJJJJJJJJJJJ sePAN

PAD
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ttttttttttttttttttttt

JJJJJJJJJJJJJJJJJJJJJ PAN

ttttttttttttttttttttt

sePDA=PDA=seBPA PA
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seBPP=PPDA

BPA

JJJJJJJJJJJJJJJJJJJJJ BPP

ttttttttttttttttttttt

seFS=FS

Figure 3.1: The state extended PRS-hierarchy
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(α, β)-PRS ⊆ (α, β)-sePRS for all (α, β)-PRS.

Looking at two lines leaving sePA down to the left and down to the
right, we note the “left-part collapse” of (S, S)-PRS and PDA proved by
Caucal [Cau92] (up to isomorphism). The right-part counterpart is slightly
different due to Moller’s result establishing PPDA ( PN [Mol98]. There-
fore, the previous trivial observations imply only PPDA ⊆ sePA and the
relation between PN and sePA left open. In Subsection 3.2.1 we prove that
PN ⊆ sePA. In Subsection 3.2.2 we discuss strictness (’(’) of the state ex-
tended PRS-hierarchy.

3.2.1 PN ⊆ sePA

Here we show that Petri nets are less expressive (with respect to the strong
bisimulation equivalence) than state-extended PA processes. Let ∆ be
a Petri net and Const(∆) be a set of k process constants {X1, . . . , Xk}.
Speaking about PN systems in context of PRS, Xn denotes a parallel com-
position of n copies ofX . In this subsection we consider Petri nets in the tra-
ditional “place-transition” setting where “markings” are the counterparts
of the states of LTSs, see e.g. [Pet81, Rei85]. Let the Petri net ∆ have k places
P1, . . . , PK , each state

Xp1
1 ‖ . . . ‖X

pk
k

of the PN ∆ is called marking and it is written as

(p1, . . . , pk)

where pi is the number of tokens at the place Pi. Any rewrite rule

X l1
1 ‖ . . . ‖X

lk
k

a
↪→ Xr1

1 ‖ . . . ‖X
rk
k

(where li, ri ≥ 0) is called transition and it is written as

(l1, . . . , lk)
a
↪→ (r1, . . . , rk).

As we employ the marking-place description of PN, Xn stands only for
a sequential composition of n copies of X in the rest of the subsection .

The heart of our argument is a construction of an sePA ∆′ that is bisimi-
lar to the given PN ∆. The main difficulty in this construction is to maintain
the number of tokens at the places of a PN. To this end, we may use two
types of sePA memory:

• a finite control (FSU), which cannot represent an unbounded counter,

• a term of an unbounded length, where just one constant can be rewrit-
ten in one step.



3.2 HIERARCHY OF STATE EXTENDED PRS 23

Intuition

Our construction of an sePA ∆′ can be reformulated on intuitive level as
follows. Let a marking (p1, . . . , pk) mean‘ that we have pi units of the i-th
currency, i = 1, . . . , k. An application of a PN transition

(l1, . . . , lk)
a
↪→ (r1, . . . , rk)

has an effect of a currency exchange from pi to pi − li + ri for all i.
An sePA reseller ∆′ will have k finite pockets (in its FSU) and k bank

accounts (a parallel composition of k sequential terms ti). The reseller ∆′

maintains an invariant pi = pocketi + accounti for all i. To mimic a PN
transition he must obey sePA rules, i.e. he may use all his pockets, but just
one of his accounts in one exchange — transition.

A solution is to do pocketi ↔ accounti transfers cyclically, i = 1, . . . , k.
Hence, rebalancing pocketi the reseller ∆′ must be able to perform the
next k − 1 exchanges (while visiting the other accounts) without access-
ing accounti. Therefore, ∆′ needs sufficiently large (but finite) pockets and
sufficiently high (and still fixed) limits for pocketi ↔ accounti transfers. In
what follows we show that these bounds exist.

Bounds

In one step the amount of the i-th currency can be changed at most by

Li = max { li, ri | (l1, . . . , lk)
a
↪→ (r1, . . . , rk) is a PN transition},

thus the upper bound for the total effect of k consecutive steps can be set
up to

Mi = k · Li.

Any rebalancing of the i-th pocket sets its value into

{Mi, . . . , 2Mi − 1}

(or into {0, . . . , 2Mi−1} if accounti is empty). Hence, after k transitions the
value of pocketi is in

{0, . . . , 3Mi − 1}.

Then the next rebalancing takes place and accounti is increased or de-
creased (if it is not empty) byMi to achieve the (rebalanced) value of pocketi
in {Mi, . . . , 2Mi − 1}.

Construction

Each state of sePA ∆′ consists of a state of an FSU and a term (parallel
composition of k stacks, in fact just counters, representing accounts). Each
state of the FSU is a member of the following product.
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{1, . . . , k} × {0, . . . , 3M1 − 1} × . . . × {0, . . . , 3Mk − 1}
update controller pocket1 pocketk

The update controller goes in round-robin fashion on its range and refers to
the account being updated (rebalanced) in the next step. The value of each
pocketi (subsequently denoted by mi) is equal to the number of tokens at
Pi counted modulo Mi.

We define 2k process constants Bi, Xi ∈ Const(∆′), where i = 1, . . . , k.
The i-th stack ti is of the form

Xn
i .Bi

where n ≥ 0, Bi represents the bottom of the i-th stack, and each Xi repre-
sents Mi tokens at place Pi.

Given an initial marking α0 = (p1, . . . , pk) of ∆, we construct the initial
state

β0 = (1,m1, . . . ,mk) t1‖ · · · ‖tk
of the sePA ∆′, where denoting ni = max(0, (pi div Mi) − 1) we put mi =
pi − ni ·Mi and ti = Xni

i .Bi. In other words we have pi = mi + ni ·Mi and
moreover mi ∈ {Mi, . . . , 2Mi − 1} if pi is big enough (i.e. pi ≥Mi).

To each transition (l1, . . . , lk)
a
↪→ (r1, . . . , rk) of PN ∆ we construct the

set of sePA rules

(s,m1, . . . ,mk) t
a
↪→ (s′,m′1, . . . ,m

′
k) t
′

such that they obey the following conditions:

• Update controller conditions:

– s, s′ ∈ {1, . . . , k} and

– s′ = (s mod k) + 1.

• General conditions for pockets (1 ≤ i ≤ k):

– mi,m
′
i ∈ {0, . . . , 3Mi − 1},

– mi ≥ li (i.e. the transition “is enabled”), and

– if i 6= s then m′i = mi − li + ri.

• The case i = s means to specify m′s and the terms t, t′ that acts the
pocket-account rebalancing transaction. These are given by the rules
of the following table. The first two Bottom rules are the rules for
working with the empty stack. The next three Top rules describe
the rewriting of process constant Xs. Depending on the value of
ms = ms − ls + rs, there are dec, inc, and basic variants manipulat-
ing the s-th stack.
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Rule t ms ∈ m′s t′

Bottom-basic rule Bs {0, . . . , 2Ms − 1} ms Bs
Bottom-inc rule Bs {2Ms, . . . , 3Ms − 1} ms −Ms Xs.Bs
Top-dec rule Xs {0, . . . ,Ms − 1} ms +Ms ε
Top-basic rule Xs {Ms, . . . , 2Ms − 1} ms Xs

Top-inc rule Xs {2Ms, . . . , 3Ms − 1} ms −Ms Xs.Xs

Theorem 3.3. PN ⊆ sePA with respect to bisimulation equivalence.

Proof. Let ∆ be an arbitrary PN with an initial marking α0. According to
the construction given above we build the sePA ∆′ with the initial state β0.
In the rest of the proof we show that a relation

R = {(α, β) | marking α is (p1, . . . , pk)
∧ β = (s,m1, . . . ,mk)Xn1

1 .B1‖ . . . ‖Xnk
k .Bk

∧ s ∈ {1, . . . , k}
∧ for all i = 1, . . . , k it holds that
pi = mi + ni ·Mi

∧mi < 2Mi + (s− i mod k)Li
∧ if ni > 0 then Mi − (s− i mod k)Li ≤ mi

else 0 ≤ mi }

is a bisimulation between ∆ and ∆′.
It follows directly from the construction that the pair (α0, β0) of the ini-

tial states is in R.
We follow the definition of bisimulation to prove that the relation R is

a bisimulation. Let α = (p1, . . . , pk) be a marking of PN ∆ and

β = (s,m1, . . . ,mk)Xn1
1 .B1‖ . . . ‖Xnk

k .Bk

be a state of sePA ∆′ such that (α, β) ∈ R.
Let us assume that a transition (l1, . . . , lk)

a
↪→ (r1, . . . , rk) is fired in α

and leads to α′ = (p′1, . . . , p
′
k), i.e. pi ≥ li and p′i = pi − li + ri, for all

i = 1, . . . , k. According to the definition of bisimulation, we will show that
there is also a state β′ of ∆′ and a transition with a label a leading from β to
β′ such that (α′, β′) ∈ R. Looking into the construction it is easy to see that
such transition exists if mi ≥ li for all i = 1, . . . , k. These inequalities can
be easily proved as follows. For each i = 1, . . . , k, we discus two cases:

• If ni = 0 then (α, β) ∈ R implies pi = mi+ni ·Mi = mi. This, together
with pi ≥ li, directly leads to the desired mi ≥ li.

• If ni > 0 then (α, β) ∈ R implies Mi− (s− i mod k)Li ≤ mi. As Mi is
defined to be equal to k ·Li , we get that mi ≥ Li. Now, the definition
of Li implies Li ≥ li that directly results in mi ≥ li.
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It remains to show that (α′, β′) ∈ R. This can be obtained by a straightfor-
ward inspection through the definitions of all the rule types.

The symmetric case, starting with a transition from β, proceeds in a sim-
ilar way. Hence, ∆ and ∆′ are bisimilar and so PN ⊆ sePA in our nota-
tion.

We note that the sePA system constructed by our algorithm does not
need to be isomorphic to the original PN system, e.g. due to the different
values of the update controller.

3.2.2 Strictness and Incomparability

To show the strictness (’(’) of all relations of the state extended PRS-
hierarchy and incomparability of all non-related classes of the state ex-
tended PRS-hierarchy the following examples have to be presented:

• a BPP system which is not bisimilar to any PDA system,

• a PPDA system which is not bisimilar to any PAD system,

• a PN system which is not bisimilar to any PPDA system,

• a PAN system which is not bisimilar to any sePAD system,

• a BPA system which is not bisimilar to any PN system,

• a PDA system which is not bisimilar to any PAN system,

• a PAD system which is not bisimilar to any sePAN system, and

• an sePA system which is not bisimilar to any PRS system.

For the non-bold items we simply refer to Section 2.3, where the systems
are exemplified.

Concerning the first bold item we focus on the PN non-PAD system of
Example 2.11. In terms of traditional Petri net notation, we can say that
the places X , Y , and Z are 1-bounded1 and the places A and B are un-
bounded.2 As there is no communication3 between the unbounded places
A and B, it is well known that the PN system can be redefined as a PPDA
system. Using this we have constructed the PPDA of Example 3.4. It is easy
to see that the PPDA system of Example 3.4 is isomorphic to the PN system
of Example 2.11.

1A place is 1-bounded if it contains at most one token in each reachable marking.
2A place is unbounded if there is no bound on the number of tokens.
3Two places communicate if they are input places of the same transition.
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Example 3.4. (PPDA non-PAD) A PPDA given as (1, P )-sePRS with the ini-
tial state xC‖A‖B that is not bisimilar to any PAD process (it follows from Ex-
ample 2.11).

xC
g
↪→ xC‖A‖B yA

a
↪→ yε xA

d
↪→ zε yA

d
↪→ zε

xC
c
↪→ yC yB

b
↪→ yε xB

d
↪→ zε yB

d
↪→ zε

It follows from Example 3.4 that classes PPDA, sePA, and sePAD are not
contained (6⊆) in any of classes BPP, PA, and PAD. We write

PPDA, sePA, sePAD 6⊆ BPP,PA,PAD.

The system of the second item written in bold (PN non-PPDA system)
was conjectured in [Mol96] and proved in [Mol98] later on. The PN system
of this papers is presented in the following example.

Example 3.5. (PN non-PPDA) A PN given as (P, P )-PRS with the initial state
X that is not bisimilar to any PPDA process (for the proof see [Mol98]).

X
a
↪→ X‖A X‖A‖B c

↪→ X Y ‖A a
↪→ Y

X
b
↪→ X‖B X

d
↪→ Y Y ‖A a

↪→ Y

It follows from Example 3.5 that

PN 6⊆ PPDA.

Concerning language equivalence, we mention that the PN languages
can be fully characterised in terms of PPDA. This result on language equiv-
alence between PN and PPDA classes has not been published but only pre-
sented by Hirshfeld in his talk “Methods and tools for the verification of
infinite state systems” in Grenoble, March 97 [Hir].

To finish the strictness and incomparability proofs of the state extended
PRS-hierarchy (with respect to strong bisimulation equivalence), it remains
to show a PAD non-sePAN system, a PAN non-sePAD system, and an sePA
non-PRS system. Unfortunately, according to our best knowledge, the ex-
istence of these systems have not been proved yet. Therefore, five lines re-
main dotted in the state extended PRS-hierarchy. In the following, we give
an intuition that supports our conjecture that all the relations are strict.

Intuition and Conjectures

Let us provide some intuition to qualify differences between the classes of
of the state extended PRS-hierarchy.

First, let us discus modelling abilities implied by terms forming right-
hand sides of PRS rules. A sequential composition on the right-hand side
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allows us to model sequential execution of other processes; hence an arbi-
trary long sequential information can be stored. A parallel composition on
the right-hand side of rules enables to store information as multisets.

Composed terms (i.e. terms not belonging to 1 class) on the left-
hand sides of rules upgrade the formalism from “context-free” level onto
“context-sensitive” one. This lifting serves to model communication be-
tween modelled processes; in particular, the process behaviour is sensi-
tive to its sequential and/or parallel context. The sequential “context-
sensitivity” can solve a problem how to sent a return value to the parent
process (e.g. X.P −→ P ′′ instead of X −→ ε). The parallel operator on
the left-hand side of rules can serve for synchronisation (and value pass-
ing) between parallel siblings. For example BPP=(1, P )-PRS systems, also
called “communication free Petri nets,” represent a context-free formalism
whereas PN=(P, P )-PRS systems form its context-sensitive counterpart.

Extensions with a control finite-state unit (FSU) bring further possibili-
ties to increase expressive power of a system. On the one hand, such exten-
sions are similar to the left-hand side extensions because it brings commu-
nication between different subterms, but on the other hand an FSU controls
the whole of rewritten term and so we suggest that it cannot completely
supply the local communication. The global communication abilities coin-
cide with the local ones in the case of BPA only, where all communicating
process terms are in one location and so (1, S)-sePRS=seBPA=PDA=(S, S)-
PRS. We conjecture that in more powerful classes (such as PA, PAD, PAN,
PRS) there are state-extensions orthogonal to the PRS-hierarchy. In the fol-
lowing example we present systems that supports our conjecture.

Example 3.6. (PAD non-sePAN) A PAD system with the initial state Y that is
not bisimilar to any sePAN (according to our conjecture).

Y
g
↪→ (U.X)‖Y

U.X
a
↪→ U.A.X U.A

a
↪→ U.A.A U.B

a
↪→ U.A.B

U.X
b
↪→ U.B.X U.A

b
↪→ U.B.A U.B

b
↪→ U.B.B

U.X
c
↪→ V.X U.A

c
↪→ V.A U.B

c
↪→ V.B

U.X
d
↪→W.X U.A

d
↪→W.A U.B

d
↪→W.B

V.X
e
↪→ V V.A

a
↪→ V V.B

b
↪→ V

W.X
f
↪→W W.A

a
↪→W W.B

b
↪→W

Intuitively, the system behaves as arbitrary many PDA non-PAN systems (Exam-
ple 2.13) running in parallel. Each such a system needs to store an unbounded
piece of sequential information, hence a sequential operator has to be employed.
Moreover, the PAD non-sePAN system consists of an unbounded number of such
systems running in parallel. As the term part is the only unbounded part of every
state of sePAN system, we suppose that the term part of a desired sePAN has to be
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organised in a similar way as in the case of the examined PAD, i.e. an unbounded
number of unbounded sequential terms connected by parallel operators.

In what follows we want to indicate that an FSU extension cannot fully sup-
ply the communication over a sequential operator in this case. The most significant
“communication over a sequential operator” is to carry some information during
decreasing of the sequential stack, i.e. changing the process constants “bellow”
a sequential operator during erasing the “topmost” process constant. In an sePAN
system, every rewrite rule rewrites only parallel subterms, hence, such a caring of
information has to be divided into more then one step. The problem is that there is
an unbounded number of stacks, and so in a subsequent step we cannot remember
which stack was decreased in the previous step. Contrary to the technique used in
the proof showing PN⊆sePA (see Subsection 3.2.1), where the number of stacks is
bounded, the stacks of the speculated sePAN cannot be distinguished using differ-
ent process constants. Moreover, in the PN⊆sePA construction, FSU stores a ref-
erence to the stack rebalanced in the last step. Here, the reference can be arbitrary
large and so it does not fit into any FSU.

Example 3.7. (PAN non-sePAD) A PAN system with the initial state Y that is
not bisimilar to any sePAD (according to our conjecture).

Y
g
↪→ ((X‖A‖B).U)‖Y

X
g
↪→ X‖A‖B Y ‖A a

↪→ Y X‖A d
↪→ Z Y ‖A d

↪→ Z

X
c
↪→ Y Y ‖B b

↪→ Y X‖B d
↪→ Z Y ‖B d

↪→ Z

The system behaves as arbitrary many PN non-PAD systems (Example 2.11) run-
ning in parallel. The term construction “.U” forms a communication barrier be-
tween the respective Petri net systems.

Similarly to the previous case, we conjecture that unbounded number of un-
bounded Petri net implies that the term part of the system has to be constructed
in the same way as in this example regardless of which state extended PRS for-
malism we use. Therefore, using the same argumentation as above, we conclude
that the local synchronisation in the subsystems cannot be supplied be the global
communication via an FSU.

The last system is necessary for the incomparability result only. It im-
plies, among others, that sePA 6⊆ PRS.

Example 3.8. (sePA non-PRS) An sePA system with the initial state qX‖Y that
is not bisimilar to any PRS (according to our conjecture).

qX
a
↪→ qX.A pY

c
↪→ pY.C oA

a′
↪→ oε

qX
b
↪→ qX.B pY

y
↪→ oε oB

b′
↪→ oε

qY
c
↪→ qY.C oC

c′
↪→ oε

qX
x
↪→ pε
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It is easy to see that the system is isomorphic to the system of Example 4.9. It was
conjectured that there is no PRS bisimilar to the system. In [Str02] there is an
intuitive argumentation that supports the conjecture (see Example 4.9 for further
details).



Chapter 4

PRS with Finite Constraint
Systems (fcPRS)

In this chapter we recall an extension of process rewrite systems with finite
constraint systems (fcPRS). This extension has been introduced by Strejček
in [Str02]. A motivation comes from the theory of constraint systems used
in concurrent constraint programming (CCP) – see e.g. [SR90]. Contrary to
the state extended PRS, fcPRS employs a restricted finite state unit. The
unit behaves as a shared CCP store which is seen as a set of constraints on
the values that common variables can represent.

4.1 Definition of PRS with Finite Constraint Systems

In the following definition we define a constraint system as a set of con-
straints with a structure of an algebraic lattice. A constraint system de-
scribes a state space and possible evolution of a CCP store unit.

Definition 4.1. A constraint system is a bounded lattice (C,`,∧, tt, ff), where

• C is a set of constraints,

• ` (called entailment) is an ordering on this set,

• ∧ is the least upper bound operation, and

• tt, ff (true and false) are the least and the greatest elements of C respectively
(ff ` tt and tt 6= ff).

In algebra, the symbol ∧ usually denotes the greatest lower bound oper-
ation, while the least upper bound operation is rather marked with symbol
∨. Here we use a notation of CCP where the least upper bound corresponds
to logical conjunction.
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Example 4.2. Examples of constraint systems.

ff

o

tt

ff

~~~~~~

>>>>>>

m

BBBBBB n

~~~~~~

tt

ff

mmmmmmmmmmmmmmmmmmmmmm

���������

88888888

QQQQQQQQQQQQQQQQQQQQQQ

x=a
y=a

���������

88888888

QQQQQQQQQQQQQQQQQQQQQ
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mmmmmmmmmmmmmmmmmmmmm

QQQQQQQQQQQQQQQQQQQQQ
x=b
y=a

mmmmmmmmmmmmmmmmmmmmm

QQQQQQQQQQQQQQQQQQQQQ
x=b
y=b

mmmmmmmmmmmmmmmmmmmmm

��������

88888888

x=a

VVVVVVVVVVVVVVVVVVVVVVVVVVVVV y=a

MMMMMMMMMMMMMM x=y y=b

qqqqqqqqqqqqqq x=b

hhhhhhhhhhhhhhhhhhhhhhhhhhhhh

tt

Using the notion of finite constraint systems we can define process
rewrite systems with finite constraint system in the following definition.

Definition 4.3. Let Act = {a, b, · · · } be a countably infinite set of atomic ac-
tions and α, β ∈ {1, S, P,G} such that α ⊆ β. An (α, β)-fcPRS (PRS with
finite constraint system) is a tuple ∆ = (C, R, tt, t0), where

• C = (C,`,∧, tt, ff) is a finite constraint system describing the store; the
elements of C represent values of the store,

• R ⊆ ((C × (αr{ε}))×Act × (C × β)) is a finite set of rewrite rules,

• tt is the least element of C, and

• t0 ∈ β is a distinguished initial process term.

We write ((m, t1)
a
↪→ (n, t2)) ∈ R instead of ((m, t1), a, (n, t2)) ∈ R.

To shorten our notation we write mt instead of (m, t). As in the PRS
case, instead of (mt1

a
↪→ nt2) ∈ R where ∆ = (C, R, tt, t0), we usually

write (mt1
a
↪→ nt2) ∈ ∆. The meaning of Const(∆) (process constants used

in rewrite rules or in t0), Act(∆) (actions occurring in rewrite rules), and
M (∆) (values of the store occurring in ∆) for a given fcPRS ∆ is the same
as in the sePRS case.
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Definition 4.4. The semantics of an (α, β)-fcPRS system ∆ = (C, R, tt, t0) is
given by the LTS (S,Act(∆),−→∆, tt t0), where

• S = (M (∆) r {ff})× {t ∈ β | Const(t) ⊆ Const(∆)} is the set of states,

• tt t0 is the initial state composed of the least element tt of the store M (∆)
and the initial term t0, and

• the transition relation −→∆ is defined as the least relation satisfying the
following inference rules for all mt1, nt2, ot1, (o ∧ n)t2, m(t1‖t), m(t2‖t),
n(t1.t), n(t2.t) ∈ S and a ∈ Act(∆).

(mt1
a
↪→ nt2) ∈ ∆

ot1
a−→∆ (o ∧ n)t2

if o ` m and o ∧ n 6= ff

mt1
a−→∆ nt2

m(t1‖t)
a−→∆ n(t2‖t)

mt1
a−→∆ nt2

m(t1.t)
a−→∆ n(t2.t)

Note that parallel composition is commutative and, thus, the inference rule
for parallel composition also holds with t1 and t exchanged.

The two side conditions in the first inference rule are very close to prin-
ciples used in CCP. The first one (o ` m) ensures the rule (mt1

a
↪→ nt2) ∈ ∆

can be used only if the current value of the store o entails m (it is similar to
ask(m) in CCP). The second condition (o ∧ n 6= ff) guarantees that the store
stays consistent after application of the rule (analogous to the consistency
requirement when processing tell(n) in CCP).

An important observation is that the value of a store can move in a lat-
tice only upwards as o∧n always entails o, i.e. o∧n is greater than or equal
to o. Intuitively, partial information can only be added to the store, but
never retracted. We say that the store is monotonic.

Let o be a store value of an fcPRS state and (mt1
a
↪→ nt2) ∈ ∆ be a rule

that can be applied on the state. The fcPRS definition says that o ` m and
o∧n 6= ff where o∧n is the store value of the state reached by the application.
It follows from the monotonicity of the store that, for every subsequent
value p of the store, p ` m. Moreover, associativity, commutativity, and
idempotence of the least upper bound operation ∧ imply that p ∧ n = p for
every subsequent store value p, and so every rule can change the store only
during the first application. To sum up, we note that p ` m and p ∧ n 6= ff
for every subsequent store value p, i.e. any further application of a rule cannot
be forbidden by a value of the store.

Instead of (1, 1)-fcPRS, (1, S)-fcPRS, (1, P )-fcPRS, (S, S)-fcPRS, (1, G)-
fcPRS, (P, P )-fcPRS, (S,G)-fcPRS, (P,G)-fcPRS, and (G,G)-fcPRS we use
a more natural notation fcFS, fcBPA, fcBPP, fcPDA, fcPA, fcPN, fcPAD, fc-
PAN, and fcPRS respectively.
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4.2 Hierarchy of PRS with Finite Constraint Systems

In this section we present an overview of expressive power of the defined
classes. Figure 4.1 shows a graphical description of sePRS-hierarchy en-
riched by (α, β)-fcPRS classes. The hierarchy is constructed with respect
to strong bisimulation. The dotted lines represent the relations where the
strictness is only conjectured.

It is an easy observation that

(α, β)-PRS ⊆ (α, β)-fcPRS ⊆ (α, β)-sePRS

holds for (α, β)-PRS class (even up to isomorphism). Moreover, we note
that for every two classes X and Y of PRS

X ⊆ Y implies fcX ⊆ fcY.

The strictness of the relations depicted in Figure 4.1 follows from the
following examples:

• a BPP system which is not bisimilar to any PDA system,

• a fcBPP system which is not bisimilar to any PAD system,

• a PPDA system which is not bisimilar to any fcPAD system,

• a PN system which is not bisimilar to any PPDA system,

• a PAN system which is not bisimilar to any sePAD system,

• a BPA system which is not bisimilar to any PN system,

• a fcBPA system which is not bisimilar to any PAN system,

• a PDA system which is not bisimilar to any fcPAN system,

• a PAD system which is not bisimilar to any sePAN system,

• a fcPA system which is not bisimilar to any PRS system, and

• a sePA system which is not bisimilar to any fcPRS system.

For the bold items we simply refer to the previous sections where the sys-
tems are presented. In what follows the non-bold systems are exemplified.
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Figure 4.1: The fcPRS classes and the state extended PRS-hierarchy
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Example 4.5. (fcBPP non-PAD) Let us consider a fcBPP system given as an
(1, P )-fcPRS with the constraint system depicted below and the initial process term
X .

ff

o

tt

ttX
a
↪→ ttX‖A

ttX
b
↪→ ttX‖B

ttX
e
↪→ oε

oA
c
↪→ ttε

oB
d
↪→ ttε

There is no PAD system bisimilar to the considered fcBPP system (for the proof
see [Str02]).

It follows from Example 4.5 that classes fcBPP, fcPA, and fcPAD are not
contained (6⊆) in any of classes BPP, PA, and PAD. We write

fcBPP, fcPA, fcPAD 6⊆ BPP,PA,PAD.

Example 4.6. (PPDA non-fcPAD) Let ∆ be a PPDA process with the initial
state xC‖A‖B and the following rewrite rules:

xC
g
↪→ xC‖A‖B yA

a
↪→ yε xA

d
↪→ zε yA

d
↪→ zε

xC
c
↪→ yC yB

b
↪→ yε xB

d
↪→ zε yB

d
↪→ zε

yC
e
↪→ zC zA

e
↪→ zε zB

e
↪→ zε zC

r
↪→ xC‖A‖B

The system ∆ is the same as the PPDA non-wPAD of Example 5.10. Hence, there
is no fcPAD system bisimilar to the considered PPDA ∆ (the proof directly follows
from Lemma 5.11).

It follows from Example 4.6 that classes PPDA, sePA, and sePAD are not
contained (6⊆) in any of classes fcBPP, fcPA, and fcPAD. We write

PPDA, sePA, sePAD 6⊆ fcBPP, fcPA, fcPAD.

Example 4.7. (fcBPA non-PAN) Let ∆ be a fcBPA of the form (C, R, tt, U.X),
where C and R are as follows.

ff

~~~~
>>>>

m
BBBB n

~~~~

tt

ttU
a
↪→ ttU.A ttA

a
↪→ ttε

ttU
b
↪→ ttU.B ttB

b
↪→ ttε

ttU
c
↪→ mε mX

e
↪→ ttε

ttU
b
↪→ nε nX

f
↪→ ttε

The system ∆ is not bisimilar to any BPA (for the proof see [Str02]).

It follows from Example 4.7 that classes fcBPA, fcPA, and fcPAN are not
contained (6⊆) in any of classes BPA, PA, and PAN. We write

fcBPA, fcPA, fcPAN 6⊆ BPA,PA,PAN.
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Example 4.8. (PDA non-fcPAN) A PDA system with the initial state U.X.Y
that is not bisimilar to any fcPAN (for the proof see [Str02]).

U.X
a
↪→ U.A.X U.A

a
↪→ U.A.A U.B

a
↪→ U.A.B

U.X
b
↪→ U.B.X U.A

b
↪→ U.B.A U.B

b
↪→ U.B.B

U.X
c
↪→ V.X U.A

c
↪→ V.A U.B

c
↪→ V.B

U.X
d
↪→W.X U.A

d
↪→W.A U.B

d
↪→W.B

V.X
e
↪→ V V.A

a
↪→ V V.B

b
↪→ V

W.X
f
↪→W W.A

a
↪→W W.B

b
↪→W

V.Y
x
↪→ U.X.Y W.Y

x
↪→ U.X.Y

V.Y
z
↪→ Z W.Y

z
↪→ Z

It follows from Example 4.8 that classes PDA, sePA, and sePAN are not
contained (6⊆) in any of classes fcBPA, fcPA, and fcPAN. We write

PDA, sePA, sePAN 6⊆ fcBPA, fcPA, fcPAN.

Intuition and Conjectures

Similarly to the state extension of PRS, finite constraint systems bring some
kind of global communication as well. But a constraint system is more
restricted than a finite state unit. Let us recall monotonicity of the store and
the feature stating that any further application of a rule cannot be forbidden
by a value of the store. Therefore, we conjecture that

(α, β)-PRS ( (α, β)-fcPRS ( (α, β)-sePRS

holds for each (α, β)-PRS except for FS, PDA, and PN, where it is known
that (α, β)-PRS = (α, β)-sePRS.

Example 4.9. (fcPA non-PRS) Let ∆ be a fcPA system with the initial process
term X‖Y and the following constraint system and rewrite rules.

ff

o

p

tt

ttX
a
↪→ ttX.A oA

a′
↪→ ttε

ttX
b
↪→ ttX.B oB

b′
↪→ ttε

ttY
c
↪→ ttY ‖C oC

c′
↪→ ttε

ttX
x
↪→ pε

pY
y
↪→ oε

It was conjectured that there is no PRS bisimilar to this fcPA system ∆. In [Str02]
there is the following intuitive argumentation that supports the conjecture.

The behaviour of ∆ defined in the example above is as follows. At the begin-
ning, the process X can perform some actions a, b and remember the order of the
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actions, while the process Y can perform just the action c and count the number of
performed actions c. The process X can also perform the action x, make a remark p
on the store about this action and terminate. Thereafter, the process Y can perform
the action y, make a remark o on the store and terminate. When both processes X
and Y are terminated (i.e. there is p ∧ o = o on the store), actions a′, b′, c′ can be
performed. The order (and the count) of actions a′, b′ corresponds in reversed order
to actions a, b produced before termination of the process X . The count of actions
c′ is the same as the count of actions c performed before termination of the process
Y .

We can approve that this fcPA system is not bisimilar to any PAD process. For
the proof we consider the fcPA process without rules labelled by the action b (if
we assume that there is a PAD process bisimilar to the original fcPA, then there
is also a PAD system without b action bisimilar to the fcPA without b action).
Then the behaviour of our system is very similar to the behaviour of fcBPP from
Example 4.5, which is not bisimilar to any PAD process. The proof is very similar
too.

We can also approve that the considered fcPA process is not bisimilar to any
Petri net. The argumentation is based on the fact, that if we remove the rules
labelled by c from the fcPA system, then we get a system describing the language
L = {w.x.y.wR | w ∈ {a, b}∗}. The proof that there is no Petri net generating
the language L, can be found in [Pet81].

Now we try to explain (on very intuitive level) why we think that there is
no PRS process bisimilar to the considered fcPA. Let us assume that ∆ is such
a bisimilar PRS system. We know this PRS cannot be described by any PAD pro-
cess. Thus, there must be reachable state with some parallel composition. As the
use of the parallel composition must be “non-removable”, the information about
performed actions a, b, c should be stored in some components of this parallel com-
position. There should be one parallel component (let us call it p) which saves the
information about the order of actions a, b (and thus p is a sequential composition,
at least at the top-level), and another parallel component (let us call it q) which
remembers the number of performed actions c (the information about the count of
actions c cannot be mixed with the information about the order of actions a, b, be-
cause after the action y we need a “random access” to the count of actions c). As
the sequence of actions a, b can be arbitrary long, the size of corresponding parallel
component p is “unbounded” (i.e. for every n ≥ 0, there is a reachable state where
size(p) > n). Let m be the maximum size of left-hand sides of rewrite rules in ∆.
Further, consider the state of the form (p‖q‖s).r, where size(p) > m and process
terms s, r can be ε. Then there is no rule, which can change p together with some
other part of the term. In other words, there is no way how can q or s provide an
information to p. We need such kind of communication for the transition labelled
by y, which allows to perform actions a′, b′, c′. One possible way how to enable
these actions at the same time, is to add some term l in front of the parallel compo-
sition and enable the action by removing l. But any application of a rewrite rule
on the process term of the form l.(p‖q‖s).r cannot modify the process term p if p
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is large enough. Thus we cannot add information about next possibly performed
actions a, b to p (as well as l cannot be generated by p after the action x if p is
large enough). In other words, the problem is that a very large parallel component
(which is an sequential composition at the top-level) cannot get any information
from other parallel components.

Example 4.10. (sePA non-fcPRS) Let ∆ be a sePA system with the initial state
pX‖Y and the the following rewrite rules.

pX
a
↪→ pA.X pA

a
↪→ pA.A pB

a
↪→ pA.B pA

a′
↪→ pε

pX
b
↪→ pB.X pA

b
↪→ pB.A pB

b
↪→ pB.B pB

b′
↪→ pε

pY
c
↪→ pY ‖C pC

c′
↪→ pε

pY
d
↪→ oY

The system ∆ is the same as the wPA non-fcPRS system of Example 5.29. Hence,
also in this case we conjecture that there is no fcPRS system bisimilar to the con-
sidered sePA ∆ (see Example 5.29 for more information).
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Chapter 5

Weakly Extended PRS (wPRS)

The state extension of PRS, described in Chapter 3, is very naturally mo-
tivated and brings useful modelling abilities. On the other hand it is too
strong at least from point view of automatic verification. State extended PA
systems are able to emulate a universal Turing machine. Therefore, from
model checking point of view, these systems (and those of the even more
expressible classes, namely sePAN, sePAD, and sePRS) are not interesting
enough because even the reachability problem is undecidable for them. In
the case of BPA the state extended version coincides with previously de-
fined class of (S, S)-PRS systems. Hence, the only “new and interesting”
class is the class of seBPP systems.

Being motivated by this observation, it is worth to look for a weaker
extension of PRS. Strejček has defined PRS with finite constraint systems
and shown that his definition brings new classes lying strictly between
each original PRS class and its non-equivalent state extended counterpart
(see Chapter 4). Unfortunately, the finite constraint specification is quite
complicated and so it is a bit unhandy and not so common for modelling
systems of processes. In other words, it remains “too close” to its initial
motivation (coming from CCP) to be useful for modelling different kind of
FSU.

In this chapter, we introduce yet another extension lying between the fi-
nite constraint extension and the state extension. A definition of our exten-
sion is very close to the state extension (that succeed in modelling abilities)
and at the same time it keeps advantages of the finite constraint extension
(esp. decidability of the reachability problem).

5.1 Definition of Weakly Extended PRS

This section defines weakly extended PRS (wPRS) classes that were intro-
duced in [KŘS04b]. We extend PRS by a finite state control unit whose tran-
sition function satisfies some restrictions inspired by weak finite automata



42 WEAKLY EXTENDED PRS (wPRS)

(introduced in [MSS92], but used here as a nondeterministic (NFA) rather
than alternating one). Roughly speaking, weakly extended PRS is a state
extended PRS where the FSU is weak (its transition function exhibits some
monotonicity).

Definition 5.1. Let Act = {a, b, · · · } be a countably infinite set of atomic ac-
tions and α, β ∈ {1, S, P,G} such that α ⊆ β. An (α, β)-wPRS (weakly ex-
tended PRS) is a tuple ∆ = (M,≥, R,m0, t0), where

• (M,≥) is partially ordered finite set representing states of weak finite-
state unit; the elements of M are called w-states,

• R ⊆ ((M × (αr{ε}))×Act × (M × β)) is a finite set of rewrite rules of
the form ((m, t1), a, (n, t2)) satisfying the condition m ≥ n.

• m0 ∈M is an initial w-state of the control unit, and

• t0 ∈ β is an initial term.

We write ((m, t1)
a
↪→ (n, t2)) ∈ R instead of ((m, t1), a, (n, t2)) ∈ R.

To shorten our notation we write mt instead of (m, t). As in the PRS
case, instead of (mt1

a
↪→ nt2) ∈ R where ∆ = (C, R, tt, t0), we usually

write (mt1
a
↪→ nt2) ∈ ∆. The meaning of Const(∆) (process constants used

in rewrite rules or in t0), Act(∆) (actions occurring in rewrite rules), and
M (∆) (values of the store occurring in ∆) for a given wPRS ∆ is the same
as in the sePRS case.

Definition 5.2. The semantics of an (α, β)-wPRS ∆ = (M,≥, R,m0, t0) is given
by the LTS (S,Act(∆),−→∆,m0t0), where

• S = M(∆)× {t ∈ β | Const(t) ⊆ Const(∆)},

• m0t0 is the initial state composed of the initial w-state m0 and the initial
term t0, and

• the transition relation −→∆ is defined as the least relation satisfying the fol-
lowing inference rules for allmt1, nt2, m(t1‖t), m(t2‖t), n(t1.t), n(t2.t) ∈
S and a ∈ Act(∆).

(mt1
a
↪→ nt2) ∈ ∆

mt1
a−→∆ nt2

mt1
a−→∆ nt2

m(t1‖t)
a−→∆ n(t2‖t)

mt1
a−→∆ nt2

m(t1.t)
a−→∆ n(t2.t)

Note that parallel composition is commutative and, thus, the inference rule
for parallel composition also holds with t1 and t exchanged.
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The presented notion of weakness corresponds to 1-weakness condi-
tion in automata theory. (As we do not consider final states here, the gen-
eral weak unit would coincide with standard state-extension; more pre-
cisely, all the states of M could be included in one partition block.) In any
transition sequence, following the rules of R, the w-state components form
a non-increasing sequence with respect to ≥. Hence, similarly to the fi-
nite constraint extension, the w-state is monotonic. However, in contrast to
fcPRS, the weak unit can forbid the application of any rewrite rule. As this
is the monotonicity is the only restriction and the FSU is finite, we can also
reformulate the difference between wPRS and sePRS as follows.

wPRS is a sePRS where its FSU can change its state only finitely many
times during every execution.

As instead of (1, S)-sePRS, (1, P )-sePRS, etc. we use more traditional ab-
breviations seBPA, seBPP, etc., we also take up this notation for all weakly
extended PRS classes. Thus for (1, 1)-wPRS, (1, S)-wPRS, (1, P )-wPRS,
(S, S)-wPRS, (1, G)-wPRS, (P, P )-wPRS, (S,G)-wPRS, (P,G)-wPRS, and
(G,G)-wPRS we use human-readable abbreviations wFS, wBPA, wBPP,
wPDA, wPA, wPN, wPAD, wPAN, and wPRS respectively.

5.2 Hierarchy of Weakly Extended PRS

In this section we discus relations between classes of PRS, PRS with finite
constraint systems, weakly extended PRS, and state extended PRS. A hier-
archy of all these systems is depicted in Figure 5.1 and called the extended
PRS-hierarchy.

It is an immediate observation that

(α, β)-PRS ⊆ (α, β)-fcPRS ⊆ (α, β)-wPRS ⊆ (α, β)-sePRS

hold for every (α, β)-PRS class (even up to isomorphism).
The first and the last inclusions are obvious. To justify the second inclu-

sion we take an arbitrary (α, β)-fcPRS ∆ with an initial term t0 and a con-
straint system C = (C,`,∧, tt, ff). The corresponding (α, β)-wPRS is

∆′ = (C r {ff},≥, R′, tt, t0),

where

R′ = {ot1
a
↪→ (o ∧ n)t2 | (mt1

a
↪→ nt2) ∈ ∆ and o ` m and o ∧ n 6= ff}

and ≥= (`)−1.
We also note that the classes FS, PDA, and PN have the same expres-

sive power as the corresponding {fc, w, se} extended classes. Finally, we
mention that for every two classes X and Y of PRS
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sePRS

wPRS

|||||||||||||||||||||||||||||

BBBBBBBBBBBBBBBBBBBBBBBBBBBBB

fcPRS

|||||||||||||||||||||||||||||

BBBBBBBBBBBBBBBBBBBBBBBBBBBBB

PRS

|||||||||||||||||||||||||||||

BBBBBBBBBBBBBBBBBBBBBBBBBBBBB

sePAD sePAN

wPAD

BBBBBBBBBBBBBBBBBBBBBBBBBBBBB wPAN

|||||||||||||||||||||||||||||

fcPAD

BBBBBBBBBBBBBBBBBBBBBBBBBBBBB fcPAN

|||||||||||||||||||||||||||||

PAD

BBBBBBBBBBBBBBBBBBBBBBBBBBBBB PAN

|||||||||||||||||||||||||||||

sePA

uuuuuuuuuuuuuuuuuuuuuuuu

IIIIIIIIIIIIIIIIIIIIIIII

wPA

}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

fcPA

}}}}}}}}}}}}}}}}}}}}}}}}}}}}}

AAAAAAAAAAAAAAAAAAAAAAAAAAAAA

{se,w,fc}PDA=PDA=seBPA PA

|||||||||||||||||||||||||||||

BBBBBBBBBBBBBBBBBBBBBBBBBBBBB
{se,w,fc}PN=PN

seBPP=PPDA

wBPA wBPP

fcBPA fcBPP

BPA

HHHHHHHHHHHHHHHHHHHHHHHHH BPP

vvvvvvvvvvvvvvvvvvvvvvvvv

{se,w,fc}FS=FS

Figure 5.1: The extended PRS-hierarchy.
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X ⊆ Y implies wX ⊆ wY.

The strictness (’(’) of all relations of the extended PRS-hierarchy and
incomparability of all non-related classes of the extended PRS-hierarchy
follow from exemplifying the following systems:

• a BPP system which is not bisimilar to any PDA system,

• a fcBPP system which is not bisimilar to any PAD system,

• a wBPP system which is not bisimilar to any fcPAD system,

• a PPDA system which is not bisimilar to any wPAD system,

• a PN system which is not bisimilar to any PPDA system,

• a PAN system which is not bisimilar to any sePAD system,

• a BPA system which is not bisimilar to any PN system,

• a fcBPA system which is not bisimilar to any PAN system,

• a wBPA system which is not bisimilar to any fcPAN system,

• a PDA system which is not bisimilar to any wPAN system,

• a PAD system which is not bisimilar to any sePAN system,

• a fcPA system which is not bisimilar to any PRS system,

• a wPA system which is not bisimilar to any fcPRS system, and

• a sePA system which is not bisimilar to any wPRS system.

For the non-bold items we simply refer to Section 2.3, Section 3.2, and Sec-
tion 4.2, where the systems are exemplified. The bold systems are exam-
ined in the following subsections. Unfortunately, concerning the wPA non-
fcPRS and sePA non-wPRS systems, we can speak about our conjectures
only. Therefore these systems are included in the last subsection of conjec-
tures.



46 WEAKLY EXTENDED PRS (wPRS)

5.2.1 wBPP Non-bisimilar to any fcPAD

Constructing a proof of this section, we also formulate a property that
forms a sufficient condition for a PAD to be bisimilar to some PDA (see
the following definition and Lemma 5.6).

Definition 5.3. An LTS (S,Act ,−→, α0) is deadlockable if for each reachable
nonterminal state α there is a transition from α to a terminal state.

∀α ∈ S : α0 −→∗ α =⇒ ∃ a ∈ Act , β ∈ S : α a−→ β 6−→

A rewrite system ∆ is deadlockable if its underlying LTS is deadlockable.

Let us note that deadlockable does not mean “there is a (reachable)
deadlocked state in the system”. The definition says that every reachable
state of the system has an immediate deadlocked successor.

Definition 5.4. A sequential subterm t (i.e. t ∈ S) of term g ∈ G is a ready
parallel component if and only if t is a maximal subtree in the syntax tree of
term g such that t is not in the right-hand side subtree of any sequential node (i.e.
node corresponding to sequential operator). A ready parallel component t is live
in a PAD system ∆ if t is not deadlocked (i.e. there is a rule applicable to t).

The ready parallel components can be intuitively defined as the maxi-
mal sequential parts of a PAD process g such that g can perform an action a
if and only if some of its ready parallel components can perform the same
action a.

Lemma 5.5. Every reachable state of an arbitrary deadlockable PAD system has
at most one live ready parallel component.

Proof. Observe that the application of a PAD rewrite rule can only modify
one ready parallel component. Hence there is no way how to deadlock
more than one live ready parallel component by one application of a PAD
rewrite rule.

Lemma 5.6. Every deadlockable PAD system is bisimilar to a PDA system.

Proof. The proof is build as a transformation of PAD rewrite rules onto cor-
responding PDA rewrite rules. This is sufficient as for every PAD there is
a bisimilar PAD system with a single process constant as the initial process
term (see Remark 2.9).

There is only one way to revive a deadlocked parallel compo-
nent, namely to rewrite adjacent components onto ε. For example if
B.C is a deadlocked ready parallel component of (A.C‖B.C).D and
(A.C‖B.C).D w−→ ∗ (ε‖B.C).D = B.C.D then the ready parallel compo-
nent B.C.D can be live.
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Let ∆ be a PAD system and X 6∈ Const(∆) be a fresh process constant.
Let us consider a rewrite rule of ∆ with the right hand side containing
a maximal subterm of the form l.(t1‖t2).r, where t1, t2 ∈ S and l, r can be ε.
In an arbitrary transition sequence the components t1, t2 generated by the
application of the considered rewrite rule become ready at the same time.
Thus at least one of them is deadlocked. Let t2 be deadlocked. We replace
the subterm l.(t1‖t2).r of the rule by l.X.t1.X.t2.r (or just t1.X.t2.r when-
ever l is ε). The process constant X eliminates any possible (unwanted)
interaction of (the tail of) the term l and (the beginning of) the term t1 (or
the tail of t1 and the beginning of t2 respectively). Repeating this proce-
dure eliminates all parallel operators from rewrite rules. The resulting PDA
system ∆′ enriched by rewrite rules of the form X.s

a
↪→ s′ for every rule

s
a
↪→ s′ ∈ ∆′ is bisimilar to the given ∆.

Example 5.7. (wBPP non-fcPAD) Let ∆1 be the wBPP system with the initial
state pX and the rules:

pX
c
↪→ pX‖A‖B pA

a
↪→ pε pB

b
↪→ pε pX

d
↪→ qε

Lemma 5.8. There is no PAD system bisimilar to the wBPP system ∆1 of Exam-
ple 5.7.

Proof. ∆1 is deadlockable. Due to Lemma 5.6 it suffices to prove there is
no PDA system bisimilar to ∆1. This directly follows from the fact that the
languageL generated by ∆1 is not context-free. More precisely, context-free
languages are closed under intersection with regular languages and

L ∩ {c}∗{a}∗{b}∗{d} = {ckalbmd | 0 ≤ l ≤ k ∧ 0 ≤ m ≤ k}

is not a context-free language.

Lemma 5.9. There is no fcPAD system bisimilar to the wBPP system ∆1 of Ex-
ample 5.7.

Proof. For the sake of a contradiction we assume a fcPAD ∆ bisimilar to ∆1.
The finiteness of the constraint system used in ∆ implies that there ex-

ists a reachable non-terminal state mt of ∆ such that every non-terminal
state reachable from mt has also m on the store (the contrary would mean
the constraint system is infinite). As mt is non-terminal there exists a word
w ∈ {a, b}∗ such that mt w−→∗∆ ms and ms is bisimilar to the initial state
pX of ∆1. The only transitions starting at states reachable from ms and
changing the value of the store can be the transitions leading to terminal
states, i.e. the transitions labelled by d. Hence we can directly assume that
all rewrite rules of ∆ labelled with x ∈ {a, b, c} have the form (tt t1

x
↪→ tt t2).

Let ∆′ be a PAD system with the set of rewrite rules as
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{t1
x
↪→ t2 | (tt t1

x
↪→ tt t2) ∈ ∆, x 6= d} ∪

∪ {t1
d
↪→ Z | (tt t1

d
↪→ n t2) ∈ ∆, n 6= ff},

whereZ 6∈ Const(∆) is a fresh process constant. If we restrict the systems ∆
and ∆′ to actions a, b, c then ∆ and ∆′ are bisimilar. Furthermore in every
state q of ∆′ reachable under w ∈ {a, b, c}∗ there is a transition labelled
by d and starting at q. It suffices to show that this transition is leading to
a terminal state.

The state ttq (corresponding to the state q) has a ready parallel compo-
nent able to perform an action c. This action cannot be disabled by any
action performed by another ready parallel component. Hence there is just
one ready parallel component able to perform both c and d. For the same
reason this component is the only one which is able to perform actions a
and b if they are enabled in the state ttq. The same holds for the state q
of ∆′. Moreover the ready parallel component rewritten by the action d is
deadlocked by the process constant Z. Thus the state reached under d is
terminal and we get a PAD system ∆′ bisimilar to the wBPP ∆1 of Exam-
ple 5.7 – a contradiction (see Lemma 5.8).

5.2.2 PPDA Non-bisimilar to any wPAD

Example 5.10. (PPDA non-wPAD) Let ∆2 be a PPDA process with the initial
state xC‖A‖B and the following rewrite rules:

xC
g
↪→ xC‖A‖B yA

a
↪→ yε xA

d
↪→ zε yA

d
↪→ zε

xC
c
↪→ yC yB

b
↪→ yε xB

d
↪→ zε yB

d
↪→ zε

yC
e
↪→ zC zA

e
↪→ zε zB

e
↪→ zε zC

r
↪→ xC‖A‖B

The rules labelled by g, a, b, c, d correspond to the rules of the PPDA non-PAD
given in Example 3.4. Hence the PPDA ∆2 behaves as the previously mentioned
PPDA non-PAD, but when the PPDA non-PAD terminates, the PPDA ∆2 can
“erase” an arbitrary number of A and B symbols from the parallel stack and then
“restart” the system under action r.

Lemma 5.11. There is no wPAD ∆′ bisimilar to the PPDA ∆2 of Example 5.10.

Proof. To derive a contradiction assume a wPAD ∆ bisimilar to the PPDA
∆2. As the weak state unit of ∆ is finite then there exists a reachable state
mt of ∆2 such that every state reachable from mt has also m as its w-state
component (the opposite would imply the infiniteness of the weak state
unit).1 There exists a word w ∈ {g, a, b, c, d, e, r}∗ such that mt w.r−→∗∆ mt′,

1Note that contrary to the proof of Lemma 5.9, there are no terminal states reachable in
∆2, and so there are no terminal states in ∆ as they are bisimilar.
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where mt′ is bisimilar to the state xC‖A‖B of the PPDA process ∆1. If the
rules labelled by the actions e and r are removed from ∆ and mt′ is taken
as the initial state, we obtain the system whose all reachable states have m
as w-state component and which is bisimilar to the PPDA of Example 3.4.

Now let ∆′ be a PAD system with the initial state t′ and with the set
of rewrite rules consisting of the rules l

v
↪→ r, where (ml

v
↪→ mr) ∈ ∆ and

v ∈ {g, a, b, c, d}. It is obvious that this PAN system ∆′ is bisimilar to the
PPDA system defined in Example 3.4 – a contradiction.

5.2.3 wBPA Non-bisimilar to any fcPAN

Definition 5.12. A parallel subterm t (t ∈ P r {ε}) of term g ∈ G is a ready
sequential component if and only if t is a maximal subtree in the syntax tree of
term g such that t does not occur in any right sequential component of g.

A ready sequential component t of term g is called non-trivial if and only if
∃t′ 6= ε such that t.t′ is a subterm of g (i.e. t is located in subterm t.t′ of g, where
t′ 6= ε).

Intuitively, the ready sequential components are defined as maximal
parallel subterms of a fcPAN process g such that g can perform an action
a if and only if some of its ready sequential components can perform the
action a.

Definition 5.13. Let L = (S,Act ,−→, α0) be a labelled transition system, α be
a state of S, Σ be a subset of Act , and u ∈ Σ∗. We define an LTS L|Σ to be the
following restriction of L to Σ.

(S,Σ,−→∩ (S × Σ× S), α0)

We also define a notation onlyΣ(α, u) stating that u is a prefix of each maximal
transition sequence in L|Σ starting in α.

Definition 5.14. A sequential composition of t (i.e. the sequential operator ’.’
within t) is said to be accessed during a rewriting sequence from mt under w
if and only if the left subterm of this sequential composition is rewritten onto ε
during the rewriting sequence.

A sequential composition of t is called accessible from mt under w if and only
if there is a rewriting sequence from mt under w such that the sequential composi-
tion is accessed during this rewriting sequence; otherwise it is called inaccessible.

Definition 5.15. For every fcPAN ∆ and every number n ∈ N0 we defineKn(∆)
to be a set of all n-tuples (k1, k2, . . . , kn) ∈ Nn such that for every a, b ∈ Act(∆),
a 6= b, every state mt of ∆ satisfying only{a,b}(mt, ak1bak2b . . . aknb), and every
rewriting sequence from mt under ak1bak2b . . . aknb, t includes at least n sequen-
tial compositions accessed during the rewriting sequence.
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Intuitively, Kn(∆) is a set of all n-tuples (k1, k2, . . . , kn) such that each
state mt of ∆ holding the information that every run under {a, b}∗ starts
with ak1bak2b . . . aknb needs at least n sequential compositions.

Lemma 5.16. For every fcPAN ∆ and every number n ∈ N0, Kn(∆) 6= ∅.

Proof. We prove the lemma by induction on n. The base n = 0 is easy
to prove. As every state mt and every actions a, b satisfy only{a,b}(mt, ε)
and every term includes zero sequential compositions accessed during
an empty rewriting sequence, it holds that () ∈ K0(∆) for every fcPAN
∆.

Induction hypothesis: Let n ∈ N0 be such thatKn(∆) 6= ∅ for every fcPAN
∆. We assume the contrary for n+ 1 and derive a contradiction.

Let ∆ be an fcPAN such that for every (k1, . . . , kn, kn+1) ∈ Nn+1 there
exist distinct actions a, b ∈ Act(∆), a state mt of ∆ satisfying the condition
only{a,b}(mt, ak1b . . . aknbakn+1b), and a rewriting sequence from mt under
ak1bak2b . . . aknbakn+1b such that t includes at most n sequential composi-
tions accessed during this rewriting sequence. Due to induction hypoth-
esis, we can choose k1, . . . , kn such that (k1, . . . , kn) ∈ Kn(∆). Hence, for
every l ∈ N, there exist distinct actions al, bl ∈ Act(∆), a state mltl of the
system ∆ satisfying only{al,bl}(mltl, a

k1
l bl . . . a

kn
l bla

l
lbl), and a rewriting

mltl

a
k1
l bl...a

kn
l bl

−→∗∆ m′lt
′
l

allbl

−→∗∆ m′′l t
′′
l

such that tl includes at most n sequential compositions accessed during the
rewriting. Moreover, due to (k1, . . . , kn) ∈ Kn(∆), tl includes exactly n
sequential compositions accessed during the rewriting

mltl

a
k1
l bl...a

kn
l bl

−→∗∆ m′lt
′
l

and no other sequential composition of tl is accessed during the rewriting

m′lt
′
l

allbl

−→∗∆ m′′l t
′′
l

As for every l ∈ N there is a state m′lt
′
l, we consider an infinite sequence

{m′lt′l}l of these states. Let α be an infinite subsequence of the sequence
{m′lt′l}l such that all states of α have the same value of the store (say m′)
and the same corresponding pair of letters al, bl (say a, b); the existence of
such a subsequence follows from the finiteness of the constraint system and
Act(∆).

We have not finished yet. There still can be a sequential composition
of t′l that is accessed during the rewriting under allbl such a composition
could be created during the rewriting between tl and t′l. Because of this, we
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differentiate between subterms of t′l depending on whether they have been
changed during the preceding rewriting

mltl
ak1b...aknb

−→∗∆ m′t′l .

The subterms of t′l that have not been rewritten during the rewriting are called
blue subterms. The new subterms of t′l that have been created (or changed)
during the rewriting are called green subterms. The sequential compositions
of t′l that have not been accessed during the rewriting are called blue sequential
compositions. The sequential compositions of t′l that have been created during
the rewriting are called green sequential compositions. Note that the green
sequential compositions are exactly those inside the green subterms; the
blue ones are the other, i.e. inside blue subterms and connecting blue and
green subterms. The green subterms of t′l are created during at most k1 +
k2 + · · ·+ kn +n actions, therefore their number and syntactical lengths are
bounded independently on l.

In the definition of ready sequential components we described sub-
terms that are significant for the next rewriting step – we disregarded the
right-hand sequential components. Now, we want to focus on the rewriting
sequence under allbl. As the blue sequential components are inaccessible in
the rewriting, we disregard their right-hand sequential components but the
green subterms has to be included. We call this subterms interesting ready
sequential components (irs-components).2 Using associativity, commutativity,
and empty terms, we consider every irs-component as a parallel composi-
tion of one blue subterm and one green subterm. For example, a term

((B1 ‖ (G1.G2) ‖B2 ‖G3 ).B3) ‖ G4

where B1, B2, B3, B4 are blue and G1, G2, G3, G4 are green, there is the the
following irs-component that are composed of one blue and one green sub-
term like this:

(B1‖B2) ‖ ((G1.G2)‖G3) and (ε) ‖ (G4)

also note that we can add an arbitrary number of (ε)‖(ε) irs-components.
Let m′t′i and m′t′j (i < j) be two states of α such that there is a bijection

on their irs-components satisfying: the corresponding irs-components have
identical green subterms and for their blue subterms si, sj ∈ P there is a
term s ∈ P such that si‖s = sj . The existence of such states follows from
the bound of the number and the syntactical lengths of green subterms and
due to Dickson’s lemma.

Besides considered the irs-components there are no other subterms
of t′i rewritten during the rewriting sequence under aib. Hence the

2Note that irs-components are not parallel subterms they can include green sequential
compositions and so they are not ready sequential components according to Definition 5.12.
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sequence of actions aib performed by m′t′i can be performed also
by m′t′j . The contradiction follows from only{a,b}(mti, ak1b . . . aknbaib),
only{a,b}(mtj , ak1b . . . aknbajb), and i < j.

Example 5.17. (wBPA non-fcPAN) Let us consider the following wBPA system
∆3 with initial state pX .

pX
a
↪→ pAX pA

a
↪→ pAA pB

a
↪→ pAB pA

c
↪→ pε

pX
b
↪→ pBX pA

b
↪→ pBA pB

b
↪→ pBB pB

d
↪→ pε

pA
e
↪→ qε qA

e
↪→ qε

pB
f
↪→ qε qB

f
↪→ qε

In the following, actions a, b, c, d are called I-actions and actions e, f are
called II-actions). Rules labelled by I-actions or II-actions are called I-rules
or II-rules, respectively. States reachable from the initial state through I-
actions are called I-states. Note that all I-states are nonterminal and using c
and d actions can be rewritten onto a state bisimilar with the initial state.

In the rest of this subsection we prove that there is no fcPAN system
bisimilar to the wBPA system ∆3 given above.

Let bis-fcPAN denote an assumed fcPAN system ∆ bisimilar to wBPA
of Example 5.17 such that I-rules of ∆ are of the form tt t1

x
↪→ tt t2. Please

note these rules cannot be forbidden by any value of the store.

Lemma 5.18. If there is a fcPAN ∆ bisimilar to the wBPA of Example 5.17, then
bis-fcPAN ∆′ exists.

Proof. As the constraint system of ∆ is finite it follows there exists an I-
state mt of ∆ such that each I-state reachable from mt has also m on the
store (the contrary implies the infiniteness of the constraint system). As mt
is an I-state, there exists a word w ∈ {c, d}∗ such thatmt w−→∗∆ ms andms is
bisimilar to the initial state pX of the wBPA. The system ∆′ is derived from
∆ as follows:

• s is the initial term,

• the set of rules is

{ (n ∧m)t1
x
↪→ (o ∧m)t2 | nt1

x
↪→ ot2 is a rule of ∆ },

• the constraint system is restricted to the part above m, and

• m is renamed tt.
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Lemma 5.19. Each I-state of a bis-fcPAN ∆ has exactly one ready sequential com-
ponent that is not deadlocked.

Proof. As no I-state is deadlocked, each I-state contains at least one non-
deadlocked ready sequential component. We prove that there is exactly
one such a component. We assume contrary and derive a contradiction.
Let t and s be two distinct non-deadlocked ready sequential components
of an I-state. The are two cases.

At first we assume that the I-state is non-bisimilar to the initial state.
Hence, the I-state can perform e action. Let t be the ready sequential com-
ponent that can perform e action. There are the following facts.

• s cannot perform any I-action as the e action performed by t is not
able to forbid the I-rules (i.e. to disable these actions),

• s cannot perform e. Otherwise, neither s can perform enabled I-
actions, nor other ready sequential component can perform them (ac-
cording to the previous item with exchanged t for s),

• s cannot perform f as this action is disabled in the considered state.

Therefore the component s is deadlocked and we have a contradiction.
Now we assume that the I-state is bisimilar to the initial state. Without

loss of generality, let us assume that t can perform a action and s can per-
form a b action (t and s can possibly perform some other actions as well).
Each possible next state has exactly one non-deadlocked ready sequential
component. Thus, a action (performed by t) deadlocks or rewrites onto ε
term t (the action cannot deadlock or remove s) and the same effect has ac-
tion b on s. Further, these actions add the ability to perform action e or f to
the next state. Hence, a action performed by t changes the ready sequential
component s at the same time. This is possible only if t and s are contained
in the subterm of the form (t.r)‖s, where r ∈ P r {ε} and a action rewrites
t onto ε:

(t.r)‖s a−→∆ r‖s

For the same reason there has to be a term r′ ∈ P r{ε} such that t and s are
contained in the subterm of the form t‖(s.r′). This is a contradiction.

Definition 5.20. A ready sequential component is called dead if and only if it is
non-trivial and deadlocked whenever the value of the store is tt. A left subterm of
a sequential composition is called dead if and only if it contains (or is) dead ready
sequential component. A sequential composition is called dead if and only of its
left subterm is dead.

We distinguish between a type and an instance of a ready sequential
component. The type is given by (syntax of) the corresponding parallel
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subterm while the instance is given by the subterm together with its posi-
tion within the term. If it is clear from the context, we do not specify the
meaning explicitly.

In what follows any dead ready sequential component occurring in
some I-state of ∆ is referred to as dead ready sequential component of bis-fcPAN
∆.

Lemma 5.21. Given bis-fcPAN ∆, the set of types of dead ready sequential com-
ponents occurring in I-states of ∆ is finite.

Proof. As a dead ready sequential component is non-trivial, it remains
ready and unchanged during an arbitrary sequence of I-actions. In a bis-
fcPAN, there are only two possibilities of creating a dead ready sequential
component. Either it is included in the initial term, or it is on the right-
hand side of an applied rule (it cannot be created by deadlocking some
non-deadlocked ready sequential component as each I-state has exactly one
non-deadlocked ready sequential component). Hence the lemma follows
from the fact that the length of an initial term and the set of rules are both
finite.

Definition 5.22. Let ∆ be a bis-fcPAN and r be a dead ready sequential compo-
nent of ∆. Then r is called

• restricted for an I-state tt t of ∆ if and only if there is no I-state with an
added instance of dead ready sequential component r reachable from tt t,

• multiplicative for an I-state tt t of ∆ if and only if for each I-state tt t′

reachable from tt t, there is an I-state tt t′′ reachable from tt t′ such that there
are more instances of r in mt′′ than in mt′ (i.e. arbitrary many instances of
r can be added).

We call an I-state tt tdr of ∆ dead-restricted if and only if every dead ready
sequential component of ∆ is either restricted, or multiplicative for tt tdr.

Lemma 5.23. Let ∆ be a bis-fcPAN. There is a dead-restricted state tt tdr of ∆
reachable from the initial state.

Proof. If every dead ready sequential component of ∆ is either restricted,
or multiplicative in an I-state tt t then the tt tdr is found. Otherwise, there
is a dead ready sequential component r such that it is neither restricted,
nor multiplicative. As r is not multiplicative for tt t, there is an I-state
tt t′ reachable from tt t such that every I-state reachable from tt t′ has the
same number of instances of r as tt t′. Hence, r is restricted for the I-state
tt t′. Compared to tt t, at least one more type of dead ready sequential
component is restricted. Due to Lemma 5.21, we can find tt tdr by applying
this procedure finitely many times.
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Lemma 5.24. Given i ∈ N, bis-fcPAN ∆, and dead-restricted state tt tdr, there is
a dead-restricted state t(i)dr of ∆ reachable from the state tt tdr such that t(i)dr includes
at least i instances of each multiplicative dead ready sequential component.

Proof. This lemma is a straightforward consequence of the definition of
multiplicative dead ready sequential components.

In what follows, by a sequential composition is behind a subterm s in term
r we mean that, in the term r, s is included in the left subterm of the se-
quential composition. By a subterm t is behind a subterm s in term r we mean
that there is a sequential composition in the term r such that t is included
in the left subterm and s is included in the right subterm of this sequential
composition.

Lemma 5.25. If there are more than i instances of dead ready sequential com-
ponent r in a state tt t of a bis-fcPAN, then all the sequential compositions be-
hind these instances are inaccessible from tt t under any sequence of the form
ek1fek2f . . . eknf such that n ∈ N0 and kj ≤ i for every 1 ≤ j ≤ n.

Proof. We assume the contrary and derive a contradiction. Let tt t be a state
of a bis-fcPAN with more than i instances of some dead ready sequential
component such that a sequential composition behind some of these in-
stances is accessible under ek1fek2f . . . eknf . The definition of bis-fcPAN
implies that only{e,f}(tt t, ek1fek2f . . . eknf) holds. From the definition of
fcPAN, it follows that a rule which has been already used cannot be for-
bidden in future. Thus, whenever an action is performed by one of the
instances, the same rule can be immediately applied on the other instances.
Hence, a coherent sequence of more that i actions with the same label can be
performed. This is a contradiction with only{e,f}(tt t, ek1fek2f . . . eknf).

Lemma 5.26. There is no fcPAN system bisimilar to the wBPA of Example 5.17.

Proof. Lemma 5.18 implies that it is sufficient to show that there is no bis-
fcPAN. For the sake of contradiction, let us assume that there is a bis-fcPAN
system ∆ with an initial term t0 and a set of constraints C. Let us consider
the following transition sequence:

tt t0 −→∗∆ tt tdr −→∗∆ tt t(k)
dr

wn−→∗∆ tt r

The state tt tdr is a dead-restricted state (its reachability follows from
Lemma 5.23). Let l be the number of sequential compositions in tdr and
n = l + |C| + 1. Lemma 5.16 implies that Kn(∆) is non-empty. Let
(k1, k2, . . . , kn) ∈ Kn(∆) and k be the maximum of k2, k2, . . . , kn. Then
tt t(k)

dr denotes the dead-restricted state with more than k instances of each
multiplicative dead ready sequential component (it is reachable due to
Lemma 5.24). Further, wn = bakn . . . bak2bak1 .
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The term r is a non-deadlocked term, hence it can be written in the form

(· · · ((((((· · · ((((t.t1)‖s1).t2)‖s2) · · · .tn)‖sn).γ)‖δ).γ′)‖δ′) · · · .γ(m))‖δ(m),

where t ∈ P r{ε} is the only one non-deadlocked ready sequential compo-
nent (Lemma 5.19), and t1, . . . , tn, s1, . . . , sn, γ, . . . , γ

(m), δ, . . . , δ(m) ∈ G. As
ε ∈ G, this form says only that the term t is a ready sequential component
in an arbitrary position of r.

As (k1, . . . , kn) ∈ Kn(∆) and only{c,d}((ttr, ck1d . . . cknd) then r includes
at least n sequential compositions accessed (see Definition 5.14) during the
rewriting sequence from tt r under ck1d . . . cknd.

Let us assume that t1, . . . , tn−1 ∈ P for now. If si includes a sequen-
tial composition then si includes a non-trivial ready sequential component.
According to Lemma 5.19, this non-trivial ready sequential component is
deadlocked. Hence si includes a dead ready sequential component and all
sequential compositions behind this component are dead. This means that
the compositions are inaccessible under ck1d . . . cknd. Thus at most i− 1 se-
quential compositions are accessed under I-actions. This is less than n and
so it contradicts the property obtained in the previous paragraph. Hence
s1, . . . , sn−1 ∈ P , t, t1, . . . , tn−1 ∈ P r {ε}, and all dead ready sequential
components of r are included in subterms δ, . . . , δ(m). Further, similarly to
the sequential compositions of si discussed above, all the sequential com-
positions of δ, . . . , δ(m) are dead.

From Lemma 5.19 it follows that ti‖si (where 1 ≤ i ≤ n) is a new ready
sequential component appeared by accessing the i-th sequential composi-
tions.

If ti includes a sequential composition then it is not necessary to ac-
cess all the compositions down to tn – those of ti (i < n) will be accessed
instead. A sequential composition in ti also implies that ti includes a non-
trivial ready sequential component. This ready sequential component will
be a proper subterm of ti‖si appearing by accessing the sequential compo-
sition before ti.

As (k1, . . . , kn) ∈ Kn(∆) and only{e,f}(tt r, ek1f . . . eknf), r includes at
least n sequential compositions accessed during the rewriting sequence
from tt r under ek1f . . . eknf .

We recall that all dead sequential compositions are in δ, . . . , δ(m). From
Lemma 5.25 it follows that all the sequential compositions behind a mul-
tiplicative dead ready sequential components are inaccessible. Hence, the
only accessible sequential compositions of δ, . . . , δ(m) are behind restricted
dead ready sequential components. According to the definitions, all re-
stricted dead ready sequential components and the terms behind them
have already been created in tdr. Hence, there are at most l such accessible
compositions in r. Thus at least |C| + 1 (= n − l) sequential compositions



5.2 HIERARCHY OF WEAKLY EXTENDED PRS 57

of the subterm ((· · · ((t.t1)‖s1) · · · .tn)‖sn) are accessed during a rewriting
sequence from tt r under ek1f . . . eknf .

If there is ti (i ≤ |C|+ 1) with a sequential composition, then accessing
the i-th composition “creates” the same ready sequential composition that
appears as in the rewriting sequence under ck1d . . . cknd. Hence, a I-action
can be performed and we derived a contradiction.

Therefore, t1, . . . , t|C|+1 ∈ P and all the sequential compositions of
((· · · ((t.t1)‖s1) · · · .t|C|+1)‖s|C|+1) are accessed during the sequence under
ek1f . . . eknf .

For every 1 ≤ i ≤ |C| + 1, accessing the i-th composition have to be
preceded by changing si; otherwise we get the same ready sequential com-
ponent ti‖si as in the rewriting sequence under ck1d . . . cknd and I-actions
can be performed. The only possibility of forcing the preceding is to change
the store during at least one action performed by si. Otherwise all the ac-
tions performed by si can be omitted without any effect on the rewriting
sequence accessing the i-th composition. Hence we have to change a con-
straint at least |C| + 1 times. It is the contradiction and Lemma 5.26 is
proved.

5.2.4 PDA Non-bisimilar to any wPAN

Example 5.27. (PDA non-wPAN) Let us consider a PDA system of Exam-
ple 2.13

U.X
a
↪→ U.A.X U.A

a
↪→ U.A.A U.B

a
↪→ U.A.B

U.X
b
↪→ U.B.X U.A

b
↪→ U.B.A U.B

b
↪→ U.B.B

U.X
c
↪→ V.X U.A

c
↪→ V.A U.B

c
↪→ V.B

U.X
d
↪→W.X U.A

d
↪→W.A U.B

d
↪→W.B

V.X
e
↪→ V V.A

a
↪→ V V.B

b
↪→ V

W.X
f
↪→W W.A

a
↪→W W.B

b
↪→W

but having U.X.Y as the initial state and being extended with the following two
rewrite rules:

V.Y
x
↪→ U.X.Y W.Y

x
↪→ U.X.Y

This system, denoted by ∆4, behaves like that defined in Example 2.13, but
whenever the original system terminates, the enhanced ∆4 is restarted under the
action x.

Lemma 5.28. There is no wPAN ∆ bisimilar to the PDA ∆4 of Example 5.27.

Proof. The proof is similar to the proof of Lemma 5.11 using the fact the
PDA of Example 2.13 is not bisimilar to any PAN system.

To derive a contradiction assume a wPAN ∆ bisimilar to the PDA ∆4.
As the weak state unit of ∆ is finite then there exists a reachable state mt
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of ∆ such that every state reachable from mt has also m as its w-state com-
ponent (the opposite would imply the infiniteness of the weak state unit).
There exists a word w ∈ {a, b, c, d, e, f}∗ such that mt w.x−→∗∆ mt′, where mt′

is bisimilar to the state U.X.Y of the PDA process ∆4. If the rules labelled
by the action x are removed from ∆ and mt′ is taken as the initial state, we
obtain the system whose all reachable states have m as w-state component
and which is bisimilar to the pushdown process of Example 2.13.

Now let ∆′ be a PAN system with the initial state t′ and with the set
of rewrite rules consisting of the rules l

v
↪→ r, where (ml

v
↪→ mr) ∈ ∆ and

v ∈ {a, b, c, d, e, f}. It is obvious that this PAN system ∆′ is bisimilar to the
PDA system defined in Example 2.13 – a contradiction.

5.2.5 Intuition and Conjectures

To accomplish the strictness/incomparability proof it remains to show
a wPA non-fcPRS system and an sePA non-wPRS system. We conjecture
that the following two systems exemplify the desired systems.

Example 5.29. (wPA non-fcPRS) Let ∆ be a wPA system with the initial state
pX‖Y and the the following rewrite rules.

pX
a
↪→ pA.X pA

a
↪→ pA.A pB

a
↪→ pA.B pA

a′
↪→ pε

pX
b
↪→ pB.X pA

b
↪→ pB.A pB

b
↪→ pB.B pB

b′
↪→ pε

pY
c
↪→ pY ‖C pC

c′
↪→ pε

pY
d
↪→ oY

We conjecture that there is no fcPRS system bisimilar to this wPA ∆.

This system is composed of two subsystems running in parallel. The fist
subsystem is a stack with “push” actions a, b and “pop” actions a′, b′. The
second subsystem forms a counter with an increment action c and a decre-
ment action c′. Due to the rule with a label d, the system is deadlockable
(see Definition 5.3). It is easy to see that for every reachable non-deadlocked
state α, there is a sequence of actions w ∈ {a′, b′, c′}∗ such that α w−→∗ β
and β is bisimilar to the initial state. Hence, similarly to Lemma 5.18, we
can assume, without loss of generality, that a desired fcPRS system has all
x ∈ {a, b, c, a′, b′, c′} rules of the form

tt t1
x
↪→ tt t2 .

Let us note that these rules cannot be forbidden by any value of a finite
constraint store.

Assume an fcPRS system ∆′ bisimilar to the wPA ∆ of Example 5.29.
Therefore, the system ∆′ can perform an unbounded number of c actions.
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An execution of arbitrary large number of c actions leads to a state from
where exactly the same number of c′ actions can be performed. This “un-
bounded” number has to be saved in a possibly very large term inducing
the c′ actions; let us call this term the counter.

Now, let us execute a very long sequence of a and b actions, an achieved
state has to store this sequential information. Hence, a long sequence of
sequential components forms a stack in the term part. While building this
stack, it is impossible to carry the long “counter” subterm on the top of this
stack. Hence, the “counter” term (inducing c′ actions) and the top of the
stack (inducing a sequence of a′ and b′ actions) are far away from each other
(at any arbitrary distance), and so they cannot be both changed during one
rewriting step. This is a contradiction with a deadlockable property and
the type of all a, b, c, a′, b′, c′ rules.

Example 5.30. (sePA non-wPRS) Let ∆ be a sePA system with the initial state
pX‖Y and the the following rewrite rules.

pX
a
↪→ pA.X pA

a
↪→ pA.A pB

a
↪→ pA.B pA

a′
↪→ pε

pX
b
↪→ pB.X pA

b
↪→ pB.A pB

b
↪→ pB.B pB

b′
↪→ pε

pY
c
↪→ pY ‖C pC

c′
↪→ pε

pY
d
↪→ oY

oA
e
↪→ oε oB

e
↪→ oε oC

e
↪→ oε

oX
f
↪→ pX

We conjecture that there is no wPRS system bisimilar to this sePA ∆.

In this system the actions a, b, c, a′, b′, c′ and d work in the same way as
in the previous example. Moreover, after performing an action d the system
is not deadlocked but the counter and the stack can be “discharged” using
e actions and then an action f can “restart” the system. In other words, for
every reachable state α, there is a sequence of actions w ∈ {d, e, f}∗ such
that α w−→∗ β and β is bisimilar to the initial state.

Assume a wPRS system ∆′ bisimilar to the sePA ∆ of Example 5.30. As
the weak state unit of ∆′ is finite, there exists a reachable state mt of ∆′

such that every state reachable from mt has also m as its w-state compo-
nent (the opposite would imply the infiniteness of the weak state unit). As
every execution of ∆′ can be prolong to reach a state bisimilar to the ini-
tial state, we can obtain a wPRS system whose all reachable states have the
same w-states. Therefore, we derived that there is also a PRS system ∆′′

bisimilar to the system ∆′. Removing all rewrite rules with the label e and
all rewrite rules with the label f from the PRS system ∆′′ we create a PRS
system bisimilar to the wPA non-fcPRS system of Example 5.29. This is a
contradiction with our previous assumption.
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Chapter 6

Strong Bisimulation
Equivalence

In this chapter we focus on (un)decidability as well as complexity bound-
aries on strong bisimilarity between two states of a given extended PRS.
Concerning this research area we have not reach any new results, therefore
we only summarises all known results and briefly mention what we have
tried to do and where our attempt has failed.

6.1 Motivation

Equivalence checking is one of the main streams in verification of concur-
rent systems. It aims at demonstrating some semantic equivalence between
two systems, one of which is usually considered as representing the speci-
fication, while the other as its implementation or refinement. The semantic
equivalences are designed to correspond to the system behaviours at the
desired level of abstraction; the most prominent ones being strong and
weak bisimulations. We mention some results on equivalence checking
with strong bisimilarity here. The weak bisimilarity is discussed in the
next chapter. For the other equivalence checking problems we refer to sur-
veys [BCMS01, Srb04] for example.

The bisimilarity problem for BPA is known to be in 2-EXPTIME [BCS95]
and PSPACE-hard [Srb02c]. The first result showing that the bisimilarity
problem for PDA is decidable was published in [Sén98]. Later on, bisimi-
larity was determined to be EXPTIME-hard for PDA [KM02]. EXPTIME-
hardness is also the best known lower bound for the PAD, fcPAD, and
wPAD classes where, moreover, the decidability left open.

Considering the parallel systems, the strong bisimilarity problem is un-
decidable for seBPP (also known as PPDA) [Mol96] using the technique
introduced in [Jan95b]. However, the strong bisimilarity is known to be
decidable for BPP [CHM93]. Moreover, it was shown that the problem
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belongs to PSPACE [Jan03]. Combining with PSPACE-hardness result of
[Srb02b], PSPACE-completeness was established. The result of [Srb02b]
(PSPACE-hardness for BPP) presents also the best known lower bounds
for bisimilarity for PA, fcPA, wPA, fcBPP, and wBPP, but in these cases,
contrary to BPP, the decidability of bisimilarity left open.

6.2 Definition of Strong Bisimilarity

Bisimilarity was originally introduced by Park [Par81] and Milner [Mil89].

Definition 6.1. A binary relation R on set of states S is a strong bisimulation
if and only if for each (α, β) ∈ R the following conditions hold:

• ∀α′ ∈ S, a ∈ Act : α a−→ α′ implies (∃β′ ∈ S : β a−→ β′ ∧ (α′, β′) ∈ R)

• ∀β′ ∈ S, a ∈ Act : β a−→ β′ implies (∃α′ ∈ S : α a−→ α′ ∧ (α′, β′) ∈ R)

States α and β are strongly bisimilar, written α ∼ β, if and only if (α, β) ∈ R
for some strong bisimulation R. Two labelled transition systems are strongly
bisimilar if and only if its initial states are strongly bisimilar.

Problem: Strong bisimilarity problem for an extended (α, β)-PRS class
Instance: An extended (α, β)-PRS system ∆ and two of its

states mt,m′t′

Question: Are the two states mt and m′t′ strongly bisimilar?

6.3 Summary

As we have mentioned in Section 6.1, the problem for BPP is in PSPACE but
it is undecidable for the state extended variant (seBPP). This encouraged
us to focus on the strong bisimilarity problem for wBPP staying in between
these two classes. We tried to prove the problem is decidable.

The crucial difference between BPP and wBPP is as follows. It is known
that the following congruence holds for every parallel terms t1, t2, t3, and
t4 of a BPP system.

t1 ∼ t2 ∧ t3 ∼ t4 =⇒ t1‖t3 ∼ t2‖t4

But in the context of wBPP systems

pt1 ∼ pt2 does not imply either pt1‖t ∼ pt2‖t.

This can be shown e.g. by the following example.

Example 6.2. Let ∆ be a wBPP with the following rewrite rules.
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pA
a
↪→ pε pB

a
↪→ qε qC

c
↪→ qC

It is easy to see that
pA ∼ pB ∧ pA‖C 6∼ pB‖C.

This behaviour of wBPP systems counterwork all our attempts to adopt
known proves for BPP such as a tableau decision method [CHM93] or
a DD-function characterisation [Jan03]. Therefore the decidability of bisim-
ilarity problem for wBPP left open.

Figure 6.1 shows (un)decidability borders of strong bisimilarity prob-
lems.
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Figure 6.1: The extended PRS-hierarchy with (un)decidability boundaries
of strong bisimilarity.



Chapter 7

Weak Bisimulation
Equivalence

Weak bisimilarity is one of the most studied behavioural equivalences. This
equivalence is undecidable for pushdown processes (PDA), process algebras
(PA), and parallel pushdown processes (PPDA). Its decidability is an open
question for basic process algebras (BPA) and basic parallel processes (BPP).
We move the undecidability border towards these classes by showing that
the equivalence remains undecidable for weakly extended versions of BPA
and BPP. In fact, we show that the weak bisimulation equivalence problem
is undecidable even for normed subclasses of BPA and BPP extended with
finite constraint systems.

7.1 Motivation

Weak bisimulation equivalence is one of the semantic equivalences with
a silent action. These equivalences are based on a notion of observable be-
haviour of systems: only the interactions of the system with the environ-
ment (observer) are observable. The internal structure of the system is not
considered observable and system internal activities are modelled by silent
(τ ) actions which can precede and/or follow any observable action. For an
overview of equivalences with silent moves and more general setting with
respect to various testing scenarios we refer to [vG93].

Now, we mention some of the results on checking with weak bisimu-
lation equivalence (bisimilarity). Regarding sequential systems, i.e. those
without parallel composition, the weak bisimilarity problem is undecid-
able for PDA even for the normed case [Srb02d]. However, it is conjec-
tured [May05] that weak bisimilarity is decidable for basic process algebras
(BPA); the best known lower bound is EXPTIME-hardness [May05].

Considering parallel systems, even strong bisimilarity is undecidable
for parallel pushdown processes as shown in (PPDA) [Mol96] using the tech-
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nique introduced in [Jan95b]. However, it is conjectured [Jan03] that the
weak bisimilarity problem is decidable for basic parallel processes (BPP); the
best known lower bound is PSPACE-hardness [Srb03a].

For the simplest systems combining both parallel and sequential oper-
ators, called PA processes [BW90], the weak bisimilarity problem is unde-
cidable [Srb03b]. It is an open question for the normed PA; the best known
lower bound is EXPTIME-hardness [May05].

In this chapter, we move the undecidability border of the weak bisim-
ilarity problem towards the classes of BPA and BPP, where the problem is
conjectured to be decidable. Section 7.3 contains (relatively simple) proofs
of undecidability of the considered problem for the weakly extended ver-
sions of BPA (wBPA) and BPP (wBPP). In Section 7.4, we strengthen the re-
sults by showing that even for more restricted systems, namely for normed
fcBPA and normed fcBPP systems, this equivalence remains undecidable.
In fact, the result is not new for wBPA due to the following reasons: Mayr
[May05] has shown that adding a finite-state unit with 2 states (i.e. of the
minimal non-trivial size) to a BPA process already makes weak bisimilarity
undecidable. Our inspection of his proof shows that a finite state unit used
in the proof is weak and so the result is valid for wBPA as well.

7.2 Definition of Weak Bisimilarity

It is common to admit silent transitions to model the internal unobserv-
able evolution of a system. In standard automata theory these are typically
referred to as “epsilon” transitions, but in concurrency theory they are com-
monly represented by a distinguished action τ ∈ Act.

Definition 7.1. Let (S,Act,−→, α0) be an LTS and τ ∈ Act be a distinguished
action. A relation of observable transitions =⇒⊆ (S ×Act × S) is defined as
follows:

α
τ=⇒ β if and only if α

w−→∗ β where w ∈ {τ}∗

α
a=⇒ β if and only if α

w−→∗ β where w ∈ {τ}∗ · {a} · {τ}∗ and a 6= τ .

We also use a natural generalisation α w=⇒ β for finite sequences w ∈ Act∗.

Definition 7.2. A binary relation R on set of states S is a weak bisimulation if
and only if for each (α, β) ∈ R the following conditions hold:

• ∀α′ ∈ S, a ∈ Act : α a−→ α′ implies (∃β′ ∈ S : β a=⇒ β′ ∧ (α′, β′) ∈ R)

• ∀β′ ∈ S, a ∈ Act : β a−→ β′ implies (∃α′ ∈ S : α a=⇒ α′ ∧ (α′, β′) ∈ R)

States α and β are weakly bisimilar, written α ≈ β, if and only if (α, β) ∈ R for
some weak bisimulation R. Two labelled transition systems are weakly bisimilar
if and only if their initial states are weakly bisimilar.
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We use a characterisation of weak bisimilarity in terms of a bisimulation
game, see e.g. [Sti96]. This is a two-player game between an attacker and
a defender played in rounds on pairs of states of a considered labelled tran-
sition system. In a round starting at a pair of states (α1, α2), the attacker
first chooses i ∈ {1, 2}, an action a ∈ Act , and a state α′i such that αi

a−→ α′i.
The defender then has to choose a state α′3−i such that α3−i

a=⇒ α′3−i. The
states α′1, α

′
2 form a pair of starting states for the next round. A play is

a maximal sequence of pairs of states chosen by players in the given way.
The defender is the winner of every infinite play. A finite game is lost by
the player who cannot make any choice satisfying the given conditions. It
can be shown that two states α1, α2 of a labelled transition system are not
weakly bisimilar if and only if the attacker has a winning strategy for the
bisimulation game starting in these states.

We study the following problems for extended (α, β)-PRS classes.

Problem: Weak bisimilarity problem for an extended (α, β)-PRS class
Instance: An extended (α, β)-PRS system ∆ and two of its

states mt,m′t′

Question: Are the two states mt and m′t′ weakly bisimilar?

7.3 Undecidability of Weak Bisimilarity

In this section, we show that weak bisimilarity is undecidable for the classes
wBPA and wBPP.

7.3.1 wBPA

In [May05] Mayr studied the question of how many control states are
needed in a pushdown automaton to make weak bisimilarity undecidable.

Theorem 7.3 ([May05], Theorem 29). Weak bisimilarity is undecidable for
pushdown automata with only 2 control states.

The proof is done by a reduction of Post’s correspondence problem to
the weak bisimilarity problem for PDA. The constructed pushdown au-
tomaton has only two control states, p and q. Quick inspection of the con-
struction shows that the resulting pushdown automata are in fact wBPA
systems as there is no transition rule changing q to p and each rule has only
one process constant on the left hand side. Hence Mayr’s theorem can be
reformulated as follows.

Theorem 7.4. Weak bisimilarity is undecidable for wBPA systems with only 2
control states.
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7.3.2 wBPP

We show that the non-halting problem for Minsky 2-counter machines can
be reduced to the weak bisimilarity problem for wBPP. First, let us recall
the notions of Minsky 2-counter machine and the non-halting problem.

A Minsky 2-counter machine, or a machine for short, is a finite sequence

N = l1 : i1,
l2 : i2,
. . .
ln−1 : in−1,
ln : halt

where n ≥ 1, l1, l2, . . . , ln are labels, and each ij is an instruction of one of
the following forms:

• increment:
ck:=ck+1; goto lr

• test-and-decrement:

if ck>0 then ck:=ck-1; goto lr else goto ls

where ck are counters, k ∈ {1, 2}, and 1 ≤ r, s ≤ n.
The semantics of a machine N is given by a labelled transition system.

The states are configurations of the form (lj , v1, v2) where lj is a label of an
instruction to be executed and v1, v2 are nonnegative integers representing
current values of counters c1 and c2, respectively. The transition relation is
the smallest relation satisfying the following conditions: if ij is an instruc-
tion of the form

• c1:=c1+1; goto lr, then
(lj , v1, v2) inc−→ (lr, v1 + 1, v2) for all v1, v2 ≥ 0;

• if c1>0 then c1:=c1-1; goto lr else goto ls, then
(lj , v1 + 1, v2) dec−→ (lr, v1, v2) for all v1, v2 ≥ 0 and
(lj , 0, v2) zero−→ (ls, 0, v2) for all v2 ≥ 0;

and the analogous condition for instructions manipulating c2. We say that
the (computation of) machine N halts if there are numbers v1, v2 ≥ 0 such
that (l1, 0, 0) −→∗ (ln, v1, v2). Let us note that the system is deterministic,
i.e. for every configuration there is at most one transition leading from the
configuration.

The non-halting problem is to decide whether a given machine N does
not halt. The problem is undecidable [Min67].

Let us fix a machine N = l1 : i1, l2 : i2, . . . , ln−1 : in−1, ln : halt. We
construct a wBPP system ∆ such that its states
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simL1 and simL′1 are weakly bisimilar if and only if N does not halt.

Roughly speaking, we create a set of wBPP rules allowing us to simulate
the computation ofN by two separate sets of terms. If the halt instruction
is reached in the computation of N , the corresponding term from one set
can perform the action halt , while the corresponding term from the other
set can perform the action halt ′. Therefore, the starting terms are weakly
bisimilar if and only if the machine does not halt.

The wBPP system ∆ we are going to construct uses five control states,
namely sim, check1, check ′1, check2, check ′2. We associate each label lj and
each counter ck with process constants Lj , L

′
j and Xk, Yk respectively.

A parallel composition of x copies of Xk and y copies of Yk, written
Xx
k ‖Y

y
k , represents the fact that the counter ck has the value x − y. Hence,

terms simLj‖Xx1
1 ‖Y

y1
1 ‖X

x2
2 ‖Y

y2
2 and simL′j‖X

x1
1 ‖Y

y1
1 ‖X

x2
2 ‖Y

y2
2 are associ-

ated with a configuration (lj , x1−y1, x2−y2) of the machine N . Some rules
contain auxiliary process constants. In what follows, β stands for a term
of the form β = Xx1

1 ‖Y
y1

1 ‖X
x2
2 ‖Y

y2
2 . The control states checkk, check ′k for

k ∈ {1, 2} are intended for testing emptiness of the counter ck. The only
rules applicable in these control states are:

check1X1
chk1
↪→ check1ε check2X2

chk2
↪→ check2ε

check ′1Y1
chk1
↪→ check ′1ε check ′2Y2

chk2
↪→ check ′2ε

One can readily confirm that checkkβ ≈ check ′kβ if and only if the value of
ck represented by β equals zero.

In what follows we construct a set of wBPP rules for each instruction
of the machine N . At the same time we argue that the only chance for
the attacker to win the bisimulation game is to simulate the machine with-
out cheating as every cheating can be punished by the defender’s victory.
Therefore this attacker’s strategy is winning if and only if the machine
halts.

Halt: ln : halt

Halt instruction is translated into the following two rules:

simLn
halt
↪→ simε simL′n

halt ′

↪→ simε

Clearly, the states simLn‖β and simL′n‖β are not weakly bisimilar.

Increment: lj : ck:=ck+1; goto lr

To each such an instruction of the machine N we add to ∆ the following
rules:

simLj
inc
↪→ simLr‖Xk simL′j

inc
↪→ simL′r‖Xk
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Obviously, every round of the bisimulation game starting at states simLj‖β and
simL′j‖β ends up in states simLr‖Xk‖β and simL′r‖Xk‖β.

Test-and-decrement:

lj : if ck>0 then ck:=ck-1; goto lr else goto ls

To each such an instruction of the machine N we add to ∆ two sets of
rules, one for the ck > 0 case and the other for the ck = 0 case. The wBPP
formalism has no power to rewrite a process constant corresponding to
a label lj and to check whether ck > 0 at the same time. Therefore, in
the bisimulation game it is the attacker who has to decide whether ck > 0
holds or not, i.e. whether he will play an action dec or an action zero. We
show that whenever the attacker tries to cheat, the defender can win the
game.

At this point our construction of wBPP rules uses a variant of the tech-
nique called defender’s choice [JS04]. In a round starting at the pair of states
α1, α2, the attacker is forced to choose one specific transition (indicated by
a wavy arrow henceforth). If he chooses a different transition, say αk

a−→ α

where k ∈ {1, 2}, then there exists a transition α3−k
a−→ α that enables the

defender to reach the same state and win the play. The name of this tech-
nique refers to the fact that after the attacker chooses the specific transition,
the defender can choose an arbitrary transition with the same label. These
transitions are indicated by solid arrows. The dotted arrows stands for aux-
iliary transitions which compel the attacker to play the specific transition.

First, we discuss the following rules designed for the case when ck > 0.

simLj
dec
↪→ simAk,r simAk,r

dec
↪→ checkkε simBk,r

dec
↪→ simLr‖Yk

simLj
dec
↪→ simBk,r simAk,r

dec
↪→ simL′r‖Yk simBk,r

dec
↪→ simL′r‖Yk

simL′j
dec
↪→ simAk,r simAk,r

dec
↪→ check ′kε simBk,r

dec
↪→ check ′kε

simL′j
dec
↪→ simBk,r simCk,r

dec
↪→ simL′r‖Yk

simL′j
dec
↪→ simCk,r simCk,r

dec
↪→ check ′kε

The situation is depicted in Figure 7.1.
Let us assume that in a round starting at states simLj‖β, simL′j‖β the

attacker decides to perform the action dec. Due to the principle of de-
fender’s choice employed here, the attacker has to play the transition

simL′j‖β
dec−→∆ simCk,r‖β, while the defender can choose between the tran-

sitions leading from simLj‖β either to simAk,r‖β or to simBk,r‖β. Thus,
the round will finish either in states simAk,r‖β, simCk,r‖β or in states
simBk,r‖β, simCk,r‖β. Using the defender’s choice again, one can easily
see that the next round ends up in checkkβ or simLr‖Yk‖β, and simL′r‖Yk‖β
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Figure 7.1: Decrement actions simulating a test-and-decrement instruction.

or check ′kβ. The exact combination is chosen by the defender. The de-
fender will not choose any pair of states where one control state is sim
and the other is not as such states are clearly not weakly bisimilar. Hence,
the two considered rounds of the bisimulation game end up in a pair of
states either simLr‖Yk‖β, simL′r‖Yk‖β or checkkβ, check ′kβ. The latter pair
is weakly bisimilar if and only if the value of ck represented by β is zero,
i.e. iff the attacker cheats when he decides to play an action dec. This means
that if the attacker cheats, the defender wins. If the attacker plays the action dec
correctly, the only chance for either player to force a win is to finish these two
rounds in states simLr‖Yk‖β, simL′r‖Yk‖β corresponding to the correct simula-
tion of an test-and-decrement instruction with a label lj .

Now, we focus on the following rules designed for the ck = 0 case:

simLj
zero
↪→ simDk,s simDk,s

zero
↪→ checkkε simEk,s

zero
↪→ simLs

simLj
zero
↪→ simEk,s simDk,s

zero
↪→ simL′s simEk,s

zero
↪→ simL′s

simL′j
zero
↪→ simDk,s simDk,s

zero
↪→ simGk simEk,s

zero
↪→ simGk

simL′j
zero
↪→ simEk,s simFk,s

zero
↪→ simL′s simGk

τ
↪→ simGk‖Yk

simL′j
zero
↪→ simFk,s simFk,s

zero
↪→ simGk simGk

τ
↪→ check ′kYk

The situation is depicted in Figure 7.2.
Let us assume that the attacker decides to play the action zero. The

defender’s choice technique allows the defender to control the two rounds
of the bisimulation game starting at states simLj‖β and simL′j‖β. The two
rounds end up in a pair of states simLs‖β, simL′s‖β or in a pair of the form
checkkβ, check ′kY

m
k ‖β where m ≥ 1; all the other choices of the defender

lead to his loss. As in the previous case, the latter possibility is designed to
punish any possible attacker’s cheating. The attacker is cheating if he plays
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Figure 7.2: Zero actions simulating a test-and-decrement instruction.

the action zero and the value of ck represented by β, say vk, is positive.1 In
such a case, the defender can control the two rounds to end up in states
checkkβ, check ′kY

vk
k ‖β which are weakly bisimilar. If the attacker plays cor-

rectly, i.e. the value of ck represented by β is zero, then the defender has to
control the two discussed rounds to end up in states simLs‖β, simL′s‖β as
the states checkkβ, check ′kY

m
k ‖β are not weakly bisimilar for any m ≥ 1. To

sum up, the attacker’s cheating can be punished by defender’s victory. If the at-
tacker plays correctly, the only chance for both players to win is to end up after the
two rounds in states simLs‖β, simL′s‖β corresponding to the correct simulation
of the considered instruction.

It has been argued that if each of the two players wants to win, then
both players will correctly simulate the computation of the machineN . The
computation is finite if and only if the machine halts. The states simL1

and simL′1 are not weakly bisimilar in this case. If the machine does not
halt, the play is infinite and the defender wins. Hence, the two states are
weakly bisimilar in this case. In other words, the states simL1 and simL′1 of
the constructed wBPP ∆ are weakly bisimilar if and only if the Minsky 2-counter
machine N does not halt. Hence, we have proved the following theorem.

Theorem 7.5. Weak bisimilarity is undecidable for wBPP systems.

1We do not have to consider the case when β represents a negative value of ck as such
a state is reachable in the game starting in states simL1, simL

′
1 only by unpunished cheat-

ing.
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7.4 Weak Bisimilarity for More Restricted Classes

Here, we strengthen the results of the previous section. We will show that
weak bisimilarity remains undecidable for both fcBPP and fcBPA systems.

Definition 7.6. An (α, β)-fcPRS ∆ is normed in a state m0t0 of ∆ if and only
if, for all states mt satisfying m0t0 −→∗∆ mt, it holds that mt −→∗∆ oε for some
o ∈ C(∆).

Moreover, we show that weak bisimilarity remains undecidable even
for their respective normed versions (i.e. if, in an instance of the weak
bisimilarity problem, a given fcBPP/fcBPA system is normed in both given
states). Hence, we show that weak bisimilarity is undecidable for normed
wBPP and normed wBPA as well.

7.4.1 Normed fcBPP

In this subsection, we show that weak bisimilarity is undecidable for
normed fcBPP systems.

Let ∆ be the wBPP system constructed in Subsection 7.3.2. We recall
that given any fixed Minsky machine N , we have constructed a wBPP sys-
tem ∆ such that its states simL1 and simL′1 are weakly bisimilar if and only
if N does not halt. Based on ∆, we now construct a fcBPP ∆′ and two of its
states simL1‖D and simL′1‖D such that they satisfy the same condition as
given in the previous paragraph and moreover ∆′ is normed in both of the
states simL1‖D and simL′1‖D.

Let Const(∆′) = {D} ∪ Const(∆) and Act(∆′) = {norm} ∪ Act(∆),
where D 6∈ Const(∆) is a fresh process constant and norm 6∈ Act(∆) is
a fresh action. The constraint system of ∆′ is depicted in Figure 7.3.

ff

del

iiiiiiiiiiiii

ttttt
JJJJJ

UUUUUUUUUUUUU

check1

VVVVVVVVVVVVV check ′1
KKKKK

check2

ttttt
check ′2

iiiiiiiiiiiii

sim

tt

Figure 7.3: The constraint system of ∆′.

The set of rewrite rules of ∆′ consists of all the rewrite rules of ∆ and
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moreover the following rules are added:

(1) ttD
norm
↪→ delD,

(2) delX
τ
↪→ delε for all X ∈ Const(∆′),

(3) delX
a
↪→ delX for all X ∈ Const(∆′) and a ∈ Act(∆).

The process constant D enables the norm action changing the value of
the store onto del . Starting in the state simL1‖D or simL′1‖D, every reach-
able state includes the process constant D or the current value of the store
has been already changed onto del . Whenever the value of the store is set
to del , the rules of type (2) can be used to make the state normed. Hence,
∆′ is normed in both of the states simL1‖D and simL′1‖D.

It remains to show that these new rules do not affect the bisimula-
tion game. Let us note that del ` m and del ∧ n 6= ff for every m,n ∈
{tt, sim, check1, check ′1, check2, check ′2}. Therefore, changing the store to del
value does not forbid an application of the ∆ rules – those with a label
inc, dec, zero, chk1, etc. But the rewrite rules of the type (3) cause that
using of the norm action in the game leads into weakly bisimilar states
without respect to an application of the ∆ rules. As the attacker can only
decide to perform the norm action, this reconstruction of ∆ onto ∆′ does
not change the winning strategies discussed in Subsection 7.3.2. Hence the
Theorem 7.5 can be strengthen as follows.

Theorem 7.7. Weak bisimilarity is undecidable for normed fcBPP systems.

7.4.2 Normed fcBPA

In this subsection, we show that the problem remains undecidable for the
case of normed fcBPA systems. Our proof is a slightly extended transla-
tion of the proof for PDA of [May05] into fcBPA framework. We used the
notation of [May05] to make the proofs comparable.

Our proof (as well as Mayr’s one) is based on a reduction of Post’s cor-
respondence problem, which is known to be undecidable [HU79].

Problem: Post’s correspondence problem (PCP)
Instance: A non-unary alphabet Σ and two ordered sets of words

A = {u1, . . . , un} and B = {v1, . . . , vn}where ui, vi ∈ Σ+

Question: Do there exist finitely many indices i1, . . . , im ∈ {1, . . . , n}
such that ui1 . . . uim = vi1 . . . vim?

Given any instance of PCP we now construct a normed fcBPA ∆ and
two of its states pTB, pT ′B such that pTB and pT ′B are weakly bisimilar
if and only if the instance of PCP has a solution.
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A constraint system of ∆ contains elements tt, p, check1, check2, del , and
ff that are ordered as follows.

ff

del
mmmmmm

QQQQQQ

check1

QQQQQQQ check2

mmmmmmm

p

tt

We use process constants T, T ′, T1, T
′
1, T2, T

′
2, Gl, Gr, B and Ui, Vi, for

each 1 ≤ i ≤ n. Actions of ∆ are a, b, c, τ,norm, 1, . . . , n, and the letters
of Σ. In what follows, U stands for a sequential term of process constants
of {Ui | 1 ≤ i ≤ n} and similarly V stands for a sequential term of process
constants of {Vi | 1 ≤ i ≤ n}.

Now, we construct a set of rewrite rules ∆. The rules of types (1)–(10)
are exactly the same as those of Mayr’s proof and forms a defender’s choice
construction.

(1) pT
a
↪→ pT1

(2) pT
τ
↪→ pGr

(3) pT ′
τ
↪→ pGr

(4) pGr
τ
↪→ pGrVi for all i ∈ {1, . . . , n}

(5) pGr
a
↪→ pT ′1

(6) pT1
a
↪→ pGl

(7) pT ′1
a
↪→ pGlB

(8) pT ′1
a
↪→ pT ′2

(9) pGl
τ
↪→ pGlUi for all i ∈ {1, . . . , n}

(10) pGl
τ
↪→ pT2

If there is a solution of the instance of PCP, the defender can use these
rules to finish the first two rounds of the bisimulation game (starting in
pTB and pT ′B) in states pT2 UB and pT ′2VB, where U and V form a solu-
tion of the PCP instance. The discussed first two rounds of the bisimulation
game are depicted in Figure 7.4. We use the same notation for arrows as in
Subsection 7.3.2.

The following six rules form two subsequent rounds of the bisimulation
game and allow attacker to decide whether to check equality of indices or
equality of the words of U and V . In the first case, the attacker uses action b
leading to the constraint check1, while the second possibility is labelled by
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Figure 7.4: The first two rounds of the bisimulation game.

c and ends in the constraint check2. The rewrite rules are as follows.

(11) pT2
a
↪→ pT3 (12) pT ′2

a
↪→ pT ′3

(13) pT3
b
↪→ check1ε (14) pT ′3

b
↪→ check1ε

(15) pT3
c
↪→ check2ε (16) pT ′3

c
↪→ check2ε

Now, we list the rules that serve for the checking phases mentioned in
the previous paragraph. In rules (19) and (20), we use a short notation that
can be easily expressed by standard rules. The rewrite rules are as follows.

(17) check1Ui
i
↪→ check1ε for all i ∈ {1, . . . , n}

(18) check1Vi
i
↪→ check1ε for all i ∈ {1, . . . , n}

(19) check2Ui
ui
↪→ check2ε for all i ∈ {1, . . . , n}

(20) check2Vi
vi
↪→ check2ε for all i ∈ {1, . . . , n}
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Finally, we add rules that make the system normed. The construction of
rules (21) and (22) is also discussed in Remark 30 of [May05]. The rules of
type (21) enables the norm action changing the value of the store onto del .
In any state, whenever the value of the store is set to del , the rules of type
(22) can be used to make the state normed. Hence, ∆ is normed in all of its
states. The rules of type (23) adapt the construction to the concept of fcBPA.
They make all states composed of the constraint del and a non-empty term
weakly bisimilar.

(21) ttX
norm
↪→ delX for all X ∈ Const(∆)

(22) delX
τ
↪→ delε for all X ∈ Const(∆)

(23) delX
x
↪→ delX for all X ∈ Const(∆) and x ∈ Act(∆)

Hence, we have strengthen the Mayr’s result [May05], Theorem 29 (also
reformulated as Theorem 7.4 of this paper) as follows.

Theorem 7.8. Weak bisimilarity is undecidable for normed fcBPA systems.

7.5 Conclusion

First, we have shown that the weak bisimilarity problem remains undecid-
able for weakly extended versions of BPP (wBPP) and BPA (wBPA) process
classes. We note that the result for wBPA is just our interpretation (in terms
of weakly extended systems) of Mayr’s proof showing that the problem is
undecidable for PDA with two control states only ([May05], Theorem 29).

In terms of parallel systems, our technique used for wBPP is new. To
mimic the computation of a Minsky 2-counter machine, one has to be able
to maintain its state information – the label of a current instruction and the
values of the counters c1 and c2. As a finite-state control unit of wBPP is
weak, it cannot be used to store even a part of such often changing informa-
tion. Hence, contrary to the constructions in more expressive systems (PN
[Jan95b] and PPDA [Mol96]) we have made a term part to manage it. Fur-
ther, in a test-and-decrement instruction, a process constant Lj , which rep-
resents a label of the instruction, has to be changed and one of the counters
c1,c2 has to be decreased at the same time (assuming its value is positive).
As two process constants cannot be rewritten by one wBPP rewrite rule,
we introduce new process constants Y1 and Y2 to represent “inverse ele-
ments” to X1 and X2 respectively and we make a term Xx

k ‖Y
y
k to represent

the counter ck the value of which is x − y. We note that a weak finite state
control unit serves for controlling the correct order of the (finitely many)
successive stages in the progress of a bisimulation game.

Moreover, we have shown that our undecidability results hold even
for more restricted classes fcBPA and fcBPP and remain valid also for the
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normed versions of fcBPP and fcBPA. Hence, they hold for normed wBPP
and normed wBPA as well.

We recall that the decidability of weak bisimilarity is an open question
for BPA and BPP. Note that these problems are conjectured to be decidable
(see [May05] and [Jan03] respectively) in which case our results would es-
tablish a fine undecidability border of weak bisimilarity (see Figure 7.5).
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Figure 7.5: The extended PRS-hierarchy with (un)decidability boundaries
of weak bisimilarity.
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Chapter 8

Reachability Problem

In this chapter we show that the reachability problem remains decidable
for the wPRS class and thus we determine the decidability borderline of
the reachability problem in the extended PRS-hierarchy.

8.1 Motivation

A reachability problem (i.e. given two states α, β: is the state β reachable
from the state α, written α −→∗ β ?) can be considered as a basis for all
model checking problems. In the beginning of Chapter 3, we indicate how
a finite-state control unit (FSU) is useful for modelling of systems. On the
other hand, using an FSU to extend the PRS rewriting mechanism is very
powerful since the reachability problem becomes undecidable for a state
extended version of PA processes (sePA) [BEH95]. Concerning decidability
results, Mayr [May00] has shown that the reachability problem for PRS is
decidable.

In the context of reachability analysis one can see at least two ap-
proaches: (i) abstraction (approximate) analysis techniques on ’stronger’
models such as sePA and its superclasses with undecidable reachability,
e.g. see [BET03], and (ii) precise techniques for computing the set of states
that are reachable from a given (regular) set of states, e.g. [LS98, EP00,
BT03]. In the latter approach, the sets are represented symbolically and
various term structural equivalences are considered. The papers dealing
with this approach usually work with the classes PA or PAD rather than
with general PRS systems.

In this chapter we study the reachability problem on the classes where
the problem was open, i.e. the classes more expressive than (or incompa-
rable with) the PRS class and less expressive than (or incomparable with)
the sePA class. As the main contribution of this chapter we show that the
reachability problem remains decidable for the wPRS class. This result de-
termines the decidability borderline of the reachability problem in the ex-
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tended PRS-hierarchy: the problem is decidable for all classes except the
sePA class and its superclasses. Moreover, the result has several interesting
applications. In this chapter we mention some of them, namely

• decidability of some safety properties over wPRS,

• semi-decidability of weak trace non-equivalence for wPRS, and

• decidability of the reachability problem for a replicative variant of
Dolev and Yao’s ping-pong protocols [HS05].

Some other applications can be found in the following chapters.

The outline of this chapter is as follows: In Section 8.2 we show that the
reachability problem is decidable for weakly extended PRS. Section 8.3 is
devoted to the aforementioned applications of our decidability result. The
last section summarises our results.

8.2 Reachability Problem for wPRS

In this section we show that the reachability problem for wPRS is decidable.
More precisely, we solve the following problem.

Problem: Reachability problem for an extended (α, β)-PRS class
Instance: An extended (α, β)-PRS system ∆ and two of its

states mt,m′t′

Question: Is the state m′t′ reachable from mt in ∆, i.e. mt −→∗∆ m′t′ ?

Our proof exhibits a similar structure to the proof of decidability of the
reachability problem for PRS [May00]. First we reduce the general reacha-
bility problem to the subproblem of reachability for wPRS with rules con-
taining at most one occurrence of a sequential or parallel operator. Then
second, we solve this subproblem using the fact that the reachability prob-
lems for both PN and PDA are decidable [May81, Büc64]. The latter part of
our proof is based on our new idea of passive steps presented later.

To get just a sketch of the entire proof we suggest to read the definitions
and statements (skipping their technical proofs). Several of them are pre-
ceded by comments that provide some intuition. As the labels on rewrite
rules are not relevant in this section, we omit them.

Definition 8.1. Let ∆ be a wPRS. A rewrite rule in ∆ is parallel or sequential
if it has one of the following forms:

parallel rules: pX ↪→ q(Y ‖Z) p(X‖Y ) ↪→ qZ pX ↪→ qY pX ↪→ qε,
sequential rules: pX ↪→ q(Y.Z) p(X.Y ) ↪→ qZ pX ↪→ qY pX ↪→ qε,

where X,Y, Z are process constants and p, q are control states. A rule is trivial
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if it is both parallel and sequential (i.e. it has the form pX ↪→ qY or pX ↪→ qε).
A wPRS ∆ is in normal form if every rewrite rule in ∆ is either parallel or
sequential.

Lemma 8.2. Given a wPRS ∆ with terms t1 and t2, we can effectively construct
a wPRS ∆′ in normal form over the same control states, along with terms t′1 and
t′2, such that rt1 −→∗∆ st2 if and only if rt′1 −→∗∆′ st′2.

Proof. In this proof we assume that the sequential composition is left-
associative. It means that the term X.Y.Z is considered as (X.Y ).Z, hence
its proper subterms are X , Y , Z, and X.Y , but not Y.Z. However, the term
Y ‖Z is a subterm of X.(Y ‖Z).

Let size(t) denote the number of sequential and parallel operators in
a term t. We put size(pt ↪→ qt′) = size(t) + size(t′). Given any wPRS ∆,
let ki be the number of rules (pt ↪→ qt′) ∈ ∆ that are neither parallel nor
sequential and size(pt ↪→ qt′) = i. Thus, ∆ is in normal form if and only if
ki = 0 for all i. In this case, let n = 0. Otherwise, let n be the largest i such
that ki 6= 0 (n exists as the set of rules is finite). We define norm(∆) to be
the pair (n, kn).

We now describe a procedure transforming any given wPRS ∆ which is
not in normal form and terms t1, t2 into a wPRS ∆′ and terms t′1, t

′
2 such that

rt1 −→∗∆ st2 ⇐⇒ rt′1 −→∗∆′ st′2 and norm(∆′) < norm(∆) with respect to
the lexicographical ordering on norms as pairs of integers.

Let us assume that a wPRS ∆ is not in normal form. Then there is a rule
that is neither sequential nor parallel and has the maximal size. If the rule
is a of the form p(X1.X2) ↪→ q(Y1‖Y2) or p(Y1‖Y2) ↪→ q(X1.X2), let t be
X1.X2; otherwise, let t be a non-atomic and proper subterm of this rule.
Now, replace every occurrence of the subterm t in rewrite rules of ∆ and in
the terms t1, t2 by a fresh constant Xt. Then add two rules pXt ↪→ pt and
pt ↪→ pXt for each control state p. This yields a new wPRS ∆′ and terms t′1
and t′2 where the constant Xt serves as an abbreviation for the term t. By
the definition of norm we get norm(∆′) < norm(∆). The correctness of our
transformation remains to be demonstrated, namely that

rt1 −→∗∆ st2 ⇐⇒ rt′1 −→∗∆′ st′2.

The implication ⇐= is obvious. For the opposite direction we show that
every rewriting step in ∆ from pl1 to ql2 under a rule (pl ↪→ ql′) ∈ ∆ corre-
sponds to a sequence of several rewriting steps in ∆′ leading from pl′1 to ql′2,
where l′1, l

′
2 are equal to l1, l2 with all occurrences of t replaced by Xt. Let

us assume the rule pl ↪→ ql′ modifies a subterm t of pl1, and/or a subterm
t appears in ql2 after the rule application (the other cases are trivial). If the
rule modifies a subterm t of l1 then there are two cases.

1. Let l include the whole t. Then the corresponding rule in ∆′ (with t
replaced by Xt) can be applied directly on pl′1.
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2. Let l contain a part of t only. Due to the left-associativity of a sequen-
tial operator, t is not a subterm of the right part of any sequential
composition in l1. Thus we apply the added rule pXt ↪→ pt on pl′1 first
and then we apply the rule in ∆′ corresponding to the rule pl ↪→ ql′.

The situation when t appears in ql2 after the application of the considered
rule is similar. Either l′ includes the whole t and then the application of
the corresponding rule in ∆′ results directly in ql′2, or t is not a subterm of
the right part of any sequential composition in l2 and thus the application
of the corresponding rule in ∆′ is followed by an application of the added
rule qt ↪→ qXt reaching the state ql′2.

By repeating this procedure we finally get a wPRS ∆′′ in normal form
and terms t′′1 ,t′′2 satisfying rt1 −→∗∆ st2 ⇐⇒ rt′′1 −→∗∆′′ st′′2 .

Mayr’s proof for PRS now transforms the PRS ∆ in normal form into
a PRS ∆′ in so-called transitive normal form satisfying (X ↪→ Y ) ∈ ∆′ when-
ever X −→∗∆′ Y . This step employs the fact that rewriting under sequential
rules in a parallel environment (or vice versa) has “local effect” only. Intu-
itively, whenever there is a rewriting sequence

X‖Y −→∗∆ (X1.X2)‖Y −→∗∆ (X1.X2)‖Z −→∗∆ X2‖Z

in a PRS in normal form, then the rewriting of each parallel component is
independent in the sense that there are also rewriting sequences

X −→∗∆ X1.X2 −→∗∆ X2 and Y −→∗∆ Z.

This does not hold for wPRS in normal form as the rewriting in one parallel
component can influence the rewriting in other parallel components via
a weak control. To get this independence back we introduce the concept
of passive steps emulating the changes of a control state produced by the
environment.

Definition 8.3. A finite sequence of control state pairs PS = {(pi, qi)}ni=1 satis-
fying p1 > q1 ≥ p2 > q2 ≥ · · · ≥ pn > qn is called a sequence of passive steps,
or just passive steps for short.

Let ∆ be a wPRS and PS be passive steps. By ∆PS we denote the system ∆
with an added rule pX ↪→ qX for each (p, q) in PS and X ∈ Const(∆).

Further, we define ∆triv, ∆seq, and ∆par to be the subset of trivial, sequential,
and parallel rules of ∆, respectively.

Informally, rt1 −→∗∆PS st2 means that the state rt1 can be rewritten into
the state st2 provided a control state can be passively changed from p to
q for every passive step (p, q) in PS . Please note that there is only a finite
number of different sequences of passive steps for a given wPRS system.
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Definition 8.4. Let wPRS ∆ be in normal form. If for every X,Y ∈ Const(∆),
control states r, s, and passive steps PS it holds that

rX −→∗
∆PS sY =⇒ rX −→∗

∆PS
triv

sY then ∆ is in flat normal form,

rX −→∗
∆PS
seq

sY =⇒ rX −→∗
∆PS
triv

sY then ∆ is in sequential flat normal form,

rX −→∗
∆PS
par

sY =⇒ rX −→∗
∆PS
triv

sY then ∆ is in parallel flat normal form.

The following lemma says that it is sufficient to check reachability via
sequential rules and via parallel rules in order to construct a wPRS in flat
normal form. This allows us to reduce the reachability problem for wPRS
to the reachability problems for wPN and wPDA, i.e. to the reachability
problems for PN and PDA.

Lemma 8.5. If a wPRS is in both sequential and parallel flat normal form then it
is in flat normal form as well.

Proof. We assume the contrary and derive a contradiction. Let ∆ be a wPRS
in sequential and parallel flat normal form. Let us choose passive steps PS
and a rewriting sequence rX −→∗

∆PS sY such that rX 6−→∗
∆PS
triv

sY and the
number of applications of non-trivial rewrite rules applied in the sequence
is minimal. As the wPRS ∆ is in both sequential and parallel flat normal
form, rX 6−→∗

∆PS
seq
sY and rX 6−→∗

∆PS
par

sY . Hence, both sequential and parallel
operators occur in the rewriting sequence rX −→∗

∆PS sY . There are two
following cases.

1. Assume that a sequential operator appears first. The parallel operator
is then introduced by a rule of the form pU ↪→ q(T‖S) applied to
a state p(U.t), where t is a (possibly empty) sequential term. Note
that q((T‖S).t) −→∗

∆PS sY and recall the fact that at most one process
constant can be removed in one rewriting step. Hence, first of all
the term T‖S is rewritten onto some single process constant V in the
rest of the sequence considered. Let o be a control state after this
rewriting. Using the same rewriting steps as in the original sequence,
pU can be rewritten to oV in system ∆PS . Let PS ′′ = PS .

2. Assume that a parallel operator appears first. The sequential opera-
tor is then introduced by a rule of the form pU ↪→ q(T.S) applied to
a state p(U‖t), where t is a (possibly empty) parallel term. The rest of
the sequence subsumes steps rewriting the term T.S onto some single
process constant V . Let o be a control state in the state where T.S is
rewritten to V . Contrary to the previous case, the mentioned steps
can be interleaved with steps rewriting the parallel component t and
possibly changing a control state. Let PS ′ be a sequence of control
state pairs corresponding to the changes of control states caused by
rewriting of the parallel component t. We merge PS ′ with the subse-
quence of PS containing only the steps employed in the considered
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rewriting sequence. As the result we get one sequence of passive
steps denoted as PS ′′. Please note that the elimination of the unused
steps of PS ensures that PS ′′ satisfies the definition of passive steps.
Now, making use of the passive steps PS ′′ and the steps rewriting U
to V in the original sequence, we construct a rewriting sequence in
system ∆PS ′′ leading from pU to oV .

Thus we have obtained a rewriting sequence in ∆PS ′′ from pU to oV with
fewer applications of non-trivial rewrite rules – we omit at least the first
application of a non-trivial rewrite rule in the original sequence. Further,
at least the first step of the new sequence is an application of a non-trivial
rewrite rule. Moreover, as the number of applications of non-trivial rewrite
rules used in the original sequence is minimal, we get pU 6−→∗ ∆PS ′′

triv oV .
This contradicts our initial assumptions about the choices of PS and the
rewriting sequence in ∆PS .

Example 8.6. Here, we illustrate a possible change of passive steps (PS to PS ′′)
described in the second case of the proof above. Let us consider a wPRS ∆ with
control states r > p > q > t > v > o > s and the following rewrite rules

rX ↪→ p(U‖Z) pU ↪→ q(T.S) v(T.S) ↪→ oV
qZ ↪→ tY o(V ‖Y ) ↪→ sY

as well as the following sequence in ∆PS where PS = {(t, v)}

rX −→∆PS p(U‖Z) −→∆PS

−→∆PS q((T.S)‖Z) −→∆PS t((T.S)‖Y )
passive−→ ∆PS

passive−→ ∆PS v((T.S)‖Y ) −→∆PS o(V ‖Y ) −→∆PS sY

where redexes are underlined. The sequence of passive steps constructed due to the
case 2 is PS ′′ = {(q, t), (t, v)} and the constructed rewriting sequence is

pU −→∆PS ′′ q(T.S)
passive−→ ∆PS ′′ t(T.S)

passive−→ ∆PS ′′ v(T.S) −→∆PS ′′ oV.

The following lemma employs the algorithms deciding the reachability
problem for PDA and PN. Recall that the classes PDA and PN coincide
with the classes of wPDA and wPN, respectively.

Lemma 8.7. For every wPRS ∆ in normal form, terms t1, t2 over Const(∆),
and control states r, s of ∆, a wPRS ∆′ can be constructed such that ∆′ is in flat
normal form and satisfies rt1 −→∗∆ st2 ⇐⇒ rt1 −→∗∆′ st2.

Proof. To obtain ∆′ we enrich ∆ by trivial rewrite rules transforming the
system into sequential and parallel flat normal form, which suffices thanks
to Lemma 8.5.
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Using the algorithms deciding reachability for PDA and PN, our al-
gorithm checks if there are some control states r, s, constants X,Y ∈
Const(∆), and passive steps PS = {(pi, qi)}ni=1 (satisfying r ≥ p1 and
qn ≥ s as control states pairs out of this range are of no use here) such
that rX 6−→∗

∆PS
triv

sY , but rX −→∗
∆PS
seq
sY or rX −→∗

∆PS
par

sY hold. We finish
if the answer is negative. Otherwise we add to ∆ the rules rX ↪→ p1Z1,
qiZi ↪→ pi+1Zi+1 for i = 1, . . . , n − 1, and qnZn ↪→ sY , where Z1, . . . , Zn
are fresh process constants; if n = 0 then we add just the rule rX ↪→ sY .
Hence, rX −→∗

∆′′PS
triv

sY where ∆′′ is the system ∆ with the new rules.
The algorithm then repeats this procedure on the system ∆′′ with one

difference: the X,Y range over the constants of the original system ∆. This
is sufficient as the new constants occur only in trivial rules. Thus, if the
system with added rules is not in sequential or parallel flat normal form,
then there is a counterexample with the constants X,Y of the original sys-
tem ∆. The algorithm eventually terminates as the number of iterations is
bounded by the number of pairs of states rX, sY of ∆, times the number
of sequences of passive steps PS . The correctness follows from the fact that
the added rules only duplicate existing rewrite sequences between states of
∆.

Theorem 8.8. The reachability problem for wPRS is decidable.

Proof. Let ∆ be a wPRS with states rt1, st2. We want to decide whether
rt1 −→∗∆ st2 or not. We assume that rt1 6= st2 (the other case is trivial).

Clearly rt1 −→∗∆ st2 ⇐⇒ rX −→∗∆′′ sY , where X,Y are fresh con-
stants and ∆′′ arises from ∆ by the addition of the rules rX ↪→ rt1 and
st2 ↪→ sY (if t2 = ε then the latter rule is not a correct rule; in this case
we add to ∆′′ a rule pt ↪→ qY for each rule (pt ↪→ qε) ∈ ∆ instead of this
incorrect rule). Lemma 8.2 and Lemma 8.7 successively reduce the ques-
tion whether rX −→∗∆′′ sY to the question whether rX −→∗∆′ sY , where ∆′

is in flat normal form – note that the algorithm in the proof of Lemma 8.2
does not change terms t1, t2 if they are process constants. The definition of
flat normal form implies rX −→∗∆′ sY ⇐⇒ rX −→∗∆′triv sY . Finally the
relation rX −→∗∆′triv sY is easy to check.

8.3 Applications

In this section we discuss some of the applications of our decidability result
presented in the previous section.

8.3.1 Model Checking Some Safety Properties

In the context of verification, one often formulates a property expressing
that some “bad” states are not reachable. These properties are called safety
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properties. If the number of bad states is finite, the problem can be directly
solved using reachability problem; but it is usually not the case. Usually,
the bad states are characterised as those satisfying some specific property,
e.g. to be a deadlock state, an internal variable x is equal to zero, stack
overflows, division by zero is performed, etc. In what follows, we solve
model checking for wPRS and only such safety properties that express the
bad states as those where a transition with a given label is enabled. In
particular, we solve a problem whether, for given wPRS ∆ and its action
bad, there is a reachable state in which a transition with the label bad is
enabled.

Lemma 8.9. Given a wPRS ∆ and bad ∈ Act(∆), it is decidable whether there
exists a reachable state mt such that mt bad−→∆ nt′ for some state nt′.

Proof. The proof is done by reduction to the reachability problem. Let
∆ = (M,≤, R,m0, t0). We construct a wPRS ∆′ = (M ′,≤′, R′,m0, t0),
where (M ′,≤′) is (M,≤) extended with a new control state r which is the
least with respect to≤ and where R′ arises from R by adding the following
rewrite rules:

(1) mt1
bad
↪→ rt1 for all (mt1

bad
↪→ nt2) ∈ ∆,

(2) rX
bad
↪→ rε for all X ∈ Const(∆).

The rules of type (1) allow us to change any control state to r whenever
a bad transition is enabled in the original system. Entering the control state
r, a term can be rewritten to ε using the rules of type (2). Hence, a state mt

such that mt bad−→∆ nt′ for some state nt′ is reachable in ∆ if and only if the
state rε is reachable in ∆′.

Therefore, our decidability result can be seen as a contribution to an
automatic verification of infinite-state systems as well. For model checking
more complex safety properties we refer to Chapter 9.

8.3.2 Semi-decidability of Weak Trace Non-equivalence

Weak trace equivalence is a familiar notion which can be found already, for
instance, in [Hoa80]. It is one of the semantic equivalences with a silent
action τ . We refer to Chapter 7 for more information about silent actions
and silent moves. Here we employ a straightforward definition of weak
trace equivalence, see [JEM99].

Given a labelled transition system (S,Act,−→, α0) with a distinguished
action τ ∈ Act, we define the weak trace set of a state s ∈ S as

wtr(s) = {w ∈ (Actr {τ})∗ | s w=⇒ t for some t ∈ S},

where s w=⇒ t means that there is some w′ ∈ Act∗ such that s w′−→∗ t and w
is equal to w′ with its τ actions deleted. Two states of a system are said to
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be weak trace equivalent if they have the same weak trace sets. It is already
known that weak trace non-equivalence is semi-decidable for Petri nets (see
e.g. [Jan95a]), pushdown processes (due to [Büc64]), and PA processes (due
to [LS98]). Before we strengthen the result to wPRS and all its subclasses,
we prove an auxiliary lemma stating that the weak trace sets are recursive.

Lemma 8.10. Given a wPRS ∆, its state mt, and a word w ∈ Act(∆)∗, it is
decidable whether w ∈ wtr(mt) or not.

Proof. We show that the problem can be reduced to the reachability prob-
lem. Let ∆ = (M,v, R,m0, t0) be a wPRS, mt be its state, and w =
w(0)w(1)w(2) . . . w(k) ∈ (Actr {τ})+ be a word (the case w = ε is trivial as
mt −→∗∆ mt). We construct a wPRS ∆′ = (M ′,v′, R′, (m0, 0), t0), where

• M ′ = {e} ∪ M × {0, 1, . . . , k},

• v′ is defined as e v′ e and e v′ (m, i) for all (m, i) ∈M ′, and (n, j) v′
(m, i) for all (m, i), (n, j) ∈M ′ satisfying n v m and i ≤ j,

• R′ consists of the following rules:

(1) (m, i)t1
τ
↪→ (n, i)t2 for all 0 ≤ i ≤ k and (mt1

τ
↪→ nt2) ∈ ∆,

(2) (m, i)t1
w(i)
↪→ (n, i+ 1)t2 for all 0 ≤ i < k and (mt1

w(i)
↪→ nt2) ∈ ∆,

(3) (m, k)t1
w(k)
↪→ eε for all (mt1

w(k)
↪→ nt2) ∈ ∆,

(4) eX
τ
↪→ eε for all X ∈ Const(∆).

Roughly speaking the second components of control states allow us to use
the rewrite rules of type (1) labelled with τ while the rules of type (2) can
be used only in the order given by w. According to rules (3), the transition
corresponding to the last letter of w changes the control state to e. Rules
(4) then allow us to rewrite the current term to ε. Hence, one can readily
confirm that w ∈ wtr(mt) with respect to ∆ if and only if the state eε is
reachable from the state (m, 0)t in the system ∆′.

Theorem 8.11. Weak trace non-equivalence for wPRS is semi-decidable.

Proof. Let mt1 and nt2 be states of a wPRS ∆. A semi-decidability algo-
rithm goes through all words w ∈ (Act(∆) r {τ})∗ and tests whether
w ∈ wtr(mt1)rwtr(nt2) or w ∈ wtr(nt2)rwtr(mt1). The membership of w
in these sets is decidable due to the previous lemma. If the algorithm finds
such a word, then two given states mt1, nt2 are weak trace non-equivalent.
Moreover, if the states are weak trace non-equivalent, the algorithm will
eventually find a witness w. Hence, the weak trace non-equivalence is
semi-decidable.
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To sum up, the border of the semi-decidability is moved up to the class
of wPRS in the hierarchy. We emphasise that the semi-decidability result
is new for classes PAN, PAD, and PRS of the original PRS-hierarchy, too.
As the reachability problem is undecidable for the other classes of the ex-
tended PRS-hierarchy (i.e. sePA and its superclasses), it is easy to see that
the weak trace non-equivalence is not even semi-decidable for them.

8.3.3 Other Applications

The decidability of the reachability problem for wPRS has recently been
applied in the area of cryptographic protocols. Hüttel and Srba [HS05] de-
fine a replicative variant of a calculus for Dolev and Yao’s ping-pong pro-
tocols [DY83]. They show that the reachability problem for their calculus
is decidable as it can be reduced to the reachability problem for wPRS. We
note that this application does not employ the full power of our result, as all
the systems produced by the reduction mentioned belong to wPAD class.

8.4 Conclusion

We have shown that an extension of the Process Rewrite System mecha-
nism with a weak finite-state control unit (wPRS) keeps the reachability
problem decidable. Some applications of this result have been discussed
as well, namely those of model checking some safety properties and semi-
decidability of weak trace non-equivalence for wPRS. We also noted that
the decidability of the reachability problem for wPRS has already been used
in [HS05] to show that the reachability problem for a replicative variant of
a calculus for Dolev and Yao’s ping-pong protocols is decidable.
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Figure 8.1: The extended PRS-hierarchy with (un)decidability boundaries
of the reachability problem.
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Chapter 9

Branching Time Logics

In this chapter we examine the problem whether a given weakly extended
process rewrite system (wPRS) contains a reachable state satisfying a given
formula of Hennessy–Milner logic. We show that this problem is decidable.
As a corollary we observe that also the problem of strong bisimilarity be-
tween wPRS and finite-state systems is decidable. Decidability of the same
problem for wPRS subclasses, namely PAN and PRS, has been formulated
as an open question, see e.g. [Srb02a]. We also strengthen some related
undecidability results on some PRS subclasses.

9.1 Motivation

Research on the expressive power of process classes has been accompa-
nied by exploring algorithmic boundaries of various verification problems.
In this chapter we focus on model checking some (fragments of) simple
branching time logics, namely EF and EG.

Most of verification problems studied here are known as reachability
properties. Such properties express that some some “bad” state(s), for ex-
ample deadlock, should not be reached along any execution path or that
some “good” state(s) should be reached along at least one execution path.
The former can be naturally expressed as ¬EFϕ where a formula ϕ charac-
terises the set of states which should not be reached, while the latter can be
stated as EFϕ where ϕ characterises the set of states to be reached.

Now, we briefly recall the state of the art for EF and EG logics on PRS
subclasses; details can be found in [BCMS01] and references given there.
Also we mention our contribution using wPRS and sePRS subclasses.

First, we recall that the reachability problem, i.e. to decide whether
a given state is reachable from the initial one, is decidable for the classes
of PRS [May00] and wPRS (Theorem 8.8), while it is undecidable for
sePA [BEH95]. See Chapter 8 for more information. All the problems men-
tioned below remain undecidable on the sePA class due to its Turing power.
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A reachability property problem, for a given system ∆ and a given for-
mula ϕ, is to decide whether EFϕ holds in the initial state of ∆. Hence,
these problems are parametrised by the class to which the system ∆ be-
longs, and by the type of the formula ϕ. In most of practical situations, ϕ
specifies error states and the reachability property problem is a formalisa-
tion of a natural verification problem whether some error state is reachable
in a given system.

We recall that the (full) EF logic is decidable for the PAD class, as shown
in [May98]. It is undecidable for PN [Esp94]; an inspection of the proof
moves this undecidability border down to PPDA. If we consider the reacha-
bility HM property problem, i.e. the reachability property problem where ϕ is
a formula of Hennessy–Milner logic (HM formula), then this problem has
been shown to be decidable for the classes of PN [JM95] and PAD [JKM01].
In this chapter we present our proof lifting the decidability border for this
problem to the wPRS class (published in [KŘS05]). This results also moves
the decidability border for the reachability simple property problem, i.e. the
reachability property problem where ϕ is a HM formula without any nest-
ing of modal operators 〈a〉 (the problem has been know to be decidable for
PRS [May00] so far). Recently, EF logic was shown to be decidable also for
the wPAD class (see [BST06]).

Let us recall that the (full) EG logic is decidable for the PDA class (a con-
sequence of [MS85] and [Cau92]), whilst undecidability has been obtained
for its EGϕ fragment on (deterministic) BPP [EK95], where ϕ is a HM for-
mula. We show that this problem remains undecidable on (deterministic)
BPP even if we restrict ϕ to a HM formula without nesting of modal oper-
ators 〈a〉.

As a corollary of our main result of this chapter, i.e. decidability of the
reachability HM property problem for wPRS, we observe that the problem
of strong bisimilarity between wPRS systems and finite-state ones is decid-
able. As PRS and its subclasses are proper subclasses of wPRS, it follows
that we positively answer the question of the reachability HM property
problem for the PRS class and hence the questions of bisimilarity checking
the PAN and PRS processes with finite-state ones, which have been open
problems, see for example [Srb04]. Their relevance to program specification
and verification is advocated, for example, in [JKM01, KS04].

9.2 Logics and Studied Problems

In this chapter we work with fragments of unified system of branching-time
logic (UB) [BAPM83].

Definition 9.1. Let Act = {a, b, · · · } be a countably infinite set of atomic actions.
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UB formulae have the following syntax:

ϕ ::= tt | ¬ϕ | ϕ1 ∧ ϕ2 | 〈a〉ϕ | EFϕ | EGϕ,

where a ∈ Act is an action.

We define the semantics of UB formulae over states of a labelled transi-
tion system.

Definition 9.2. Let ϕ be a UB formula, L = (S,−→, α0) be a labelled transition
system and α be a state of L. The validity of the formula ϕ in the state α of the
labelled transition system L, written (α,L) |= ϕ, is defined by induction on the
structure of ϕ:

(α,L) |= tt

(α,L) |= ¬ϕ iff (α,L) 6|= ϕ

(α,L) |= ϕ1 ∧ ϕ2 iff (α,L) |= ϕ1 ∧ (α,L) |= ϕ2

(α,L) |= 〈a〉ϕ iff ∃α′. α a−→L α′ ∧ (α′,L) |= ϕ

(α,L) |= EFϕ iff ∃α′. α −→∗L α′ ∧ (α′,L) |= ϕ

(α,L) |= EGϕ iff there is a maximal (finite or infinite) transition

sequence α1
a1−→L α2

a2−→L α3
a3−→L . . . such that

α = α1 and all states in the sequence satisfy

(αi,L) |= ϕ, for all i ≥ 1

We write L |= ϕ if ϕ is valid in the initial state α0 of L.

Definition 9.3. For each UB formula ϕ, we define depth(ϕ) as a nesting depth of
〈a〉 operators in ϕ by induction on the structure of the formula:

depth(tt) = 0

depth(¬ϕ) = depth(ϕ)

depth(ϕ ∧ ψ) = max{depth(ϕ), depth(ψ)}

depth(〈a〉ϕ) = depth(ϕ) + 1

depth(EFϕ) = depth(ϕ)

depth(EGϕ) = depth(ϕ)

Introducing some restriction on the syntax level, we define four frag-
ments of UB logic.

• A UB formula ϕ is called an EF formula if it does not contain any EG
operator. Hence, the syntax of EF logic is defined as follows.

ϕ ::= tt | ¬ϕ | ϕ1 ∧ ϕ2 | 〈a〉ϕ | EFϕ
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• A UB formula ϕ is called an EG formula if it does not contain any EF
operator. Hence, the syntax of EG logic is defined as follows.

ϕ ::= tt | ¬ϕ | ϕ1 ∧ ϕ2 | 〈a〉ϕ | EGϕ

• A UB formula ϕ is called a Hennessy–Milner formula (or HM formula
for short) if it contains neither EG nor EF operators. Hence, the syntax
of HM logic is defined as follows.

ϕ ::= tt | ¬ϕ | ϕ1 ∧ ϕ2 | 〈a〉ϕ

• A UB formula ϕ is called a simple formula if it is an HM formula satis-
fying depth(ϕ) = 1. Hence, the syntax of simple logic is defined as

ϕ ::= tt | ¬ϕ | ϕ1 ∧ ϕ2 | 〈a〉ϕ′

where ϕ′ ::= tt | ¬ϕ′ | ϕ′1 ∧ ϕ′2.

In the following, we deal with six problems parametrised by a subclass
of sePRS systems.

EF properties:

Problem: Decidability of EF logic for C
Instance: An EF formula ϕ and a system ∆ ∈ C

Question: Is the system ∆ a model of the formula ϕ, i.e. L(∆) |= ϕ ?

Problem: Reachability HM property for C
Instance: An HM formula ϕ and a system ∆ ∈ C

Question: Is the system ∆ a model of a formula EFϕ, i.e. L(∆) |= EFϕ ?

Problem: Reachability simple property for C
Instance: A simple formula ϕ and a system ∆ ∈ C

Question: Is the system ∆ a model of a formula EFϕ, i.e. L(∆) |= EFϕ ?

EG properties:

Problem: Decidability of EG logic for C
Instance: An EG formula ϕ and a system ∆ ∈ C

Question: Is the system ∆ a model of the formula ϕ, i.e. L(∆) |= ϕ ?

Problem: Evitability HM property for C
Instance: An HM formula ϕ and a system ∆ ∈ C

Question: Is the system ∆ a model of a formula EGϕ, i.e. L(∆) |= EGϕ ?
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Problem: Evitability simple property for C
Instance: A simple formula ϕ and a system ∆ ∈ C

Question: Is the system ∆ a model of a formula EGϕ, i.e. L(∆) |= EGϕ ?

It is easy to see that the reachability simple property problem is a sub-
problem of the reachability HM property problem, that is, again, a sub-
problem of the decidability of EF logic. The same holds for the three EG
properties given above. Other combinations are incomparable. The situa-
tion can be depicted as follows.

decidability
EF logic

=⇒ reachability
HM property

=⇒ reachability
simple property

decidability
EG logic

=⇒ evitability
HM property

=⇒ evitability
simple property

9.3 Reachability HM Property

In this section, we study a reachability HM property problem for wPRS, i.e. the
problem to decide whether a given wPRS ∆ and a given HM formula ϕ
satisfy ∆ |= EFϕ or not. We prove that the problem is decidable. The proof
reduces this problem to the reachability problem for wPRS, i.e. the problem
to decide whether a given state of a given wPRS is reachable or not, which
is decidable due to Theorem 8.8.

For the rest of this section, let ∆ be a fixed wPRS system, D 6∈ Const(∆)
be a fixed fresh process constant, and C = Const(∆) ∪ {D}. Further, let ϕ
be a HM formula and n = depth(ϕ). We assume that n > 0.

Definition 9.4. A term t′ is called n-equivalent to a state pt of ∆ if and only if,
for each HM formula ψ satisfying depth(ψ) ≤ n, it holds:

(∆, pt) |= ψ ⇐⇒ (∆, pt′) |= ψ

Our proof will proceed in two steps. In the first step we show that there
exists a finite set T of terms such that, for each reachable state pt of ∆, the
set T contains a term t′ which is n-equivalent to pt. In the second step we
enrich the system with rules allowing us to rewrite an arbitrary reachable
state pt to a state [p, t′]D, where the control state [p, t′] represents the origi-
nal control state p and a term t′ which is n-equivalent to pt. Finally, for each
p ∈ M(∆), t′ ∈ T satisfying (∆, pt′) |= ϕ we add a rule [p, t′]D

a
↪→ accD.

Let us note that the validity of (∆, pt′) |= ϕ is decidable as wPRS systems
are finitely branching. To sum up, ϕ is valid for some reachable state pt of
∆ if and only if the state accD is reachable in the modified system.
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First, we introduce some auxiliary terminology and notation. A non-
empty proper subterm t′ of a term t is called idle if t′ is the right-hand-side
component of some sequential composition in t (such that its left-hand-
side component is nonempty), where sequential composition is considered
to be left-associative. For example, a term (X.Y.Z)‖(U.(V ‖W )) should be
interpreted as ((X.Y ).Z)‖(U.(V ‖W )) and its idle subterms are Y,Z, V ‖W
but not Y.Z. By IdleTerms we denote a set of all idle terms occurring in
the initial term or in terms on the right-hand sides of rewrite rules of ∆.
Observe that each idle subterm of any reachable state of ∆ is contained in
IdleTerms .

We define a length of a term t, written |t|, as the number of all occur-
rences of process constants in the term. For example, |X‖(X.Y )‖ε| = 3.
Formally, length of a term is defined by induction on the term structure as
follows.

|ε| = 0
|X| = 1

|t1.t2| = |t1|+ |t2|
|t1‖t2| = |t1|+ |t2|

Further, for each j ≥ 0, we define a set

SmallTerms(j) = {t | t is a term over C and 0 < |t| ≤ j}.

Definition 9.5. Let h > 0 be an integer. We put k = max{|t| | t ∈ IdleTerms}
and H = h · (h + k) · |SmallTerms(h + k)|. We define Rules(h) to be the set of
rewrite rules of three types (see the proof of Lemma 9.6 for their respective roles):

(1) p (s′.D)
del
↪→ pD for all p ∈M(∆) and s′ ∈ SmallTerms(H),

(2) p sh+1 del
↪→ p sh for all p ∈M(∆) and s ∈ SmallTerms(H),

(3) p (s′.s)
del
↪→ pD for all p ∈M(∆), s ∈ IdleTerms , and

s′ ∈ SmallTerms(H) r SmallTerms(h),

where si denotes a parallel composition of i copies of term s.

Lemma 9.6. For each h > 0 and for each reachable state pt of ∆ it holds that
p (t.D) −→∗Rules(h) pD.

Proof. As every rule in Rules(h) has its right-hand side shorter than its left-
hand side and an application of a rule in Rules(h) cannot produce any new
idle subterm, it is sufficient to prove that, for each p ∈ M(∆) and each
term t over C with all idle subterms in IdleTerms , there is a rule of Rules(h)
applicable to p (t.D). We assume the contrary and derive a contradiction.
Let p ∈M(∆) be a control state and t be a term of the minimal length such
that t satisfies the preconditions and no rule of Rules(h) is applicable to
p (t.D). Then |t| > H as in the other case a rule of type (1) is applicable to
p (t.D). There are two cases:
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t = u.v As v ∈ IdleTerms we have |v| ≤ k. Further, |t| > H implies
|u| > H − k > h. If h < |u| ≤ H , then there is a rule of type (3) that
can be applied to p (t.D). Hence |u| > H . As no rule of Rules(h) can
be applied to p (t.D) = p (u.v.D), no such rule can be applied to pu.
The inequality |u| > H gives us that a rule of type (1) is applicable to
p (u.D) if and only if it is applicable to pu. The same holds for rules of
type (2) and (3) as well due to the shape of these rules and due to the
fact that D does not occur in any term of IdleTerms . To sum up, no
rule of Rules(h) can be applied to p (u.D) and thus u contradicts the
minimality of t.

t = u‖v As ‘‖’ is associative and commutative, it can be seen as an op-
erator with an unbounded arity. Thus, t can be seen as a parallel
composition of several components which are nonempty sequential
terms. The length of each of these components is less than or equal
to H ; a component u satisfying |u| > H would contradict the mini-
mality of t using the same arguments as in the previous case. Further,
as no rule of type (3) can be applied, the length of each component is
at most h + k. Moreover, as rules of type (2) are not applicable, we
have that the parallel composition contains at most h copies of each
component. Hence, |t| ≤ h · (h + k) · |SmallTerms(h + k)| = H . This
contradicts the relation |t| > H .

Definition 9.7. Let l be the maximal length of a left-hand-side term of a rule
in ∆. Lemma 9.6 implies that, for each reachable state pt of ∆, there ex-
ists a transition sequence p (t.D) −→∗Rules(nl) pD. By MultiSetnl(pt) (or just
MultiSet(pt) if no confusion can arise) we denote a multiset containing ex-
actly all the subterms that are rewritten during this transition sequence and
correspond to a subterm s′ of rewrite rules of types (1) and (3). Further, for
each multiset of terms S = {t1, t2, . . . , tj}, we define its characteristic term
tS = (t1.D)‖(t2.D)‖ . . . ‖(tj .D).

Lemma 9.8. Let pt be a reachable state of ∆. Then tMultiSet(pt) is n-equivalent to
pt.

Proof. Let us fix a transition sequence p (t.D) −→∗Rules(nl) pD and the cor-
responding multiset MultiSet(pt). The proof proceeds by induction on the
number of transition steps in the transition sequence.

Let Si denote a part of MultiSet(pt) obtained in the first i transition steps
and pui be the state reached by these steps. It is sufficient to prove that, for
each i, ui‖tSi is n-equivalent to pt. We note that D cannot be rewritten by
any rewrite rule of ∆ – it is used to prevent unwanted rewriting.

The basic step is trivial as u0 = t, S0 = ∅, and thus ui‖tSi = t‖ε. Now we
assume that ui‖tSi is n-equivalent to pt and we prove that the same holds
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for ui+1‖tSi+1 . Let l be the maximal length of a left-hand-side term of a rule
in ∆. There are three cases reflecting the type of the rewrite rule applied in

a transition step pui
del−→Rules(nl) pui+1:

type (1) We note that no rule in Rules(nl) can introduce D on the right-

hand side of a sequential composition. Thus, a rule p (s′.D)
del
↪→ pD

of type (1) is applicable to pui iff ui = s′.D. Therefore, ui+1 = D,
Si+1 = Si∪{s′}, and ui+1‖tSi+1 = D‖(s′.D)‖tSi = D‖ui‖tSi . As ui‖tSi
is n-equivalent to pt, it is obvious that so is ui+1‖tSi+1 .

type (2) Let ψ be an HM formula such that depth(ψ) ≤ n. Then its valid-
ity in a state depends only on the first n successive transitions per-
formable from the state. At most nl process constants of the term t
can be rewritten during n successive steps. Hence, at most nl parallel
components can be rewritten during these steps. Thus, reducing of
the number of identical parallel components from nl + 1 to nl does
not affect the validity of ψ. To sum up, ui+1‖tSi+1 = ui+1‖tSi is n-
equivalent to pt.

type (3) The term s′ occurring in the applied rule satisfies |s′| > nl. Hence,
the part of the term t corresponding to the subterm s of the rule is “too
far” to be rewritten in the first n steps of any transition sequence.
The term s′.s in ui is replaced by D in ui+1. It is easy to see that
ui+1‖tSi+1 = ui+1‖(s′.D)‖tSi is n-equivalent to pt.

Given a multiset of terms S, by S↓n we denote the largest subset of S
containing at most n copies of each element. One can readily confirm that
a characteristic term tS is n-equivalent to some state of ∆ if and only if tS↓n
is n-equivalent to this state.

To sum up, for each reachable state pt of ∆, we can construct a multiset
MultiSet(pt)↓n such that its characteristic term tMultiSet(pt)↓n is n-equivalent
to pt. Moreover, there is a bound on the size of each such a multiset which
depends on ∆ and n only. More precisely, such a multiset contains at most
n copies of terms s′ ∈ SmallTerms(nl ·(nl+k)·|SmallTerms(nl+k)|), where
l is the maximal length of a left-hand-side term of a rule in ∆ and k is the
maximal length of a term in IdleTerms . We now present the reduction of the
reachability HM property problem for wPRS to the reachability problem for
wPRS.

Lemma 9.9. Let ∆ be a wPRS system and ϕ be a Hennessy–Milner formula. Then
we can construct a wPRS ∆′ with a state accD such that

∆ |= EFϕ ⇐⇒ accD is reachable in ∆′.
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Proof. Let n, D, C, IdleTerms , SmallTerms(j), and MultiSet(pt) have the
same meanings as above.

Let k be the maximal length of a term in IdleTerms , l be the maximal
length of a left-hand-side term in any rule from ∆, and H = nl · (nl + k) ·
|SmallTerms(nl + k)|. Further, let S be a set of all multisets containing at
most n copies of each term s′ ∈ SmallTerms(H).

The system ∆′ uses control states of the original system, a distinguished
control state acc 6∈ M(∆), and control states of the form (p, S) where p ∈
M(∆) and S ∈ S.

Let p0t0 be the initial state of ∆. Then ∆′ has the initial state p0 (t0.D)
and the following rules, where p and S range over M(∆) and S respec-
tively. We omit labels as they are not relevant.

(1) pt ↪→ qt′ for all (pt
a
↪→ qt′) ∈ ∆

(2) pX ↪→ (p, ∅)X for all X ∈ C
(3) (p, S) s′.D ↪→ (p, (S ∪ {s′})↓n)D for all s′ ∈ SmallTerms(H)
(4) (p, S) snl+1 ↪→ (p, S) snl for all s ∈ SmallTerms(H)
(5) (p, S) s′.s ↪→ (p, (S ∪ {s′})↓n)D

for all s ∈ IdleTerms and s′ ∈ SmallTerms(H) r SmallTerms(nl)
(6) (p, S)D ↪→ accD whenever (∆, ptS) |= ϕ

Intuitively, the rules of type (1) mimic the behaviour of ∆ and enable ∆′ to
reach a state p (t.D) if and only if pt is a reachable state of ∆. A rule of type
(2) stops this mimic phase and starts a checking phase where only rules of
types (3)–(6) are applicable. The rules of types (3), (4), and (5) correspond
to the rules of type (1), (2), and (3) in Rules(nl), respectively. Let p (t.D) be
a final state reached in the mimic phase. The rules of types (3)–(5) allow us
to rewrite this state to the state (p,MultiSet(pt)↓n)D. Finally, the control
state (p,MultiSet(pt)↓n) can be changed to acc using a rule of type (6) if
and only if (∆, tMultiSet(pt)↓n) |= ϕ. As tMultiSet(pt)↓n is n-equivalent to pt, the
control state can be changed to acc if and only if (∆, pt) |= ϕ.

The following theorem is an immediate corollary of Lemma 9.9 and
Theorem 8.8.

Theorem 9.10. The reachability HM property problem is decidable for wPRS.

9.4 Corollaries and Remarks

An interesting corollary of Theorem 9.10 arises in connection with one of
the results of [JKM01].

Theorem 9.11 ([JKM01], Theorem 22). If the model checking problem for simple
EF formulae (i.e. reachability HM property problem) is decidable in a class K of
transition systems, then strong bisimilarity is decidable between processes of K
and finite-state ones.
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A combination of Theorem 9.10 and Theorem 9.11 yields the following
corollary.

Theorem 9.12. Strong bisimilarity is decidable between wPRS systems and finite-
state ones.

Let us mention few following remarks to figure out some corollaries
and related results.

Remark 9.13. Theorem 9.10 also implies that reachability simple property prob-
lem is decidable for PRS. This result has been previously presented in [May98]
under the name reachable property problem. However, the proof given there
contains a nontrivial mistake which was not fixed in subsequent papers [MR98,
May00]. The weak point is the proof showing a transformation of an arbitrary
PRS onto a PRS in normal form.

Considering a PRS ∆ = ({A‖(B.C)
a
↪→ A‖(B.C)}, A‖(B.C))

// A‖(B.C)

a

��

that does not model a formula EF(¬〈a〉tt), one receives a transformed PRS ∆′ in
normal form that models this formula. According to the construction of [May00]
the LTS of ∆′ is as follows.

// A‖X

τ
))

a

��
A‖(B.C)

τ

hh

The construction of [May98] results in the following system where contrary to the
lemma ∆′ |= EF(¬〈a〉tt ∧ ¬〈γ〉tt).

Z1‖(B.C) kk τ
++XXXXXXXXX

γ

VV
// A‖(B.C)

rr
τ 22fffffffff

ll τ
,,XXXXXXXXXXX Z1‖Z2

γ

VV
oo τ // Z3

a

��

A‖Z2
ss

τ 33fffffffffff

γ

VV

Intuitively, the construction enriches a given PRS with and additional rules
enabling folding and unfolding of large terms. The construction of [May98] also
introduces γ rules to sign intermediate states during folding and unfolding. The
problem is that neither the a action nor the γ action is enabled in the state with
the unfolded term. We do not see any easy way how to repair the construction.
For example, labelling the folding rules by γ does not help because it cause other
problems (e.g. folding part of one rewriting action can disturb performing of other
action).
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Remark 9.14. It is known that (full) EF logic is undecidable for PN [Esp94]. An
inspection of the proof given in [Esp97] shows that this undecidability result is
valid even for seBPP class.

9.5 Evitability Simple Property for Deterministic BPP

Esparza and Kiehn have proved that EG logic is undecidable for (determin-
istic) BPP [EK95]. In this section we describe a modification of their proof
showing that for (deterministic) BPP even the evitability simple property
problem is undecidable. As we just describe the necessary changes to be
done within the proof given in [EK95], we use the same notation as intro-
duced in their paper.

The original proof is done by a reduction from the halting problem of
a Minsky counter machine. A quick inspection of the reduction shows that
it demonstrates undecidability of the inevitability HM property problem for
the class of deterministic BPP systems. We note that it is not a proof of un-
decidability for the inevitability simple property problem due to the following
reason. In the definition of ÊN(a1, . . . , ak), there is a subformula

k∧
i:=1

¬∃(ai)EN(ai) corresponding to
k∧
i=1

¬〈ai〉〈ai〉tt in our notation

which expresses that no sequence aiai is enabled. Omitting this subformula
from ÊN(a1, . . . , ak), the construction produces a simple property formula.

In what follows, we present some other changes to be done within the
construction in order to keep its correctness for the case of the simple prop-
erty formula as well. In other words, we prove that even the inevitabil-
ity simple property problem remains undecidable for the deterministic BPP
systems.

The following definitions of SM, M, and Cj are the same as in [EK95]:

SM
def= (SQ1‖ . . . ‖SQn+1) M

def= SM‖Q0 Cj
def= dec1j · dec2j · dec3j · 0

Without loss of generality, we assume that there is no self loop in the
counter machineM (i.e. k 6= i 6= k′, for each transition rule ofM). Hence,
it is not necessary to create a new parallel instance of a process constant Qi
from SQi as far as the rewriting on the existing instance of Qi is not finished.
In the following, we reformulate the definitions of SQi and Qi to prevent
sequences of the form out1iout

1
i or out2iout2i.

The halting state definition is reformulated as follows.

SQn+1
def= in1n+1 · Qn+1 Qn+1

def= halt · SQn+1
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A state qi of type II is modelled as follows.

SQi
def= in1i · Qi Qi

def= out1i · out2i · SQi

A state qi of type I has to proceed to the state qk. To prevent multiple
occurrences of the process constant Qk, we use the same technique as in the
case of states of type II. Hence, SQi and Qi are modelled as

SQi
def= in1i · Qi Qi

def= out1i · out2i · (SQi‖Cj)

and we add the following disjunct to the formula φh to guarantee a move
to the state qk in an honest run.

Therefore, the formula φh is a disjunction constructed as follows. For
each state qi of type I, φh contains a disjunct

ÊN(out1i) ∨ ÊN(out2i) ∨ ÊN(out2i, out
1
k) ∨ ÊN(out1k).

For each state qi of type II, φh contains two disjuncts. The first is

¬EN(dec1j) ∧ ¬EN(dec2j) ∧ ¬EN(dec3j)∧

∧(ÊN(out1i) ∨ ÊN(out2i) ∨ ÊN(out2i, out
1
k) ∨ ÊN(out1k))

and the second is

(EN(dec1j) ∨ EN(dec2j) ∨ EN(dec3j))∧

∧(ÊN(out1i) ∨ ÊN(out1i, dec
2
j) ∨ ÊN(out2i, dec

2
j)∨

∨ÊN(out2i, dec
3
j) ∨ ÊN(out2i, out

1
k, dec

3
j) ∨ ÊN(out1k, dec

3
j)).

Hence, the multiple enabling of out1i and out2i is omitted by the con-
struction. It remains to focus on situations for dec2i and dec3i. As the states
where both dec2i and dec3i are enabled do not satisfy φh, each state satisfy-
ing ∃(dec2i)EN(dec2i) has no continuation to make a honest run and each
state satisfying ∃(dec3i)EN(dec3i) is unreachable in any honest run.

9.6 Summary

The following table describes the current state of (un)decidability results
for the six problems defined at the end of Subsection 9.2 for the classes of
PRS-hierarchy and their extended counterparts. The results established by
this chapter are typeset in bold.
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problem decidable for undecidable for
decidability of EF logic wPAD [BST06] seBPP
reachability HM property wPRS sePA[BEH95]
reachability simple property wPRS sePA[BEH95]
decidability of EG logic PDA [MS85, Cau92] BPP [EK95]
evitability HM property PDA [MS85, Cau92] BPP [EK95]
evitability simple property PDA [MS85, Cau92] BPP

To sum up, the situation with (un)decidability of these six problems for
all the considered classes is clear for now. See Figure 9.1 and Figure 9.2
depicting (un)decidability boundaries of all EF and EG properties. (Note
that s.p. stands for simple property in these figures.)

9.7 Conclusion

In this chapter we have shown that given any wPRS system ∆ and any
Hennessy–Milner formula ϕ, one can decide whether there is a state α
of ∆ reachable from the initial state of ∆ such that α satisfies ϕ. Using
Theorem 22 of [JKM01], our result implies that strong bisimilarity between
wPRS and finite-state systems is decidable. Decidability of the same prob-
lem for some of the wPRS subclasses, namely PAN and PRS, has been for-
mulated as an open question, see e.g. [Srb02a].
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Figure 9.1: The extended PRS-hierarchy with (un)decidability boundaries
of EF properties.
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Figure 9.2: The extended PRS-hierarchy with (un)decidability boundaries
of EG properties.
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Chapter 10

Linear Time Logic

In this chapter we establish decidability boundaries of the model checking
problem for infinite-state systems of the extended PRS-hierarchy and prop-
erties described by basic fragments of action-based Linear Temporal Logic
(LTL). It is known that the problem for general LTL properties is decidable
for Petri nets and for pushdown processes, while it is undecidable for PA
processes. As our main result, we show that the problem is decidable for
wPRS if we consider properties defined by formulae only with the strict
eventually and strict always modalities. Later on we extend the result also
with past modalities and show that the model checking problem is decid-
able even for wPRS and LTL fragment based on modalities strict eventually,
strict always, eventually in the strict past and always in the strict past. More-
over, we show that the problem remains undecidable for PA processes even
with respect to the LTL fragment with modality until and to the LTL frag-
ment based on modalities next and infinitely often as well.

10.1 Motivation

Recall that concerning the model checking problem, a broad overview of
(un)decidability results for subclasses of PRS and various temporal logics
can be found in [May98]. Here we focus exclusively on Linear Temporal
Logic (LTL). It is known that LTL model checking of PDA is EXPTIME-
complete [BEM97]. LTL model checking of PN is also decidable, but at least
as hard as the reachability problem for PN [Esp94] (the reachability prob-
lem is EXPSPACE-hard [May84, Lip76] and no primitive recursive upper
bound is known). If we consider only infinite runs, then the problem for
PN is EXPSPACE-complete [Hab97, May98].

Conversely, LTL model checking is undecidable for all classes subsum-
ing PA [BH96, May98]. So far, there are only two positive results for these
classes. Bouajjani and Habermehl [BH96] have identified a fragment called
simple PLTL2 for which model checking of infinite runs is decidable for PA
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(strictly speaking, simple PLTL2 is not a fragment of LTL as it can express
also some non-regular properties, while LTL cannot). Only recently, it has
been demonstrated that model checking of infinite runs is decidable for
PRS and the fragment of LTL capturing exactly fairness properties [Boz05].

In this chapter, we completely locate decidability boundaries of the
model checking problem for all subclasses of sePRS and all basic LTL frag-
ments (see Figure 10.2), where a basic LTL fragment is a set of all formulae
containing only a given subset of standard modalities. The boundaries are
depicted in Figure 10.3.

To locate the boundaries, we show the following results.

1. We introduce a new LTL fragment A and prove that every formula
of the basic fragment LTL(Fs,Gs) (i.e. the fragment with modalities
strict eventually and strict always only) can be effectively translated
into A. As LTL(Fs,Gs) is closed under negation, we can also translate
LTL(Fs,Gs) formulae into negated formulae of A.

2. We show that model checking (of both finite and infinite runs) of
wPRS against negated formulae of A is decidable. We employ the
result of [Boz05] and our results presented in Chapter 8 (published in
[KŘS04a]) and Chapter 9 (published in [KŘS05]). The proof reduces
the problem to LTL model checking problems for PDA and PN. Thus,
we get decidability of model checking for wPRS against LTL(Fs,Gs).
Note that LTL(Fs,Gs) is strictly more expressive than the Lamport logic
(i.e. the basic fragment with modalities eventually and always), which
is again strictly more expressive than the mentioned fragment of fair-
ness properties and also more expressive than the regular part of sim-
ple PLTL2.

3. We extend the proof technique, described in the two previous items,
with past modalities and show that the model checking problem
stays decidable even for wPRS and LTL(Fs,Ps) (i.e. the fragment with
modalities strict eventually, strict always, eventually in the strict past,
and always in the strict past). Let us mention that the expressive power
of the fragment LTL(Fs,Ps) semantically coincides with formulae of
First-Order Monadic Logic of Order containing at most 2 variables
and no successor predicate (FO2[<]) [EVW02]. Therefore, we also
positively solve the model checking problem for wPRS and FO2[<].
Moreover, we note that First-Order Monadic Logic of Order contain-
ing at most 2 variables (FO2) coincides with an LTL(F,X,P,Y) frag-
ment [EVW02]. Due to our results mentioned in the next item, we
conclude that FO2 model checking problem is undecidable even for
the PA class. For the sake of completeness, we note that First-Order
Monadic Logic of Order containing at most 3 variables (FO3) coin-
cides with the set of all LTL formulae [Kam68, GPSS80].
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4. We demonstrate that the model checking problem remains undecid-
able for PA systems even if we consider the basic fragment with
modality until or the basic fragment with modalities next and infinitely
often (which is strictly less expressive than the one with next and even-
tually).

The chapter is organised as follows. The next section recalls basic def-
initions. Sections 10.3, 10.4, 10.5, and 10.6 correspond, respectively, to the
four results listed above. The Section 10.7 summarises all (un)decidability
results on model checking of LTL fragments and the classes of the extended
PRS-hierarchy. The last section discusses other potential applications of our
results.

10.2 Definitions of the Studied Problems

Before we formulate the model checking problems examined in this chap-
ter, we introduce some notions related to the discussed systems and LTL
fragments.

Additional System Definitions

Let us recall that a state pt is terminal, written pt 6−→∆, if there is no transition
pt

a−→∆ p′t′ for any state p′t′ and any action a. In this chapter we consider
only systems where the initial term is a single constant (see Remark 2.9).
Moreover, we always consider only systems where the initial state is not
terminal. This restriction do not cause any weakening of our results. It
is easy to determine that the initial state is terminal and deciding model
checking problem is easy for this case, too.

Definition 10.1. A (finite or infinite) sequence

σ = p1t1
a1−→∆ p2t2

a2−→∆ . . .
an−→∆ pn+1tn+1

(
an+1−→∆ . . .

)
is called a derivation over the word u = a1a2 . . . an(an+1 . . .) in ∆. A deriva-
tion in ∆ is called a run of ∆ if it starts in the initial state p0X0 and it is either
infinite, or its last state is terminal.

Finite derivations are also denoted as p1t1
u−→∗∆ pn+1tn+1, infinite ones

as p1t1 −→ω
∆ . Further, L(∆) denotes the set of words u such that there is a

run of ∆ over u.

Definition 10.2. For technical reasons, we define a normal form of wPRS systems.
A rewrite rule is parallel or sequential if it has one of the following forms:1

1Note that, due to technical reasons, the parallel rules of this definition are not as restric-
tive as those of Definition 8.1.



112 LINEAR TIME LOGIC

Parallel rules: p (X1‖X2‖ . . . ‖Xn)
a
↪→ q (Y1‖Y2‖ . . . ‖Ym)

Sequential rules: pX
a
↪→ qY.Z pX.Y

a
↪→ qZ pX

a
↪→ qY pX

a
↪→ qε

where X,Y,Xi, Yj , Z ∈ Const , p, q ∈ M , n > 0, m ≥ 0, and a ∈ Act . A rule
is called trivial if it is both parallel and sequential (i.e. it has the form pX

a
↪→ qY

or pX
a
↪→ qε). A wPRS ∆ is in normal form if it has only parallel and sequential

rewrite rules.

Linear Temporal Logic

The Linear Temporal Logic (LTL) [Pnu77] can be (equivalently) defined
with use of various sets of temporal operators. In the following defini-
tion, we employ just two common future temporal operators, namely next
and until, and two common past temporal operators, namely previously and
since.

Definition 10.3. Let Act = {a, b, · · · } be a countably infinite set of atomic ac-
tions. The syntax of Linear Temporal Logic (LTL) is defined as

ϕ ::= tt | a | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ | Yϕ | ϕSϕ,

where a ranges over Act , X is called next, U is called until, Y is called previously,
and S is called since.

Other boolean connectives ∨,⇒, and⇔ are derived operators defined
in the very standard way. Later on, we also define other modalities as ab-
breviations of expressions based on the defined four modalities.

The logic is interpreted over infinite as well as nonempty finite words of
actions. Given a word u, by |u|we denote the length of u (for infinite words
we put |u| = ∞). An empty word ε has a zero length. A concatenation of
a finite word v and a word u is denoted by v.u or vu. For all 0 ≤ i < |u| by
u(i) we denote the (i+1)th letter of u, i.e. u = u(0)u(1)u(2) . . . u(|u| − 1) if u
is finite and u = u(0)u(1)u(2) . . . otherwise. Further, for all 0 ≤ i < |u| by
ui we denote the ith suffix of u, i.e. ui = u(i)u(i+ 1)u(i+ 2) . . . u(|u|−1) if u
is finite and ui = u(i)u(i+ 1)u(i+ 2) . . . otherwise. A pointed word is a pair
(u, i) of a nonempty word u and a position 0 ≤ i < |u| in this word.

The semantics of LTL formulae is defined inductively in the following
definition.

Definition 10.4. Let ϕ be an LTL formula and (u, i) be a pointed word. We define
that a formula ϕ is valid for the position i in the word u, written (u, i) |= ϕ, by
induction on the structure of u.
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(u, i) |= tt

(u, i) |= a iff u(i) = a

(u, i) |= ¬ϕ iff (u, i) 6|= ϕ

(u, i) |= ϕ1 ∧ ϕ2 iff (u, i) |= ϕ1 ∧ (u, i) |= ϕ2

(u, i) |= Xϕ iff i+ 1 < |u| ∧ (u, i+ 1) |= ϕ

(u, i) |= ϕ1 Uϕ2 iff ∃k. (i ≤ k < |u| ∧ (u, k) |= ϕ2 ∧
∧ ∀j. (i ≤ j < k ⇒ (u, j) |= ϕ1))

(u, i) |= Yϕ iff 0 < i ∧ (u, i− 1) |= ϕ

(u, i) |= ϕ1 Sϕ2 iff ∃k. (0 ≤ k ≤ i ∧ (u, k) |= ϕ2 ∧
∧ ∀j. (k < j ≤ i ⇒ (u, j) |= ϕ1))

We say that a nonempty word u satisfies ϕ, written u |= ϕ, if and only if
(u, 0) |= ϕ. Given a set of words L, we write L |= ϕ if u |= ϕ holds for all
u ∈ L. We say that a derivation (or run) σ over a word u satisfies ϕ, written
σ |= ϕ, whenever u |= ϕ.

Considering all pointed words or just the pointed words of the form
(u, 0) yields different notions of equivalence.

Definition 10.5. Let ϕ and ψ be LTL formulae. The formulae are said to be (ini-
tially) equivalent, written ϕ ≡i ψ, if for all words u we have

u |= ϕ if and only if u |= ψ.

The formulae are said to be globally equivalent, written ϕ ≡g ψ, if for all words
u and for all positions 0 ≤ i < |u| we have

(u, i) |= ϕ if and only if (u, i) |= ψ.

One can readily confirm that if two formulae are globally equivalent
then they are also initially equivalent.

Remark 10.6. Let us mention that there is no difference between initial and global
versions of equivalence as far as we consider only so called future modalities like
until and next. Indeed, for all pointed words (u, i) and all formulae ϕ containing
these future modalities only, it holds that

(u, i) |= ϕ if and only if ui |= ϕ

and hence the initial and global equivalences coincide. Contrary, the difference
between initial and global versions arises as soon as past modalities are introduced.
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modality meaning name

X see Definition 10.4 next

U see Definition 10.4 until

F Fϕ ≡g tt Uϕ eventually

G Gϕ ≡g ¬F¬ϕ always

Fs Fsϕ ≡g XFϕ strict eventually

Gs Gsϕ ≡g ¬Fs¬ϕ strict always
∞
F

∞
Fϕ ≡g GFϕ infinitely often

∞
G

∞
Gϕ ≡g ¬

∞
F¬ϕ almost always

Y see Definition 10.4 previously

S see Definition 10.4 since

P Pϕ ≡g tt Sϕ eventually in the past

H Hϕ ≡g ¬P¬ϕ always in the past

Ps Psϕ ≡g YPϕ eventually in the strict past

Hs Hsϕ ≡g ¬Ps¬ϕ always in the strict past

I Iϕ ≡g HPϕ initially

Figure 10.1: LTL modalities overview

In Figure 10.1 we enrich the syntax of LTL with other modalities. For
the sake of completeness, the presented list of modalities includes also the
operators which has been already defined.

Note that Fϕ is equivalent to ϕ∨Fsϕ but Fsϕ cannot be expressed with F
as the only modality. Thus Fs is “stronger” than F. The same relations hold
between Gs and G, Ps and P, and Hs and H.

For a set {O1, . . . , On} of modalities, let LTL(O1, . . . , On) denote the LTL
fragment containing all formulae with modalities O1, . . . , On only. Such
a fragment is called basic. Figure 10.2 shows an expressiveness hierar-
chy of all the basic LTL fragments studied here. Indeed, every basic LTL
fragment using standard2 modalities is (initially) equivalent to one of the
fragments in the hierarchy. For example, any LTL(S,Y) formula is initially
equivalent to a formula without any modality. Hence, every LTL(U,X,S,Y)
formula ϕ can be effectively translated into a formula of LTL(U,X) that is

2By standard modalities we mean the ones defined here and also other commonly used
modalities like strict until, release, weak until, etc. However, it is well possible that one can
define a new modality such that there is a basic fragment not equivalent to any of the frag-
ments in the hierarchy.
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initially equivalent. To sum up, every LTL formula with arbitrary modali-
ties is initially equivalent to a formula of LTL(U,X). Let us also note that,
e.g. LTL(Fs) ≡ LTL(Fs,Gs) even with respect to global equivalence. Fur-
ther, the hierarchy of Figure 10.2 is strict with respect to initial equivalence.
For detailed information about expressiveness of LTL modalities and LTL
fragments we refer to [Str04].

Model Checking Problem

Let F be an LTL fragment and C be a class of systems.

Problem: Model checking problem for F and C
Instance: A formula ϕ ∈ F and a system ∆ ∈ C

Question: Is the system ∆ a model of the formula ϕ, i.e. L(∆) |= ϕ ?

We also mention a problem called model checking of infinite runs, where
L(∆) ∩ Actω |= ϕ is examined, and a problem called model checking of finite
runs, where L(∆) ∩Act∗ |= ϕ is examined.

Using this model checking problem definition we study behaviour of
the initial state only. In context of LTL with past modalities, it is natural
to consider also an extend model checking problem reflecting behaviour
of a given (non-initial) state. We call this problem a pointed model check-
ing problem. Before the formal definition of the pointed model checking
problem, we present some auxiliary definitions.

Definition 10.7. Let ∆ be a wPRS with the initial state p0t0 and pt be a reachable
nonterminal state of ∆. We define L(pt,∆) to be a set of all pointed words (u, i)
such that there is a (finite or infinite) run over the word u

p0t0
u(0)−→∆ p1t1

u(1)−→∆ . . .
u(n)−→∆ pn+1tn+1

(
u(n+1)−→ ∆ . . .

)
and pt = piti. Further, we say that a set of pointed words L(pt,∆) satisfies an
LTL formula ϕ, written L(pt,∆) |= ϕ, if and only if (u, i) |= ϕ for all (u, i) ∈
L(pt,∆).

Note that every (u, i) of the previous definition is a pointed word, be-
cause the state pt is not terminal. As pt is reachable in ∆, L(pt,∆) is
nonempty. Now, the pointed model checking problem for an LTL fragment
F and a system class C can be formally defined as follows:

Problem: Pointed model checking problem for F and C
Instance: A formula ϕ ∈ F , a system ∆ ∈ C, and a reachable

nonterminal state pt of ∆
Question: Is the state pt of the system ∆ a model of the formula ϕ,

i.e. L(pt,∆) |= ϕ ?
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LTL(U,X) ≡ FO3

���������������������������������

LLLLLLLLLLLLLLLLLLLL

LTL(U,Fs,S,Ps)

��������������������������������

LTL(F,X,P,Y) ≡ FO2

NNNNNNNNNNNNNNNNNNNNNN
LTL(U,Fs)

��������������������������������

LTL(F,X)

NNNNNNNNNNNNNNNNNNNNNNN LTL(Fs,Ps) ≡ FO2[<]

���������������������������������������������

LLLLLLLLLLLLLLLLLLLL
LTL(U) ≡ LTL(U, S)

LTL(
∞
F ,X) ≡ LTL(

∞
F ,X, I,Y)

MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
LTL(Fs) ≡ LTL(Fs,Gs)

LLLLLLLLLLLLLLLLLLLLL
LTL(F,P)

LTL(F) ≡ LTL(F,G)

LTL(X) ≡ LTL(X,Y)

NNNNNNNNNNNNNNNNNNNNNNN LTL(
∞
F) ≡ LTL(

∞
F , I)

ssssssssssssssssssss

LTL()

Figure 10.2: The hierarchy of basic LTL fragments with respect to (initial)
equivalence.
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10.3 Fragment A and Translation of LTL(Fs, Gs) into A

In this section we introduce a new LTL fragment A and prove that every
formula of the basic fragment LTL(Fs,Gs) can be effectively translated into
A. In other words, we show that for each LTL(Fs,Gs) formula one can find
an (globally) equivalent formula of A.

Recall that LTL() denotes the fragment of formulae without any modal-
ity, i.e. boolean combinations of actions. In the following we use ϕ1 U+ ϕ2

to abbreviate ϕ1 ∧ X(ϕ1 Uϕ2).

Definition 10.8. Let δ = θ1O1θ2O2 . . . θnOnθn+1, where

• n > 0,

• θi ∈ LTL() for each i ≤ n+ 1,

• Oi is either ‘U’ or ‘U+’ or ‘∧X’ for each i < n, and

• On is ‘∧Gs’.

Further, let B ⊆ LTL() be a finite set. An α-formula is defined as

α(δ,B) =
(
θ1O1(θ2O2 . . . (θnOnθn+1) . . .)

)
∧
∧
ψ∈B

GsFsψ

The A fragment consists of finite disjunctions of α-formulae.

Hence, a word u satisfies α(δ,B) if and only if u can be written as

u1.u2. · · · .un+1

where

• each ui, for i = 1, . . . , n+ 1, consists only of actions satisfying θi and

– |ui| ≥ 0 if i = n+ 1 or Oi is ‘U’,

– |ui| > 0 if Oi is ‘U+’,

– |ui| = 1 if Oi is ‘∧X’ or ‘∧Gs’, and

• un+1 satisfies GsFsψ for every ψ ∈ B.

Lemma 10.9. A conjunction of α-formulae can be effectively converted into an
equivalent disjunction of α-formulae.

Proof of this lemma is a simple but very technical exercise and we sketch
only the basic ideas here.
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Proof (sketch). Let α(δ1,B1) and α(δ2,B2) be the two disjuncts. Clearly, the
set B of each α-formula of the desired disjunction is B1 ∪ B2.

Each δ part (see Definition 10.8) of an α-formula can be represented as
a weak finite state automaton3 accepting exactly those words that models
the δ formula.4 Vice versa, every weak automaton can be represented as
a disjunction of δ formulae. In particular, every δ formula stays for one
“loop-less” run from the initial state to an accepting state.

Therefore, we construct a synchronous product of two weak automata
representing δ1 and δ2. It is clear that the resulting automaton is also weak.
Hence, there is a disjunction of δ formulae representing the automaton.
These δ formulae compose the required disjunction of α-formulae.

Theorem 10.10. Every LTL(Fs,Gs) formula can be translated into an equivalent
disjunction of α-formulae.

Proof. As Fs and Gs are dual modalities, we can assume that every
LTL(Fs,Gs) formula contains negations only in front of actions. Given an
LTL(Fs,Gs) formula ϕ, we construct a finite set Aϕ of α-formulae such that
ϕ is equivalent to disjunction of formulae in Aϕ. Although our proof looks
like a proof by induction on the structure of ϕ, in fact it is done by induc-
tion on the length of ϕ. Thus, if ϕ 6∈ LTL(), then we assume that for every
LTL(Fs,Gs) formula ϕ′ shorter than ϕ we can construct the corresponding
set Aϕ′ . In this proof, let p denotes a formula of LTL(). The structure of ϕ
fits into one of the following cases.

•p Case p: In this case, ϕ is equivalent to p ∧ Gstt. Hence Aϕ = {α(p ∧
Gstt, ∅)}.

•∨ Case ϕ1 ∨ ϕ2: Due to induction hypothesis, we can assume that we
have sets Aϕ1 and Aϕ2 . Clearly, Aϕ = Aϕ1 ∪Aϕ2 .

•∧ Case ϕ1 ∧ϕ2: Due to Lemma 10.9, the set Aϕ can be constructed from
the sets Aϕ1 and Aϕ2 .

•Fs Case Fsϕ1: As Fs(α1 ∨α2) ≡ (Fsα1)∨ (Fsα2) and Fs(α∧GsFsφ) ≡ (Fsα)∧
(GsFsφ), we set Aϕ = {α(tt U+ δ,B) | α(δ,B) ∈ Aϕ1}.

•Gs Case Gsϕ1: This case is divided into the following subcases according
to the structure of ϕ1.

◦p Case Gsp: As Gsp is equivalent to tt ∧ Gsp, we set Aϕ = {α(tt ∧
Gsp, ∅)}.

3A weak finite state automaton is a weak FSU supplemented with a specification of
accepting states — see Definition 11.3.

4In fact, the transformation of δ onto a weak finite state automaton is given in the proof
of Theorem 10.11.
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◦∧ Case Gs(ϕ2 ∧ ϕ3): As Gs(ϕ2 ∧ ϕ3) ≡ (Gsϕ2) ∧ (Gsϕ3), the set
Aϕ can be constructed from AGsϕ2 and AGsϕ3 using Lemma 10.9.
Note that AGsϕ2 and AGsϕ3 can be constructed because Gsϕ2 and
Gsϕ3 are shorter than Gs(ϕ2 ∧ ϕ3).

◦Fs Case GsFsϕ2: This case is again divided into the following sub-
cases.

−p Case GsFsp: As p ∈ LTL(), we directly set Aϕ = {α(tt ∧
Gstt, {p})}.

−∨ Case GsFs(ϕ3 ∨ ϕ4): As GsFs(ϕ3 ∨ ϕ4) ≡ (GsFsϕ3) ∨ (GsFsϕ4),
we set Aϕ = AGsFsϕ3 ∪AGsFsϕ4 .

−∧ Case GsFs(ϕ3 ∧ ϕ4): This case is also divided into subcases
depending on the formulae ϕ3 and ϕ4.
∗p Case GsFs(p3 ∧ p4): As p3 ∧ p4 ∈ LTL(), this subcase has

already been covered by Case GsFsp.
∗∨ Case GsFs(ϕ3 ∧ (ϕ5 ∨ ϕ6)): As GsFs(ϕ3 ∧ (ϕ5 ∨ ϕ6)) ≡

GsFs(ϕ3 ∧ϕ5)∨GsFs(ϕ3 ∧ϕ6), we set Aϕ = AGsFs(ϕ3∧ϕ5) ∪
AGsFs(ϕ3∧ϕ6).

∗Fs Case GsFs(ϕ3 ∧ Fsϕ5): As GsFs(ϕ3 ∧ Fsϕ5) ≡ (GsFsϕ3) ∧
(GsFsϕ5), the set Aϕ can be constructed from AGsFsϕ3 and
AGsFsϕ5 using Lemma 10.9.

∗Gs Case GsFs(ϕ3 ∧ Gsϕ5): As GsFs(ϕ3 ∧ Gsϕ5) ≡ (GsFsϕ3) ∧
(GsFsGsϕ5), the set Aϕ can be constructed from AGsFsϕ3

and AGsFsGsϕ5 using Lemma 10.9.
−Fs Case GsFsFsϕ3: As GsFsFsϕ3 ≡ GsFsϕ3, we set Aϕ = AGsFsϕ3 .
−Gs Case GsFsGsϕ3: A word u satisfies GsFsGsϕ3 iff |u| = 1 or

u is an infinite word satisfying FsGsϕ3. Note that Gs¬tt is
satisfied only by finite words of length one. Further, a word
u satisfies (Fstt) ∧ (GsFstt) iff u is infinite. Thus, GsFsGsϕ3 ≡
(Gs¬tt) ∨ ϕ′ where ϕ′ = (Fstt) ∧ (GsFstt) ∧ (FsGsϕ3). Hence,
Aϕ = AGs¬tt∪Aϕ′ whereAϕ′ is constructed fromAFstt,AGsFstt,
and AFsGsϕ3 using Lemma 10.9.

◦∨ Case Gs(ϕ2 ∨ ϕ3): According to the structure of ϕ2 and ϕ3, there
are the following subcases.

?p Case Gs(p2∨p3): As p2∨p3 ∈ LTL(), this subcase has already
been covered by Case Gsp.

?∧ Case Gs(ϕ2∨(ϕ4∧ϕ5)): As Gs(ϕ2∨(ϕ4∧ϕ5)) ≡ Gs(ϕ2∨ϕ4)∧
Gs(ϕ2 ∨ ϕ5), the set Aϕ can be constructed from AGs(ϕ2∨ϕ4)

and AGs(ϕ2∨ϕ5) using Lemma 10.9.
?Fs Case Gs(ϕ2 ∨ Fsϕ4): It holds that Gs(ϕ2 ∨ Fsϕ4) ≡ (Gsϕ2) ∨

Fs(Fsϕ4 ∧ Gsϕ2) ∨ GsFsϕ4. Therefore, the set Aϕ can be con-
structed as AGsϕ2 ∪ {α(tt U+ δ,B) | α(δ,B) ∈ AFsϕ4∧Gsϕ2} ∪
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AGsFsϕ4 , where AFsϕ4∧Gsϕ2 is created from AFsϕ4 and AGsϕ2

due to Lemma 10.9.
?Gs Case Gs(ϕ2 ∨ Gsϕ4): There are only the following two sub-

cases (the others fit to some of the previous cases).
(i) Case Gs(

∨
ϕ′∈G Gsϕ

′): It holds that Gs(
∨
ϕ′∈G Gsϕ

′) ≡
(Gs¬tt)∨

∨
ϕ′∈G(XGsϕ

′). Therefore, the setAϕ can be con-
structed asAGs¬tt∪

⋃
ϕ′∈G{α(tt∧Xδ,B) | α(δ,B) ∈ AGsϕ′}.

(ii) Case Gs(p2 ∨
∨
ϕ′∈G Gsϕ

′): As Gs(p2 ∨
∨
ϕ′∈G Gsϕ

′) ≡
(Gsp2) ∨

∨
ϕ′∈G(X(p2 U Gsϕ

′)). Therefore, the set Aϕ can
be constructed as AGsp2 ∪

⋃
ϕ′∈G{α(tt ∧ Xp2 U δ,B) |

α(δ,B) ∈ AGsϕ′}.
◦Gs Case GsGsϕ2: As Gs(Gsϕ2) ≡ (Gs¬tt)∨ (XGsϕ2), the set Aϕ can be

constructed as AGs¬tt ∪ {α(tt ∧ Xδ,B) | α(δ,B) ∈ AGsϕ2}.

10.4 Model Checking of wPRS against Negated A

This section is devoted to decidability of the model checking problem for
the wPRS class and negated formulae of the A fragment. In fact, we prove
decidability of the dual problem, i.e. whether a given wPRS system has
a run satisfying a given formula of A. Finite and infinite runs are treated
separately.

Theorem 10.11. The problem whether a given wPRS system has a finite run sat-
isfying a given α-formula is decidable.

Proof. Let ∆ be a wPRS system and α(δ,B) be an α-formula. Note that
a formula GsFsψ is valid on a finite nonempty word if and only if the length
of the word is 1. Therefore, if B 6= ∅ then it is easy to check whether there is
a finite run of ∆ satisfying α(δ,B). In what follows we assume B = ∅.

Let δ = θ1O1θ2O2 . . . θnOnθn+1. We construct a wPRS system ∆′ with
control states M(∆)× {1, 2, . . . , n+ 1} in the following way.

• For any 1 ≤ i ≤ n and every rule pt1
a
↪→ qt2 of ∆ such that a satisfies

θi, we add to ∆′ the rule (p, i)t1
a
↪→ (q, i+1)t2 and ifOi is U or U+ then

also the rule (p, i)t1
a
↪→ (q, i)t2.

• For every p ∈ M(∆), X ∈ Const(∆), and for any 1 ≤ i ≤ n such that
Oi = U, we add to ∆′ the rule (p, i)X

e
↪→ (p, i + 1)X , where e is an

arbitrary action.

• For every rule pt1
a
↪→ qt2 of ∆ such that a satisfies θn+1, we add to ∆′

the rule (p, n+ 1)t1
a
↪→ (q, n+ 1)t2.
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• For every rule pt1
a
↪→ qt2 of ∆ we add to ∆′ the rule (p, n + 1)t1

a
↪→

(p, n+ 1)t1.

Let p0X0 be the initial state of ∆. There is a finite run p0X0
u−→∗∆ qt satis-

fying α(δ, ∅) if and only if there is a finite run (p0, 1)X0
v−→∗∆′ (q, n + 1)t.

Hence, we need to decide whether there exists a state of the form (q, n+ 1)t
that is terminal and reachable from (p0, 1)X0. To do that, for every p ∈
M(∆) we add to ∆′ the rule (p, n+ 1)Z

end
↪→ (p, n+ 1)ε, where end 6∈ Act(∆)

is a fresh action and Z 6∈ Const(∆) is a fresh process constant. Now, it
holds that ∆ has a finite run satisfying α(δ, ∅) if and only if there exists
a state of ∆′, which is reachable from (p0, 1)(X0‖Z) and the only enabled
action in this state is end . This last condition on the state can be expressed
by formula ϕ = 〈end〉tt ∧

∧
a∈Act(∆) ¬〈a〉tt of the Hennessy–Milner logic.

As reachability of a state satisfying a given Hennessy–Milner formula is
decidable for wPRS (see Chapter 9 for details), we are done.

The problem for infinite runs is more complicated. In order to solve it,
we introduce more terminology and notation. First we define β-formulae
and regular languages called γ-languages. Let w = a1O1a2O2 . . . anOn,
where n ≥ 0, a1, . . . , an ∈ Act are pairwise distinct actions and each Oi
is either ‘U+’ or ‘∧X’. Further, let B ⊆ Act r {a1, . . . , an} be a nonempty
finite set of actions and C ⊆ B. A β-formula β(w,B,C) and γ-language
γ(w,C) are defined as

β(w,B,C) =
(
a1O1(a2O2 . . . (anOnG

∨
b∈B

b) . . .)
)
∧
∧
b∈C

GFb∧
∧

b∈BrC
(Fb∧¬GFb)

γ(w,C) = ao11 .a
o2
2 . · · · .a

on
n .L,

where oi =

{
+ if Oi = U+

1 if Oi = ∧X
and L =

{
{ε} if C = ∅⋂

b∈C C
∗.b.C∗ otherwise

Roughly speaking, a β-formula is a more restrictive version of an α-formula
and in context of β-formulae we consider infinite words only. Contrary to
δ of an α-formula, w of a β-formula employs actions rather than LTL() for-
mulae. While a tail of an infinite word satisfying an α-formula is specified
by θn+1, in the definition of β-formulae we use a set B containing exactly
all the actions of the tail and its subset C of exactly all actions occurring
infinitely many times in the tail.

Remark 10.12. Note that an infinite word satisfies a formula β(w,B,C) if and
only if it can be divided into a prefix u ∈ γ(w,B) and a suffix v ∈ Cω such that v
contains infinitely many occurrences of every c ∈ C.

Let w,B,C be defined as above. We say that a finite derivation σ over
a word u satisfies γ(w,C) if and only if u ∈ γ(w,C). We write (w′, B′) v
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(w,B) whenever B′ ⊆ B and w′ = ai1Oi1ai2Oi2 . . . aikOik for some 1 ≤ i1 <
i2 < . . . < ik ≤ n. Moreover, we write (w′, B′, C ′) v (w,B,C) whenever
(w′, B′) v (w,B), B′ is nonempty, and C ′ ⊆ C ∩B′.

Remark 10.13. If u is an infinite word satisfying β(w,B,C) and v is an infinite
subword of u (i.e. it arises from u by omitting some letters), then there is exactly
one triple (w′, B′, C ′) v (w,B,C) such that v |= β(w′, B′, C ′). Further, for each
finite subword v of u, there is exactly one pair (w′, B′) such that (w′, B′) v (w,B)
and v ∈ γ(w′, B′).

Given a PRS in normal form, by tri(∆), par(∆), and seq(∆) we de-
note the system ∆ restricted to trivial, parallel, and sequential rules, re-
spectively. A derivation in tri(∆) is called a trivial derivation in ∆. In the
following we write simply tri , par , seq as ∆ is always clearly determined
by the context.

Definition 10.14. Let ∆ be a PRS in normal form and β(w,B,C) be a β-formula.
The PRS ∆ is in flat (w,B,C)-form if and only if for each X,Y ∈ Const(∆),
each (w′, B′, C ′) v (w,B,C), and each B′′ ⊆ B, the following conditions hold:

1. If there is a finite derivation X u−→∗ Y satisfying γ(w′, B′′), then there is
also a finite derivation X v−→∗tri Y satisfying γ(w′, B′′).

2. If there is a term t and a finite derivation X
u−→∗ t satisfying γ(w′, B′′),

then there is also a process constant Z and a finite derivation X v−→∗tri Z
satisfying γ(w′, B′′).

3. If w′ = ε and there is an infinite derivation X
u−→ ω satisfying

β(w′, B′, C ′), then there is also an infinite derivation X v−→ω
tri satisfying

β(w′, B′, C ′).

4. If there is an infinite derivation X
u−→ω

par satisfying β(w′, B′, C ′), then
there is also an infinite derivation X v−→ω

tri satisfying β(w′, B′, C ′);

5. If there is an infinite derivation X
u−→ω

seq satisfying β(w′, B′, C ′), then
there is also an infinite derivation X v−→ω

tri satisfying β(w′, B′, C ′).

Roughly speaking, a system is in flat (w,B,C)-form if for every deriva-
tion of the form given in the definition there is an “equivalent” trivial
derivation.

Proposition 10.15 (Fairness problem [Boz05]). For X,Y ∈ Const(∆) and
K,Kω ⊆ Act(∆) it is decidable whether there is an infinite derivation of the form
X

u−→ω such that all actions ofK occur in u and all actions ofKω occur infinitely
many times in u.
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All conditions of the Definition 10.14 can be checked due to the follow-
ing lemma, Proposition 10.15 , and decidability of LTL model checking for
PDA and PN. Lemma 10.17 says that every PRS in normal form can be
transformed into an “equivalent” flat system. Finally, Lemma 10.20 says
that if a PRS system in flat (w,B,C)-form has an infinite derivation sat-
isfying β(w,B,C), then it has also a trivial infinite derivation satisfying
β(w,B,C). Note that it is easy to check whether such a trivial derivation
exists.

Lemma 10.16. Given a γ-language γ(w,C), a PRS system ∆, and constants
X,Y , the following problems are decidable:
(i) Is there any derivation X u−→∗ Y satisfying γ(w,C)?
(ii) Is there any derivation X u−→∗ t such that t is a term and u ∈ γ(w,C)?

Proof. Both problems can be reduced to the reachability problem for wPRS
(i.e. to decide whether given states p1t1, p2t2 of a given wPRS system ∆′ sat-
isfy p1t1

v−→∗∆′ p2t2 for some v), which is known to be decidable (Theorem
8.8).

(i) Letw = a1O1 . . . anOn. We construct a wPRS ∆′with the set of control
states {1, 2, . . . n}∪2C . We use (n+ 1) as another name for the control
state ∅ (from 2C). The set of rewrite rules is defined as follows.

• For every 1 ≤ i ≤ n and every rule t1
ai
↪→ t2 of ∆, we add to

∆′ the rule it1
ai
↪→ (i + 1)t2 and if Oi = U+ then also the rule

it1
ai
↪→ it2.

• For every b ∈ C, every D ⊆ C, and every rule t1
b
↪→ t2 of ∆, we

add to ∆′ the rule Dt1
b
↪→ (D ∪ {b})t2.

Obviously, a word u ∈ Act∗ satisfies 1X u−→∗∆′ CY if and only if it
satisfies both X u−→∗∆ Y and u ∈ γ(w,C). As we can decide whether
1X u−→∗∆′ CY holds for some u, we can decide Problem (i).

(ii) We construct a wPRS ∆′ as in the previous case. Moreover, for every
Z ∈ Const(∆) we add to ∆′ the rule CZ

e
↪→ Cε. It is easy to see that

if a word u ∈ γ(w,C) satisfies X u−→∗∆ t for some t, then 1X uem−→∗∆′ Cε
holds for some m ≥ 0. Conversely, if 1X v−→∗∆′ Cε holds for some v,
then some prefix u of v satisfies both u ∈ γ(w,C) and X

u−→∗∆ t for
some t. As we can decide whether 1X v−→∗∆′ Cε holds for some v, we
can decide Problem (ii).

The proof of the following lemma contains an algorithmic core of this
section.
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Lemma 10.17. Let ∆ be a PRS in normal form and β(w,B,C) be a β-
formula. One can construct a PRS ∆′ in flat (w,B,C)-form such that, for each
(w′, B′, C ′) v (w,B,C) and each X ∈ Const(∆), is holds that

in ∆′ there is an infinite derivation starting from X and satisfying β(w′, B′, C ′)

if and only if

in ∆ there is an infinite derivation starting from X and satisfying β(w′, B′, C ′).

Proof. In order to obtain ∆′, we describe an algorithm extending a PRS ∆
with trivial rewrite rules according to Conditions 1–5 of Definition 10.14.

All the conditions of Definition 10.14 can be checked for each X,Y ∈
Const(∆), each (w′, B′, C ′) v (w,B,C), and eachB′′ ⊆ B. For Conditions 1
and 2, this follows from Lemma 10.16. For Condition 3, a problem whether
there is an infinite derivation X

u−→ ω satisfying β(ε,B′, C ′) is a special
case of the fairness problem - see Proposition 10.15, which is decidable due
to [Boz05]. Finally, Conditions 4 and 5 can be checked due to decidability
of LTL model checking for PDA and PN.

Hence we can check if the conditions are satisfied. If there is a deriva-
tion which violates some of the conditions, we add some trivial rules to
ensure the existence of a trivial derivation required by the respective condi-
tion. This process of adding new trivial rules is described in what follows.

Let us assume that Condition 3 (or 4 or 5) is not satisfied, i.e. there exists
an infinite derivation X

u−→ ω (or X u−→ ω
par or X u−→ ω

seq respectively)
satisfying β(w′, B′, C ′) for some (w′, B′, C ′) v (w,B,C) and violating the
condition. Remark 10.12 implies that C ′ is nonempty and there is a finite
derivation X v−→∗∆ t satisfying γ(w′, B′). Hence, there exists an ordering of
B′ = {b1, b2, . . . , bm} such that

(*) for each 1 ≤ j ≤ m, there is a finite derivation in ∆ starting from X
and satisfying γ(w′, {b1, . . . , bj}).

Such an ordering can be effectively computed using Lemma 10.16. Further,
let w′ = a1O1a2O2 . . . anOn and let C ′ = {c1, c2, . . . , ck}. Then, we add the

trivial rule Zi−1
ai
↪→ Zi for each 1 ≤ i ≤ n, the trivial rule Zn+j−1

bj
↪→ Zn+j

for each 1 ≤ j ≤ m, and the trivial rule Zn+m+j−1

cj
↪→ Zn+m+j for each

1 ≤ j ≤ k, where Z0 = X , Z1, . . . , Zn+m+k−1 are fresh process constants,
and Zn+m+k = Zn+m. These added rules form an infinite derivation using
only trivial rules, starting from X , and satisfying β(w′, B′, C ′).

Similarly, if there are X , Y , and γ(w′, B′′) with w′ = a1O1a2O2 . . . anOn
such that Condition 1 or 2 of Definition 10.14 is violated, then we first com-
pute an ordering {b1, . . . , bm} of B′′ satisfying (*), and then we add the triv-

ial rule Zi−1
ai
↪→ Zi for each 1 ≤ i ≤ n, and the trivial rule Zn+j−1

bj
↪→ Zn+j
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for each 1 ≤ j ≤ m, where Z0 = X and Z1, . . . , Zn+m are fresh process
constants (with exception of Zn+m which is Y in the case of Condition 1).

The added trivial rules generate derivation X
a1...anb1...bm
−→∗ Zn+m satisfying

γ(w′, B′′). Note that Conditions 1 and 2 are always satisfied if n = m = 0
as γ(ε, ∅) = {ε}.

Let ∆′′ be the PRS ∆ extended with the new rules. The condition (*) en-
sures that, for each X ∈ Const(∆) and each (w′, B′, C ′) v (w,B,C), ∆′′ is
equivalent to ∆ with respect to the existence of an infinite derivation start-
ing from X and satisfying β(w′, B′, C ′). If ∆′′ is not in flat (w,B,C)-form,
then the algorithm repeats the procedure described above on the system ∆′′

with the difference that X and Y range over the constants of the original
system ∆. The algorithm eventually terminates as the number of iterations
is bounded by the number of pairs of process constantsX,Y of ∆, times the
number of triples (w′, B′, C ′) satisfying (w′, B′, C ′) v (w,B,C), and times
the number of subsets B′′ ⊆ B.

We claim that the resulting PRS ∆′ is in flat (w,B,C)-form. By the con-
struction, ∆′ satisfies all conditions of Definition 10.14 for the process con-
stants of the original system ∆. For the added constants, it is sufficient to
observe that any derivation in ∆′, starting from such a constant, is either
trivial or it has a trivial prefix leading to a constant of ∆. Hence, ∆′ is the
desired PRS system.

Definition 10.18 (Subderivation). Let ∆ be a PRS in normal form and σ1 be
a (finite or infinite) derivation s1

a1−→ s2
a2−→ . . ., where s1

a1−→ s2 has the form
X

a1−→ Y.Z and, for each i ≥ 2, if si is not the last state of the derivation, then
it has the form si = ti.Z with ti 6= ε. Then σ1 is called a subderivation of
a derivation σ if σ has a suffix σ′ satisfying the following:

1. every transition step in σ′ is of the form si‖t′
ai−→ si+1‖t′ or si‖t′

b−→ si‖t′′,
where t′ b−→ t′′,

2. in σ′, if we replace every step of the form si‖t′
ai−→ si+1‖t′ by step si

ai−→
si+1 and we skip every step of the form si‖t′

b−→ si‖t′′, we get precisely σ1.

Further, if σ1 and σ are finite, the last term of σ1 is a process constant, and σ is
a prefix of a derivation σ′, then σ1 is also a subderivation of σ′.

Remark 10.19. Let ∆ be a PRS in normal form and σ be a derivation of ∆ having
a suffix σ′ of the form σ′ = X‖t a−→ (Y.Z)‖t u−→ω . Then, there is a subderivation
of σ whose first transition step X a−→ Y.Z corresponds to the first transition step
of σ′.

Intuitively, a subderivation captures the behaviour of the subterm Y.Z
since its emergence until its eventual reduction to a term without any se-
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quential composition. Due to the normal form of ∆, the subterm Y.Z be-
haves independently on the rest of the term (as long as it contains a sequen-
tial composition).

Lemma 10.20. Let ∆ be a PRS in flat (w,B,C)-form. Then, the following con-
dition holds for each X ∈ Const(∆) and each (w′, B′, C ′) v (w,B,C):
If there is an infinite derivation X

u−→ω satisfying β(w′, B′, C ′), then there is
also an infinite derivation X v−→ω

tri satisfying β(w′, B′, C ′).

Proof. In the following two paragraphs, we provide a sketch of the proof.
The full proof follows.

Given an infinite derivation σ satisfying a formula β(σ) = β(w′, B′, C ′)
where (w′, B′, C ′) v (w,B,C), by trivial equivalent of σ we mean an infinite
trivial derivation starting in the same term as σ and satisfying β(σ). Sim-
ilarly, given a finite derivation σ satisfying some γ(σ) = γ(w′, B′) where
(w′, B′) v (w,B), by trivial equivalent of σ we mean a finite trivial deriva-
tion σ′ such that σ′ starts in the same term as σ, it satisfies γ(σ), and if
the last term of σ is a process constant, then the last term of σ′ is the same
process constant.

The lemma is proven by contradiction. We assume that there exist some
infinite derivations violating the condition of the lemma. Let σ be one of
these derivations such that the number of transition steps of σ generated
by sequential non-trivial rules with actions a 6∈ B is minimal (note that this
number is always finite as we consider derivations satisfying β(w′, B′, C ′)
for some (w′, B′, C ′) v (w,B,C)). First, we prove that every subderivation
of σ has a trivial equivalent. Then we replace all subderivations of σ by
the corresponding trivial equivalents. This step is technically nontrivial
because σ may have infinitely many subderivations. By the replacement
we obtain an infinite derivation σ′ satisfying β(σ) and starting in the same
process constant as σ. Moreover, σ′ has no subderivations and hence it does
not contain any sequential operator. Flat (w,B,C)-form of ∆ (Condition 4)
implies that σ′ has a trivial equivalent. This is also a trivial equivalent of σ
which means that σ does not violate the condition of our lemma.

In this proof, by β-formula we always mean a formula of the form
β(w′, B′, C ′) where (w′, B′, C ′) v (w,B,C). We also consider only infinite
derivations satisfying some of these β-formulae. Remark 10.13 implies that
such an infinite derivation σ satisfies exactly one β-formula. We denote this
β-formula by β(σ). Further, by SEQ(σ) we denote the number of transition
steps ti

a−→ ti+1 of σ generated by a sequential non-trivial rule and such
that a 6∈ B. Note that SEQ(σ) is always finite due to the restrictions on
considered infinite derivations. Given an infinite derivation σ, by its trivial
equivalent we mean an infinite trivial derivation starting in the same term
as σ and satisfying β(σ).
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Similarly, we consider only finite derivations satisfying some γ(w′, B′)
where (w′, B′) v (w,B). Remark 10.13 implies that such a finite derivation
σ satisfies exactly one γ-language, which is denoted by γ(σ). Given a finite
derivation σ, by its trivial equivalent we mean a finite trivial derivation σ′

such that σ′ starts in the same term as σ, it satisfies γ(σ), and if the last
term of σ is a process constant, then the last term of σ′ is the same process
constant.

Using the introduced terminology, the lemma says that every infinite
derivation starting in a process constant has a trivial equivalent. For the
sake of contradiction, we assume that the lemma does not hold. Let Σ be
the set of infinite derivations violating the lemma and let k = min{SEQ(σ) |
σ ∈ Σ}.

First of all, we prove two claims.

Claim 1. Let σ be an infinite derivation satisfying SEQ(σ) ≤ k. Then every
subderivation of σ has a trivial equivalent.

Proof of the claim: For finite subderivations, the existence of trivial equiva-
lents follows directly from the flat (w,B,C)-form of ∆ (Conditions 1 and 2).
Let σ1 be an infinite subderivation of σ. It has the form

σ1 = X
a−→seq Y.Z

b1−→ t1.Z
b2−→ t2.Z

b3−→ . . .

where t1, t2, . . . are nonempty terms. There are two cases:

• If a ∈ B, then β(σ1) has the form β(ε,B′, C ′). Hence, σ1 has a trivial
equivalent due to the flat (w,B,C)-form of ∆ (Condition 3).

• If a 6∈ B, then the first step X a−→seq Y.Z of σ1 is counted in SEQ(σ1)
and the corresponding step X‖t′ a−→seq Y.Z‖t′ of σ is counted in
SEQ(σ). Hence, 0 < SEQ(σ). Let σ2 be the derivation

σ2 = Y
b1−→ t1

b2−→ t2
b3−→ . . .

As SEQ(σ2) < SEQ(σ1) ≤ k, the definition of k implies that σ2 has
a trivial equivalent

σ′2 = Y
c1−→tri Y1

c2−→tri Y2
c3−→tri .

Further, as σ′2 satisfies β(σ2), the derivation

σ′1 = X
a−→seq Y.Z

c1−→tri Y1.Z
c2−→tri Y2.Z

c3−→tri . . .

satisfies β(σ1). Moreover, the flat (w,B,C)-form of ∆ (Condition 5)
implies that σ′1 has a trivial equivalent. Obviously, it is also a trivial
equivalent of σ1.
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Claim 2. Let σ be an infinite derivation such that SEQ(σ) ≤ k, it starts
in a parallel term p, and it satisfies a formula β(w′, B′, C ′). Then there
is an infinite derivation p

u−→ ∗par p′
v−→ω such that p′ is a parallel term,

u ∈ γ(w′, B′), and v satisfies β(ε, C ′, C ′).

Proof of the claim: Remark 10.12 implies that σ can be written as p u1−→∗ t u2−→
ω where p u1−→∗ t is the minimal prefix of σ satisfying γ(w′, B′) and such that
t

u2−→ω satisfies β(ε, C ′, C ′). Let S̃EQ(σ) denote the number of transition
steps in the prefix p u1−→∗ t generated by sequential non-trivial rules (note
that S̃EQ(σ) ≥ SEQ(σ)). We prove the claim by induction on S̃EQ(σ).
The base case S̃EQ(σ) = 0 is obvious. Now, assume that S̃EQ(σ) > 0.
Since p is parallel term and ∆ is in normal form, the first transition step of
p

u1−→∗ t counted in S̃EQ(σ) has the form Y ‖p′ a−→ (W.Z)‖p′ and it corre-
sponds to the first transition step Y

a−→ W.Z of a subderivation σ1. In σ,
we replace the subderivation σ1 with its trivial equivalent (whose existence
is guaranteed by Claim 1) and we obtain a new derivation σ′′ starting from
p, satisfying β(σ) and such that S̃EQ(σ′′) < S̃EQ(σ). Hence, the second
claim directly follows from the induction hypothesis. In the following, we
describe the replacement of such a subderivation.

Let σ1 = Y
u−→ ω and σ′1 = Y

v−→ ω
tri be its trivial equivalent. Let

β(σ1) = β(c1O1c2O2 . . . cnOn, B
′′, C ′′). Then u, v ∈ c+

1 c
+
2 . . . c

+
n .B

ω. Recall
that c1, c2, . . . , cn are pairwise distinct and B ⊆ Act r {c1, . . . , cn}. Intu-
itively, for every 1 ≤ i ≤ n, we replace the first transition step of σ1 labelled
with ci by the sequence of transition steps of σ′1 labelled with ci, and then
we cancel the other transition steps of σ1 labelled with ci.5 Further, the
first transition step of σ1 labelled with an action of B is replaced with the
minimal prefix of the remaining part of σ′1 satisfying γ(ε,B′′). Finally, the
remaining transition steps of σ1 are orderly replaced with the remaining
transition steps of σ′1. The case when σ1 and its trivial equivalent σ′1 are
finite is similar.

It is easy to see that the described replacement operation preserves
the fulfilment of β(σ) and the obtained derivation σ′′ satisfies S̃EQ(σ′′) <
S̃EQ(σ).

With this claim, we can easily reach a contradiction. Let σ = X
u−→ω be

an infinite derivation such that SEQ(σ) = k and it has no trivial equivalent.

5By replacement of a transition step s1
a−→ s2 of σ1 by a sequence Y1

v′−→∗tri Y2 of tran-
sition steps of σ′1 we mean that the corresponding transition step s1‖t′

a−→ s2‖t′ of σ is

replaced by Y1‖t′
v′−→∗tri Y2‖t′, and all immediately succeeding steps s2‖t′′

b−→ s2‖t′′′ of σ

are replaced by Y2‖t′′
b−→ Y2‖t′′′. Further, by cancellation of a transition step s1

ci−→ s2 of
σ1 we mean that the corresponding transition step s1‖t′

ci−→ s2‖t′ of σ is replaced by Y2‖t′,
where Y2 is the last process constant of σ′1 such that a transition under ci leads to Y2, and

all immediately succeeding steps s2‖t′′
b−→ s2‖t′′′ of σ are replaced by Y2‖t′′

b−→ Y2‖t′′′.
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Further, let β(σ) = (w′, B′, C ′). Note that C ′ is nonempty. Claim 2 says that
there is a derivation X

u1−→∗par p1
v1−→ω where p1 is a parallel term, u1 ∈

γ(w′, B′), and v1 satisfies β(ε, C ′, C ′). Applying the second claim on the
suffix p1

v1−→ω , we get a derivation p1
u2−→∗par p2

v2−→ω where p2 is a parallel
term, u2 ∈ γ(ε, C ′), and v2 satisfies β(ε, C ′, C ′). Iterating this argument, we
get a sequence (pi

ui+1−→∗par pi+1)i∈N of derivations satisfying γ(ε, C ′). These
derivations are nonempty asC ′ is nonempty. Let us consider the derivation

σ′ = X
u1−→∗par p1

u2−→∗par p2
u3−→∗par p3

u4−→∗par . . .

Flat (w,B,C)-form of ∆ (Condition 4) implies that σ′ has a trivial equiva-
lent. However, this is also a trivial equivalent of σ as both σ, σ′ start with X
and σ′ satisfies β(σ). This is a contradiction.

Theorem 10.21. The problem whether a given PRS ∆ in normal form has an
infinite run satisfying a given formula β(w,B,C) is decidable.

Proof. Due to Lemma 10.17 and Lemma 10.20, the problem can be reduced
to the problem whether there is an infinite derivation X

v−→ω
tri satisfying

β(w,B,C). This problem corresponds to LTL model checking of finite-state
systems, which is decidable.

The following three theorems show that Theorem 10.21 holds even for
wPRS and α-formulae.

Theorem 10.22. The problem whether a given PRS ∆ in normal form has an
infinite run satisfying a given α-formula is decidable.

Proof. Let ∆ be a PRS in normal form and α(θ1O1 . . . θnOnξ,B) be an α-

formula. For every θi and every rule t1
b
↪→ t2 such that b satisfies θi, we add

a rule t1
ai
↪→ t2, where ai is a fresh action corresponding to θi. Similarly, for

every ψ ∈ B ∪ {ξ} and every rule t1
b
↪→ t2 such that b satisfies ψ ∧ ξ, we

add a rule t1
aψ
↪→ t2, where aψ is a fresh action. Let ∆′ be the resulting PRS

system. Note that ∆′ is also in normal form. Obviously, ∆ has an infinite
run satisfying the original α-formula if and only if ∆′ has an infinite run
satisfying α(a1O1 . . . anOn(aξ ∨

∨
b∈C b), C), where C = {aψ | ψ ∈ B}. It is

an easy exercise to show that this new α-formula can be effectively trans-
formed into a disjunction of β-formulae which is equivalent with respect to
infinite words. Hence, the problem is decidable due to Theorem 10.21.

Theorem 10.23. The problem whether a given PRS ∆ has an infinite run satisfy-
ing a given α-formula is decidable.
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Proof. Let ∆ be a PRS, α(δ,B) be an α-formula, and e 6∈ Act(∆) be a fresh ac-
tion. First we describe our modification of the standard algorithm [May00]
that transforms ∆ into a PRS in normal form.

If ∆ is not in normal form, then there exists a rule r which is neither
parallel nor sequential; r has one of the following forms:

1. r = t
a
↪→ t1‖t2 (resp., r = t1‖t2

a
↪→ t) where t or t1 or t2 is not a parallel

term. LetZ1, Z2, Z 6∈ Const(∆) be fresh process constants. We replace
r with the rules t

e
↪→ Z, Z

a
↪→ Z1‖Z2, Z1

e
↪→ t1, and Z2

e
↪→ t2 (resp.,

t1
e
↪→ Z1, t2

e
↪→ Z2, Z1‖Z2

a
↪→ Z, and Z

e
↪→ t).

2. r = t
a
↪→ t1.(t2‖t3) (resp., r = t1.(t2‖t3)

a
↪→ t). Let Z 6∈ Const(∆) be

a fresh process constant. We modify ∆ in two steps. First, we replace
t2‖t3 by Z in left-hand and right-hand sides of all rules of ∆. Then,
we add the rules Z

e
↪→ t2‖t3 and t2‖t3

e
↪→ Z.

3. r = t1
a
↪→ t2.X (resp., r = t2.X

a
↪→ t1) where t1 or t2 is not a pro-

cess constant. Let Z1, Z2 6∈ Const(∆) be fresh process constants. We
replace r with the rules t1

e
↪→ Z1, Z1

a
↪→ Z2.X , and Z2

e
↪→ t2 (resp.,

t2
e
↪→ Z2, Z2.X

a
↪→ Z1, and Z1

e
↪→ t1).

After a finite number of applications of this procedure (with the same ac-
tion e), we obtain a PRS ∆′ in normal form.

We define a formula α(δ′,B′), where B′ = B∪{
∨
a∈Act(∆) a} and δ′ arises

from δ = θ1O1 . . . θnOnξ by the following substitution for every 1 ≤ i ≤ n.

• If Oi is U, then replace the pair θi U by the pair (e ∨ θi) U .

• If Oi is U+, then replace the pair θi U+ by the sequence (e∨θi) U θi U+ .

• If Oi is ∧X, then replace the pair θi ∧ X by the sequence eU θi ∧ X.

• θnOn = θn ∧ Gs is replaced by the sequence eU θn ∧ Gs.

• ξ is replaced by (ξ ∨ e).

Let us note that the construction of B′ ensures that any word with a suf-
fix eω does not satisfy α(δ′,B′). Observe that u′ |= α(δ′,B′) if and only if
u |= α(δ,B), where u is obtained from u′ by eliminating all occurrences of
action e.

Clearly, ∆ has an infinite run satisfying α(δ,B) if and only if ∆′ has an
infinite run satisfying α(δ′,B′). As ∆′ is in normal form, we can now apply
Theorem 10.22.

Theorem 10.24. The problem whether a given wPRS system has an infinite run
satisfying a given α-formula is decidable.
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Proof. Let ∆ be a wPRS with initial state p0X0 and α(δ,B) be an α-formula.
We construct a PRS ∆′ with initial state X0 which can simulate ∆. We also
define set of formulae recognising correct simulations.

The system ∆′ is very similar to ∆. We only change actions of rules to
hold information about control states in the rules and then we remove all
control states. More precisely, for every rule of the form pt1

a
↪→ pt2 of ∆ we

add to ∆′ the rule t1
a[p]

↪→ t2, and for every rule of the form pt1
a
↪→ qt2 of ∆

we add to ∆′ the rule t1
a[p<q]

↪→ t2.
Further, we modify the formula α(δ,B) such that every occurrence of

each action a is replaced by
∨
q∈M(∆)(a[q] ∨

∨
p<q a[p<q]). Let α(δ′,B′) be the

resulting formula.
Moreover, for every sequence p1 < p2 < . . . < pk of control states of

M(∆) such that p1 = p0, we define an α-formula

ϕ[p1<p2<...<pk] = α(θ[p1] U θ[p1<p2]∧X θ[p2] U θ[p2<p3]∧X . . . θ[pk−1<pk]∧Gsθ[pk], ∅)

where θ[pi] =
∨
a∈Act(∆) a[pi] and θ[pi<pj ] =

∨
a∈Act(∆) a[pi<pj ].

It is easy to see that there is an infinite run of ∆ satisfying α(δ,B) if and
only if there is an infinite run of ∆′ satisfying α(δ′,B′) and ϕ[p1<p2<...<pk]

for some sequence p1 < p2 < . . . < pk. As the number of such se-
quences is finite and each ϕ[p1<p2<...<pk] is an α-formula, Theorem 10.23
and Lemma 10.9 imply that the considered problem is decidable.

As LTL(Fs,Gs) is closed under negation, Theorem 10.10, Theorem 10.11,
and Theorem 10.24 give us the following.

Corollary 10.25. The model checking problem for wPRS and LTL(Fs,Gs) is de-
cidable.

This problem is EXPSPACE-hard due to EXPSPACE-hardness of the
model checking problem for LTL(F,G) for PN [Hab97]. Our decidability
proof does not provide any primitive recursive upper bound as it employs
LTL model checking for PN, for which no primitive recursive upper bound
is known.

10.5 Model Checking LTL(Fs, Ps)

In this section we prove decidability of the model checking problem for
wPRS and LTL(Fs,Ps). We introduce a new LTL fragmentPA and prove that
every formula of the basic fragment LTL(Fs,Ps) can be effectively translated
into PA. In other words, we show that for each LTL(Fs,Ps) formula one can
find a globally equivalent formula of PA.

Recall that LTL() denotes the fragment of formulae without any modal-
ity, i.e. boolean combinations of actions. In the following we keep using
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ϕ1 U+ ϕ2 to abbreviate ϕ1 ∧ X(ϕ1 Uϕ2) and, moreover, we use ϕ1 S+ ϕ2 to
abbreviate ϕ1 ∧ Y(ϕ1 Sϕ2). Now, we can define a past variant of the A
fragment called PA.

Definition 10.26. Let η = ι1P1ι2P2 . . . ιmPmιm+1, where

• m > 0,

• ιj ∈ LTL() for each j ≤ m+ 1,

• Pj is either ‘S’ or ‘S+’ or ‘∧Y’ for each j < m, and

• Pm is ‘∧Hs’.

Similarly, let δ = θ1O1θ2O2 . . . θnOnθn+1, where

• n > 0,

• θi ∈ LTL() for each i ≤ n+ 1,

• Oi is either ‘U’ or ‘U+’ or ‘∧X’ for each i < n, and

• On is ‘∧Gs’.

Further, let B ⊆ LTL() be a finite set. A Pα-formula is defined as

Pα(η, δ,B) =
(
ι1P1(ι2P2 . . . (ιmPmιm+1) . . .)

)
∧

∧
(
θ1O1(θ2O2 . . . (θnOnθn+1) . . .)

)
∧
∧
ψ∈B GsFsψ

The PA fragment consists of finite disjunctions of Pα-formulae.

Intuitively, Pα-formula Pα(η, δ,B) is an α(δ,B) extended with a new
conjunct that describes a past part. Hence, η is a past counterpart of δ.
There is no past counter part to ∧ψ∈BGsFsψ as every history is finite — it
begin in the initial state.

Therefore, a pointed word (u, k) satisfies Pα(η, δ,B) if and only if (u, k)
satisfies α(δ,B) and u(0) . . . u(k − 1)u(k) can be written as

vm+1.vm−1. · · · .v2.v1

where each vi, for i = 1, . . . ,m+ 1, consists only of actions satisfying ιi and

• |vi| ≥ 0 if i = m+ 1 or Pi is ‘S’,

• |vi| > 0 if Pi is ‘S+’,

• |vi| = 1 if Pi is ‘∧Y’ or ‘∧Hs’.

In the following lemmata we provide a list of operation under which
the PA fragment is closed. Proofs of the lemmata are easy but sometimes
very technical exercises, hence we sketch their basic ideas only.
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Lemma 10.27. A conjunction of Pα-formulae can be effectively converted into
a globally equivalent disjunction of Pα-formulae.

The proof is constructed in a similar way as the proof of Lemma 10.9.

Lemma 10.28. Let ϕ be a Pα-formula. A formula Xϕ can be effectively converted
into a globally equivalent disjunction of Pα-formulae.

Proof (sketch). We go through all possibilities reflecting how to bite one
“step” out of η and append it to the beginning of δ using ∧X.

Lemma 10.29. Let ϕ be a Pα-formula. A formula Yϕ can be effectively converted
into a globally equivalent disjunction of Pα-formulae.

The proof is constructed in a similar way as the proof of Lemma 10.28.

Lemma 10.30. Let ϕ be a Pα-formula and p ∈ LTL(). A formula pUϕ can be
effectively converted into a globally equivalent disjunction of Pα-formulae.

Proof (sketch). Contrary to the proof of Lemma 10.28, an arbitrary number
of “steps” can be “bitten” out of η here. Hence, the bitten parts are not
connected only by ∧X but reflect the operators in the bitten part. Moreover,
all bitten ι formulae of η are extended with ∧p before appending them to
δ.

Lemma 10.31. Let ϕ be a Pα-formula and p ∈ LTL(). A formula p Sϕ can be
effectively converted into a globally equivalent disjunction of Pα-formulae.

The proof is constructed in a similar way as the proof of Lemma 10.30.

Lemma 10.32. Let ϕ be a Pα-formula. A formula Fsϕ can be effectively converted
into a globally equivalent disjunction of Pα-formulae.

Proof. As Fsϕ ≡g X(trueUϕ), the proof directly follows from Lemma 10.30
and Lemma 10.28.

Lemma 10.33. Let ϕ be a Pα-formula. A formula Ps(ϕ) can be effectively con-
verted into a globally equivalent disjunction of Pα-formulae.

Proof. As Psϕ ≡g Y(trueSϕ), the proof directly follows from Lemma 10.31
and Lemma 10.29.

Theorem 10.34. Every LTL(Fs,Ps) formula can be translated into a globally
equivalent disjunction of Pα-formulae.

Proof. As Fs,Gs and Ps,Hs are dual modalities, we can assume that every
LTL(Fs,Ps) formula contains negations only in front of actions. Given an
LTL(Fs,Ps) formula ϕ, we construct a finite set Aϕ of Pα-formulae such that
ϕ is globally equivalent to disjunction of formulae in Aϕ. Again, our proof
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looks like a proof by induction on the structure of ϕ, however it is done
by induction on the length of ϕ. Thus, if ϕ 6∈ LTL(), then we assume that
for every LTL(Fs,Ps) formula ϕ′ shorter than ϕ we can construct the cor-
responding set Aϕ′ . In this proof, let p represent a formula of LTL(). The
structure of ϕ fits into one of the following cases.

•p Case p: In this case, ϕ is equivalent to p ∧ Gstt. Hence Aϕ = {Pα(tt ∧
Hstt, p ∧ Gstt, ∅)}.

•∨ Case ϕ1 ∨ ϕ2: Due to induction hypothesis, we can assume that we
have sets Aϕ1 and Aϕ2 . Clearly, Aϕ = Aϕ1 ∪Aϕ2 .

•∧ Case ϕ1∧ϕ2: Due to Lemma 10.27, the setAϕ can be constructed from
the sets Aϕ1 and Aϕ2 .

•Fs Case Fsϕ1: Due to Lemma 10.32, the set Aϕ can be constructed from
the sets Aϕ1 .

•Ps Case Psϕ1: Due to Lemma 10.33, the set Aϕ can be constructed from
the sets Aϕ1 .

•Gs Case Gsϕ1: This case is divided into the following subcases according
to the structure of ϕ1.

◦p Case Gsp: As Gsp is equivalent to tt ∧ Gsp, we set Aϕ = {Pα(tt ∧
Hstt, tt ∧ Gsp, ∅)}.

◦∧ Case Gs(ϕ2∧ϕ3): As Gs(ϕ2∧ϕ3) ≡ (Gsϕ2)∧(Gsϕ3), the setAϕ can
be constructed from AGsϕ2 and AGsϕ3 using Lemma 10.27. Note
that AGsϕ2 and AGsϕ3 can be constructed because Gsϕ2 and Gsϕ3

are shorter than Gs(ϕ2 ∧ ϕ3).
◦Fs Case GsFsϕ2: This case is again divided into the following sub-

cases.
−p Case GsFsp: As p ∈ LTL(), we directly set Aϕ = {Pα(tt ∧

Hstt, tt ∧ Gstt, {p})}.
−∨ Case GsFs(ϕ3 ∨ ϕ4): As GsFs(ϕ3 ∨ ϕ4) ≡ (GsFsϕ3) ∨ (GsFsϕ4),

we set Aϕ = AGsFsϕ3 ∪AGsFsϕ4 .
−∧ Case GsFs(ϕ3 ∧ ϕ4): This case is also divided into subcases

depending on the formulae ϕ3 and ϕ4.
∗p Case GsFs(p3 ∧ p4): As p3 ∧ p4 ∈ LTL(), this subcase has

already been covered by Case GsFsp.
∗∨ Case GsFs(ϕ3 ∧ (ϕ5 ∨ ϕ6)): As GsFs(ϕ3 ∧ (ϕ5 ∨ ϕ6)) ≡

GsFs(ϕ3 ∧ϕ5)∨GsFs(ϕ3 ∧ϕ6), we set Aϕ = AGsFs(ϕ3∧ϕ5) ∪
AGsFs(ϕ3∧ϕ6).

∗Fs Case GsFs(ϕ3 ∧ Fsϕ5): As GsFs(ϕ3 ∧ Fsϕ5) ≡ (GsFsϕ3) ∧
(GsFsϕ5), the set Aϕ can be constructed from AGsFsϕ3 and
AGsFsϕ5 using Lemma 10.27.
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∗Ps Case GsFs(ϕ3 ∧ Psϕ5): As GsFs(ϕ3 ∧ Psϕ5) ≡ (GsFsϕ3) ∧
(GsFsPsϕ5), the set Aϕ can be constructed from AGsFsϕ3

and AGsFsPsϕ5 using Lemma 10.27.
∗Gs Case GsFs(ϕ3 ∧ Gsϕ5): As GsFs(ϕ3 ∧ Gsϕ5) ≡ (GsFsϕ3) ∧

(GsFsGsϕ5), the set Aϕ can be constructed from AGsFsϕ3

and AGsFsGsϕ5 using Lemma 10.27.
∗Hs Case GsFs(ϕ3 ∧ Hsϕ5): As GsFs(ϕ3 ∧ Hsϕ5) ≡ (GsFsϕ3) ∧

(GsFsHsϕ5), the set Aϕ can be constructed from AGsFsϕ3

and AGsFsHsϕ5 using Lemma 10.27.
−Fs Case GsFsFsϕ3: As GsFsFsϕ3 ≡ GsFsϕ3, we set Aϕ = AGsFsϕ3 .
−Ps Case GsFsPsϕ3: A pointed word (u, i) satisfies GsFsPsϕ3 iff i =

|u| − 1 or u is an infinite word satisfying Fϕ3. Note that
Gs¬tt is satisfied only by finite words at their last position.
Further, a word u satisfies (Fstt) ∧ (GsFstt) iff u is infinite.
Thus, GsFsPsϕ3 ≡ (Gs¬tt) ∨ ϕ′ where ϕ′ = (Fstt) ∧ (GsFstt) ∧
(ϕ3 ∨ Psϕ3 ∨ Fsϕ3). Hence, Aϕ = AGs¬tt ∪ Aϕ′ where Aϕ′ is
constructed from AFstt, AGsFstt, and Aϕ3 ∪APsϕ3 ∪AFsϕ3 using
Lemma 10.27.

−Gs Case GsFsGsϕ3: A pointed word (u, i) satisfies GsFsGsϕ3 iff
i = |u| − 1 or u is an infinite word satisfying FsGsϕ3. Thus,
GsFsGsϕ3 ≡ (Gs¬tt)∨ϕ′ where ϕ′ = (Fstt)∧(GsFstt)∧(FsGsϕ3).
Hence,Aϕ = AGs¬tt∪Aϕ′ whereAϕ′ is constructed fromAFstt,
AGsFstt, and AFsGsϕ3 using Lemma 10.27.

−Hs Case GsFsHsϕ3: A pointed word (u, i) satisfies GsFsHsϕ3 iff
i = |u| − 1 or u is an infinite word satisfying Gϕ3. Thus,
GsFsHsϕ3 ≡ (Gs¬tt) ∨ ϕ′ where ϕ′ = (Fstt) ∧ (GsFstt) ∧ (ϕ3 ∧
Hsϕ3 ∧ Gsϕ3). Hence, Aϕ = AGs¬tt ∪ Aϕ′ where Aϕ′ is
constructed from AFstt, AGsFstt, Aϕ3 , AHsϕ3 , and AGsϕ3 using
Lemma 10.27.

◦Ps Case GsPsϕ2: A pointed word (u, i) satisfies GsPsϕ2 iff i = |u| − 1
or (u, i) satisfies Pϕ2. Hence, Aϕ = AGs¬tt ∪Aϕ2 ∪APsϕ2 .

◦∨ Case Gs(ϕ2 ∨ ϕ3): According to the structure of ϕ2 and ϕ3, there
are the following subcases.

?p Case Gs(p2∨p3): As p2∨p3 ∈ LTL(), this subcase has already
been covered by Case Gsp.

?∧ Case Gs(ϕ2∨(ϕ4∧ϕ5)): As Gs(ϕ2∨(ϕ4∧ϕ5)) ≡ Gs(ϕ2∨ϕ4)∧
Gs(ϕ2 ∨ ϕ5), the set Aϕ can be constructed from AGs(ϕ2∨ϕ4)

and AGs(ϕ2∨ϕ5) using Lemma 10.27.
?Fs Case Gs(ϕ2 ∨ Fsϕ4): It holds that Gs(ϕ2 ∨ Fsϕ4) ≡

(Gsϕ2) ∨ Fs(Fsϕ4 ∧ Gsϕ2) ∨ GsFsϕ4. Therefore, the set
Aϕ can be constructed as AGsϕ2 ∪ AFs(Fsϕ4∧Gsϕ2) ∪ AGsFsϕ4 ,
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where AFs(Fsϕ4∧Gsϕ2) is created from AFsϕ4 and AGsϕ2 due to
Lemma 10.27 and Lemma 10.32.

?Hs Case Gs(ϕ2 ∨ Hsϕ4): As Gs(ϕ2 ∨ Hsϕ4) ≡ (Gsϕ2) ∨ Fs(Hsϕ4 ∧
Gsϕ2) ∨ GsHsϕ4. Hence, Aϕ = AGsϕ2 ∪ AFs(Hsϕ4∧Gsϕ2) ∪
A(GsHsϕ4) whereAFs(Hsϕ4∧Gsϕ2) can be created fromAHsϕ4 and
AGsϕ2 using Lemma 10.27 and Lemma 10.32.

?Gs,Ps Case Gs(ϕ2 ∨Gsϕ4 ∨Psϕ5): There are only the following five
subcases (the others fit to some of the previous cases).
(i) Case Gs(

∨
ϕ′∈G Gsϕ

′): It holds that Gs(
∨
ϕ′∈G Gsϕ

′) ≡
(Gs¬tt) ∨

∨
ϕ′∈G(XGsϕ

′). Therefore, the set Aϕ can be
constructed as AGs¬tt ∪

⋃
ϕ′∈GAXGsϕ′ where each AXGsϕ′

is created from AGsϕ′ using Lemma 10.28.
(ii) Case Gs(p2 ∨

∨
ϕ′∈G Gsϕ

′): As Gs(p2 ∨
∨
ϕ′∈G Gsϕ

′) ≡
(Gsp2)∨

∨
ϕ′∈G(X(p2 U (Gsϕ

′))). Therefore, the setAϕ can
be constructed asAGsp2∪

⋃
ϕ′∈GAX(p2 U (Gsϕ′)) where each

AX(p2 U (Gsϕ′)) is created from AGsϕ′ using Lemma 10.30
and Lemma 10.28.

(iii) Case Gs(
∨
ϕ′′∈P Psϕ

′′): It holds that Gs(
∨
ϕ′′∈P Psϕ

′′) ≡
(Gs¬tt) ∨

∨
ϕ′′∈P (XPsϕ

′′). Therefore, the set Aϕ can be
constructed as AGs¬tt ∪

⋃
ϕ′′∈P AXPsϕ′′ where each AXPsϕ′′

is created from APsϕ′′ using Lemma 10.28.
(iv) Case Gs(p2 ∨

∨
ϕ′′∈P Psϕ

′′): As Gs(p2 ∨
∨
ϕ′′∈P Psϕ

′′) ≡
(Gsp2) ∨

∨
ϕ′′∈P (X(p2 U (Psϕ

′′))). Therefore, the set
Aϕ can be constructed as AGsp2 ∪

⋃
ϕ′′∈P AX(p2 U (Psϕ′′))

where each AX(p2 U (Psϕ′′)) is created from APsϕ′′ using
Lemma 10.30 and Lemma 10.28.

(v) Case Gs(p2 ∨
∨
ϕ′∈G Gsϕ

′ ∨
∨
ϕ′′∈P Psϕ

′′): As
Gs(p2 ∨

∨
ϕ′∈G Gsϕ

′ ∨
∨
ϕ′′∈P Gsϕ

′′) ≡ (Gsp2) ∨∨
ϕ′∈G(X(p2 U (Gsϕ

′))) ∨
∨
ϕ′′∈P (X(p2 U (Psϕ

′′))).
Therefore, the set Aϕ can be constructed as
AGsp2 ∪

⋃
ϕ′∈GAX(p2 U (Gsϕ′)) ∪

⋃
ϕ′′∈P AX(p2 U (Psϕ′′))

where each AX(p2 U (Gsϕ′)) is created from AGsϕ′ and each
AX(p2 U (Psϕ′′)) is created from APsϕ′′ using Lemma 10.30
and Lemma 10.28.

◦Gs Case GsGsϕ2: As Gs(Gsϕ2) ≡ (Gs¬tt) ∨ (XGsϕ2), the set Aϕ can
be constructed as AGs¬tt ∪ AXGsϕ2 where AXGsϕ2 is created from
AGsϕ2 using Lemma 10.28.

◦Hs Case GsHsϕ2: A pointed word (u, i) satisfies Gs(Hsϕ2) iff i =
|u| − 1 or (u, |u| − 1) satisfies Hsϕ2 or u is infinite and all its
positions satisfy ϕ2. Hence, Aϕ = AGs¬tt ∪ AFs((Gs¬tt)∧(Hsϕ2)) ∪
A(Hsϕ2)∧ϕ2∧(Gsϕ2) where AFs((Gs¬tt)∧(Hsϕ2)) and A(Hsϕ2)∧ϕ2∧(Gsϕ2) is
created from AGs¬tt, AHsϕ2 , Aϕ2 , and AGsϕ2 using Lemma 10.27
and Lemma 10.32.
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•Hs Case Hsϕ1: This case is divided into the following subcases according
to the structure of ϕ1.

◦p Case Hsp: As Hsp is equivalent to tt ∧ Hsp, we set Aϕ = {Pα(tt ∧
Hsp, tt ∧ Gstt, ∅)}.

◦∧ Case Hs(ϕ2 ∧ ϕ3): As Hs(ϕ2 ∧ ϕ3) ≡ (Hsϕ2) ∧ (Hsϕ3), the set Aϕ
can be constructed from AHsϕ2 and AHsϕ3 using Lemma 10.27.

◦Fs Case HsFsϕ2: A pointed word (u, i) satisfies HsFsϕ2 iff i = 0 or
(u, i) satisfies Fϕ2. Note that Hs¬tt is satisfied by (u, i) only if
i = 0. Therefore, Aϕ = AHs¬tt ∪Aϕ2 ∪AFsϕ2 .

◦Ps Case HsPsϕ2: Every run has to start in the initial state, and so, ev-
ery history is finite. Hence, a pointed word (u, i) satisfies HsPsϕ2

iff i = 0. Therefore, Aϕ = AHs¬tt.
◦∨ Case Hs(ϕ2 ∨ ϕ3): According to the structure of ϕ2 and ϕ3, there

are the following subcases.
?p Case Hs(p2∨p3): As p2∨p3 ∈ LTL(), this subcase has already

been covered by Case Hsp.
?∧ Case Hs(ϕ2∨(ϕ4∧ϕ5)): As Hs(ϕ2∨(ϕ4∧ϕ5)) ≡ Hs(ϕ2∨ϕ4)∧

Hs(ϕ2 ∨ ϕ5), the set Aϕ can be constructed from AHs(ϕ2∨ϕ4)

and AHs(ϕ2∨ϕ5) using Lemma 10.27.
?Ps Case Hs(ϕ2 ∨ Psϕ4): It holds that Hs(ϕ2 ∨ Psϕ4) ≡ (Hsϕ2) ∨

Ps(Psϕ4 ∧ Hsϕ2). Therefore, the set Aϕ can be constructed as
AHsϕ2 ∪ APs(Psϕ4∧Hsϕ2), where APs(Psϕ4∧Hsϕ2) is created from
APsϕ4 and AHsϕ2 due to Lemma 10.27 and Lemma 10.33.

?Gs Case Hs(ϕ2 ∨ Gsϕ4): As Hs(ϕ2 ∨ Gsϕ4) ≡ (Hsϕ2) ∨ Ps(Gsϕ4 ∧
Hsϕ2). Hence, Aϕ is constructed as AHsϕ2 ∪ APs(Gsϕ4∧Hsϕ2)

where APs(Gsϕ4∧Hsϕ2) is created from AGsϕ4 and AHsϕ2) using
Lemma 10.27 and Lemma 10.33.

?Fs,Hs Case Hs(ϕ2 ∨ Fsϕ4 ∨Hsϕ5): There are only the following five
subcases (the others fit to some of the previous cases).
(i) Case Hs(

∨
ϕ′∈F Fsϕ

′): It holds that Hs(
∨
ϕ′∈F Fsϕ

′) ≡
(Hs¬tt) ∨

∨
ϕ′∈F (YFsϕ

′). Therefore, the set Aϕ can be
constructed as AHs¬tt ∪

⋃
ϕ′∈F AYFsϕ′ where each AYFsϕ′

is created from AFsϕ′ using Lemma 10.29.
(ii) Case Hs(p2 ∨

∨
ϕ′∈F Fsϕ

′): As Hs(p2 ∨
∨
ϕ′∈F Fsϕ

′) ≡
(Hsp2) ∨

∨
ϕ′∈F (Y(p2 S (Fsϕ′))). Therefore, the set Aϕ can

be constructed as AHsp2 ∪
⋃
ϕ′∈F AY(p2 S (Fsϕ′)) where each

AY(p2 S (Fsϕ′)) is created from AFsϕ′ using Lemma 10.31
and Lemma 10.29.

(iii) Case Hs(
∨
ϕ′′∈H Hsϕ

′′): It holds that Hs(
∨
ϕ′′∈H Hsϕ

′′) ≡
(Hs¬tt) ∨

∨
ϕ′′∈H(YHsϕ

′′). Therefore, the set Aϕ can be
constructed asAHs¬tt∪

⋃
ϕ′′∈H AYHsϕ′′ where eachAYHsϕ′′

is created from AHsϕ′′ using Lemma 10.29.
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(iv) Case Hs(p2 ∨
∨
ϕ′′∈H Hsϕ

′′): As Hs(p2 ∨
∨
ϕ′′∈H Hsϕ

′′) ≡
(Hsp2) ∨

∨
ϕ′′∈H(Y(p2 S (Hsϕ

′′))). Therefore, the set
Aϕ can be constructed as AHsp2 ∪

⋃
ϕ′′∈H AY(p2 S (Hsϕ′′))

where each AY(p2 S (Hsϕ′′)) is created from AHsϕ′′ using
Lemma 10.29 and Lemma 10.31.

(v) Case Hs(p2 ∨
∨
ϕ′∈F Fsϕ

′ ∨
∨
ϕ′′∈H Hsϕ

′′): As
Hs(p2 ∨

∨
ϕ′∈F Fsϕ

′ ∨
∨
ϕ′′∈H Hsϕ

′′) ≡ (Hsp2) ∨∨
ϕ′∈F (Y(p2 S (Fsϕ′))) ∨

∨
ϕ′′∈H(Y(p2 S (Hsϕ

′′))).
Therefore, the set Aϕ can be constructed as
AHsp2 ∪

⋃
ϕ′∈F AY(p2 S (Fsϕ′)) ∪

⋃
ϕ′′∈H AY(p2 S (Hsϕ′′))

where each AY(p2 S (Fsϕ′)) is created from AFsϕ′ and each
AY(p2 S (Hsϕ′′)) is created from AHsϕ′′ using Lemma 10.31
and Lemma 10.29.

◦Gs Case HsGsϕ2: A pointed word (u, i) satisfies Hs(Gsϕ2) iff i = 0
or (u, 0) satisfies Gsϕ2. Hence, Aϕ = AHs¬tt ∪ APs((Hs¬tt)∧(Gsϕ2))

where APs((Hs¬tt)∧(Gsϕ2)) is created from AHs¬tt and AGsϕ2 using
Lemma 10.27 and Lemma 10.33.

◦Hs Case HsHsϕ2: As Hs(Hsϕ2) ≡ (Hs¬tt) ∨ (YHsϕ2), the set Aϕ can
be constructed as AHs¬tt ∪ AYHsϕ2 where AYHsϕ2 is created from
AHsϕ2 using Lemma 10.29.

In other words, we have shown that LTL(Fs,Ps) is a semantic subset
(with respect to global equivalence) of every formalism that is able to ex-
press

• p where p ∈ LTL(),

• Gsp where p ∈ LTL(),

• Hsp where p ∈ LTL(), and

• GsFsp where p ∈ LTL()

and is closed under

• ∨ operation,

• ∧ operation,

• X application,

• pU application where p ∈ LTL(),

• Y application, and

• p S application where p ∈ LTL().
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Now, using Theorem 10.11 and Theorem 10.24 we can easily proof de-
cidability of the model checking problem for wPRS and negated formulae
of the PA fragment. In fact, we prove decidability of the dual problem,
i.e. whether a given wPRS system has a run satisfying a given formula of
PA.

Theorem 10.35. The problem whether a given wPRS system has a run satisfying
a given Pα-formula is decidable.

Proof. A run over a word u satisfies a formula ϕ if and only if (u, 0) |= ϕ.
Moreover, (u, 0) |= Pα(η, δ,B) if and only if (u(0), 0) |= η and (u, 0) |=
α(δ,B). Due to Theorem 10.11 and Theorem 10.24, we can check whether
(u, 0) |= α(δ,B). Therefore, it remains to show how to check (u(0), 0) |=
η. Let η = ι1P1ι2P2 . . . ιmPmιm+1. It follows from Definition 10.4 that
(u(0), 0) |= η if and only if (u(0), 0) |= ιm and Pi = S for all i < m.

As LTL(Fs,Ps) is closed under negation, Theorem 10.34 and Theo-
rem 10.35 give us the following.

Corollary 10.36. The model checking problem for wPRS and LTL(Fs,Ps) is decid-
able.

Moreover, we can show that the pointed model checking problem is de-
cidable for wPRS and LTL(Fs,Ps) as well. Also in this case we solve the dual
problem, i.e. whether a given wPRS system has a pointed run satisfying a
given formula of PA.

Theorem 10.37. Let ∆ be a wPRS and pt be a reachable nonterminal state of ∆.
The problem whether L(pt,∆) includes a pointed word (u, i) satisfying a given
Pα-formula is decidable.

Proof. Let ∆ = (M,≥, R, p0, t0) be a wPRS and pt be a reachable nonter-
minal state of ∆. We construct a wPRS ∆′ = (M,≥, R′, p0, t0.X) where
X 6∈ Const(∆) is a fresh process constant, f 6∈ Act(∆) is a fresh action,

R′ = R ∪ {(p(t.X)
a
↪→ pXa), (pXa

f
↪→ pYa), (pYa

a
↪→ p′t′) | pt a−→∆ p′t′},

and Xa, Ya 6∈ Const(∆) are fresh process constants for each a ∈ Act(∆).
It is easy to see that (u, i) is in L(pt,∆) if and only if

u(0)u(1) . . . u(i− 1)u(i).f.u(i).u(i+ 1) . . .

is in L(∆′). Hence, for a given Pα-formula ϕ = Pα(η, δ,B) we construct
a Pα-formula ϕ′ = Pα(η, tt ∧ Xf ∧ Xδ,B). We get that

L(pt,∆) |= Pα(η, δ,B) ⇐⇒ L(∆′) |= F(Pα(η, tt ∧ Xf ∧ Xδ,B))

and due to Lemma 10.30 and Theorem 10.35 the proof is done.
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As LTL(Fs,Ps) is closed under negation and Theorem 10.34 works with
global equivalence, Theorem 10.37 give us the following.

Corollary 10.38. The pointed model checking problem is decidable for wPRS and
LTL(Fs,Ps).

10.6 Undecidability Results

In this section we prove that the model checking problem is undecidable

for the PA class and the fragments LTL(U) and LTL(
∞
F , X), respectively. The

undecidability proofs are based on reduction from the non-halting problem
for Minsky 2-counter machines, which is known to be undecidable [Min67].
See Subsection 7.3.2 for the Minsky 2-counter machine definition.

Theorem 10.39. The model checking problem for PA and LTL(U) is undecidable.

Proof. Given a machine N = l1 : i1, l2 : i2, . . . , ln−1 : in−1, ln : halt, we
construct a PA system ∆N with the initial term D1‖D2‖H . In what follows
we construct sets of rewrite rules emulating instructions of the machine
N . Moreover, for each instruction, we define an LTL formula describing
a correct simulation of the instruction in the PA system.

Increment: li : ck:=ck+1; goto lr

To each such an increment instruction of the machine N we add to ∆ the
following rules:

Dk
li
↪→ Sk.Dk Ck

li
↪→ Sk.Ck Sk

inci
↪→ Ck.Sk

The correctness formula ψi of this instruction is as follows:

(li =⇒ (li U inci)) ∧ (inci =⇒ (inci U lr)).

Intuitively, it says that every li action is followed by the inci action that has
to be followed by the lr action.

Test-and-decrement:

li : if ck>0 then ck:=ck-1; goto lr else goto ls

To each such a test-and-decrement instruction of the machine N we add to
∆ the following rules:

Dk
li
↪→ Ek Ek

zeroi
↪→ Dk Ck

li
↪→ ε Sk

deci
↪→ ε
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The correctness formula ψi of this test-and-decrement instruction is as fol-
lows:

(li =⇒ (li U (deci∨zeroi))) ∧ (deci =⇒ (deci U lr)) ∧ (zeroi =⇒ (zeroi U ls)).

Intuitively, it says that every li action is followed by the deci action or the
zeroi action. Moreover, the two last conjuncts express that the actions deci
and zeroi has to be followed by the lr and ls, respectively.

Halt: ln : halt

The halt instruction is translated into the following rule:

H
ln
↪→ H

Finally, we define a general formula ϕ as follows:

ϕ = l1 ∧ ((
∧

1≤i<n
ψi) U ln).

It is easy to see that machine N halts if and only if the system ∆N has a run
satisfying ϕ. In other words, the machine N does not halt if and only if
L(∆N ) |= ¬ϕ.

Theorem 10.40. The model checking problem for PA and LTL(
∞
F ,X) is undecid-

able.

Proof. Given a machine N = l1 : i1, l2 : i2, . . . , ln−1 : in−1, ln : halt, we
construct a PA system ∆N with the initial term D1‖D2‖H . In what follows
we construct sets of rewrite rules emulating instructions of the machine
N . Moreover, for each instruction we define an LTL formula describing a
correct simulation of the instruction in the PA system.

Increment: li : ck:=ck+1; goto lr

To each such an increment instruction of the machine N we add to ∆ the
following rules:

Dk
inci
↪→ Ck.Dk Ck

inci
↪→ Ck.Ck

The correctness formula ψi of this instruction is as follows:

(li =⇒ Xinci) ∧ (inci =⇒ Xlr).

Intuitively, it says that every li action is followed by the inci action that has
to be followed by the lr action.
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Test-and-decrement:

li : if ck>0 then ck:=ck-1; goto lr else goto ls

To each such a test-and-decrement instruction of the machine N we add to
∆ the following rules:

Dk
zeroi
↪→ Dk Ck

deci
↪→ ε

The correctness formula ψi of this test-and-decrement instruction is as fol-
lows:

(li =⇒ X(deci ∨ zeroi)) ∧ (deci =⇒ Xlr) ∧ (zeroi =⇒ Xls).

Intuitively, it says that every li action is followed by the deci action or the
zeroi action. Moreover, the two last conjuncts express that the actions deci
and zeroi has to be followed by the lr and ls, respectively.

Halt: ln : halt

The halt instruction is translated into the following rules.

H
halt
↪→ H H

li
↪→ H for every 1 ≤ i ≤ n

Restart:

Additionally, we also add the rules enabling to reset the counters.

C1
del1
↪→ ε C2

del2
↪→ ε D1

reset1
↪→ D1 D2

reset2
↪→ D2

As in the previous proof, we define a formula ψ which describes a cor-
rect step of the constructed PA system when simulating machine N .

ψ =
∧

1≤i<n
ψi ∧ (ln =⇒ Xhalt)

Moreover, we define a formula ρ describing a correct step of resetting coun-
ters and restarting the simulation.

ρ = (halt =⇒ X(del1 ∨ reset1)) ∧ (del1 =⇒ X(del1 ∨ reset1))
∧ (reset1 =⇒ X(del2 ∨ reset2)) ∧ (del2 =⇒ X(del2 ∨ reset2))
∧ (reset2 =⇒ Xl1)
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The formula ϕ =
∞
G(ψ ∧ ρ) ∧

∞
Fhalt says that, at some point, the halt

action occurs, both counters are reset, a correct simulation is started, and
whenever the simulation ends (with the action halt), this sequence of events
is performed again. Moreover, note that ϕ is satisfied only if the action halt
appears infinitely often. Hence, there is a run of ∆N satisfying ϕ if and
only if N halts. In other words, the machine N does not halt if and only if
L(∆N ) |= ¬ϕ.

Remark 10.41. In the proofs of the previous two theorems, the PA systems con-
structed have only infinite runs. This means that model checking of infinite runs

remains undecidable for PA and both LTL(
∞
F ,X) and LTL(U).

Remark 10.42. It can be easily shown that model checking of finite runs for
PA and LTL(U) is undecidable as well. To that end, it suffices to replace the rule

H
ln
↪→ H by the rule H

ln
↪→ ε in the proof of Theorem 10.39.

Remark 10.43. As all the systems of the extended PRS-hierarchy are finitely
branching, the number of states reachable in a given finite number of steps is finite.
Therefore, it can be easily shown that the model checking problem is decidable for
LTL(X) and sePRS.

Remark 10.44. However, note that model checking of finite runs against

LTL(
∞
F ,X) is decidable, even for wPRS. The proof is based on the observation that

a nonempty finite run satisfies
∞
Fϕ if and only if the last action of the run satisfies

ϕ. The same holds for a formula
∞
Gϕ. Hence, if we restrict only to nonempty finite

runs, the modalities
∞
F ,
∞
G are equivalent. The observation also implies that

∞
F¬ϕ is

equivalent to ¬
∞
Fϕ,

∞
F(ϕ1 ∧ ϕ2) is equivalent to (

∞
Fϕ1) ∧ (

∞
Fϕ2),

∞
F
∞
Fϕ is equiva-

lent to
∞
Fϕ, and that

∞
FXϕ never holds. Now it is easy to see that every LTL(

∞
F ,X)

formula can describe only a bounded prefix of a finite run (using the modality X)
and the last action of the run. Thus, decidability of model checking of finite runs

against LTL(
∞
F ,X) follows from Remark 10.43 and decidability of the reachability

Hennessy-Milner property problem [KŘS05].

Remark 10.45. Last but not least, let us note that model checking of finite runs
against LTL(F,X) and PA is undecidable. To prove this, we can use the proof of

Theorem 10.40 where the rule H
halt
↪→ H is replaced by H

halt
↪→ ε, the “reset” rules

are needless, and the formula ϕ is set to be l1 ∧ Gψ ∧ Fhalt .

10.7 Summary

The (un)decidability borderlines of the model checking problems discussed
(and depicted in Figure 10.3 and Figure 10.4) are direct consequences of the
following results:
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• model checking for sePRS and LTL(X) is decidable (Remark 10.43),

• model checking for sePA and LTL(
∞
F) is undecidable ([BEH95]),

• model checking for wPRS and LTL(Fs,Ps) is decidable (Corollary 10.36),

• model checking for PA and LTL(U) is undecidable (Theorem 10.39),

• model checking for PA and LTL(
∞
F ,X) is undecidable (Theorem 10.40),

• model checking for PDA and LTL(U,X) is decidable ([BEM97]), and

• model checking for PN and LTL(U,X) is decidable ([Esp94]).

We note that the (un)decidability borderlines remain the same even if
we restrict the model checking problem on infinite runs (see Remark 10.41).
The model checking problem of finite runs differs from its infinite counter-

part only in the case of PA systems and LTL(
∞
F ,X) for which it is decidable

(see Remark 10.42, Remark 10.44, and Remark 10.45).

10.8 Conclusion

We have established the decidability boundaries of model checking of
wPRS classes and basic fragments of LTL (see Figure 10.3). Namely, we
have shown that the model checking problem of wPRS against LTL(Fs,Ps)
is decidable, while the same problem for the PA class and the fragments

LTL(U) and LTL(
∞
F ,X) respectively are undecidable. To that end, only two

positive results on LTL model checking of PA (and classes subsuming PA)
have been published: decidability of model checking of infinite runs for
PRS and LTL fragment of fairness properties [Boz05] and decidability of
the same problem for PA and simple PLTL2 [BH96]. Note that the fairness
fragment and the regular part of simple PLTL2 are strictly less expressive
than LTL(F,G) (also known as Lamport logic), which is again strictly less
expressive than LTL(Fs,Gs).

It is also worth mentioning that our proof techniques differ from those
used in [Boz05] and [BH96]. The decidability proof for LTL(Fs,Gs) is based
on the auxiliary result saying that model checking for wPRS and negated
A fragment is decidable. Moreover, this technique was also successfully
adapted to show decidability of model checking for wPRS and LTL(Fs,Ps),
see Section 10.5. We also emphasise that our positive result for LTL(Fs,Ps)
deals with both finite and infinite runs, and with wPRS rather than PRS or
PA only. Moreover, we show also decidability of the pointed model check-
ing problem for wPRS and LTL(Fs,Ps).
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The fragment LTL(Fs,Ps) semantically coincides with formulae of First-
Order Monadic Logic of Order containing at most 2 variables and no suc-
cessor predicate (FO2[<]) [EVW02]. Therefore, our results positively an-
swer also the model checking question for wPRS and FO2[<]. Let us more-
over note that First-Order Monadic Logic of Order containing at most 2
variables (FO2) coincides with an LTL(F,X,P,Y) fragment [EVW02]. Due

to our undecidability result for model checking PA and LTL(
∞
F ,X), we con-

clude that FO2 model checking problem is undecidable even for the PA sys-
tems. For the sake of completeness we note that First-Order Monadic Logic
of Order containing at most 3 variables (FO3) coincides with the set of all
LTL formulae [Kam68, GPSS80]. Hence, the FO3 model checking problem
is decidable PDA and PN systems but it stays undecidable for PA systems.



148 LINEAR TIME LOGIC



Chapter 11

LTLdet Model Checking

This chapter is devoted to model checking problems for LTLdet and systems
of the extended PRS-hierarchy. LTLdet [Mai00] is a common fragment of
CTL and LTL. Using some results of the previous chapter we show that the
model checking problem for wPRS and LTLdet is decidable.

11.1 Motivation

LTLdet was introduced by Maidl [Mai00] as a syntactic restriction of LTL.
The same paper shows that on the semantic level LTLdet coincides with
a logic of all formulae that can be expressed in both LTL and CTL. More-
over, the author also proves that LTLdet formulae describe exactly those
languages the negations of which can be represented by 1-weak Büchi au-
tomata (every loop in its transition system is a self loop).

In [BH96], it was shown that model checking problem for the PA class
and a logic called simple PLTL2 is decidable. In the same paper, Bouaj-
jani and Habermehl also show that simple PLTL2 can express all comple-
ments of simple ω-regular languages – how they call languages recognised
by 1-weak Büchi automata. Therefore, combining the results of [BH96]
and [Mai00] we can deduce decidability of the model checking problem
for LTLdet and PA.

As LTLdet can express some reachability formulae, e.g. (¬halt) U halt ,
the LTLdet model checking problem is undecidable for all Turing powerful
classes, i.e. sePA and all its superclasses.

Using some of the ideas of [Mai00] and decidability of the model check-
ing problem for LTL(Fs,Gs) and wPRS, we show that the model checking
problem for wPRS and LTLdet is decidable. Note that LTLdet is semantically
incomparable with LTL(Fs,Gs).
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11.2 Definition of the Studied Problem

To define LTLdet, we use the (common) LTL modalities X, U, F, G, etc. as
they have been defined in the previous chapter (see Definition 10.4 and
Figure 10.1). In addition, we introduce another LTL modality W.

Definition 11.1. Weak until modality W is defined using U and G as

ϕWψ = Gϕ ∨ ϕUψ .

Now, we can define the LTL fragment LTLdet [Mai00].

Definition 11.2. Let Act = {a, b, · · · } be a countably infinite set of atomic ac-
tions. The syntax of LTLdet formula is defined as follows.

ϕ ::= p | ϕ1 ∧ ϕ2 | (p ∧ ϕ1) ∨ (¬p ∧ ϕ2) | Xϕ1 |
(p ∧ ϕ1) U (¬p ∧ ϕ2) | (p ∧ ϕ1) W (¬p ∧ ϕ2),

where
p ::= tt | a | ¬p1 | p1 ∧ p2,

and a ranges over Act .

The semantics of LTLdet formulae is interpreted over both finite and
infinite words of actions in the same way as it was defined in Definition 10.4
in the previous chapter.

Weak Automaton

In this chapter, we make use of Büchi automata to represent LTL formulae.
We define an automaton as follows.

Definition 11.3. An automaton1 A = (Q,Σ, q0, R, F ) over the alphabet Σ con-
sists of:

• the finite set of states Q,

• the initial state q0 ∈ Q,

• the transition relation R ⊆ Q× Σ×Q, and

• the set of accepting state F ⊆ Q.

A weak automaton is an automaton such that there is a partial ordering ≥
on the states of Q such that every q and q′ for which (q, q′) ∈ R, we have q ≥ q′.

1An automaton differs from (LTS generated by) FS class just by having accepting states.
The same is true for a weak automaton and a weak FSU.
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A run of A over a word u = u(0)u(1)u(2) . . . ∈ Σ∗ ∪ Σω is a se-
quence σ = q(0)q(1)q(2) . . . ∈ Q+ ∪ Qω such that q(0) = q0 and for all
i ≥ 0, (q(i), u(i), q(i + 1)) ∈ R. An infinite run q(0)q(1)q(2) . . . is successful
if and only if {q ∈ Q | q = q(i) for infinitely many i } ∩ F 6= ∅. A finite run
q(0)q(1)q(2) . . . q(n) is successful if and only if q(n) ∈ F .

Let us note, that the 1-weak Büchi automaton of [Mai00], we have men-
tioned in Section 11.1, is the weak automaton of our definition using Büchi
acceptance condition. As we consider the automaton on both finite and
infinite runs, we call it simply a weak automaton.

Remark 11.4. A run σ of an automaton A = (Q,Σ, q0, R, F ) is successful if and
only if σ |= GF(

∨
q∈F q) where the atomic actions ranges over Q.

An automaton A accepts a word u if there is a successful run of A over
u. An automaton A = (Q,Σ, q0, R, F ) represents an LTL formula ϕ over
an alphabet Σ if A accepts exactly the words over Σ that satisfy ϕ, i.e. all
models of ϕ over Σ.

LTLdet Model Checking Problem

Let C be a class of systems.

Problem: LTLdet model checking problem for C
Instance: An LTLdet formula ϕ and a system ∆ ∈ C

Question: Is the system ∆ a model of the formula ϕ, i.e. L(∆) |= ϕ ?

11.3 Proof Construction

A basic idea how to prove decidability of the model checking problem for
wPRS and LTLdet is as follows. In [Mai00] it has been shown that a nega-
tion of a given LTLdet formula can be represented by a weak automaton. In
Lemma 11.5 we refine the proof a bit to hold for finite runs as well. Having
an automaton representing a negation of a given formula, we construct an
synchronous product of the automaton and a given wPRS. As a formula
representing the automaton is weak, the product is a weakly extended PRS
as well. Now we focus on runs that are successful for the formula repre-
senting automaton (a component of the product for now). Due to the con-
struction given in the proof of Lemma 11.5, there is such a run if and only if
there is a run in the given wPRS violating the given formula, i.e. the given
wPRS does not model the formula (Lemma 11.6). Due to Remark 11.4, we
can use the decidability result for the LTL(Fs,Gs) fragment for checking ex-
istence of such a successful run and prove the main theorem of this section
(Theorem 11.7).
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Lemma 11.5. Let ϕ be an LTLdet formula and Σ be a finite alphabet of actions.
There is a weak automaton A¬ϕ representing ¬ϕ over Σ.

Proof. The proof is based on induction on structure of ϕ. We construct an
automaton A¬ϕ = (Q,Σ, q, R, F ) for every case of structure type of ϕ, as-
suming that automata for its proper subformulae can be constructed.

Case p: We construct

A¬p = ({q1, q0},Σ, q1, R, F ),

where

• R = {(q1, a, q0) | a ∈ Σ ∧ a 6|= p} ∪ {(q0, a, q0) | a ∈ Σ}.

• If ε |= ¬p then F = {q1, q0}; otherwise, F = {q0}.

The automaton A¬p can be depicted as follows.

//GFED@ABCq1
6|=p //GFED@ABC?>=<89:;q0 |=ttkk

Case Xϕ1: Let A¬ϕ1 = (Q′,Σ, q′, R′, F ′) and n = |Q′|. We construct

A¬(Xϕ1) = (Q′ ∪ {qn},Σ, qn, R, F ′ ∪ {qn}),

where R = {(qn, a, q′) | a ∈ Σ} ∪R′ and qn is fresh. The automaton A¬(Xϕ1)

can be depicted as follows.

// GFED@ABC?>=<89:;qn |=tt // A¬ϕ1

Case ϕ1 ∧ ϕ2: Let A¬ϕ1 = (Q′,Σ, q′, R′, F ′), A¬ϕ2 = (Q′′,Σ, q′′, R′′, F ′′),
Q′′ = {q|Q′|+|Q′′|−1, . . . , q|Q′|}, and n = |Q′|+ |Q′′|. We construct

A¬(ϕ1∧ϕ2) = (Q′ ∪Q′′ ∪ {qn},Σ, qn, R, F ),

where

• R = {(qn, a, q) | (q′, a, q) ∈ R′ ∨ (q′′, a, q) ∈ R′′} ∪R′ ∪R′′.

• If q′ ∈ F ′ or q′′ ∈ F ′′ then F = {qn} ∪ F ′ ∪ F ′′;
otherwise, F = F ′ ∪ F ′′.

The automaton A¬(ϕ1∧ϕ2) can be depicted as follows.

A¬ϕ1

// GFED@ABCqn

|=tt 22fffffffffff

|=tt ,,XXXXXXXXXXX

A¬ϕ2
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Case (p ∧ ϕ1) ∨ (¬p ∧ ϕ2): As (p ∧ ϕ1) ∨ (¬p ∧ ϕ2) = (¬p ∨ ϕ1) ∧ (p ∨ ϕ2),
we can partially adopt the previous construction. Therefore, we get

¬((p ∧ ϕ1) ∨ (¬p ∧ ϕ2)) = (p ∧ ¬ϕ1) ∨ (¬p ∧ ¬ϕ2)

and the construction required is now quite straightforward. Let A¬ϕ1 =
(Q′,Σ, q′, R′, F ′), A¬ϕ2 = (Q′′,Σ, q′′, R′′, F ′′), Q′′ = {q|Q′|+|Q′′|−1, . . . , q|Q′|},
and n be equal to |Q′|+ |Q′′|. We construct

A¬((p∧ϕ1)∨(¬p∧ϕ2)) = (Q′ ∪Q′′ ∪ {qn},Σ, qn, R, F ),

where

• R = R′ ∪ {(qn, a, q) | a 6|= p ∧ (q′, a, q) ∈ R′} ∪
R′′ ∪ {(qn, a, q) | a |= p ∧ (q′′, a, q) ∈ R′′}.

• If q′ ∈ F ′ ∧ ε |= p or q′′ ∈ F ′′ ∧ ε |= ¬p then F = {qn} ∪ F ′ ∪ F ′′;
otherwise, F = F ′ ∪ F ′′.

The automaton A¬((p∧ϕ1)∨(¬p∧ϕ2)) can be depicted as follows.

A¬ϕ1

// GFED@ABCqn

|=p 22fffffffffff

6|=p ,,XXXXXXXXXXX

A¬ϕ2

Case (p ∧ ϕ1) U (¬p ∧ ϕ2): As¬((p∧ϕ1) U (¬p∧ϕ2)) = pW ((p∧¬ϕ1)∨(¬p∧
¬ϕ2)) = pW (¬((¬p ∨ ϕ1) ∧ (p ∨ ϕ2))), the construction can be done as fol-
lows. Applying the previous constructions we obtain A¬((¬p∨ϕ1)∧(p∨ϕ2)) =
(Q′,Σ, q′, R′, F ′). Let n = |Q′|. We construct

A¬(p∧ϕ1) U (¬p∧ϕ2) = (Q′ ∪ {qn},Σ, qn, R, F ),

where

• R = {(qn, a, qn) | a ∈ Σ ∧ a |= p} ∪ {(qn, a, q) | (q′, a, q) ∈ R′} ∪R′ and

• F = {qn} ∪ F ′.

The automaton A¬((p∧ϕ1) U (¬p∧ϕ2)) can be depicted as follows.

// GFED@ABC?>=<89:;qn
|=p

		

--\\\\\\\\\\\\\\\\\ A¬((¬p∨ϕ1)∧(p∨ϕ2))

Case (p ∧ ϕ1) W (¬p ∧ ϕ2): As ¬((p ∧ ϕ1) W (¬p ∧ ϕ2)) = pU ((p ∧ ¬ϕ1) ∨
(¬p ∧ ¬ϕ2)) = pU (¬((¬p ∨ ϕ1) ∧ (p ∨ ϕ2))), the construction is similar to
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the case (p ∧ ϕ1) U (¬p ∧ ϕ2). Here, A¬ϕ is the same as in the previous
case, except that F = F ′. Hence, the automaton A¬((p∧ϕ1) W (¬p∧ϕ2)) can be
depicted as follows.

// GFED@ABCqn

|=p

		

--\\\\\\\\\\\\\\\\\ A¬((¬p∨ϕ1)∧(p∨ϕ2))

Lemma 11.6. Let ∆ be a wPRS and ϕ be an LTLdet formula. We can construct
a wPRS ∆′ and a set of actions F ⊆ Act(∆′) such that

∆ |= ¬ϕ if and only if ∆′ |=
∨
a∈F

GFa

.

Proof. Let ∆ = (M,w, R, p0, X0). Due to Lemma 11.5, a weak automaton
A¬ϕ = (Q,Act(∆), q|Q|−1, R

′′, F ′′) representing the negation of the given
LTLdet formula ϕ over Act(∆) can be constructed. In the following, we con-
struct a wPRS ∆′ representing a synchronous product of the given wPRS ∆
and the weak automaton A¬ϕ. The product is synchronised on the labels of
actions. For the purpose of looking up the successful runs, we label actions
of the product by the states of A¬ϕ.

We set F to be F ′′ and ∆′ = (M ′,w′, R′, p′, X0), where

• M ′ = {p′} ∪ ((Q ∪ {q′})×M) where p′ and q′ are fresh,

• p′ w′ (qi, p) w′ (qj , r) w′ (q′, p) w′ (q′, r) where i ≥ j and p w r,

• Const(∆′) = Const(∆), and

• R′ = {p′X0

q|Q|−1

↪→ (q|Q|−1, p0)X0)} ∪

{(qi, p)t1
q′

↪→ (q′, r)t2 | qi ∈ Q ∧ pt1
a
↪→ rt2 ∈ R} ∪

{(qi, p)t1
qj
↪→ (qj , r)t2) | (qi, a, qj) ∈ R′′ ∧ pt1

a
↪→ rt2 ∈ R}.

From the construction, it follows that there is a run violating ϕ in ∆ if
and only if there is a run in ∆′ that is successful for the component repre-
senting the formula. Due to Remark 11.4, the lemma holds.

Theorem 11.7. The model checking problem for wPRS and LTLdet is decidable.

Proof. The theorem follows directly from Lemma 11.6 and decidability of
the LTL(Fs,Gs) model checking problem for wPRS (see Corollary 10.25).
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11.4 Summary

It was easily deducible from [BH96] and [Mai00], that the model check-
ing problem for PA and the common fragment of CTL and LTL called
LTLdet is decidable. In this chapter, we have shown that the LTLdet model
checking problem (of both infinite runs and finite runs) is decidable also
for wPRS. Our proof use some ideas of [Mai00] and decidability of the
model checking problem for LTL(Fs,Gs) and wPRS (see Corollary 10.25).
As LTLdet can express some reachability formulae e.g. (¬halt) U halt , the
LTLdet model checking problem is undecidable for all Turing powerful
classes, i.e. sePA and all its superclasses. Therefore, the (un)decidability
boundaries of the LTLdet model checking problem are established for the
extended PRS-hierarchy, see Figure 11.1.
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Figure 11.1: The extended PRS-hierarchy with (un)decidability boundaries
of LTLdet model checking problem.



Chapter 12

Conclusion and Future Work

This thesis provides an overview of extensions of Process Rewrite System
formalism (see Chapters 2–5). We construct a hierarchy of this formalisms
with respect to the strong bisimulation equivalence. Within this hierar-
chy we examined various (un)decidability questions of interesting verifi-
cation problems such as bisimulation equivalence (see Chapters 6 and 7)
and model checking problems (see Chapters 8–11). On the one hand, we
can say that all the borderlines related to all the discussed model checking
problems are established for now. On the other hand, a lot of questions
remain open in the area of equivalence checking, namely deciding bisim-
ulation equivalence, for example strong bisimulation problem for fcBPP,
wBPP, PA, fcPA, wPA, PAD, fcPAD, and wPAD (see Section 6.1) and weak
bisimulation problem for BPA and BPP (see Section 7.5). Moreover, in this
field there is a lot of important open problems that has not been objected in
this thesis, for example strong/weak bisimilarity with finite state systems
and strong/weak regularity as well as upper and lower complexity bounds
of all the problems mentioned above.
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[JS04] P. Jančar and J. Srba. Highly undecidable questions for process
algebras. In Proceedings of the 3rd IFIP International Conference on
Theoretical Computer Science (TCS’04), Exploring New Frontiers
of Theoretical Informatics, pages 507–520. Kluwer Academic
Publishers, 2004.

[Kam68] J. A. W. Kamp. Tense Logic and the Theory of Linear Order. PhD
thesis, University of California, Los Angeles, 1968.



BIBLIOGRAPHY 163
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