
Masaryk University

Faculty of Informatics

} w��������
��
Æ������������ !"#$%&'()+,-./012345<yA|

Randomized Symbolic Model Checking

Master’s Thesis

Vojtěch Řehák

April 2002

Declaration

I declare that this thesis was composed by myself and the presented work
is of my own if not stated otherwise. All the used sources and literature are
cited with a complete reference to the corresponding source.

Acknowledgment

I would like to thank RNDr. Ivana Černá, CSc., the supervisor of my thesis,
for her constant willingness to listen, discuss, and help.

I would also like to thank all members of ParaDiSe laboratory, namely
Doc. RNDr. Mojmı́r Křetı́nský, CSc. for his Easter correction, Tomáš Hanžl
for his help with one proof, and Jan Strejček for his continual assistance.
Thanks go also to Katka for her willingness to help me with my dreadful
English. Last but not least, I want to thank my parents for their constant
support during my studies.

i

Abstract

This thesis studies improvements of the symbolic model checking algo-
rithm. We investigated possible substitutions of the currently used OBDD
data structure. Two data structures, �-OBDDs and BEDs, are tested. The
asset of this thesis consists of summarization of the theoretical knowledge,
introduction of merged �-OBDD, practical implementation of �-OBDDs
into the NuSMV model checker, and interpretation of the acquired facts.

Key words

Data structures, OBDD,�-OBDD, BED, symbolic model checking, random-
ized algorithms.

ii

Contents

1 Introduction 1

2 CTL and Symbolic Model Checking 4

2.1 Computation Tree Logic . 4
2.2 Symbolic Model Checking . 6

3 Data Structures 8

3.1 Ordered Binary Decision Diagram 8
3.1.1 Syntax . 8
3.1.2 Semantics . 9

3.2 �-Ordered Binary Decision Diagram 10
3.2.1 Syntax . 10
3.2.2 Semantics . 12

3.3 Boolean Expression Diagram 12
3.3.1 Syntax . 12
3.3.2 Semantics . 13

4 Operations on Data Structures and Their Implementation 14

4.1 OBDD . 14
4.1.1 Specifications . 14
4.1.2 Algorithms and Their Complexities 15

4.2 �-OBDD . 17
4.2.1 Specifications . 17
4.2.2 Algorithms and Their Complexities 20

4.3 BED . 27
4.3.1 Specifications . 27
4.3.2 Algorithms and Their Complexities 27

5 Comparison of Effectivity 29
5.1 Comparison Based on Theoretical Results 29
5.2 Comparison Based on Experimental Results 30

6 Conclusion 34

iii

Chapter 1

Introduction

Nowadays, hardware and software systems are widely used in applica-
tions where failure is unacceptable: electronic commerce, air traffic con-
trol system, medical instruments, and many others. Hence, the methods
for validating this systems are in great demand. The principal validation
methods for complex systems are simulation, testing, deductive verifica-
tion, and model checking. We focus on the model checking approach.

Model checking [CGP99] is an automatic technique for verifying finite
state concurrent systems: in this approach, properties are expressed in a
temporal logic and systems are modeled as transition systems. A model
checker accepts two inputs, a transition system and a temporal formula,
and returns ”true” if the system satisfies the formula and ”false” other-
wise. There are several approaches to solving the model checking problem,
namely automata based, games, symbolic, structural, etc. In this thesis we
concentrate on the symbolic approach. Symbolic model checking algorithm
is based on manipulations with sets of states of the transition system where
sets of states are represented by Ordered Binary Decision Diagrams [Bry86]
(OBDDs).

The basic model checking problem is a state explosion problem. The state
explosion problem is due to the fact that the number of states can be ex-
ponential in the size with respect to the description of the system. The
primary cause of this explosion is the parallel composition of interacting
processes. Hence, the basic problem is the space complexity in the model
checking algorithms. We investigate possibilities how to reduce the space
complexity of the model checking algorithm. This thesis investigates the
possibility of using a novel data structures in symbolic algorithms.

OBDD

At first we introduce currently used data structure OBDD. It is a canonical
form representation for boolean formulas. OBDD data structure is very fea-
sible for computing boolean functions, co-factoring, and other operations

1

which are needed for the symbolic model checking computation. OBDDs
are much more succinct than conjunctive normal form and disjunctive nor-
mal form but there are still boolean formulas which have OBDDs of expo-
nential size with respect to the number of variables.

�-OBDD

Secondly, we discuss advantages and disadvantages of �-OBDDs. The
�-OBDD data structure is an extension of OBDD. In addition to OBDD,
there are �-nodes available in �-OBDD data structure. �-OBDDs are more
space-efficient (sometimes even exponentially) than OBDDs. �-OBDDs
preserve the OBDD property of efficient manipulation. Applying a boolean
operation, quantification, and composition have the same complexity as in
the case of OBDDs. Even better, the boolean functions exclusive or (XOR),
the logical equivalence, and the negation can be performed in constant time.
In contrast to OBDD representation, the �-OBDD is not canonical. So, the
equivalence test for �-OBDD is much more difficult. The recently intro-
duced deterministic equivalence test given in [Waa97] can be easily adapted
to �-OBDDs, but it performs only in high polynomial degree execution
time. Hence, we focus on a probabilistic approach. The equivalence test for
�-OBDD is within co-RP [GM93b], so there is a polynomial probabilistic
equivalence test with one-side error which can be amplified. �-OBDDs are
the greatest extension of OBDDs which allows a polynomial probabilistic
equivalence test. According to [GM93a], the equivalence test for !-OBDDs,
! 2 ff_g; f^g; f_;^gg is co-NP-complete.

BED

The third discussed data structure is a Boolean Expression Diagram [AH97]
(BED). This structure is appropriate because it is high compressible. BEDs
have a linear size to a boolean formula. Basic problem of computation with
BEDs is induced by the fact that BEDs have no canonical form. Exactly, the
equivalence test for BEDs is co-NP-complete problem.

Plan of the Thesis

The rest of the thesis is structured as follows. In Chapter 2 we define
the Computation Tree Logic (CTL) and the symbolic model checking algo-
rithm. In the next chapter we introduce all three discussed data structures.
Chapter 4 presents specifications of the data structures in more details. In
addition, this chapter shows algorithms for all operations which are needed
for the symbolic model checking. Chapter 5 compares the results achieved
by using all the different data structures mentioned above. This compari-
son has two parts. The first one is a theoretical conclusion based on results

2

from the previous chapter. The second comparison is based on results of a
practical implementation.

3

Chapter 2

CTL and Symbolic Model
Checking

2.1 Computation Tree Logic

Computation Tree Logic (CTL) is a restricted subset of CTL* in which each of
the temporal operators X , F , G, U , and R must be immediately preceded
by a path quantifier.

Syntax

CTL formulas are defined inductively. There are two types of CTL subfor-
mulas: state formulas (which are true in a specific state) and path formulas
(which are true along a specific path). Whole CTL formula must be a state
formula. LetAP be the set of atomic proposition names. The syntax of state
formulas is given by the following rules:

� If p 2 AP , then p is a state formula.

� If f and g are state formulas, then:f , f_g and f^g are state formulas.

� If f is a path formula, then Ef and Af are state formulas.

One additional rule is needed to specify the syntax of path formulas:

� If f and g are state formulas, then Xf , Ff , Gf , fUg, and fRg are path
formulas.

Semantics

We define the semantics of CTL with respect to a Kripke structure. Recall
that a Kripke structure represents a finite-state system. A Kripke structure
M is a triple hS;R;Li, where S is the set of states; R � S�S is the transition

4

relation, which must be total; and L : S ! 2

AP is a function that labels each
state with a set of atomic propositions which are true in that state. A path
� in M is an infinite sequence of states, � = s

0

; s

1

; s

2

; : : : , such that for all
i � 0 is (s

i

; s

i+1

) in the transition relation R.
We use �

i

to denote the suffix of � starting at s
i

. If f is a state formula, the
notation M; s j= f means that f holds at the state s in the Kripke structure
M . Similarly, if f is a path formula, M;� j= f means that f holds along the
path � in the Kripke structure M . The relation j= is defined inductively as
follows (assuming that f

1

and f

2

are state formulas and g

1

and g

2

are path
formulas):

1. M; s j= p, p 2 L(s).

2. M; s j= :f

1

,M; s 6j= f

1

.

3. M; s j= f

1

_ f

2

,M; s j= f

1

or M; s j= f

2

.

4. M; s j= f

1

^ f

2

,M; s j= f

1

and M; s j= f

2

.

5. M; s j= Eg

1

, there is a path � from s such that M;� j= g

1

.

6. M; s j= Ag

1

, for every path � starting from s, M;� j= g

1

.

7. M;� j= f

1

, s is the first state of � and M; s j= f

1

8. M;� j= :g

1

,M;� 6j= g

1

.

9. M;� j= g

1

_ g

2

,M;� j= g

1

or M;� j= g

2

.

10. M;� j= g

1

^ g

2

,M;� j= g

1

and M;� j= g

2

.

11. M;� j= Xg

1

,M;�

1

j= g

1

.

12. M;� j= Fg

1

, there exists k � 0 such that M;�

k

j= g

1

.

13. M;� j= Gg

1

, for all i � 0, M;�

i

j= g

1

.

14. M;� j= g

1

Ug

2

, there exists k � 0 such that M;�

k

j= g

2

and
for all 0 � j � k, M;�

j

j= g

1

.

15. M;� j= g

1

Rg

2

, for all j � 0, if for every i � j M; �

i

6j= g

1

then
M;�

j

j= g

2

.

It is easy to see that the operators :, _, EX , EG, and EU are sufficient
to express any other CTL formula. [CGP99]

5

2.2 Symbolic Model Checking

The model checking problem is formulated as follows. Given a Kripke struc-
ture M = hS;R;Li and a temporal logic formula f expressing a desired
specification, find the set S

f

of all states in S that satisfy f :

S

f

= fs 2 S jM; s j= fg:

Model checking is called symbolic if a representation of sets of states is
based on boolean formulas. We explain how this representation is per-
formed in the next chapter. S

f

is computed recursively with respect to the
structure of formula f . Recall that any CTL formula can be expressed in
atomic propositions and terms of :, _, EX , EU , and EG. So, we have to be
able to handle six cases, depending on whether f is atomic or has one of
the following forms::f

1

, f
1

_ f

2

, EXf

1

, E[f

1

Uf

2

℄, or EGf
1

.

� If f is an atomic proposition, then we construct set S
f

directly.

� If f is :f
1

, then S

f

is the complementary set of S
f

1

.

� If f is f
1

_ f

2

, then S

f

is the union of sets S
f

1

and S

f

2

.

� If f is EXf

1

, then the set S
f

is constructed as the relational product.
Recall that relational product of a binary relation A and an unary re-
lation B is an unary relation

A ÆB = f(x) j 9y:(x; y) 2 A ^ (y) 2 Bg:

We employ it as the set of states can be viewed as an unary relation on
S. Then we can construct relational product of the transition relation
R and the set S

f

1

.

R Æ S

f

1

= fx j 9y:(x; y) 2 R ^ y 2 S

f

1

g:

Result of the relational product R Æ S

f

1

is the required set S
EXf

1

.

� If f is EGf
1

, then we construct S
f

as the greatest fixpoint

EGf

1

= �Z:f

1

^EXZ:

A computation of the greatest fixpoint can be performed according to
the following algorithm:

funct EG(S

f

1

: SetOfStates) : SetOfStates
S1 := S; =� S is the set of all states �=
S2 := S

f

1

\ S

EX S1

;

while (S1 6= S2) do

S1 := S2;

6

S2 := S

f

1

\ S

EX S1

;

od

return(S1);

end

� If f is E[f

1

Uf

2

℄, then we construct S
f

as the least fixpoint.

E[f

1

Uf

2

℄ = �Z:f

2

_ (f

1

^EXZ)

The algorithm for computing EU is analogous to the EG’s one. There
are only two differences, the initial value of S1 is ; and the transfor-
mation is performed as S2 := S

f

2

[(S

f

1

\ S

EX S1

).

For the correctness of algorithms just given see [CGP99].

7

Chapter 3

Data Structures

In this chapter we present definitions of some data structures which are
suitable for storing sets of states of Kripke structure. Each Kripke structure
can be amended so as its labeling function L : S ! 2

AP is injective. If L is
injective, then each state s can be represented by L(s) unambiguously. L(s)
is a subset of AP and each subset L of AP can be represented by a boolean
formula B

L

=

V

p2L

p ^

V

p2APrL

:p unambiguously. Hence, each state s
can be represented by a boolean formula B

L(s)

unambiguously. It is easy
to see that each set fs

1

; : : : ; s

n

g of states can be represented by a boolean
formula B

L(s

1

)

_ � � � _B

L(s

n

)

unambiguously.
In the following we show how to represent a boolean function by a deci-

sion diagram. We will introduce OBDD,�-OBDD, and BED. Unambiguous
representation of boolean formula by a boolean function is obvious.

3.1 Ordered Binary Decision Diagram

In this section we define widely used data structure Ordered Binary Decision
Diagram (OBDD). This data structure is so called function graph. OBDD is
a canonical representation of boolean functions. OBDDs are often substan-
tially more compact than normal forms such as conjunctive normal form
and disjunctive normal form, and they can be manipulated very efficiently.

The following definition is taken from [Bry86].

3.1.1 Syntax

A Binary Decision Diagram (BDD) G over a set X
n

= fx

1

; : : : ; x

n

g of boolean
variables is a directed acyclic connected graph G = (V;E).

V consists of terminal nodes with out-degree 0 and of non-terminal
nodes with out-degree 2. The two intermediate successors of node v are de-
noted low(v) and high(v), respectively. Edges from v to low(v) and high(v)

8

are labeled as 0-edge and 1-edge, respectively. In the following let l(v) de-
note the label of the node v 2 V .

There are two types of nodes in BDD.

� A terminal node v has a label l(v) 2 f0; 1g

� A variable (branching) node v has a label l(v) = x

i

(x
i

2 X

n

) and two
successors low(v); high(v) 2 V .

A node with in-degree 0 is the root.
A BDD is free if each variable is encountered at most once on each path

in the BDD from the root to a terminal node. A BDD is ordered if it is free
and the variables are encountered in the same order on each path in the
BDD from the root to a terminal node. A OBDD is reduced if it fulfills these
three conditions:

� There are at most two terminal nodes, one with the label 0 and one
with the label 1.

� If v is a non-terminal node, then low(v) 6= high(v).

� If v and u are non-terminal nodes, then low(u) = low(v) ^ high(u) =

high(v) ^ l(u) = l(v) implies u = v.

Two OBDDs are shown in Figure 3.1. The first is not in the reduced
form and the second is reduced.

GFED@ABC
x

1

1

zzttttttttt
0

$$JJJJJJJJJ

GFED@ABC
x

2

1

����
��
��

0

��
77

77
77

GFED@ABC
x

2

1

����
��
��

0

��
77

77
77

GFED@ABC
x

3

1

		��
��

0

��
++

++
GFED@ABC
x

3

1

		��
��

0

��
++

++
GFED@ABC
x

3

1

		��
��

0

��
++

++
GFED@ABC
x

3

1

		��
��

0

��
++

++

1 1 0 1 0 1 0 1

GFED@ABC
x

1

1

����
��

��

0

��
,,

,,
,,

,,
,,

,,
,

GFED@ABC
x

2

1

��
&&
&&
&&
&&
&&
&&

0

%%LLLLLLLLLL

GFED@ABC
x

3

0

||yy
yy

yy
yy

1

����
��
�

1 0

non-reduced OBDD reduced OBDD

Figure 3.1: Two OBDDs representing the boolean function (x

1

^ x

2

) _ :x

3

.

3.1.2 Semantics

Each node v of OBDD represents a boolean function f

v

: f0; 1g

n

! f0; 1g.
The definition of this function is given recursively as follows:

9

� If v is a terminal node, then f

v

(x

1

; : : : ; x

n

) = l(v).

� If v is a variable node with l(v) = x

i

, then
f

v

(x

1

; : : : ; x

n

) = (:x

i

^f

low(v)

(x

1

; : : : ; x

n

))_ (x

i

^f

high(v)

(x

1

; : : : ; x

n

)).

A OBDD G with a root v represents a boolean function f

v

(x

1

; : : : ; x

n

).
There is exactly one reduced OBDD to represent each boolean function.

Hence, a representation of each boolean function by a reduced OBDD is
canonical.

3.2 �-Ordered Binary Decision Diagram

A �-OBDD [GM93b] (called also Mod2-OBDD or Parity-OBDD) is an ex-
tension of OBDD data structure. In addition to OBDD, there are �-nodes
available. This innovation can lead to more succinct representation. There
are boolean functions which have exponential size optimal OBDDs but
polynomial size �-OBDDs. Size of BDD is equal to the number of nodes.
There is no OBDD such that optimal �-OBDD representation is bigger be-
cause each OBDD is a �-OBDD too.

The basic disadvantage of�-OBDD representation is the loss of a canon-
ical representation.

3.2.1 Syntax

A �-BDD P over a set X
n

= fx

1

; : : : ; x

n

g of boolean variables is a directed
acyclic connected graph P = (V;E).

V consists of terminal nodes with out-degree 0 and of non-terminal
nodes with out-degree 2. The two intermediate successors of node v are de-
noted low(v) and high(v), respectively. Edges from v to low(v) and high(v)

are labeled as 0-edge and 1-edge, respectively. In the following let l(v) de-
note the label of the node v 2 V .

There are three types of nodes in �-OBDD.

� A terminal node v has a label l(v) 2 f0; 1g.

� A variable (branching) node has a label l(v) = x

i

(x
i

2 X

n

) and two
successors low(v); high(v) 2 V .

� A�-node has a label l(v) = � and two successors low(v); high(v) 2 V .

A node with in-degree 0 is the root.
Free and ordered �-BDD are defined in the same way as free and ordered

BDD.
A �-OBDD is reduced if it fulfills the following four conditions:

� There are at most two terminal nodes, one with the label 0 and one
with the label 1.

10

?>=<89:;
�

����
��

��
��

��
��

��
<<

<<
<

?>=<89:;
�

����
��

��
==

==

GFED@ABC
x

1

1

��
11

11
11

1 0

&&LLLLLLLLLLLLLL
GFED@ABC
x

2

1

��

0

��
22

22
22

2
GFED@ABC
x

3

1

xxqqqqqqqqqqqqqqq

0

����
��
��
�

1 0

GFED@ABC
x

1

1

zzvv
vv

vv
vv

v
0

$$
HH

HH
HH

HH
H

GFED@ABC
x

2

1

��

0

))TTTTTTTTTTTTTTTTTT GFED@ABC
x

2

0

uujjjjjjjjjjjjjjjjjj

1

��GFED@ABC
x

3

1 ��
55

55
5

0

''PPPPPPPPPPPPP GFED@ABC
x

3

0

wwnnnnnnnnnnnnn

1��		
		

	

1 0

�-OBDD OBDD

Figure 3.2: Two diagrams representing the boolean function x

1

� x

2

� x

3

.

� If v is a non-terminal node, then low(v) 6= high(v).

� If v and u are non-terminal nodes, then low(u) = low(v) ^ high(u) =

high(v) ^ l(u) = l(v) implies u = v.

� If v is a �-node, then neither low(v) nor high(v) is the terminal node
with the label 0.

In contrast to OBDD, a representation of each boolean function by a re-
duced�-OBDD is not canonical. These four rules serve only for a reduction
of the size and do not provide any canonicity. There are four equivalent �-
OBDDs in Figure 3.3 and each of these four �-OBDDs is reduced.

?>=<89:;
�

����
��

��

��
77

77
77

GFED@ABC
x

1

1

��
%%
%%
%%
%%
%%
%%

0

��
77

77
77

GFED@ABC
x

1

1

����
��
��

0

����
��
��
��
��
��

GFED@ABC
x

2

1

		��
��

0

��
++

++

0 1

?>=<89:;
�

����
��
��
��
�

��
--

--
--

--
-

GFED@ABC
x

1

1

��
&&
&&
&&
&&

0

��
33

33
33

33
3

GFED@ABC
x

2

1

����
��

��
��

�

0

����
��
��
��

1 0

?>=<89:;
�

����
��
��
��
�

��
--

--
--

--
-

GFED@ABC
x

1

1

��
&&
&&
&&
&&

0

��
33

33
33

33
3

GFED@ABC
x

2

1

����
��

��
��

�

0

����
��
��
��

0 1

GFED@ABC
x

1

1

����
��
��
��
�

0

��
..

..
..

..
.

GFED@ABC
x

2

1

��
&&
&&
&&
&&

0

��
55

55
55

55
55

GFED@ABC
x

2

0

��		
		

		
		

		

1

����
��
��
��

0 1

Figure 3.3: Four reduced �-OBDDs representing the boolean function
x

1

� x

2

.

11

3.2.2 Semantics

Each node v of�-OBDD represents a boolean function f
v

: f0; 1g

n

! f0; 1g.
The definition of this function is given recursively as follows:

� If v is a terminal node, then f

v

(x

1

; : : : ; x

n

) = l(v).

� If v is a branching (variable) node with l(v) = x

i

, then
f

v

(x

1

; : : : ; x

n

) = (:x

i

^f

low(v)

(x

1

; : : : ; x

n

))_ (x

i

^f

high(v)

(x

1

; : : : ; x

n

)).

� If v is a �-node, then
f

v

(x

1

; : : : ; x

n

) = f

low(v)

(x

1

; : : : ; x

n

)� f

high(v)

(x

1

; : : : ; x

n

),
where � is a boolean exclusive or (XOR) operator.

A �-OBDD with a root v represents a boolean function f

v

(x

1

; : : : ; x

n

).

3.3 Boolean Expression Diagram

This section presents another extension of OBDDs called Boolean Expression
Diagrams (BEDs) [AH97]. In addition to OBDD, there are operator nodes
for each of 16 binary boolean operations in BED. The size of BED is linear
with respect to the size of boolean formula.

3.3.1 Syntax

A BED B over a set X
n

= fx

1

; : : : ; x

n

g of boolean variables is a directed
acyclic connected graph B = (V;E).

V consists of terminal nodes with out-degree 0 and of non-terminal
nodes with out-degree 2. The two immediate successors of node v are de-
noted low(v) and high(v), respectively. Edges from v to low(v) and high(v)

are labeled as 0-edge and 1-edge, respectively. In the following let l(v) de-
note the label of the node v 2 V .

There are three types of nodes in BED.

� A terminal node v has a label l(v) 2 f0; 1g.

� A variable node v has a label l(v) = x

i

(x
i

2 X

n

) and two successors
low(v); high(v) 2 V .

� An operator node v has a label l(v) equal to a binary boolean operator,
and two successors low(v); high(v) 2 V .

A node with in-degree 0 is the root.
Free and ordered BED are defined in the same way as free and ordered

BDD.
A BED is reduced if it fulfills these four conditions:

12

� There are at most two terminal nodes, one with the label 0 and one
with the label 1.

� If v is a non-terminal node, then low(v) 6= high(v).

� If v and u are non-terminal nodes, then low(u) = low(v) ^ high(u) =

high(v) ^ l(u) = l(v) implies u = v.

� If v is an operator node, then neither low(v) nor high(v) is the terminal
node.

Like �-OBDD, reduced BED does not provide a canonical representa-
tion.

3.3.2 Semantics

Each node v of BED represents a boolean function f

v

: f0; 1g

n

! f0; 1g. The
definition of this function is given recursively as follows:

� If v is a terminal node, then f

v

(x

1

; : : : ; x

n

) = l(v).

� If v is a variable node with l(v) = x

i

, then
f

v

(x

1

; : : : ; x

n

) = (:x

i

^f

low(v)

(x

1

; : : : ; x

n

))_ (x

i

^f

high(v)

(x

1

; : : : ; x

n

)).

� If v is an operator node, then
f

v

(x

1

; : : : ; x

n

) = f

low(v)

(x

1

; : : : ; x

n

) ”l(v)” f
high(v)

(x

1

; : : : ; x

n

),
where ”l(v)” is a boolean operation which corresponds with the label
l(v).

A BED with a root v represents a boolean function f

v

(x

1

; : : : ; x

n

).

13

Chapter 4

Operations on Data Structures
and Their Implementation

In each section of this chapter we give details of an implementation, which
lead to more economical storing of data structures. Then we show how to
implement operations which have been used in Section 2.2, namely:

� creation CREATE of a new set S
f

of states, where f is an atomic propo-
sition,

� complementation NEG of a set,

� union UNION of two sets,

� relational product RELP for computation of EX , and

� equivalence test EQU for fixpoint computation. EQU tests if the repre-
sentations of sets are equivalent. It means that it is an equality test of
the represented sets.

4.1 OBDD

4.1.1 Specifications

The basic idea of reducing the size of OBDD even more is to use the so-
called complemented edges. Each edge has an extra bit, the compl-bit. Edge
is regular if the compl-bit is not set on. If the compl-bit is set on, then the
function represented by the following node is negated. Pointers to the roots
representing outputs may carry a compl-bit because we need to comple-
ment whole OBDDs, too. If we want to preserve canonicity, we restrict the
use of complemented edges by the following two rules:

� OBDD contains only one terminal node. This node has the label 1.

14

� 1-edges must be regular.

Starting from an OBDD with arbitrary compl-bits, we can easily obtain
an OBDD fulfilling given restrictions. The algorithm works bottom-up.

The terminal node with the label 0 is obtained by complementation of
the terminal node with the label 1. If the compl-bit of the 1-edge is set on,
then this compl-bit, compl-bit of the 0-edge, and the compl-bits of all edges
reaching this node are complemented.

In what follows we employ OBDDs only in the reduced form with com-
plemented edges.

4.1.2 Algorithms and Their Complexities

In practice we need to guarantee reduced form of all used OBDDs. There-
fore each creation of a new node must be performed carefully. At first
we must check all restrictions given in the definition of reduced OBDD
and restrictions on use of complemented edges. Then we must determine
whether this node already exists. A widely used way how to solve this
problem is to use a unique table. The unique table is a hash table of all
used nodes. The new node is created only if it already does not exist in the
unique table. We denote this careful creation of a new node as NewNode.
The time of procedure NewNode is in O(1) because correction of an OBDD
node observes reduced form of its successors. We suppose that looking
for a node in the unique table takes constant time. An algorithm to trans-
form arbitrary OBDD into a reduced OBDD is not needed because NewN-
ode keeps the reduced representation.

Procedures CREATE, NEG, UNION, RELP, and EQU are needed to imple-
ment symbolic model checking algorithm.

There is a boolean variable x
p

corresponding to each atomic proposition
p in symbolic model checking algorithm. CREATE(p) returns OBDD G

where root r of G has the label x
p

, 0-edge of r points to the terminal node
0 (complemented edge to terminal node 1), and 1-edge of r points to the
terminal node 1.

Negation NEG of OBDD is easy because we use a mechanism of com-
plemented edges.

UNION of two OBDDs G1 and G2 results in an OBDD G, where repre-
sented boolean function fulfills f

G

= f

G1

_ f

G2

. An algorithm for disjunc-
tion is based on Shannon expansion rule:

f = (:x ^ f j

x 0

) _ (x ^ f j

x 1

):

Each boolean function ? can be solved recursively as:

f ? g = (:x ^ (f j

x 0

? gj

x 0

)) _ (x ^ (f j

x 1

? gj

x 1

));

15

where f j
x 0

and f j

x 0

are co-factors of f for x = 0 and x = 1, respectively.
If x is a label of the root of an OBDD F , then co-factors F j

x 0

and F j

x 1

are equal to low(F) and high(F), respectively. Hence, the best variable
for co-factoring is the topmost variable. In addition, we use a hash table
ResultCache to improve the performance of UNION. The ResultCache maps
input OBDDs F , G to the result OBDD returned by UNION(F;G) once this
result has been computed.

UNION is implemented as follows:

funct UNION(F;G : OBDD) : OBDD
if F = 1 _G = 1 then return(1); fi

if F = 0 then return(G); fi

if G = 0 then return(F); fi

=� Result cache checking �=
if (F;G;R) 2 ResultCache

then return(R);

else

=� Co-factor based computing �=
z := Topmost(TopVariable(F);TopVariable(G));

R

0

:= UNION(F j
z 0

; Gj

z 0

);

R

1

:= UNION(F j
z 1

; Gj

z 1

);

R := NewNode(z;R
1

; R

0

);

InsertInResultCache(F;G;R);

return(R);

fi

end

With the assumption of constant time lookup and insert in the unique table
and ResultCache, all operations in UNION takes constant time. UNION can be
called at most once for each combination of nodes in the input OBDDs F
and G. So the time complexity of this algorithm is O(jF j � jGj), where jF j is
the number of nodes of the OBDD F . In practice, the typical performance
is closer to the size of the resulting OBDD.

RELP algorithm is an implementation of the relational product

F ÆG = fx j 9y:(x; y) 2 F ^ y 2 Gg:

There are three input parameters of RELP: a set E of common variables
and two OBDDs F and G. Result of RELP is an OBDD R representing the
boolean function f

R

,

f

R

= 9x

1

; : : : ; x

n

:f

F

^ f

G

, where x
1

; : : : ; x

n

are in E:

Conjunction is computed in a similar way as the disjunction. A computa-
tion of an existentially quantified boolean formulas is performed according
to the following rule:

9x:f = f j

x 0

_ f j

x 1

:

16

The implementation of RELP is performed as follows.

funct RELP(F;G : OBDD; E : SetOfVariables) : OBDD
if F = 0 _G = 0 then return(0); fi

if F = 1 then return(G); fi

if G = 1 then return(F); fi

z := Topmost(TopVariable(F);TopVariable(G));

=� Omitting idle variables from E �=
while z 6= Topmost(z;TopVariable(E)) do

E := E r fTopVariable(E)g;

od

=� Result cache checking �=
if (F;G;E;R) 2 ResultCache

then return(R);

else

=� Co-factor based computing �=
R

0

:= RELP(F j
z 0

; Gj

z 0

; E);

R

1

:= RELP(F j
z 1

; Gj

z 1

; E);

if z 2 E

then R := UNION(R
1

; R

0

);

else R := NewNode(z;R
1

; R

0

);

fi

InsertInResultCache(F;G;E;R);

return(R);

fi

end

The time complexity of RELP is O(jF j

2

� jGj

2

), because ”co-factor based
computing” is executed at most jF j � jGj times and the time complexity of
each pass is O(jF j � jGj).

There is a need for testing equivalence EQU between two OBDDs in
checking formulas EU and EG. We must compare Q and Q

0 after each
pass through the while-loop in the fixpoint algorithm. Because of canoni-
cal representation and unique table implementation, equivalence test EQU
can be performed in the constant time O(1). The time complexity of each
pass through the while-loop is polynomial.

4.2 �-OBDD

4.2.1 Specifications

We may use complemented edges to achieve more compact �-OBDD rep-
resentation, too.

We may furthermore introduce any other rules and heuristics to make
�-OBDD representation more succinct. These rules and heuristics are based

17

on features of the boolean operation XOR. We introduce several possible
approaches. As reduced �-OBDDs do not provide a canonical representa-
tion, there are no strictly defined rules how to obtain the optimal represen-
tation.

Complemented edges

At first we allow complemented edges. Hence, we must add the following
four rules:

� �-OBDD contains only one terminal node. This node has the label 1.

� If v is a variable node, then 1-edge of v must be regular.

� If v is a �-node, then both 0-edge and 1-edge must be regular.

� If v is a �-node, then both successors are non-terminal nodes.

The first two rules are taken from OBDD representation. See previous
section for more information.

If compl-bit of any outgoing edge of �-node is set on, then we comple-
ment this compl-bit and compl-bits of all edges reaching this node.

If�-node has a terminal successor with the label 1, then we destroy this
�-node, redirect all edges reaching this �-node to the second successor,
and complement compl-bits of all the reaching edges. Terminal successors
with the label 0 are realized as a complement of the terminal node with the
label 1. So, we can debug the 0 terminal successor of a �-node according to
the previous rules.

In [MS00], the third rule is presented in a different way. They allow
complementation of 1-edge and disallow complementation of 0-edge and
all edges reaching this node. We present our rule because then can be cor-
recting algorithm performed strictly bottom-up and �-meta-nodes can be
added without changing this rule.

�-meta-nodes

A �-meta-node is a �-node which can have more than two successors. This
innovation is based on commutativity and associativity of XOR. �-meta-
nodes are introduced in [MS99]. But they demonstrate it only as an algo-
rithmic consideration for �-OBDD reordering. We present compact collec-
tion of rules and correcting instructions. In addition, we present partial
ordering on successors of �-meta-node.

As �-meta-nodes are allowed, we must stiffen up the fourth rule of the
rules which are added for complemented edges using.

� If v and u are adjacent successors of �-meta-node, then v and u are
different variable nodes and l(v) � l(u).

18

If any successor of a �-meta-node is a �-meta-node, then we join these
two nodes into one �-meta-node.

If a �-meta-node with more than two successors has a terminal node
with the label 1 as a successor, then we remove this outgoing edge and
complement compl-bits of all edges reaching the �-meta-node. Reduction
for�-node with exactly two successors is written above. Two equal succes-
sors are the same as the terminal node with the label 0 for XOR operation,
and are deleted according to the previous rules.

If u and v are adjacent successors of �-meta-node and l(v) > l(u), then
we exchange the two successors u and v.

Merged �-OBDD

Now we define our own restriction which leads to more succinct and al-
most canonical representation. We present own innovation of the fourth
rule:

� If v and u are adjacent successors of �-meta-node, then v and u are
variable nodes and l(v) < l(u).

We must explain how to correct �-OBDD where l(v) � l(u).
If l(v) > l(u) then we exchange the two successors v and u.
If l(v) = l(u) then successors v and u are supplanted by the new variable

node w. The label l(w) is equal to l(v). The successor low(w) is a new �-
meta-node with successors low(v) and low(u). The successor high(w) is a
new�-meta-node with successors high(v) and high(u). It is easy to see that
this correction can be done together for all successors with the same label.

This innovation may lead to more succinct representation. Indeed, if
there are n successors with the same label, then we delete these n nodes
and replace them only by three nodes. If we represent �-meta-node as a
chain of �-nodes, then the number of nodes is preserved. Furthermore, we
can find and remove more redundant subtrees, make representation more
canonical, and perform some operations more easily.

The basic disadvantage of this innovation is the loss of strictly bottom-
up implementation of the correcting algorithm. Correction must be per-
formed top-down. Hence, the careful creation of a new node NewNode is
not O(1) but it has a linear time complexity. The careful creation algorithm
for merged �-OBDD is shown in the next subsection.

Because of this, we use all three types of implementation in the follow-
ing: �-OBDD with complemented edges, �-OBDD with �-meta-nodes,
and merged �-OBDD.

19

4.2.2 Algorithms and Their Complexities

The time complexity of NewNode

ompl

for �-OBDD with complemented
edges is O(1). The time complexity of NewNode

meta

for �-OBDD with
�-meta-nodes is O(jF j) because of the ordering on successors of �-meta-
nodes. These two procedures are simple compositions of the correcting
instructions presented in previous subsection. NewNode

merged

for merged
�-OBDD is implemented as follows:

funct NewNode
merged

(l : Label; F : SetOfSuccessors) : �-OBDD
if l 6= �

then /* Create a variable node */
R := NewNode

ompl

(l;F

1

;F

0

);

else /* Create a �-node */
/* Take �-successors off */
for F 2 F do

if l(F) = � then F := (F [fsuccessors of Fg)r fFg; fi

od

/* Take off variable successors with the same label */
Z := GetSetOfTopVars(F);

for z 2 Z from the TopMost to the BottomMost do

F

z

:= successors from F with the label z;
if jF

z

j � 2 then R

1

:= NewNode
merged

(�; high successors of F
z

);

R

0

:= NewNode
merged

(�; low successors of F
z

);

R

z

:= NewNode

ompl

(z;R

1

; R

0

);

F := (F [fR

z

g)r F

z

;

fi

od

/* All special corrections of merged �-OBDD are done */
R := NewNode

meta

(�;F);

fi

return(R);

end

The time complexity of NewNode
merged

is linear in the sum of sizes of suc-
cessors because taking off a variable successors with the same label may
damage correctness of its successors.

Procedures CREATE and NEG are the same for �-OBDD representation
as for OBDD one.

A widely used way how to realize computation of UNION is the im-
plementation of a ITE algorithm. In [MS97], there is introduced ITE-�

algorithm, the ITE algorithm for �-OBDDs. But there are two basic mis-
takes in their pseudocode. The first one is confusion between ITE algo-
rithm [BRB90] and synthesis algorithm. In ITE algorithm, there are three
decision diagrams F;G;H as input parameters and resulting diagram is

20

equal to (F ^G) _ (:F ^H). It means if F then G else H . In [BRB90], there
is shown how to compute each boolean operation on decision diagrams by
ITE algorithm. For example, ITE(F;:G;G) results in F � G. In synthesis
algorithm, there are three input parameters too, but first is a boolean oper-
ation and other two parameters F and G are decision diagrams. Output of
this algorithm is result of applying engaged boolean operation on diagrams
F and G. In ITE-� algorithm [MS97], there is written:

funct ITE-�(F;G;H;Result)
...
if F = � then Result = NewNode(�; G;H); fi
...

end

This does not correspond with the facts written in this paragraph.
The second mistake is that this line is the only difference between ITE

algorithm [BRB90] and ITE-� algorithm [MS97]. It means that there is
no �-node in the result of this ITE-� algorithm. This mistake is not fatal
because result is correct, but it is an OBDD.

Because of mistakes in ITE-� algorithm [MS97], we present our own
algorithm.

funct UNION(F;G : �-OBDD) : �-OBDD
if F = 1 _G = 1 then return(1); fi

if F = 0 then return(G); fi

if G = 0 then return(F); fi

=� Result cache checking �=
if (F;G;R) 2 ResultCache

then return(R);

else
=� Co-factor based computing �=
z := Topmost(TopVariable(F);TopVariable(G));

R

0

:= UNION(F j
z 0

; Gj

z 0

);

R

1

:= UNION(F j
z 1

; Gj

z 1

);

R := Davio(z;R
1

; R

0

); =� new node based on Davio rule �=
InsertInResultCache(F;G;R);

return(R);

fi

end

Where Davio is a substitution of NewNode. Davio returns a �-OBDD
equivalent to the OBDD returned by NewNode. For illustrating the con-
cept of Davio see Figure 4.1. Nodes are composed according to the positive
Davio expansion rule [MS97]:

f = f j

x 0

� x(f j

x 1

� f j

x 0

):

21

?>=<89:;
x

1

��

0

��
11

11
11

11
11

f

1

f

0

?>=<89:;
�

����
��
��
��
��
��
��
��
��

��
99

99
9

?>=<89:;
x

1

����
��

�

0

��
++

++
++

++
++

+

?>=<89:;
�

����
��

�

��
88

88
8

f

0

f

1

0

NewNode(x; f
1

; f

0

) Davio(x; f
1

; f

0

)

Figure 4.1: Two equivalent �-OBDD returned by the different procedures
for creation of a new node.

Hence, Davio is implemented as follows:

funct Davio(x : variable; F;G : �-OBDD) : �-OBDD
P := NewNode(�; F;G);

Q := NewNode(x; P; 0);

R := NewNode(�; Q;G);

return(R);

end

The time complexity of Davio is asymptotically equal to the time complex-
ity of NewNode. Hence, it is O(1) for �-OBDD with complemented edges.
But it is O(jF j) for �-OBDD with �-meta-nodes and for merged �-OBDD.

Finding TopVariable(F) is more complicated in �-OBDD than in OBDD
because top node of�-OBDD may be a�-node. The time complexity of this
procedure depends on chosen type of �-OBDD. It is O(jF j) for �-OBDD
with complemented edges. But it is O(1) for �-OBDD with �-meta-nodes
and for merged �-OBDD.

The complexity of F j
z 0

, where z is a top variable, is different too. It
is O(jF j) for �-OBDD with complemented edges and for �-OBDD with
�-meta-nodes. But it is O(1) for merged �-OBDD.

The time complexity of UNION is O(jF j � jGj) for�-OBDD with comple-
mented edges. But it is O(jF j

2

� jGj

2

) for �-OBDD with �-meta-nodes and
for merged �-OBDD because of the time complexity of NewNode.

RELP is a modification of UNION. It is built in the same way as in OBDD
representation.

funct RELP(F;G : �-OBDD; E : SetOfVariables) : �-OBDD
if F = 0 _G = 0 then return(0); fi

if F = 1 then return(G); fi

if G = 1 then return(F); fi

22

z := Topmost(TopVariable(F);TopVariable(G));

=� Omitting idle variables from E �=
while z 6= Topmost(z;TopVariable(E)) do

E := E r fTopVariable(E)g

od
=� Result cache checking �=
if (F;G;E;R) 2 ResultCache

then return(R);

else

=� Co-factor based computing �=
R

0

:= RELP(F j
z 0

; Gj

z 0

; E);

R

1

:= RELP(F j
z 1

; Gj

z 1

; E);

if z 2 E

then R := UNION(R
1

; R

0

);

else R := Davio(z;R
1

; R

0

);

=� new nodes based on Davio rule �=
fi
InsertInResultCache(F;G;E;R);

return(R);

fi

end

The time complexity of RELP is O(jF j

2

� jGj

2

) for �-OBDD with comple-
mented edges. But it is O(jF j

3

� jGj

3

) for �-OBDD with �-meta-nodes and
for merged �-OBDD because of the time complexity of UNION.

Deterministic equivalence test for�-OBDD is in time O(n� (jF j+ jGj)

3

)

and in spaceO((jF j+jGj)

2

), where n is the number of variables. These com-
plexities are proven in [Waa97]. The probabilistic equivalence test [GM93a]
for�-OBDD needs only linear time. We concentrate on the probabilistic ap-
proach. It is based on a probabilistic equivalence test for read-once branch-
ing programs (BP1) which was originally introduced in [BCW80]. Equiva-
lence of two �-OBDDs is determined by an algebraic transformation of the
�-OBDDs into terms of polynomials over a finite field.

Let GF (2

m

) denote a Galois field with 2

m elements of characteristic 2,
where m 2 N , n is the number of variables, and m > (log(n)) + 1. An
example of GF (2

m

) is F
2

[x℄=p(x), where p(x) is an irreducible polynomial
of degree m.

We assign a polynomial p
v

: (GF (2

m

))

n

! GF (2

m

) to each node v of a
�-OBDD P :

� If v is a terminal node, then p

v

(x

1

; : : : ; x

n

) = l(v).

� If v is a variable NODE with l(v) = x

i

, then
p

v

(x

1

; : : : ; x

n

) = (1�x

i

)�p

low(v)

(x

1

; : : : ; x

n

)+x

i

�p

high(v)

(x

1

; : : : ; x

n

).

23

� If v is a �-node, then
p

v

(x

1

; : : : ; x

n

) = p

low(v)

(x

1

; : : : ; x

n

) + p

high(v)

(x

1

; : : : ; x

n

).

The polynomial associated with the �-OBDD F is the polynomial associ-
ated with the root of F . Resemblance between a polynomial p

F

associated
with the�-OBDD F and a boolean function f

F

represented by the�-OBDD
F is feasible. Operations + and � on GF (2

m

) correspond to � and ^ on
boolean functions, respectively. The operation + fulfills all properties of
the logical operation � exactly. The operation � fulfills all properties of
the logical operation ^ with the except for idempotency. But there is no
associated polynomial with a variable powered by 2 or more because each
essential�-OBDD is a free decision diagram. Hence, the associated polyno-
mial remains unchanged for different representations of the same boolean
function.

In [GM93a], there is presented this probabilistic algorithm for checking
equivalence of two BP1s:

funct EQU(F;G : BP1) : Boolean;
choose independently and uniformly a

1

; : : : ; a

n

from GF (2

m

);

if p
F

(a

1

; : : : ; a

n

) = p

G

(a

1

; : : : ; a

n

)

then return(TRUE);

else return(FALSE);

fi

end

EQU is a probabilistic algorithm with one-side error. EQU returns always
TRUE if F and G are equal. If F and G are different, EQU may return
both results. We prove that probability of an error result is < n

jGF j

in the

following. jGF j is the number of elements the Galois filed GF and n is the
number of variables. jGF j is 2

m, where m > 1 + log(n). Then probability
of error is < n

2

m

<

n

2

1+log(n)

=

1

2

. Hence, EQU has bounded probability of its
one-side error.

In [MS00], there is used this algorithm for �-OBDDs. The error estima-
tion presented in [MS00] is:

error <

size(P)

2

� n

s

2 � jGF j

s

Where size(P) denotes the number of nodes of the �-OBDD P , n is the
number of variables, jGF j is the number of elements in the finite field, and
s is the number of executions of the equivalence test. There is no proof of
the error estimation in [MS00]. Hence, we present our own error estimation
which is more precise.

24

Theorem 4.1. Let n is the number of variables, jGF j is the number of elements in
the finite field, and s is the number of executions of the equivalence test then

Prob(error) <
n

s

jGF j

s

for n � 2.

Proof. Checking the equivalence of two polynomials can be performed as
checking if the difference of these polynomials is a zero polynomial. Hence,
our error estimation is equal to the error estimation of checking if a poly-
nomial is a zero polynomial.

At first we compute error for exactly one execution of the equivalence
test (s = 1). We get incorrect result when we evaluate a polynomial by the
root of this polynomial.

Prob(error) �
the number of roots of a non-zero polynomial

the number of evaluations of a polynomial

The number of evaluations of a polynomial is jGF jn. We prove that the
number of roots is < n � jGF j

n�1 in the next paragraph. Thus, our error
estimation is:

Prob(error) <
n � jGF j

n�1

jGF j

n

=

n

jGF j

When we use the equation test s times then the estimation is:

Prob(error) <
n

s

jGF j

s

We prove the upper bound of the number of roots of a non-zero poly-
nomial by an induction with respect to the number of variables.

Let p be a polynomial in n variables. Let kpk denote the number of roots
of the polynomial p. Let p

1

(a) be a polynomial in n � 1 variables equal to
p(a; x

2

; : : : ; x

n

).

Lemma 4.2. p 6� 0 implies 9 at most one a 2 GF such that p
1

(a) � 0.

Proof. We prove the contraposition of the implication. If 9a; b 2 GF such
that a 6= b ^ p

1

(a) � p

1

(b) � 0, then for each affinity combination
 of a and
b is p

1

(
) � 0. But each
 2 GF is an affinity combination of a and b because

 =

�b

a�b

� a+

a�

a�b

� b. Then p � 0 because 8
 2 GF:p

1

(
) � 0.

Induction: We must prove that 8n 2 N : if p is a polynomial in n variables
and p 6� 0 then kpk � n � jGF j

n�1.

25

Basis step: For n = 1: p 6� 0

Lemma 4:2

=) kpk � 1.
For n = 2:

p 6� 0

Lemma 4:2

=)

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

8a 2 GF:p

1

(a) 6� 0 then
kpk =

P

a2GF

kp

1

(a)k

�

P

a2GF

1

= jGF j

< 2 � jGF j

2�1

or

9!a 2 GF:p

1

(a) � 0 then
kpk = kp

1

(a)k +

P

b2GF^b6=a

kp

1

(b)k

= jGF j+

P

b2GF^b6=a

kp

1

(b)k

� jGF j+

P

b2GF^b6=a

1

= jGF j+ (jGF j � 1) � 1

= 2 � jGF j � 1

< 2 � jGF j

2�1

Inductive step: Induction hypothesis: The number of roots of a non-zero
polynomial in n� 1 variables is < (n� 1) � jGF j

n�2.

p 6� 0

Lemma4:2

=)

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

8a 2 GF:p

1

(a) 6� 0 then
kpk =

P

a2GF

kp

1

(a)k

<

by IH
P

a2GF

(n� 1) � jGF j

n�2

= jGF j � (n� 1) � jGF j

n�2

= (n� 1) � jGF j

n�1

< n � jGF j

n�1

or

9!a 2 GF:p

1

(a) � 0 then
kpk = kp

1

(a)k +

P

b2GF^b6=a

kp

1

(b)k

= jGF j

n�1

+

P

b2GF^b6=a

kp

1

(b)k

<

by IH
jGF j

n�1

+

P

b2GF^b6=a

(n� 1) � jGF j

n�2

= jGF j

n�1

+ (jGF j � 1) � (n� 1) � jGF j

n�2

< jGF j

n�1

+ (n� 1) � jGF j

n�1

= n � jGF j

n�1

Hence, the number of roots of a non-zero polynomial is � n � jGF j

n�1,
where n is the number of variables. If n � 2, then the number of roots of a
non-zero polynomial is < n � jGF j

n�1. So, the probability of an error result
is < n

s

jGF j

s

and the proof of Theorem 4.1 is complete.

26

4.3 BED

4.3.1 Specifications

Complemented edges are not necessary because operator node for negation
of the first argument and negation of the second argument is available.

There are many simple rules for reducing of the size of BED. They
are based on commutativity, associativity, idempotency, distributivity, and
other features of the used boolean operators.

We recall a more elaborate reduction introduced in [AH97]. First of all,
we must present some definitions.

A set fw1; w2g of two nodes is a 2-cut for node u 2 V r fw1; w2g if
each path p from u to a terminal node can be decomposed into two parts
u

p

1

w

p

2

u

0 such that w 2 fw1; w2g. A 2-cut is called an operator 2-cut if
it for all paths p, p

1

contains only operator nodes. The cut flow(u); high(u)g

is called a trivial 2-cut for the node u.
If the BED rooted at u has an operator 2-cut fw

1

; w

2

g, then there exists
a binary boolean operator op such that

f

u

= f

w

1

op f

w

2

:

It can be used for reduction of the size of BED. So, we need an effi-
cient algorithm to find an operator 2-cut. In [AH97], there is the following
lemma:

Lemma 4.3. Let u 2 V be an operator node, l = low(u) and h = high(u). If
l and h have only trivial operator 2-cut and u has any non-trivial operator 2-cut
fw

1

; w

2

g, then w

1

; w

2

2 fl; h; low(l); high(l); low(h); high(h)g.

Proof. By contradiction: Assume that u has a non-terminal operator 2-cut
fw

1

; w

2

g and w

1

; w

2

62 fl; h; low(l); high(l); low(h); high(h)g.
Observe that either l or h is not in fw

1

; w

2

g (otherwise the 2-cut would
be trivial). Assume without any loss of generality that l 62 fw

1

; w

2

g. Be-
cause fw

1

; w

2

g is a 2-cut of u, each path from u to a terminal node contains
w

1

orw
2

. Each path from l to a terminal node also containsw
1

orw
2

because
the path is a postfix of a path from u. Thus, fw

1

; w

2

g is an operator 2-cut of
l but this operator 2-cut must be trivial. So, w

1

; w

2

2 flow(l); high(l)g. This
is a contradiction.

It means that non-trivial cuts exist only among the children and grand-
children of u. Thus, we may reduce BED with reduction rules for at most
three boolean operations.

4.3.2 Algorithms and Their Complexities

Procedures CREATE, NEG, UNION are O(1). They are easily performed as an
adding of a new node.

27

Procedure RELP(F;G;E) connects F and G by AND operator node and
then existentially abstracts the variables in E. The abstraction of each vari-
able is performed according to this rule:

9x:f = f j

x 0

_ f j

x 1

:

The time complexity of each abstraction is O(jF j + jGj) because the time
complexity of co-factoring F^G is O(jF j+jGj). Hence, the time complexity
of RELP(F;G;E) is O(n � (jF j + jGj)), where n is the number of variables
in E.

Procedure EQU is co-NP-complete [GJ79]. It can be easily proven by the
reduction on NON-SAT problem because conversion from boolean func-
tion into BED is a linear algorithm. Thus, we do know neither polynomial
deterministic algorithm nor feasible probabilistic algorithm.

28

Chapter 5

Comparison of Effectivity

This chapter compares properties of the presented data structures, namely
OBDD, �-OBDD with complemented edges,�-OBDD with �-meta-nodes,
merged �-OBDD, and BED. We are interested in applicability in the sym-
bolic model checking. At first we concentrate on the theoretical aspects.
This comparison is based on the time complexities presented in the previ-
ous chapter. The second comparison is based on the results of a practical
implementation. We do not implement BED representation because EQU

is a co-NP-complete problem. Practical implementation is performed for
OBDD, �-OBDD with complemented edges,�-OBDD with �-meta-nodes,
and merged �-OBDD.

5.1 Comparison Based on Theoretical Results

In this chapter we compare theoretical results presented in the previous
chapter. This comparison is based on upper bounds of the time complexi-
ties. Hence, we compare the worst times of the procedures. It means that
there is still a chance that comparison of the average time falls out well.
The time complexities from the previous chapter are presented in Table 5.1.

�-OBDD Comparing the time complexities, we consider �-OBDD to be
worse. But there is a possibility for �-OBDD to be applicable. The basic
model checking problem is the state explosion problem. The state explo-
sion problem is due to the fact that the number of states can be exponential
in the size of the description of the system. Hence, the basic problem is the
space complexity in the model checking algorithms. Model checking may
benefit from�-OBDD if the�-OBDD representation is really more succinct
than OBDD representation. It is possible because there are functions such
as the hidden weighted bit function (HWB) which are more succinct in �-
OBDD representation than in OBDD representation. It has been shown
in [Bry91] that HWB has an exponential size of each OBDD representation.

29

OBDD �-OBDD BED

procedure compl. edges compl. edges meta nodes merged

CREATE O(1) O(1) O(1) O(1) O(1)

NEG O(1) O(1) O(1) O(1) O(1)

TopVar O(1) O(jF j) O(1) O(1) O(jF j)

F j

x

top

 0

O(1) O(jF j) O(jF j) O(1) O(jF j)

UNION O(jF j�jGj) O(jF j�jGj) O(jF j

2

�jGj

2

) O(jF j

2

�jGj

2

) O(1)

RELP O(jF j

2

�jGj

2

) O(jF j

2

�jGj

2

) O(jF j

3

�jGj

3

) O(jF j

3

�jGj

3

) O(n�(jF j+jGj))

EQU O(1) O(jF j+jGj) O(jF j+jGj) O(jF j+jGj) ???

Table 5.1: Comparison of the time complexities.

In [MS00], there is HWB represented by an �-OBDD which has only cubic
size. Applicability of �-OBDD crucially depends on its succinctness.

BED The basic problem of BED representation is an efficient implemen-
tation of the equivalence test EQU. Possible solution of this problem is pre-
sented in [AH97]. It is based on transformation of BED into OBDD. After
this transformation the equivalence test is easy because OBDD represen-
tation is canonical. This solution is useful when the comparing BEDs are
expected to have a small OBDD representation. The comparison based on
transformation into OBDDs is inefficient in case of frequent comparing or
comparing the BEDs which have large OBDD representations. Performing
fixpoint iterations using OBDDs, several researchers have observed that the
intermediate results are often much larger than the final result. Then BED
representation may be useful to implement into the symbolic model check-
ing algorithm. In fact, some improvements of the SMC algorithm are based
on BED’s features. For example, partitioned transition relation [BCL+94] is
the transition relation represented as a BED with conjunction or disjunc-
tion nodes at the top which connect OBDDs representing partial transition
relations.

5.2 Comparison Based on Experimental Results

In the previous section we wrote that the applicability of �-OBDD cru-
cially depends on the succinctness of �-OBDD. If we want to do the com-
parison credibly, we need to compare the real space requirements of the
SMC algorithms based on different representations. So, we decided to im-
plement introduced representations into the SMC algorithm. We did not
implement BED representation because EQU is a co-NP-complete problem.
This thesis is focused on the probabilistic approach to SMC and there is no
known feasible probabilistic algorithm for a co-NP-complete problem. We
have implemented �-OBDD with complemented edges, �-OBDD with �-

30

meta-nodes, and merged �-OBDD representation into the SMC algorithm.
OBDD representation is in current use.

The reason for implementation is the comparison with OBDDs. So, we
do not implement our own �-OBDD package. We change implementation
of the widely used OBDD package CUDD [Som98]. The Colorado Univer-
sity Decision Diagrams (CUDD) package of Fabio Somenzi has been devel-
oped by the Department of Electrical and Computer Engineering Univer-
sity of Colorado at Boulder. The CUDD package provides many functions
to manipulate OBDDs, Algebraic Decision Diagrams (ADDs), and Zero-
suppressed Binary Decision Diagrams (ZDDs). We have added the ability
to manipulate �-OBDDs.

The main reason to choose CUDD package is its compatibility to the
symbolic model checker NuSMV [CCGR00]. The NuSMV (new symbolic
model checker) is the result of the reengineering and implementations of
the CMU SMV symbolic model checker. NuSMV is developed as a joint
project between Carnegie Mellon University and Istituto per la Ricerca Sci-
entifica a Tecnologica. NuSMV is distributed by an open source licence that
allows free academic and commercial usage. NuSMV uses CUDD package
for manipulating OBDDs and ADDs.

We have added a node counter MaxUsedKey in CUDD because we are
interested in comparison of memory requirements. The MaxUsedKey keeps
the maximal number of active nodes during the computation. A node is
active if it is created and it is not intended to be erased. It means that
MaxUsedKey corresponds to the maximal size of memory which is occupied
during the computation of NuSMV.

We have implemented all three introduced types of �-OBDD into the
CUDD package. All new nodes are created by Davio and so many �-
nodes may be unnecessary. We did not implement �-meta-nodes as single
special nodes because the CUDD package is originally an OBDD package
and there is no support for meta-nodes. So, we have implemented �-meta-
node as a chain of �-nodes. It means that low successor of �-node must
be the terminal node or a variable node and only high successor of �-node
may be a �-node. A �-meta-node with many successors occupies larger
part of memory than �-node in each implementation. Hence, if we imple-
ment�-meta-node as a chain, then the number of nodes in use corresponds
to the size of used memory much more better. We did not add any heuristic
improvements on reordering and �-node placement.

The probabilistic equivalence test EQU is performed on a Galois field
with 2

30 elements. Each test EQU is performed eight times. It means that
probability of an error result is smaller than 1=2 for 2

239 variables. Each of
verified examples has less than 250 variables. Hence, it is obvious that all
results of our experiments are correct.

We verified some examples by NuSMV and compared the MaxUsedKeys
with respect to the used representation. Results of this comparison are pre-

31

OBDD �-OBDD

example compl. edges compl. edges meta nodes merged

dartes - - - -
counter 47 54 54 51

dme1 - - - -
mutex 104 145 131 127

mutex1 306 895 573 567
ring 124 252 175 170

semaphore 237 490 376 358
short 22 22 22 22

gigamax 52633 - 127864 191084
hwb6 789 3274 1955 1878

newring 60 97 82 73
p error 8182446 - - -

p 5194783 - - -
philo 5543735 - 8491390 -
robot 33346 - 44723 -

Table 5.2: The maximal number of active nodes during the computation of
NuSMV.

sented in Table 5.2. The column example contains the names of examples
which have been verified. Next columns contain the MaxUsedKeys. A dash
indicates that the computation did not finish in twelve hours. We decided
to stop long time computation because the most of computations terminate
in one second and the others finished computations terminated in half an
hour.

Examples have been executed on an Intel Pentium III 450MHz Linux
workstations with 384MB RAM. Making fair data source for the compari-
son, we did not allow any OBDD based heuristics such as reordering tech-
niques, partial transition relation, and others. Hence, same examples did
not finish for OBDD representation, too. We switched off generating of the
counter example because we do not discuss any algorithm for finding the
true evaluation of a �-OBDD.

The examples dartes, counter, dme1, mutex, mutex1, ring, semaphore,
short, gigamax, and robot are taken from the standard NuSMV distribu-
tion. The examples p error, p, and philo are taken from the comparison
made by Tomáš Brázdil. The examples hwb6 and newring have been cre-
ated by the author of the thesis.

Concentrating on small examples, we can observe that restrictions on
the use of �-nodes leads to more succinct representation. Computing large
examples such as philo and robot, NuSMV for the merged �-OBDD repre-
sentation did not terminate. It is a conclusion of the fact that the procedure
NewNode is a linear time algorithm.

32

The �-OBDD representation with complemented edges is discursive. It
is induced by many unnecessary �-nodes created by Davio. Hence, this
representation is not practically usable because there are no rules reduc-
ing unnecessary �-nodes. Introduction of �-OBDD representation with �-
meta-nodes leads to more economic representation. Constructing �-meta-
nodes, we can find and remove more redundant subtrees. It is the first im-
provement of �-OBDD representation. Merged �-OBDD brings another
improvements but the basic disadvantage of merged �-OBDD is the linear
time complexity of NewNode.

In spite of this improvements, �-OBDD representation is not more suc-
cinct than primary OBDD representation.

33

Chapter 6

Conclusion

We have investigated the possibility of a probabilistic approach to the SMC
algorithm based on exchange of the OBDD representation. We inspected
two possible representations, �-OBDD and BED.

BEDs can be seen as an intermediate form between the compact cir-
cuits and the canonical OBDDs. All standard OBDD operations can be per-
formed on BEDs as well or better. But BED is not a proper data structure
for randomized SMC because the equivalence test EQU is a co-NP-complete
problem and there are no known feasible probabilistic algorithms for co-
NP-complete problems.

The deterministic equivalence test can be performed by transforming
the BED into an equivalent OBDD. Hence, the use of BED is a lazy compu-
tation on OBDD. It means that if we want to perform any binary operation,
we easily create new node with a label corresponding to this operation.
When we need to compare two BEDs, we transform them into OBDDs. It
is the same as performing the boolean operations which label the operation
nodes. Hence, operations are performed lazily. The advantage of this lazy
algorithm is induced by many reductions which may reduce the number of
operation nodes before its performing.

BEDs are particularly useful in applications where the end-result has a
small OBDD representation. The tautology checking is a feasible example
of this applications (see [HWA99] for more information on this topic).

�-OBDDs seem to be a promising alternative to OBDDs because they
admit a more compact representation of boolean functions. However, our
comparison indicate that the�-OBDDs are not so good for SMC as OBDDs.

�-OBDD is an immature data structure. Hence, we had to revise and
complete rules for reductions and correct mistakes in ITE-� algorithm. In
addition, we have introduced our own modification of �-OBDDs, merged
�-OBDDs.

The adverse result of our comparison may be induced by incomplete-
ness of our implementation such as representing �-meta-node as a chain

34

of �-nodes and absence of heuristic algorithms for reordering and �-node
placement.

�-meta-nodes are internally implement as chains of �-nodes in our im-
plementation. It means that each �-meta-node is encountered n� 1 times,
wheren is the number of its successors. Representing�-meta-node as a sin-
gle special node, the merged �-OBDD representation may bring markedly
more reductions. If there is a�-meta-node with n successors with the same
label, then merged �-OBDD reduction exchange those n nodes only for
three nodes. Hence, the implementation of �-meta-nodes as single special
nodes may lead to better results in case of �-OBDD representation with
�-meta-nodes and markedly better results in case of merged �-OBDD rep-
resentation.

The basic insufficiency of �-OBDDs is the absence of heuristic algo-
rithms for reordering and �-node placement. These innovations may lead
to the wide applicability of �-OBDDs. Specifically oriented usage is posi-
tive for creating effective heuristic algorithms. But there are no particulari-
ties in the SMC algorithm which may be utilized because boolean functions
used in SMC are very multifarious. Though, some elementary heuristic al-
gorithms are presented in [MS01a, MS01b].

�-OBDDs are very suitable for performing boolean operation XOR. In
SMC, there is verification performed according to the CTL formula which is
made by a person. And people are accustomed to use boolean operations
such as conjunction, disjunction, negation, and implication. So, it is bet-
ter to apply �-OBDDs into algorithms where the need for XOR operations
spring up naturally.

35

Bibliography

[AH97] Henrik R. Andersen and Henrik Hulgaard. Boolean Expression
Diagrams. In IEEE Symposium on Logic in Computer Science, 1997.

[BCL+94] Jerry R. Burch, Edmund M. Clarke, David E. Long, Ken L.
MacMillan, and David L. Dill. Symbolic Model Checking for
Sequential Circuit Verification. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 13(4):401–424,
1994.

[BCW80] Manuel Blum, Ashok K. Chandra, and Mark N. Wegman.
Equivalence of Free Boolean Graphs Can be Decided Proba-
bilistically in Polynomial Time. Information Processing Letters,
10(2):80–82, March 1980.

[BRB90] Karl S. Brace, Richard L. Rudell, and Randal E. Bryant. Effi-
cient Implementation of a BDD Package. In 27th ACM/IEEE De-
sign Automation Conference, pages 40–45, Orlando, Florida, June
1990. ACM/IEEE, IEEE Computer Society Press.

[Bry86] Randal E. Bryant. Graph-Based Algorithms for Boolean Func-
tion Manipulation. In IEEE Transactions on Computers, volume
C-35-8, pages 677–691, August 1986.

[Bry91] Randal E. Bryant. On the Complexity of VLSI Implementations
and Graph Representations of Boolean Functions with Applica-
tion to Integer Multiplication. IEEE Transactions on Computers,
40(2):205–213, February 1991.

[CCGR00] Alessandro Cimatti, Edmund M. Clarke, Fausto Giunchiglia,
and Marco Roveri. NuSMV: A New Symbolic Model Checker.
International Journal on Software Tools for Technology Transfer,
2(4):410–425, 2000.

[CGP99] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled.
Model Checking. The MIT Press, Cambridge, Massachusetts,
1999.

36

[GJ79] Michael R. Garey and David S. Johnson. Computers and In-
tractability : A Guide to the Theory of NP-Completeness. San Fran-
cisco : W. H. Freeman, 1979.

[GM93a] Jordan Gergov and Christoph Meinel. Frontiers of Feasible
and Probabilistic Feasible Boolean Manipulation with Branch-
ing Programs. In 10th Annual Symposium on Theoretical Aspects
of Computer Science, volume 665 of Lecture Notes in Computer Sci-
ence, pages 576–585, Würzburg, Germany, 25–27 February 1993.
Springer.

[GM93b] Jordan Gergov and Christoph Meinel. Mod-2-OBDD’s: A Gen-
eralization of OBDD’s and EXOR-Sum-of-Products. Technical
Report 93–21, Universität Trier, 1993. ISSN 0944–0488; FTP;
WWW.

[HWA99] Henkik Hulgaard, Poul Williams, and Henrik R. Andersen.
Equivalence Checking of Combinational Circuits using Boolean
Expression Diagrams. In IEEE Transactions of Computer-Aided
Design, volume 18(7), July 1999.

[MS97] Christoph Meinel and Harald Sack. Case Study: Manipulating
�-OBDDs by Means of Signatures. In Proc. of the 3rd Interna-
tional Workshop on Applications of the Reed-Muller Expansion in
Circuit Design, Oxford, UK, 1997.

[MS99] Christoph Meinel and Harald Sack. Algorithmic Considera-
tions of �-OBDD Reordering. In Proc. of the 4th International
Workshop on Applications of the Reed-Muller Expansion in Circuit
Design, Victoria, BC, Canada, 1999.

[MS00] Christoph Meinel and Harald Sack. Parity-OBDDs - a BDD
Structure for Probabilistic Verification. In Electronic Notes in The-
oretical Computer Science, volume 22. Elsevier Science Publish-
ers, 2000.

[MS01a] Christoph Meinel and Harald Sack. A Heuristic for �-OBDD
Minimization. Technical report, Universität Trier, 2001.

[MS01b] Christoph Meinel and Harald Sack. Improving XOR-Node
Placement for �-OBDDs. Technical report, Universität Trier,
2001.

[Som98] Fabio Somenzi. CUDD: CU Decision Diagram Package Release,
1998.

37

[Waa97] Stephan Waack. On the Descriptive and Algorithmic Power of
Parity Ordered Binary Decision Diagrams. In Proc. of 14th An-
nual Symposium on Theoretical Aspects of Computer Science, vol-
ume 1200 of Lecture Notes in Computer Science, pages 201–212,
Lübeck, Germany, 27 February–March 1 1997. Springer.

[Weg00] Ingo Wegener. Branching Programs and Binary Decision Diagrams:
Theory and Applications. Society for Industrial and Apllied Math-
ematics, 2000.

38

