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Abstract. Recent characterization [9] of those graphs for which coloured
MSO2 model checking is fast raised the interest in the graph invariant
called tree-depth. Looking for a similar characterization for (coloured)
MSO1, we introduce the notion of shrub-depth of a graph class. To prove
that MSO1 model checking is fast for classes of bounded shrub-depth,
we show that shrub-depth exactly characterizes the graph classes having
interpretation in coloured trees of bounded height. We also introduce
a common extension of cographs and of graphs with bounded shrub-
depth — m-partite cographs (still of bounded clique-width), which are
well quasi-ordered by the relation “is an induced subgraph of” and there-
fore allow polynomial time testing of hereditary properties.

1 Introduction

In this paper, we are interested in graph parameters that are intermediate be-
tween clique-width and tree-depth, sharing the nice properties of both. Clique-
width, defined in [4], is the older of the two notions. In several aspects, the theory
of graphs of bounded clique-width is similar to the one of bounded tree-width.
Indeed, bounded tree-width implies bounded clique-width. However, unlike tree-
width, graphs with bounded clique-width include arbitrarily large cliques and
other dense graphs. On the other hand, clique-width is not closed under taking
subgraphs (or minors), just induced subgraphs.

The tree-depth of a graph has been defined in [16], and is equivalent or
similar to notions such as the vertex ranking number and the minimum height of
an elimination tree [1, 5, 20], etc. Graphs with bounded tree-depth are sparse, and
enjoy strong “finiteness” properties (finiteness of cores, existence of non-trivial
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automorphism if the graph is large, well quasi-ordering by subgraph inclusion
order). They received almost immediate attention and play a central role in the
theory of graph classes of bounded expansion [17].

Graphs of bounded parameters such as clique-width allow us to efficiently
solve various optimization problems which are difficult (e.g. NP-hard) in general
[3, 6, 12, 11]. However, instead of solving each problem separately, we may ask
for results which give a solution to a whole class of problems. We call such
results algorithmic metatheorems. One of the most famous results of this kind
is Courcelle’s theorem [2], which states that every graph property expressible
in MSO2 logic of graphs can be solved in linear time on graphs of bounded
tree-width. More precisely, the MSO2 model-checking problem for a graph G
of tree-width tw(G) and a formula φ, i.e. the question whether G |= φ, can be
solved in time O(|G| · f(φ, tw(G))). (In the world of parameterized complexity
we say that such problems, solvable in time O(np · f(k)) for some constant p
and a computable function f , where k is some parameter of the input and n the
size of the input, are fixed-parameter tractable (FPT).) For clique-width a result
similar to Courcelle’s theorem holds: MSO1 model checking is FPT on graphs
of bounded clique-width [3].

However, an issue with these results is that, as showed by Frick and Grohe [7]
for MSO model checking of the class of all trees, the function f of Courcelle’s
algorithm is, unavoidably, non-elementary in the parameter φ (unless P=NP).
This brings the following question: Are there any interesting graph classes where
the dependency on the formula is better? Only recently, in 2010, Lampis [15] gave
an FPT algorithm for MSO2 model checking on graphs of bounded vertex cover
with elementary (doubly-exponential) dependence on the formula. A current
result of Gajarský and Hliněný [9] shows that there exists an FPT algorithm for
MSO2 model checking for graphs of bounded tree-depth, again with elementary
dependency on the formula.

Our results. Motivated by the success of tree-depth, we would like to formalize
a parameter which extends tree-depth towards a logic-flavoured graph descrip-
tion such as that of clique-width. We start by introducing two such parameters:
shrub-depth and SC-depth. Both of these parameters are based on the notion of
tree-model, which can be seen as a minimalistic analogue of graph interpretation
into a tree. Shrub-depth and SC-depth are then defined in terms of the number
of layers (the depth) such a tree-model must have to be able to interpret a given
graph.

The first main result of this paper is that the classes of the graphs resulting
from an MSO1 graph interpretation in the class of all finite rooted trees of
height ≤ d, with vertices labelled by a finite set of labels, are exactly the classes
of graphs of shrub-depth at most d. This result, in combination with [9], leads to
an FPT algorithm for MSO1 model checking for graphs of bounded shrub-depth
(SC-depth) with an elementary dependence on the formula.

Continuing in the same direction we also introduce the notion of m-partite
cographs, which are a natural extension of ordinary cographs. (Recall that a
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cograph is a graph that can be generated from K1 by complementations and
disjoint unions.) We argue that m-partite cographs represent a smooth inter-
mediate transition from the shrub- and SC-depth to the significantly wider and
established notions of clique-width [4] and NLC-width [21]. Indeed, we show that
all graphs in any class of shrub-depth d are m-partite cographs with a represen-
tation of depth ≤ d, for suitable m. On the other hand, every m-partite cograph
has clique-width at most 2m.

The second main result of this paper is that the class of m-partite cographs
is well-quasi-ordered by the relation of “is an induced subgraph of”. This is
a significant result, which implies that a) testing whether a graph is an m-
partite cograph is an FPT problem, and b) deciding any hereditary property
(i.e. property closed under taking induced subgraphs) on this class is an FPT
problem.

Paper organization. In Section 2 we give the necessary definitions, including
MSO1/MSO2 logics and FO/MSO graph interpretation, which is a specialized
instance of the concept of interpretability of logic theories. Section 3 then intro-
duces tree models and, through them, the new invariants shrub-depth and the
related SC-depth. Section 4 deals with MSO model checking and interpretability.
In Section 5 we investigate the more general concept of m-partite cographs and
relate it to other invariants. We conclude with Section 6.

2 Definitions

We assume the reader is familiar with standard notation of graph theory. In par-
ticular, all our graphs (both directed and undirected) are finite and simple (i.e.
without loops or multiple edges). For a graph G = (V,E) we use V (G) to denote
its vertex set and E(G) the set of its edges. We will often use labelled graphs,
where each vertex is assigned one of some fixed finite set of labels. A forest F
is a graph without cycles, and a tree T is a forest with a single connected com-
ponent. We will consider mainly rooted forests (trees), in which every connected
component has a designated vertex called the root. The height of a vertex x in
a rooted forest F is the length of a path from the root (of the component of F
to which x belongs) to x and is noted height(x, F ). The height5 of the rooted
forest F is the maximum height of the vertices of F . Let x, y be vertices of F .
The vertex x is an ancestor of y, and y is a descendant of x, in F if x belongs to
the path of F linking y to the corresponding root. If x is an ancestor of y and
xy ∈ E(T ), then x is called a parent of y, and y is a child of x.

5 There is a conflict in the literature about whether the height of a rooted tree should
be measured by the “root-to-leaves distance” or by the “number of levels” (a differ-
ence of 1 on finite trees). We adopt the convention that the height of a single-node
tree is 0 (i.e., the former view).
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Tree-depth. The closure Clos(F ) of a forest F is the graph obtained from F
by making every vertex adjacent to all of its ancestors. The tree-depth td(G) of
a graph G is one more than the minimum height of a rooted forest F such that
G ⊆ Clos(F ) [16]. For a proof of the following proposition, as well as for a more
extensive study of tree-depth, we refer the reader to [18].

Proposition 2.1. Let G and H be graphs. Then the following is true:

– If H is a minor of G then td(H) ≤ td(G).
– If L is the length of a longest path in G then dlog2(L+ 2)e ≤ td(G) ≤ L+ 1.
– If tw(G) and pw(G) denote in order the tree-width and path-width of a graph,

then tw(G) ≤ pw(G) ≤ td(G)− 1.

Clique-width. A k-expression is an algebraic expression with the following four
operations on vertex-labelled graphs using k labels: create a new vertex with label
i; take the disjoint union of two labelled graphs; add all edges between vertices
of label i and label j; and relabel all vertices with label i to have label j. The
clique-width [4] of a graph G equals the minimum k such that (some labelling
of) G is the value of a k-expression.

MSO logic and interpretation. We now briefly introduce the monadic second
order logic (MSO) over graphs and the concept of FO (MSO) graph interpreta-
tion. MSO is the extension of first-order logic (FO) by quantification over sets:

Definition 2.2 (MSO1 logic of graphs). The language of MSO1 consists of
expressions built from the following elements:

– variables x, y, . . . for vertices, and X,Y for sets of vertices,
– the predicates x ∈ X and edge(x, y) with the standard meaning,
– equality for variables, quantifiers ∀,∃ ranging over vertices and vertex sets,

and the standard Boolean connectives.

MSO1 logic can be used to express many interesting graph properties, such as
3-colourability. We also mention MSO2 logic, which additionally includes quan-
tification over edge sets and can express properties which are not MSO1 definable
(e.g. Hamiltonicity). The large expressive power of both MSO1 and MSO2 makes
them a very popular choice when formulating algorithmic metatheorems (e.g.,
for graphs of bounded clique-width or tree-width, respectively).

A useful tool when solving the model checking problem on a class of struc-
tures is the ability to “efficiently translate” an instance of the problem to a
different class of structures, for which we already have an efficient model check-
ing algorithm. To this end we introduce simple FO/MSO1 graph interpretation,
which is an instance of the general concept of interpretability of logic theories [19]
restricted to simple graphs with vertices represented by singletons.

Definition 2.3. A FO (MSO1) graph interpretation is a pair I = (ν, µ) of FO
(MSO1) formulae (with 1 and 2 free variables respectively) in the language of
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graphs, where µ is symmetric (i.e. G |= µ(x, y)↔ µ(y, x) in every graph G). To
each graph G it associates a graph I(G) (by standard abuse of notation), which
is defined as follows:

– The vertex set of I(G) is the set of all vertices v of G such that G |= ν(v);
– The edge set of I(G) is the set of all the pairs {u, v} of vertices of G such

that G |= ν(u) ∧ ν(v) ∧ µ(u, v).

This definition naturally extends to the case of vertex-labelled graphs (using a
finite set of labels, sometimes called colours) by introducing finitely many unary
relations in the language to encode the labelling.

3 Capturing height of graphs

To motivate the definition of shrub-depth, we recall the simple neighbourhood
diversity parameter introduced by Lampis [15] in his search for graph classes
having a faster MSO1 model checking algorithm: Two vertices u, v are twins in
a graph G if NG(u) \ {v} = NG(v) \ {u}. The neighbourhood diversity of a graph
G is the smallest m such that V (G) can be partitioned into m sets such that
in each part the vertices are pairwise twins (each part is then either a clique or
independent). This basically means that V (G) can be coloured by m labels such
that the existence of an edge uv depends solely on the labels of u and v.

Inspired by some subsequent generalizations of neighbourhood diversity, e.g,
in [10, 8], our idea is to enrich it with a bounded number of “layers”. That is, we
bring the following definition, which can also be viewed as a very simplified (or
minimalistic) analogue of a graph interpretation (Def. 2.3) into a tree of bounded
height:

Definition 3.1 (Tree-model). We say that a graph G has a tree-model of m
labels and depth d if there exists a rooted tree T (of height d) such that

i. the set of leaves of T is exactly V (G),
ii. the length of each root-to-leaf path in T is exactly d,

iii. each leaf of T is assigned one of m labels (T is m-labelled),
iv. and the existence of a G-edge between u, v ∈ V (G) depends solely on the

labels of u, v and the distance between u, v in T .

The class of all graphs having a tree-model of m labels and depth d is denoted
by TMm(d).

Note that there is no explicit computability assumption in Definition 3.1.iv; it
is implicit from the fact that a tree-model has fixed height and uses a bounded
number of labels.

For instance, Kn ∈ TM1(1) or Kn,n ∈ TM2(1). Definition 3.1 is further
illustrated in Figure 1. It is easy to see that each class TMm(d) is closed under
complements and induced subgraphs, but neither under disjoint unions, nor un-
der subgraphs. The depth of a tree model generalizes tree-depth of a graph as
follows (while the other direction is obviously unbounded, e.g., for cliques):
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Fig. 1. The graph obtained from K3,3 by subdividing a matching belongs to TM3(2).

Proposition 3.2. If G is of tree-depth d, then G ∈ TM2d(d), and G ∈ TM2d(d−
1) if, moreover, G is connected.

In the technical definition of a tree-model, the depth parameter d is much
more important (for our purposes, e.g. efficient MSO property testing) than
the number of labels m. With this in mind, it is useful to work with a more
streamlined notion which only requires a single parameter, and to this end we
introduce the following:

Definition 3.3 (Shrub-depth). A class of graphs G has shrub-depth d if there
exists m such that G ⊆ TMm(d), while for all natural m it is G 6⊆ TMm(d− 1).

Note that Definition 3.3 is asymptotic as it makes sense only for infinite graph
classes; the shrub-depth of a single finite graph is always at most one (0 for
empty or one-vertex graphs). Furthermore, it makes no sense to say “the class
of all graphs of shrub-depth d”.

For instance, the class of all cliques has shrub-depth 1. For more relations of
shrub-depth to other established concepts such as cographs or clique-width we
refer the reader to Section 5. It is, however, immediate from Definition 3.1 that
all graphs in TMm(d) have clique-width ≤ m, and our bounded shrub-depth
indeed “lies between” bounded tree-depth and bounded clique-width:

Proposition 3.4. Let G be a graph class and d an integer. Then:

a) If G is of tree-depth ≤ d, then G is of shrub-depth ≤ d (cf. Proposition 3.2).
b) If G is of bounded shrub-depth, then G is of bounded clique-width.

The converse statements are not true in general.

SC-depth. One can come with yet another, very simple and single-parameter
based, definition of a depth-like parameter which is asymptotically equivalent

to shrub-depth: Let G be a graph and let X ⊆ V (G). We denote by G
X

the
graph G′ with vertex set V (G) where x 6= y are adjacent in G′ if (i) either
{x, y} ∈ E(G) and {x, y} 6⊆ X, or (ii) {x, y} 6∈ E(G) and {x, y} ⊆ X. In other

words, G
X

is the graph obtained from G by complementing the edges on X.

Definition 3.5 (SC-depth6). We define inductively the class SC(n) as follows:

6 As the “Subset-Complementation” depth.
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{a, b, e}

d

a

Fig. 2. A graph G and two possible SC-depth representations by depicted trees.

– We let SC(0) = {K1};
– if G1, . . . , Gp ∈ SC(n) and H = G1∪̇ . . . ∪̇Gp denotes the disjoint union of

the Gi, then for every subset X of vertices of H we have H
X ∈ SC(n+ 1).

The SC-depth of G is the minimum integer n such that G ∈ SC(n).

The SC-depth of a graph G is thus the minimum height of a rooted tree
Y , such that the leaves of Y form the vertex set of G, and each internal node
v is assigned a subset X of the descendant leaves of v. Then the graph corre-
sponding to v in Y is the complement on X of the disjoint union of the graphs
corresponding to the children of v (see Fig. 2).

Theorem 3.6. Let G be a class of graphs. Then the following are equivalent:

– There exist integers d, m such that G ⊆ TMm(d) (i.e. G has bounded shrub-
depth).

– There exists an integer k such that G ⊆ SC(k) (i.e. G has bounded SC-depth).

The reason we introduce both asymptotically equivalent SC-depth and shrub-
depth measures here is that each one brings a unique perspective on the class of
graphs we are interested in (and for a yet another, more general, perspective we
refer to Section 5).

4 MSO interpretation and model checking

In this section we present the first main result of the paper, Theorem 4.1, which
shows that our tree-model (Def. 3.1) indeed fully captures the power of an MSO1

graph interpretation. While such a result may be expected for FO logic, we
believe it is rather surprising in the full scope of MSO logic. The assumption of
bounded depth of the target tree is absolutely essential here.

Theorem 4.1. A class G of graphs has an MSO1 graph interpretation in the
class of all finite rooted trees of height ≤ d, with vertices labelled by a finite set
of labels, if and only if G has shrub-depth at most d.

While the proof of Theorem 4.1 is rather involved by itself, it strongly relies
also on the following recent result which is of independent interest:
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Proposition 4.2 (Gajarský and Hliněný [9]). Let T be a rooted tree with
each vertex assigned one of a finite set of m labels, and let φ be any MSO1

sentence with q quantifiers. There exists a function7 R(q,m, d) ≤ exp(d)
(
(q +

m)O(1)
)

such that the following holds:
Assume a node u ∈ V (T ) such that the subtree Tu ⊆ T rooted at u is of

height d, and denote by U1, U2, . . . , Uk the connected components of Tu − u. If
there is I ⊆ {2, . . . , k}, |I| ≥ R(q,m, d), such that there exist label-preserving
isomorphisms from U1 to each Ui, i ∈ I, let T ′ = T −V (U1). Then, T |= φ ⇐⇒
T ′ |= φ.

Theorem 4.1, combined with another recent result of [9] — stated here as
Theorem 4.3, gives us an MSO1 model checking algorithm which is in FPT and
has an elementary dependence on the size of the formula φ. Note that this claim
is in contrast with the well known algorithms of Courcelle [2] for MSO2 and
Courcelle et al. [3] for MSO1 model checking problems on the graphs of bounded
tree- and clique-width, both of which were shown to have a non-elementary lower
bound in φ by Frick and Grohe [7].

Theorem 4.3 (Gajarský and Hliněný [9]). Assume d ≥ 1 is a fixed integer.
Let T be a rooted tree of height d with vertices labelled by a finite set of m
labels, and let φ be any MSO1 sentence with q quantifiers. Then the MSO1 model
checking problem T |= φ can be solved by an FPT algorithm, concretely in time
O
(
|V (T )|

)
+ exp(d+1)

(
(q + m)O(1)

)
, which is elementary in the parameters φ

and m.

Corollary 4.4. Assume d ≥ 1 is a fixed integer. Let G be any graph class of
shrub-depth (or SC-depth) ≤ d. Then the MSO1 model checking problem on G,
i.e., testing G |= φ for the input G ∈ G and MSO1 sentence φ, can be solved by
an FPT algorithm, the runtime of which has an elementary dependence on the
parameter φ. This assumes G is given on the input alongside with its tree-model
of depth d.

Corollary 4.4 thus nicely complements Theorem 4.3 and its straightforward
consequence in fast MSO2 model checking of graphs of bounded tree-depth. The
converse direction of Theorem 4.1 moreover shows that bounded shrub-depth
exactly characterizes the largest extent to which faster MSO1 model checking
can be obtained by the means of Theorem 4.3 – the primary motivation of our
research here.

Note that the result of Corollary 4.4 assumes we are given a tree-model of
G of depth d on the input. It is therefore natural to ask what is the complex-
ity of obtaining such a model. So far, we have not reached much progress in
this direction—while we can test in FPT whether a graph belongs to TMm(d)
(Section 5), we are not yet able to construct a corresponding tree-model (or,
alternatively, an SC-depth tree).

7 Here exp(d) stands for the iterated (“tower of height d”) exponential, i.e., exp(1)(x) =

2x and exp(i+1)(x) = 2exp(i)(x).
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5 On m-partite cographs

A cograph, or complement-reducible graph, is a graph that can be generated
from K1 by complementations and disjoint unions. Cographs were introduced
independently by several authors in the seventies, and they are exactly those
graphs excluding an induced path of length three. The tree representation of a
cograph G is a rooted tree T (called cotree), whose leaves are the vertices of G
and whose internal nodes represent complemented union.

Some generalizations of cographs have been proposed; e.g., bi-cographs [13]
or k-cographs [14]. The following generalization we present here is very natural:

Definition 5.1 (m-partite cograph). An m-partite cograph is a graph that
admits an m-partite cotree representation, that is a rooted tree T such that

– the leaves of T are the vertices of G, and are coloured by a label from
{1, . . . ,m},

– the internal nodes v of T are assigned symmetric functions fv : {1, . . . ,m}×
{1, . . . ,m} → {0, 1} with the property that two vertices x and y of G with
respective colours i and j are adjacent iff their least common ancestor v in
T has fv(i, j) = 1.

By extension, the depth of an m-partite cograph G is the minimum height of an
m-partite cotree representation of G.

a b

c

d

e

1a 2e 1b 2c

f(1,2)=f(2,1)=1 f(1,2)=f(2,1)=1

f(1,1)=1 2 d

f(2,2)=1

Fig. 3. A 2-partite cotree representation of the graph cycle C5, with f(x, y)=0 unless
otherwise specified.

One can easily deduce from the definition that the graphs in TMm(d) are
all m-partite cographs of depth ≤ d. A converse claim is also true (although not
immediate).

Theorem 5.2. Let G be a graph class. Then the following are equivalent:

– There exist integers d,m such that G only contains m-partite cographs of
depth ≤ d.

– The class G has bounded shrub-depth (or bounded SC-depth, cf. Theorem 3.6).
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It is instructive to look at the general relation of m-partite cographs to shrub-
depth and clique-width. The crucial difference between a tree-model and an
m-partite cotree representation is in bounding the height of the former. Com-
paring an m-partite cotree representation to a clique-width expression, roughly
saying, the difference lies in the absence of the relabelling operator for the former
(this is better seen with the related NLC-width notion [21]). Altogether we get:

Proposition 5.3. Every m-partite cograph has clique-width at most 2m.

Figure 4 summarizes the inclusion hierarchy of the classes we have considered.
We give next two examples illustrating the fact that the inclusions indicated in
the figure are strict.

Bounded tree-depth

Bounded shrub-depth

m-partite cographs

Bounded clique-width

Bounded height trees

Bounded tree-width

interpretation
well

quasi-ordered
by induced
subgraphs

Fig. 4. Hierarchy of graph classes. Arrows mean strict inclusion.

Example 5.4. a) Let Hn denote the graph obtained from the disjoint union of
an independent set {a1, . . . , an} and a clique on {b1, . . . , bn} by adding all
edges aibj such that i ≥ j. Although each Hn is a 2-partite cograph, the class
{Hn} has unbounded shrub-depth.

b) The class of all paths has clique-width ≤ 3, while a path of length n is an
m-partite cograph if and only if n < 3(2m − 1).

A well-quasi-ordering (or wqo) of a set X is a quasi-ordering such that for
any infinite sequence of elements x1, x2, . . . of X there exist i < j with xi ≤
xj . In other words, a wqo is a quasi-ordering that does not contain an infinite
strictly decreasing sequence or an infinite set of non-comparable elements (i.e. an
infinite antichain). The existence of a well-quasi-ordering has great algorithmic
consequences. For instance, the Robertson-Seymour theorem, which proves that
the relation “is a minor of” is a well-quasi-ordering of graphs, implies that for
every minor-closed family C there is a finite set of forbidden minors for C, and
hence there is a polynomial time algorithm for testing whether a graph belongs
to C. Here we will focus on the quasi-ordering ⊆i (“is an induced subgraph of”).
A class C that is closed under taking induced subgraphs is said to be hereditary.

Theorem 5.5. Let m be an integer. The class of m-partite cographs is well-
quasi-ordered by the relation ⊆i (“is an induced subgraph of”).
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Corollary 5.6. a) For every integer m, the class of m-partite cographs is de-
fined by a finite set of excluded induced subgraphs. Hence m-partite cographs
are recognizable by an FPT algorithm.

b) For every hereditary property P and every integer m, the property P can be
decided by an FPT algorithm on the class of m-partite cographs.

For instance, for every fixed integers k and m, the k-colourability problem
can be solved in polynomial time in the class of m-partite cographs.

6 Concluding notes

The main motivation of this paper has been to come up with a notion of
“bounded graph depth” which extends the established notion of tree-depth to-
wards dense graphs and parameters similar to clique-width. We have succeeded
in this direction with two new, asymptotically equivalent, parameters; shrub-
depth and SC-depth. The advantage of the former is that it exactly characterizes
the graph classes interpretable in trees of height d, while the latter (SC-depth)
outdoes the former with a simpler, single-parameter definition.

Our research topic is also closely related to the class of cographs, and to their
natural generalization — m-partite cographs. Saying briefly, graphs of bounded
SC-depth are those having m-partite cograph representation of bounded depth.
On the other hand, the larger class of all m-partite cographs is “sandwiched”
strictly between bounded shrub-depth and bounded clique-width, and it shares
several nice finiteness properties with classes of bounded shrub-depth (e.g., well-
quasi-ordering under induced subgraphs, which is not true for bounded clique-
width classes in general).

The prime algorithmic applications are of two kinds: Firstly, in connection
with [9], we obtained an FPT algorithm for MSO1 model checking for graph
classes of bounded shrub-depth which is faster than the algorithm of [3] in the
sense that it depends on the checked formula in an elementary way. Secondly,
via the well-quasi-ordering property of m-partite cographs, we have proved an-
other algorithmic metatheorem claiming FPT (nonuniform) decidability of all
hereditary properties on the classes of m-partite cographs.

Finally, we would like to mention some open questions and directions for
future research. Primarily, we do not know yet how to efficiently (in FPT) con-
struct decompositions related to our depth parameters (in this respect our sit-
uation is similar to that of clique-width), though we can test existence of such
decompositions via Corollary 5.6. We also suggest to investigate the complexity
of the isomorphism (or canonical labelling) problem on the classes of bounded
shrub-depth, and to try to characterize the maximal graph classes admitting
well-quasi-ordering under coloured induced subgraphs. Finally, we remark on
the possibility of extending our tools and notions from graphs to general rela-
tional structures.
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A Appendix

The full concepts and proofs not fitting into the restricted conference paper are
presented in this Appendix.

A.1 Shrub-depth: additions to Section 3

Proposition 3.2 If G is of tree-depth d, then G ∈ TM2d(d), and G ∈ TM2d(d−
1) if, moreover, G is connected.

Proof. Let U be a rooted forest of height d−1 such that G ⊆ Clos(U), and let T
be a rooted tree obtained by adding a new root r connected to the former roots
of U , and d′ = d. If G is connected, then U already is a tree, and then we set
T = U and d′ = d− 1.

For u ∈ V (T ) we set a label c(u) = (j, I) such that distT (r, u) = d′ − j
and I = {i : {u, anci(u)} ∈ E(G)}, where anci(u) denotes the ancestor of u
in T at distance i from u. Notice that I ⊆ {1, . . . , d − 1 − j} (because of the
height of U), and so the total number of distinct c(u) over all u ∈ V (U) is
2d−1 + 2d−2 + · · ·+ 1 < 2d. Let T ′ be obtained from T as follows: For every node
u ∈ V (U) such that distT (r, u) < d′, we add to u a new path with the other end
denoted by u′ such that distT ′(r, u′) = d′, and set c(u′) = c(u).

We claim that this T ′ with the labels c(v) in the leaves of T ′ is the desired
tree-model of G. Let G′ be the graph defined on the leaves of T ′ as follows;
{u, v} ⊆ V (G′) is an edge of G′ iff, for c(u) = (j1, I1), c(v) = (j2, I2) and
j1 < j2, it holds distT ′(u, v) = 2j2 and j2 − j1 ∈ I1. Then clearly G′ ' G. ut

Proposition 3.4 Let G be a graph class and d an integer. Then:

a) If G is of tree-depth ≤ d, then G is of shrub-depth ≤ d (cf. Proposition 3.2).
b) If G is of bounded shrub-depth, then G is of bounded clique-width.

The converse statements are not true in general.

Proof. a) This follows from Proposition 3.2, and the converse cannot be true in
general because of, e.g., the cliques.

b) This is since one can straightforwardly translate a tree-model with m
labels (and an arbitrary depth) into an m-expression. A counterexample for the
converse claim is the class of all paths by Lemma A.5. ut

Theorem 3.6 Let G be a class of graphs. Then the following are equivalent:

– There exist integers d, m such that G ⊆ TMm(d) (i.e. G has bounded shrub-
depth).

– There exists an integer k such that G ⊆ SC(k) (i.e. G has bounded SC-depth).

Proof. The proof of this theorem will actually use an intermediate notion of
m-partite cographs from Section 5. Hence it will follow from Lemma A.4 and
Theorem 5.2. ut
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A.2 MSO1-interpretation: additions to Section 4

Theorem 4.1 A class G of graphs has an MSO1 graph interpretation in the
class of all finite rooted trees of height ≤ d, with vertices labelled by a finite set
of labels, if and only if G has shrub-depth at most d.

Before proving this important statement, we need the following technical
lemma:

Lemma A.1. Assume X,Y are label-preserving vertex automorphism orbits in
a rooted labelled tree T , and x ∈ X, y ∈ Y are chosen arbitrarily. If z is the
least common ancestor of x, y in T , then the pair (x, y) is determined uniquely
up to a label-preserving automorphism of T by the pair of distances distT (x, z),
distT (y, z).

Proof. All isomorphisms in this proof are label-preserving (w.r.t. the node la-
belling of T ). Firstly, we clarify the meaning of the claim; for any x1, x2 ∈ X,
y1, y2 ∈ Y , and their least common ancestors z1, z2 in T , such that distT (x1, z1) =
distT (x2, z2) and distT (y1, z1) = distT (y2, z2), there is an automorphism of T
taking the pair (x1, y1) onto (x2, y2). We carry on the proof by induction on
d = distT (x1, z1) + distT (y1, z1).

The base case of d = 0 is trivial (since x1 = y1 and x2 = y2). Consider now an
induction step to d+1 where distT (x1, z1) ≥ 1. Let x′1, x

′
2 be the parent nodes of

x1, x2, respectively, and let X ′ denote the set of parent nodes of all the members
of X. Then X ′ is a vertex orbit of T , too. By inductive assumption, there is an
automorphism τ of T taking the pair (x′1, y1) onto (x′2, y2). If τ(x1) = x3, then
x3 is a child of x′2, and the subtree of T rooted at x3 is isomorphic to that of
x2 by transitivity. Therefore, we may without loss of generality assume x3 = x2,
and the induction step is complete. ut

Notice that Lemma A.1 and its proof can be easily extended to arbitrary k-
tuples of tree nodes, which are then uniquely determined up to a T -automorphism
by the shape of their Steiner trees.

Proof (of Theorem 4.1). Observe that it is clear from Definition 3.1 that for any
fixed integers d,m, the class TMm−1(d) has an MSO interpretation (or even
first order) in the class Tm(d) of all finite rooted trees of height at most d with
each node assigned one of m labels. It thus follows easily that so does every G

of shrub-depth d for a suitable choice of m.
Now, suppose that (α, β) are MSO formulae defining the interpretation of G

in Tm(d) for suitable m, i.e., every G ∈ G is interpreted in some TG ∈ Tm(d)
as follows: V (G) = {x ∈ V (TG) : TG |= α(x)} and E(G) = {xy : x, y ∈
V (G) ∧ TG |= β(x, y)}. We will construct a tree-model of G of depth d using a
bounded number of (new) labels. For technical reasons, we transform β into a
closed sentence, β′ ≡ ∃x, y

(
L(x)∧L(y)∧β(x, y)

)
, where L is a new label (added

to nodes of the tree). We add the label L to precisely two nodes of TG for which
we will need to test adjacency in G.
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Let G ∈ G be a fixed graph and let T = TG, as above. For u ∈ V (T ), denote
by Tu ⊆ T the subtree rooted at u. Let q be the number of quantifiers in β′,
and for Ri = R(q,m, i) from Proposition 4.2, let R′i = Ri + 2. We repeat the
following recursively, starting from the leaf nodes of T , going up to the root: For
each u ∈ V (T ) such that Tu is of height i, consider the components of Tu − u
partitioned into the equivalence classes according to the existence of a label-
preserving isomorphism. We prune the number of components in each class to
exactly R′i whenever possible. Let T ′ be the resulting “reduced” subtree of T .
Observe that T ′ is of bounded size depending only q,m and d, and independent
of the size of T .

Suppose x, y is a pair of nodes of T for which we want to test adjacency
in G. Let T [L(x), L(y)] denote the tree T in which the new label L has been
assigned to precisely x, y ∈ V (T ). Correspondingly, we denote by T ′[L(x), L(y)]
the reduced tree as described above. Note that up to symmetry, we may always
assume x, y ∈ V (T ′). Furthermore, while forming T ′[L(x), L(y)], we only remove
components from label preserving isomorphism classes of Tu[L(x), L(y)] − u of
size > R′i − 2 = Ri, thereby accounting for the possibility that some, at most
two, components of Tu[L(x), L(y)]− u receive the label L. Then, it follows from
Proposition 4.2 that T [L(x), L(y)] |= β′ ⇐⇒ T ′[L(x), L(y)] |= β′. Consequently,
for each pair x, y, one can determine whether or not it forms an edge in G simply
by testing if T ′ with a suitable assignment of L satisfies β′.

We now describe how to obtain a tree model for G with height d and a
bounded number of labels. Starting with the rooted Steiner tree of V (G) in TG,
we construct U by possibly “pushing” the vertices V (G) to leaves at distance ex-
actly d from the root, in order to fulfil Definition 3.1. For each u ∈ V (G), let d(u)
denote the distance it is pushed while forming U and Or(u) be the automorphism
orbit of u in T ′. We assign the label (T ′, Or(u), d(u)) to each u ∈ V (G). For any
pair u, v ∈ V (G), |d(u) − d(v)| yields the height of their common ancestor, z,
thereby also determining distT (x, z) and distT (y, z). Subsequently, Lemma A.1
implies that the labels (T ′, Or(u), d(u)) and (T ′, Or(v), d(v)) determine the ex-
act mutual position of u, v within T ′. Hence, this tree model can determine the
value of T ′[L(x), L(y)] |= β′, which in turn determines T [L(x), L(y)] |= β′, and
consequently, the logical value of T |= β(u, v). ut

Now for the second result:

Corollary 4.4 Assume d ≥ 1 is a fixed integer. Let G be any graph class of
shrub-depth (or SC-depth) ≤ d. Then the MSO1 model checking problem on G,
i.e., testing G |= φ for the input G ∈ G and MSO1 sentence φ, can be solved by
an FPT algorithm, the runtime of which has an elementary dependence on the
parameter φ. This assumes G is given on the input alongside with its tree-model
of depth d.

Proof. Recall that that Tm(d) denotes the class of all finite rooted trees of height
≤ d with each node assigned one of m labels. By (the easy direction of) Theo-
rem 4.1, for suitable finite m and every G ∈ G there is labelled TG ∈ Tm(d) such
that G has a simple MSO1 interpretation in TG. This tree TG is straightforwardly
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obtained from the assumed tree-model of G, and the interpretation is given by
a pair (α, β) of MSO1 formulae defining V (G) = {x ∈ V (TG) : TG |= α(x)} and
E(G) = {xy : x, y ∈ V (G) ∧ TG |= β(x, y)}.

We now take the input MSO1 sentence φ, and construct φ′ by replacing every
occurrence of ‘∃x(. . . )’ with ‘∃x(α(x) ∧ . . . )’ and of ‘edge(x, y)’ with ‘β(x, y)’.
Then G |= φ iff TG |= φ′. Hence the rest follows from Theorem 4.3. ut

A.3 m-partite cographs: additions to Section 5

Theorem 5.2 Let G be a graph class. Then the following properties are equiva-
lent:

– there exist integers d,m such that the class G only contains m-partite cographs
of depth at most d;

– the class G has bounded shrub-depth (or SC-depth, cf. Theorem 3.6).

We deduce the theorem from the following two lemmas relating m-partite
cographs to SC-depth of Def. 3.5.

Lemma A.2. Assume G ∈ Kn then G has a 2n-partite cotree representation of
depth n.

Proof. We prove the statement by induction over n. If n = 1 the statement is
obviously satisfied. Assume G ∈ Kn+1. Then there exist G1, . . . , Gp ∈ Kn and

a subset X of vertices of G such that G =
∑
Gi

X
. By induction, each Gi has

a 2n-partite cotree representation of depth n (where the label of a vertex x is
denoted by label(x)). Let Xi = X ∩ V (Gi). We define a new labelling of the
vertices of Gi by l(x) = (label(x), 0) if x 6∈ X and l(x) = (label(x), 1) if x ∈ X.
By complementing the Boolean functions defining adjacencies between vertices

whose label have the form (i, 1), we get that Gi
Xi

has a 2n+1-partite cotree
representation of depth n. Moreover, if p > 1, by gluing tree representations and
defining a new Boolean function f at the root by f((i, a), (j, b)) = 1 if a = b = 1
we get that G has a 2n+1-cotree representation of depth n+ 1. ut

Lemma A.3. Assume G has an m-partite cotree representation of depth d.
Then G ∈ K3dm2 .

Proof. We prove the statement by induction over d. If d = 0 (i.e. G = K1)
then the statement is true. Assume G has an m-partite cotree representation
of depth d + 1. Then there exist a subset {G1, . . . , Gp} of graphs, each having
an m-partite cotree representation of depth d, and a symmetric function f :
{1, . . . ,m}× {1, . . . ,m} → {0, 1} such that G is obtained from

∑
Gi by making

adjacent vertices with label α in Gi and vertices with label β in Gj whenever
i 6= j and f(α, β) = 1. By induction, each of the Gi belongs to K3dm2 . For each
i, we proceed to a sequence of complementations of subsets of vertices of Gi

in such a way that for every 1 ≤ a ≤ b ≤ m such that f(a, b) = 1 the set of
edges between vertices of Gi with label a and b are complemented. This takes at

16



most 3
(
m
2

)
iterations and leads to graph G′i. Then we consider

∑
G′i and again

proceed to a sequence of complementations of subsets of vertices of G in such a
way that for every 1 ≤ a ≤ b ≤ m such that f(a, b) = 1 the set of edges between
vertices of Gi with label a and b are complemented. Altogether, we proceeded
to at most 3m2 operations and obtained the graph G hence G ∈ K3(d+1)m2 . ut
Lemma A.4. Let m, d be arbitrary positive integers.

– All graphs in the class TMm(d) are m-partite cographs of depth at most d.
– For each m there exists m′ such that every m-partite cograph of depth d

belongs to the class TMm′(d).

In other words, a graph class G is of shrub-depth d iff there exists m such that
all members of G are m-partite cographs of depth at most d.

Proof. The first direction is trivial as every tree-model of m labels is at the same
time an m-partite cograph.

As for the other direction, we have to introduce a little trick. For each internal
node v of a cotree representation T of a graph G, there is only a bounded number
of possible choices of the function fv (cf. Def. 5.1) for fixed m. Hence, for every
leaf x (of T ) we can, in addition to the original label, record the functions fv
for all ancestors v of x. Since the cotree representation T is of bounded depth
d, this leads to a finite number of m′ possible new labels. Lastly, it remains to
“prolong” each branch of T to length exactly d. Hence G ∈ TMm′(d). ut

m-partite cographs and clique-width. That the class of m-partite cographs
has bounded clique-width can be deduced from the connection between clique-
width and the classes NLCm introduced by Wanke [21]. Recall that NLCm

consists of all graphs that can be obtained from single vertices with labels in
{1, . . . ,m} using the two following operations:

– union of two graphs G1 and G2, with addition of all edges between vertices
of G1 with label i and vertices of G2 with label j whenever (i, j) belongs to
a given subset S of {1, . . . ,m} × {1, . . . ,m}, called signature;

– relabelling of the vertices according to some mapping from {1, . . . ,m} to
{1, . . . ,m}.

The NLC-width of a graph is the minimum m such that the graph belongs to
NLCm. It has been proved in [23] that the NLC-width and the clique-width of
a graph G are related by

NLC-width(G) ≤ clique-width(G) ≤ 2 NLC-width(G). (1)

From this we immediately deduce:

Proposition 5.3 Every m-partite cograph is of clique-width at most 2m.

Proof. It is a straightforward induction over the depth of an m-partite cotree-
representation that the class of m-partite cographs is included into NLCm. The
proof then follows from inequality (1). ut
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T

P9

f(◦, ◦) = f(•, ◦) = f(◦, •) = 0; f(•, •) = 1

f(◦, ◦) = f(•, ◦) = f(◦, •) = f(•, •) = 0

f(•, •) = f(•, ◦) = f(◦, •) = 0; f(◦, ◦) = 1

f(◦, ◦) = f(•, ◦) = f(◦, •) = f(•, •) = 0

f(◦, ◦) = f(•, ◦) = f(◦, •) = f(•, •) = 1

Fig. 5. 2-cotree representation of P9.

As for Example 5.4 b) we have got:

Lemma A.5. A path on n vertices is an m-partite cograph if and only if n ≤
3(2m − 1).

Proof. We first prove by induction over m that if n = 3(2m − 1) then Pn is an
m-partite cograph. The case m = 1 is well known. So assume Pn is an m-partite
cograph and let T be an m-partite cotree representation of Pn. Take two copies
T1 and T2 of T , and replace in each of the trees one of the leaves x representing
an extremity of the path by a small tree with a root r and two sons: one being x
(with the same colour) and the other being a new vertex x′ with colour m+ 1.
The function assigned to r being constant and equal to 1. For all the functions
assigned to other internal nodes of T1 and T2 define f(i,m+1) = f(m+1, i) = 0
for every 1 ≤ i ≤ m + 1. Let T ′ be the rooted tree with root r such that r
has two sons: a vertex s, with sons T1 and T2, and a leaf t, with colour m + 1.
At the internal vertex s we assign the function fs such that f(i, j) = 0 for
every i, j. At the root r we assign the function fr such that f(i, j) = 1 only if
i = j = m+ 1. Then T ′ is an (m+ 1)-cotree representation of P2n+3 (see Fig 5
for the construction of P9 as a 2-partite cograph).

We now prove by induction over m that if n = 3(2m − 1) + 1 then Pn is
not an m-partite cograph. The case m = 1 is again well known. So assume for
contradiction that T is an m+1-partite cotree representation of P3(2m+1−1)+1 =
P2n+2 and let r be the root of T . As P2n+2 is connected, the function fr assigned
to the root is non-zero and there exists i, j (possibly equal) such that some the
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subtree Tu rooted at a son u of r includes at least a leaf with colour i, the subtree
Tv rooted at a son v of r different from u includes a least a leaf with colour j,
and fr(i, j) = 1. As none of K3,K2,2, and K1,3 are induced subgraphs of P2n+2,
we can assume (by symmetry) that Tu includes 1 or 2 leaves with colour i, that
Tv includes exactly 1 leaf with colour j. Two cases could occur:

If r has two sons u1 and u2 such that Tu1
and Tu2

includes both one leaf
with colour i, i 6= j, and only Tv includes a leaf z with colour j. Thus Gz is an
m-partite cograph. As this graph includes Pn as an induced subgraph, we get a
contradiction.

Otherwise, no son x other than u or v is such that Tx includes a leaf with
colour i or j. In this case, we can permute the colours i and j in Tu (and
consequently change the functions at interior vertices of T ) to ensure i = j.

If Tu includes exactly on leaf with colour j then there exists a colour k such
that fr(j, k) = 1. It follows that there exists in T exactly one leaf z of colour k,
which belongs either to Tu or to Tv. As previously, G−z is an m-partite cograph
that includes Pn as an induced subgraph, a contradiction.

Thus Tu includes two leaves with colour j and fr(a, b) = 1 if only if a = b = j.
By deleting all the vertices of colour j (which form a K1,2), we get two connected
components, each being a path. The longest one has order at least n. As it is an
m-partite cograph, we get a contradiction. ut

Further examples. However, although it is clear that m-partite cographs do
not include long induced paths or long induced copaths, the converse is not
true: The graph Gn obtained from the path Pn = (v1, . . . , vn) by adding all
edges between vertices with even index obviously contains no P5 and no P 5. So
assume all the Gn are m-partite cographs for some fixed integer m. By assigning
to each vertex x with original colour c(x) the colour (c(x), i(x)) where i(x) = 0
if the index of x is even and i(x) = 1 if it is odd, one easily deduce from an
m-partite cotree representation of Gn a 2m-cotree representation of Pn, hence
we get a contradiction if we choose n > 3(22m − 1).

The proof of Example 5.4 a) will follow from the next theorem, which shows
that every sufficiently large m-partite cograph has many non-trivial automor-
phisms.

Theorem A.6. There exists a function β : IN4 → IN with the following prop-
erties: For every integers d,m, k, p, every graph G ∈ TMm(d) of order at least
β(d,m, k, p) and every colouring c : V (G) → {1, . . . , k} there exists disjoint
subsets A1, . . . , Ap of vertices of G such that:

1. each of the subsets Ai contains at most β(d,m, k, p) vertices,
2. for every 1 ≤ i < j ≤ p there exists a c-preserving involutive automorphism

fi,j of G globally exchanging Ai and Aj (vertices of G−Ai −Aj being fixed
by fi,j).

Proof. Let G ∈ TMm(d) and let Y be a tree-representation of G. To each leaf of
Y is associated a vertex of x, with a label label(x) and a colour c(x). Moreover,
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to each automorphism of Y preserving both the labels and the colours of the
leaves corresponds an automorphism of G. For n, x, y ∈ IN, let r(n, x, y) be
the number of unlabelled rooted trees of order at most n with nodes coloured
using x colours and tree height y. Let F (x, y) = x(p − 1) + 1 if y = 1 and
F (x, y) = r(F (x, y − 1), x, y − 1)(p − 1) + 1, otherwise. Assume that Y has at
least F (mk, d) leaves. We prove by induction over d that there exists an internal
node v of Y such that p isomorphic subtrees of Y are rooted at p sons of v. If
d = 1 the statement follows from an immediate pigeon-hole argument. Assume
that the statement holds for d = d0 ≥ 1 and assume d = d0 + 1. Assume
for contradiction that no p isomorphic subtrees of Y are rooted at p sons of
an internal vertex of Y , and let r be the root of Y . Then, by induction, all
the subtrees rooted at a son of r have order at most F (mk, d − 1). As there
are at most r(F (mk, d − 1),mk, d − 1) non-isomorphic such subtrees, and has
F (mk, d) > r(F (mk, d−1),mk, d−1)(p−1) we conclude that p subtrees rooted
at sons of r are isomorphic, a contradiction. ut

Such a statement does not hold for m-partite cographs in general, as shown
by the construction of Example 5.4 a), which we recall now. For an integer n,
consider the graph Hn defined as the graph with vertex set {ai}1≤i≤n∪{bj}1≤j≤n
where ai is adjacent to bj if j ≤ i and all the bj form a clique (see Fig 6).

a1 a2 a3 a4 an. . . a1b1

a2

b2

an

bn� :

{
f(◦, ◦) = f(•, •) = 0

f(•, ◦) = f(◦, •) = 1

� :

{
f(•, •) = f(•, ◦) = f(◦, •) = 0

f(◦, ◦) = 1

b1 b2 b3 b4 bn. . .

Fig. 6. The graph Hn of Example 5.4 a) is a 2-partite cograph with a single non-trivial
automorphism.

Each graphHn is a 2-partite cograph (how a 2-partite cotree representation of
Hn is obtained is shown Fig 6). However, Hn has no non-trivial automorphisms.
Indeed, only an and bn have the same degree in Hn hence the only non-trivial
automorphism pf Hn exchanges these vertices while fixing all the other vertices.
However, according to Theorem A.6 we should find more automorphisms when
n is sufficiently large if the class {Hn} had bounded shrub-depth.

m-partite cographs and WQO

Theorem 5.5 Let m be an integer. The class of m-partite cographs is well-
quasi-ordered by the relation of “being an induced subgraph of”.

20



Let T, T ′ be rooted labeled trees, with labels in a partially ordered set X. A
homeomorphic embedding f : T → T ′ is an injection from V (T ) to V (T ′) such
that

– for every x in T it holds label(x) ≤ label(f(x));
– for every x ≤ y in T it holds f(x) ≤ f(y) in T ′;
– for every x, y in T it holds f(x ∧ y) = f(x) ∧ f(y).

Kruskal proved the following theorem [24]:

Theorem A.7. Let {Ti}i∈I be a family of rooted labelled trees, with labels in a
well-quasi-ordered set X. Then there exist i < j such that Ti embeds homeomor-
phically in Tj.

Lemma A.8. Let T (G) and T (H) be m-partite cotree representing m-partite
cographs G and H. Assume that T (H) embeds homeomorphically in T (H) in
such a way that the root of T (H) is mapped into the root of T (G), that the
leaves of T (H) are mapped to leaves of T (G), and that labels are preserved.
Then H is (isomorphic to) an induced subgraph of G.

Proof. Let f : V (H) → V (G) be the homeomorphic embedding. Each vertex
v of T (G) (resp. T (H)) is labelled by a symmetric function gv (resp. hv) from
{1, . . . ,m} × {1, . . . ,m} to {0, 1}. We identify V (G) (resp. V (H)) with the set
L(G) (resp. L(H)) of the leaves of T (G) (resp. T (H)). If x and y have respective
colours i and j, the same holds for f(x) and f(y). Moreover, as f is injective, f(x)
and f(y) are adjacent in G if and only if gf(x)∧f(y)(i, j) = 1. As f(x) ∧ f(y) =
f(x ∧ y) and has gf(x) = hx we get that f(x) and f(y) are adjacent in G if and
only if hx∧y = 1, that is: if and only if x and y are adjacent in H. It follows that
H is isomorphic to the induced subgraph of G induced by f(L(H)). ut

Proof (of Theorem 5.5). Let (Gi)i∈I be a family of m-partite cographs and let
(T (Gi))i∈I be m-partite cotree representations of these graphs. Let X be the set
of the pairs (α, β) where α ∈ {0, 1, 2}, and where β belongs to {1, . . . ,m} if α = 0
and to the set of the symmetric functions from {1, . . . ,m}×{1, . . . ,m} to {0, 1}
otherwise. This (finite) set X is trivially partially ordered by (α, β) ≤ (α′, β′) if
(α, β) = (α′, β′).

We put labels on the vertices of T (G) as follows: to each leaf with colour i we
assign the label (0, i), to each internal vertex v with assigned Boolean symmetric
function gv we assign the label (1, gv) if v is the root of T (G) and the label (2, gv),
otherwise.

According to Theorem A.7, there exist i < j such that Ti embeds homeo-
morphically in Tj . It follows, by Lemma A.8 that there exist i < j such that Gi

is isomorphic to an induced subgraph of Gj . ut

Notice that this result obviously extends if we use a well-quasi-ordered set
to label the vertices and consider the natural extension of the induced subgraph
relation.
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Corollary 5.6 a) For every integer m, the class of m-partite cographs is defined
by a finite set of excluded induced subgraphs. Hence m-partite cographs are
recognizable by an FPT algorithm.

b) For every hereditary property P and every integer m, the property P can be
decided by an FPT algorithm on the class of m-partite cographs.

Proof. a) For an integer m, let G be a graph that is not an m-partite cograph,
such that every proper induced subgraph of G is an m-partite cograph. Let v
be a vertex of G. Consider an m-partite cotree representation T of G−v. Let r
be the root of T . Relabel every leaf x of T by 2 label(x) if x is not adjacent to v
in G and 2 label(x)+1, otherwise. For each internal node x of T , to which was
originally assigned a symmetric function fx : {1, . . . ,m}×{1, . . . ,m} → {0, 1}
assign the symmetric function gx : {1, . . . , 2m+1}×{1, . . . , 2m+1} → {0, 1}
defined by gx(i, j) = fv(bi/2c, bj/2c) if i, j < 2m + 1, gx(i, j) = 0 if at least
one of i, j is 2m+1, with exception of gr(2i+1, 2m+1) = gr(2m+1, 2i+1) = 1
if 1 ≤ i < m. Add to the root r of T a new son with label 2m+1 for v. Then,
the obtained rooted tree together with the functions gx is a (2m+ 1)-cotree
representation of G. It follows that the class Fm of minimal non m-partite
cographs is included in the class of (2m + 1)-partite cographs. According to
Theorem 5.5, the class of (2m+ 1)-partite cographs is well-quasi-ordered by
⊆i. Hence, as Fm is an antichain for ⊆i, it is finite, and checking whether
a graph G is an m-partite reduces to testing whether a graph in Fm is an
induced subgraph of G.

b) By Theorem 5.5, there exists a finite set XP,m of the excluded induced sub-
graphs for the hereditary property P over the class of m-partite cographs.
This set XP,m may generally not be computable, but since it is finite, we
always get (at least) a nonuniform algorithm. The trick which allows us to
test for an induced subgraph in XP,m by an FPT algorithm, is to use a
branch-decomposition of bounded width: Using Proposition 5.3 and [22] we
can obtain such a bounded-width decomposition of the input graph G in FPT
time, and then use an FPT test for XP,m, e.g., by means of MSO1 [3].
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