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Abstract

Parity games are discrete infinite games of two players with complete infor-

mation. There are two main motivations to study parity games. Firstly the

problem of deciding a winner in a parity game is polynomially equivalent to

the modal µ-calculus model checking, and therefore is very important in the

field of computer aided verification. Secondly it is the intriguing status of par-

ity games from the point of view of complexity theory. Solving parity games

is one of the few natural problems in the class NP∩co-NP (even in UP∩co-

UP), and there is no known polynomial time algorithm, despite the substantial

amount of effort to find one.

In this thesis we add to the body of work on parity games. We start by

presenting parity games and explaining the concepts behind them, giving a

survey of known algorithms, and show their relationship to other problems.

In the second part of the thesis we want to answer the following question:

Are there classes of graphs on which we can solve parity games in polyno-

mial time? Tree-width has long been considered the most important connec-

tivity measure of (undirected) graphs, and we give a polynomial algorithm

for solving parity games on graphs of bounded tree-width. However tree-

width is not the most concise measure for directed graphs, on which the par-

ity games are played. We therefore introduce a new connectivity measure for

directed graphs called DAG-width. We show several properties of this mea-

sure, including its relationship to other measures, and present a polynomial-

time algorithm for solving parity games on graphs of bounded DAG-width

of [BDHK06]. In the third part we analyze the strategy improvement algo-

rithm of Vöge and Jurdziński, providing some new results and comments on

their algorithm. Finally we present a new algorithm for parity games, in part

inspired by the strategy improvement algorithm, based on spines. The notion

of spine is a new structural way of capturing the (possible) winning sets and

counterstrategies. This notion has some interesting properties, which can give

a further insight into parity games.
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Chapter 1

Introduction

Since its discovery in early sixties by Büchi [Büc60] and Elgot [Elg61], scien-

tists started to explore the close connection between automata and logic. The

two works we mentioned showed the (then surprising) result that finite au-

tomata and monadic second-order logic have the same expressive power on

the class of finite words. This equivalence was in the following years shown

to exist also between finite automata and monadic second-order logic over

infinite words and trees by now the classical results of Büchi [Büc62], Mc-

Naughton [McN66] and Rabin [Rab69]. One of the techniques developed in

these works has been an effective translation of monadic second-order formu-

las into finite automata on words and trees, reducing the satisfiability problem

for logic to non-emptiness problem for the automata.

Infinite-duration two-player games proved to be a technically useful way

of describing the runs of automata on infinite words and trees. A prime ex-

ample of this is the fact that by using infinite games one can simplify the most

difficult part of the proof of the famous Rabin’s result [Rab69] that the monadic

second order theory of the binary infinite tree is decidable – the complemen-

tation lemma for automata on infinite trees. Rabin implicitly showed determi-

nacy of parity games, but did not explicitly use games in his proof. The idea

to use games was first proposed by Büchi [Büc77], and the successful appli-

cation to Rabin’s proof is due to Gurevich and Harrington [GH82] and, in a

more elegant version, Emerson and Jutla [EJ91]. A nice proof can be found

in [Tho97].

The automata on infinite trees and words can use wide variety of different

acceptance conditions. In Büchi’s paper [Büc62] the first such condition has

1



Chapter 1. Introduction 2

been proposed, which has since been called the Büchi condition. Other condi-

tions followed – Muller condition [Mul63], Rabin condition [Rab72] and Streett

condition [Str82]. Parity winning condition was first introduced by Mostowski

in [Mos84], where it was called the ‘Rabin chain condition’1. The name ‘par-

ity condition’ was given to it by Emerson and Jutla in [EJ91], where it was

independently discovered and applied as a winning condition for games at

the same time as [Mos91]. Out of the many different winning conditions for

two-player infinite games the parity condition is the most fundamental one.

Every other (commonly used) winning condition can be reduced this condi-

tion. Moreover it can be easily dualised and is the most expressive one for

which memoryless strategies always work.

The determinacy of parity games follows from the much more general re-

sult of Martin [Mar75], who showed that Borel games (a class of games which

contains parity games) are determined. As we already mentioned, the determi-

nacy of parity games was already implicitly present in Rabin’s paper [Rab69].

Whereas the result of Martin [Mar75] relies on infinite strategies, Gurevich and

Harrington [GH82] showed that finite memory strategies suffice for a class of

games containing parity games. The fact that memoryless strategies suffice is

due to Mostowski [Mos91] and Emerson and Jutla [EJ91]. First constructive

proof is due to McNaughton [McN93], explicitly adapted to parity games by

Zielonka [Zie98].

The modal µ-calculus, a fixed-point logic of programs, has been introduced

by Kozen in [Koz83]. The close relationship between the modal µ-calculus and

parity games has been observed by several authors, most notably Emerson and

Jutla [EJ88], Herwig [Her89] and Stirling [Sti95]. There are indeed linear reduc-

tions between the modal µ-calculus model checking problem and the problem

of solving parity games (see [GTW02] for a broad survey). As the modal µ-

calculus subsumes all other widely used temporal logics this connection to

parity games only gained on importance and provided an extra incentive to

find a polynomial-time algorithm for solving parity games.

Another reason why we should be interested in parity games is their com-

plexity theoretical status. The problem of solving parity games is one of only

a few natural problems in the interesting complexity class NP∩co-NP. It is

widely believed that there is no complete problem for this class and it is quite

1Very rarely the name ‘Mostowski condition’ is used for the parity condition.
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possible that this class is even equal to P. Other famous problems in this class

are graph isomorphism [KST93] (under some assumptions – see [KvM99, MV99]),

prime factorisation [Pra75] and PRIMALITY. The latter problem has been re-

cently (2002) shown to be in P [AKS04], thus settling a long-standing open

question. It is interesting to note that while for parity games the proofs of

membership to NP and co-NP are dual to each other, for primality they are

completely different.

We actually have a slightly better upper bound on the complexity of solving

parity games. Jurdziński [Jur98] showed that the problem belongs to UP∩co-

UP, and thus is ‘not too far above P’ [Pap94]. Even more encouraging is the

fact that there exist sub-exponential algorithms [BSV03, JPZ06] and there is

also the strategy improvement algorithm [VJ00]. For this algorithm there is

currently no known example of a parity game which needs more than a linear

number of iterations, each running in cubic time (in the size of the game).

There are also several other related classes of games which belong to the

same complexity class NP∩co-NP. The two most important examples are mean-

payoff games [EM79] and simple stochastic games [Con92]. There exists a re-

duction from parity games to mean-payoff games [Pur95, Sti95], which in turn

can be reduced to simple stochastic games [ZP96]. Therefore parity games are

the most obvious candidate when looking for a polynomial-time algorithm for

all the mentioned classes of games.

From what we have mentioned above it comes as no surprise there have

been a substantial effort of the community [EJS93, Zie98, Jur00, VJ00, Obd03,

BSV03, JPZ06] to find a polynomial algorithm for solving parity games. De-

spite of all this effort the problem remains an open question. During the years

there have been several announcements that the problem has been solved (the

author knows about two such cases just in the year 2005), but all of them

proved to be incorrect.

In this thesis we want to add to the body of knowledge on parity games. We

present a new general algorithm for solving parity games, deal with the com-

plexity of existing algorithms, and also give algorithms working in polynomial

time on restricted classes of graphs. As the problem of solving parity games

has been of considerable interest to researchers involved in the area, many in-

teresting special cases have been studied and some partial results have been

obtained. However these usually do not get published and therefore remain
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largely unknown. To help to remedy this situation we present some of these

results in this thesis.

The rest of this thesis is organised as follows: In Chapter 2, we start by

giving the basic definitions and introduce parity games. Then we present the

known facts about parity games – memoryless determinacy, complexity and

some normal forms. Next we present the modal µ-calculus, and show that the

model-checking problem for the modal µ-calculus is equivalent to the problem

of solving parity games by giving linear reductions in both directions. Finally

we present two other infinite-duration two-player games with a close relation-

ship to parity games.

In Chapter 3 we give an overview of the algorithms for (solving of) par-

ity games known so far. We start with a simple discrete exponential algo-

rithm, and mention also other (slightly better) discrete algorithms. Then we

look at known randomised sub-exponential algorithms and finally present a

very recent deterministic sub-exponential algorithm. We finish by discussing

the complexity of solving parity games on some restricted classes of graphs,

specifically mentioning undirected graphs and trees with back edges.

In Chapter 4 we introduce graphs of bounded tree-width and give a poly-

nomial time algorithm for solving parity games on this class of graphs. This

chapter is based on the paper [Obd03].

Chapter 5 deals with the question posed by the author in [Obd03]: Whether

there is some natural decomposition for directed graphs. We answer that ques-

tion positively by presenting a new connectivity measure called DAG-width.

Part of this work was published in [Obd06]. Independently and shortly later

Berwanger et al.[BDHK06] came with almost exactly the same definition. In

addition to the results presented in [Obd06] (the definition of DAG-width and

related results like comparison with other measures or game characterisation)

the paper [BDHK06] also contains a polynomial-time algorithm for solving

parity games on graphs of bounded DAG-width. In Chapter 5 we present an

adapted version of this algorithm.

In Chapter 6 we discuss the strategy improvement algorithm for parity

games of [VJ00]. We start by giving an overview of the algorithm, and con-

tinue by examining some aspects in more detail. We also present some new

results.

Finally in Chapter 7 we present a brand new algorithm for solving parity
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games. This algorithm, partly inspired by the strategy improvement algorithm

mentioned above, is based around the notion of spine, a structural way of

representing the possible winning sets and counter-strategies. We conclude

with Chapter 8.



Chapter 2

Parity Games and Modal µ-calculus

In this chapter we present the material which will be needed in later chapters.

We start by giving and explaining the definition of parity games, strategies

etc. Also some concepts used in more than one chapter, like force sets, are

explained here. We give brief information regarding complexity and determi-

nacy of parity games. Then we present the modal µ-calculus, and show that

there are linear reductions between the problem of solving parity games and

modal µ-calculus model checking problem. Finally we present some related

infinite games and show their relationship and relevance of these games to

parity games.

2.1 Definitions

A parity game G = (V,E,λ) consists of a directed graph G = (V,E), where V

is a disjoint union of V0 and V1 (in the rest of the thesis we assume that this

partition is implicit), and a parity function λ : V→N (we assume 0 6∈ N). As it

is usually clear from the context, we sometimes talk about a parity game G –

i.e. we identify the game with its game graph. For technical reasons we also

assume that the edge relation E : V ×V is total: that is, for all u ∈ V there is

v ∈V such that (u,v) ∈ E. The game G is played by two players P0 and P1 (also

called EVEN and ODD1), who move a single token along edges of the graph G.

The game starts in an initial vertex and players play indefinitely as follows: if

the token is on a vertex v ∈ V0 (v ∈ V1), then P0 (P1) moves it along some edge
1Adam and Eve, Al and Ex, and many other names are also used in literature. We are not

concerned that our second player is being ‘odd’, and this way it is much easier to remember
who are we talking about.

6
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(v,w) ∈ E to w. As a result, a play of G is an infinite path π = π1π2 . . ., where

∀i > 0.(πi,πi+1) ∈ E.

Let Inf (π) = {v ∈ V | v appears infinitely often in π}. Player P0 wins the play

π if max{λ(v) | v ∈ Inf (π)} is even, and otherwise player P1 wins. (Often a dual

winning condition is used: Player P0 wins the play π iff min{λ(v) | v ∈ Inf (π)} is

even. It does not matter which of these condition we use as long as we have a

finite number of priorities. The two versions are sometimes referred to as ’big

endian’ and ’little endian’ parity games.)

Example 2.1. Fig. 2.1 shows a parity game of six vertices. The game is drawn in

standard2 graphical notation for parity games. Circles denote the vertices of player P0

and boxes the vertices of player P1. Priorities are written inside vertices.

In this game player P0 can win from the shaded vertices by forcing a play to the

vertex with priority four. Player P1 has no choice in that vertex and must play to the

vertex with priority three. The play will stay in the cycle with the highest priority

four and therefore P0 wins. Similarly P1 wins the remaining (non-shaded) vertices by

forcing the play to the cycle 2,3,2.

3 2

32

4

1

Figure 2.1: A parity game

If we fix a parity game G = (V,E,λ), we will often use the constants n, m

and d to mean the following:

n = |V | is the number of vertices in G

m = |E| is the number of edges in G

d = |λ(V )| is the number of priorities in G

When defining and investigating algorithms for parity games, we quite of-

ten want to restrict ourselves to just a part of the game graph. We say that

2Some literature uses exactly the opposite notation, where circles are used to denote the
vertices of player P1. Some authors even use diamonds instead of circles. We stick to ours
because circles are more ‘even’ and resemble the figure 0 in P0.
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the game G ′ = (V ′,E ′,λ′) is a subgame of G , if the game graph G′ = (V ′,E ′) is a

subgraph of G = (V,E) and for all u ∈V ′ there is v ∈V ′ such that (u,v) ∈ E ′.

For U ⊆V we define G [U ], which is the game G where the game graph G[U ]

is the subgraph of G induced by U with the following modification: For each

vertex v ∈U which does not have a successor in U we add an extra edge (v,v).

Note that G [U ] is a subgame of G if there is no such extra edge. We also define

the game G rU = G [V rU ].

Definition 2.1. For a vertex v ∈ V we define the function o (stands for ‘owns’)

by the following prescription:

o(v) =

0 if v ∈V0

1 if v ∈V1

So Vo(v) = V0 iff v ∈V0, Po(w) = P1 iff w ∈V1 etc.

In addition to general plays, we will often talk about cycles. A cycle of

length k is a sequence of vertices ρ = v1v2 . . .vkvk+1 = v1 such that for each 1 ≤
i≤ k.(vi,vi+1) ∈ E, and except for v1 and vk+1 all vertices are pairwise different.

We say that the cycle ρ is even if max{λ(vi) | 1 ≤ i ≤ k} is even, otherwise the

cycle is odd. If vi is a vertex of a maximum priority on the cycle ρ we say that ρ

is a cycle on vi (also cycle on λ(vi)).

Another useful notation is for the sets of vertices with the same priority.

For a game G = (V,E,λ) and a priority p we put V p = {v ∈ V | λ(v) = p} – i.e.

V p is the set of all vertices with priority p. Similarly V≥p = {v ∈V | λ(v)≥ p} is

the set of vertices with priority at least p and V≤p = {v ∈V | λ(v)≤ p} the set of

vertices with priority at most p.

2.1.1 Reward Ordering

In addition to the standard ordering of priorities (by the relation ‘<’), it is often

useful to have priorities ordered from the point of their ‘attractiveness’ for one

of the players. I.e. for player P0 a high even priority is more attractive than a

low even one, which is still more attractive than any odd priority. We define

the order v in the following way:

Definition 2.2 (v). For two priorities p,q∈N we write p @ q if p is odd and q is

even, or both p and q are odd and p > q, or both p and q are even and p < q. We
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write pv q if p @ q or p = q. For a game G = (V,E,λ) and two vertices u,v ∈V

we write u @ v if λ(u) @ λ(v) and uv v if λ(u)v λ(v).

The ordering v is also sometimes called the ‘reward’ ordering in the liter-

ature, where the reward is of course for the player P0. With a little abuse of

notation we can extend the order v to sets of priorities.

Definition 2.3. Let W,W ′ ⊆N, and let U = W ÷W ′ = (W rW ′)∪ (W ′rW ) be the

symmetric difference of W and W ′. We put W @ W ′ iff max(U) ∈W is odd or

max(U) ∈W ′ is even. We put W vW ′ if W @ W ′ or W = W ′.

2.1.2 Strategies

With each game there is an associated notion of a strategy. We will introduce a

few different types of strategies. Here is the most general definition.

Definition 2.4. A (total) strategy σ (τ) for P0 (P1) is a function σ : V ∗V0→V (τ :

V ∗V1→V ) which assigns to each play π.v ∈ V ∗V0 (∈ V ∗V1) a vertex w such that

(v,w) ∈ E. A player uses a strategy σ in the play π = π1π2 . . .πk . . ., if πk+1 =

σ(π1 . . .πk) for each vertex πk ∈ Vi. A strategy σ is winning for a player and a

vertex v ∈V if she wins every play that starts from v using σ. (Throughout the

paper we use σ to denote a strategy of P0 and τ a strategy of P1. If the player is

not important, we also use σ. The meaning should be clear from the context.)

Using strategies we extend the notion of winning to games.

Definition 2.5. If we fix an initial vertex v, then we say player Pi wins the game

G(v) if he has a strategy σ such that using σ he wins every play starting in

v. By solving the game G we mean finding the winner of G(v) for each vertex

v ∈V . I.e. to each game G and a vertex v ∈V (G) there is an associated decision

problem of finding a winner for G [v]. When talking about solving game in this

thesis we usually mean answering this decision problem. Finally we say that

player wins the game G if he has a strategy σ such that using σ he wins the game

G(v) for each v ∈V .

Strategies do not have to be total functions. If they are not we talk about

partial strategies. If σ is a partial strategy we say that P0 uses σ in a play if at

each prefix π′ of the play π where σ(π′) is defined P0 always chooses σ(π′) as

the next vertex.
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2.2 Memoryless Determinacy and Complexity

A memoryless strategy3 σ (τ) for P0 (P1) is a function σ : V0→V (τ : V1→V ) which

assigns to each vertex v ∈ V0 (v ∈ V1) a vertex w such that (v,w) ∈ E. I.e. mem-

oryless strategies do not consider the history of the play so far, but only the

vertex the play is currently in. We use Σ0 (Σ1) to denote the set of memoryless

strategies of player P0 (P1).

Definition 2.6 (Gτ
σ). For game G = (V,E,λ) and (partial) memoryless strategies

σ ∈ Σ0,τ ∈ Σ1 we define G τ
σ = (V,Eτ

σ,λ) to be the subgame induced by strategies

σ and τ where

Eτ
σ = {(v,w) ∈ E | v ∈V0, and σ(v) = w or σ(v) is undefined}

∪ {(v,w) ∈ E | v ∈V1, and τ(v) = w or τ(v) is undefined}

In the case that one of the strategies σ, τ is an empty partial strategy, we

omit the respective index and write just Gσ, Gτ (as well as Eσ,Eτ). In the fol-

lowing we often use the notation v→w and v→∗w to represent edges and paths

between v and w.

Parity games are determined. By that we mean the following theorem.

Theorem 2.1. For each parity game G = (V,E,λ) we can partition the set V into two

sets W0 and W1 such that the player P0 has a winning strategy for G(v) if, and only if,

v ∈W0.

The result follows from a much more general theorem of Martin [Mar75],

which says that every Borel game is determined. In [Mos84] and [EJ91] it was

independently proved that memoryless strategies suffice for parity games.

Using the memoryless determinacy of parity games it is easy to show that

parity games are in NP∩co-NP:

Theorem 2.2. The problem of solving parity games is in the class NP∩co-NP.

Proof. To check whether a vertex v belongs to W0 we can just guess a memo-

ryless strategy σ ∈ Σ0 and in polynomial time check whether there is an odd

cycle in Gσ reachable from the vertex v. If not, then σ is a winning strategy

3Also called ‘history-free’ or ‘positional’ strategy in the literature.
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for P0 in the game G(v). To show that the problem is also in co-NP it suffices

to note that by determinacy v 6∈W0 ⇐⇒ v ∈W1, and we can therefore use the

same algorithm as before for the player P1.

Thanks to Jurdziński we have a slightly tighter complexity bound.

Theorem 2.3 ([Jur98]). The problem of solving parity games is in the class UP∩co-

UP.

The class UP is believed to be a rather weak subclass of NP. For complete-

ness here is the definition of the class UP (see [Pap94] for more details).

Definition 2.7. A decision problem is in the class UP(Unambiguous Non-de-

terministic Polynomial Time), if there is a polynomial time non-deterministic

Turing machine recognising the associated language such that for each input

that is accepted it accepts by exactly one computation.

The proof of Jurdziński goes by reduction of parity games to discounted

payoff games, where the UP∩co-UP upper bound follows from the result of

Zwick and Paterson [ZP96].

2.2.1 Finite Parity Games

Finite parity game (FPG) G = (V,E,λ) is defined in almost the same way as

the standard parity game, with two differences: The play of FPG stops as soon

as we reach some vertex v for the second time (i.e. the play is of the form

π1.v.π2.v, where all vertices in π1.v.π2 are pairwise distinct). The vertex w with

the highest priority on the loop v.π2.v then determines the winner – player P0

wins iff λ(w) is even.

Since the parity games are memorylessly determined, finite parity games

are equivalent to standard (infinite) games. More precisely σ is a winning

strategy for an infinite parity game G(v) iff it is winning in the finite parity

game G(v). Therefore if we have a fixed parity game G and strategy σ, then

the player P0 wins G(v) using σ if there is no odd cycle reachable from v in the

graph Gσ.

In the spirit of Ehrenfeucht and Mycielski [EM79] finite parity games can be

used to prove memoryless determinacy of parity games. The argument goes

like this. Finite parity games are finite two-player games of perfect information
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and therefore are determined. The next step is to show that FPGs are memory-

lessly determined. Finally it is shown that a winning strategy in FPG is also a

winning strategy in the associated parity game and vice versa. In [EM79] this

technique was used to show memoryless determinacy of mean payoff games,

the proof for parity games was explicitly written down in [BSV04].

2.3 Equivalent Definitions, Normal Forms

The definition of parity games presented in Section 2.1 is very general. For

example there is no relationship between the player owning a vertex v and the

priority λ(v) of this vertex. Similarly we cannot assume that from a vertex of

player P0 we always move to a vertex of player P1 (i.e. that the players alternate

in their moves). This usually makes describing the algorithms working on

parity games a bit awkward. The question is whether this is really necessary.

In this section we show how we can restrict the definition of parity games

while staying in the same class of games, and not necessarily changing the

complexity.

In the text to follow we will often claim that two parity games G = (V,E,λ)

and G ′ = (V ′,E ′,λ′) are equivalent. By equivalence we mean here that for each

vertex v ∈ V player P0 wins G(v) if, and only if, he wins G ′(v). In all the cases

V ⊆V ′ will hold by construction, and therefore the equivalence is well defined.

We start by showing that we can restrict ourselves to games where every

vertex has out-degree at most two. We call such games binary parity games.

Lemma 2.1. Any parity game G = (V,E,λ) can be converted into an equivalent game

G ′ = (V ′,E ′,λ′) where every vertex has at most two successors. Moreover |V ′|< |V |2.

Proof. Let v be a vertex with k successors v1,v2, . . . ,vk. If k ≤ 2 we are done. For

k > 2 we introduce a new vertex w (i.e. V ′ = V ∪{w}) with λ′(w) = λ(v), and

change the edge relation as follows: E ′ = (E r {(v,vi) | 1 < i ≤ k})∪{(v,w)}∪
{(w,vi) | 1 < i≤ k}. Finally we put λ′(v) = λ(v) for all vertices v∈V . It is obvious

that both G and G ′ are equivalent, v has only two successors (in G′) and w has

k−1 successors. By iterative application of the argument above we introduce

k−2 new vertices while dealing with the vertex v. As every vertex has at most n

successors and there are n vertices, the number of the new vertices introduced

is bounded by n.(n−2) (just for a reminder, n = |V |).
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Another useful restriction is to have games where the priorities of vertices

are distinct.

Definition 2.8. A parity game G = (V,E,λ) is a parity game with a maximum

number of priorities, if for each u,v ∈ V , u 6= v we have λ(u) 6= λ(v) (i.e. if λ is

injective).

If we have a game with a maximum number of priorities we can identify

vertices with their priorities, i.e. to put V ⊆ N, and therefore also identify G
with its game graph G. This allows us to extend our notation to omit the parity

function λ, e.g. we can write directly u≤ v instead of λ(u)≤ λ(v). Nevertheless

we still need to know the partition of V into V0 and V1.

Parity games with maximum number of priorities are equivalent to stan-

dard parity games.

Lemma 2.2. Any parity game G = (V,E,λ) can be converted into an equivalent game

G ′ = (V,E,λ′) with a maximum number of priorities.

Proof. As follows from the wording of the proposition, we leave V and E un-

changed and modify only the parity function λ. The construction works as

follows. Choose p ∈ λ(V ) such that |V p|> 1 and let v ∈V p. Then we put

λ
′(u) =

λ(u) if λ(u) < p∨u = v

λ(u)+2 otherwise

Now v is the only vertex with priority p, and {w | λ′(w) = p+2}=V p r{v}. It is

obvious that a play in G is winning iff it is winning in G ′, as there is no vertex

with priority p + 1 and all other vertices keep their parity and relative order-

ing. By iterative application of the construction we get a game with maximum

number of priorities.

Note that this construction does not change the game graph at all, and

particularly does not increase its size. However if we want to study the ex-

act complexity of an algorithm with respect to the number of priorities, we

lose this information. On the other hand if we are interested in existence of a

polynomial-time algorithm this restriction (as well as all others presented in

this chapter) does not matter.

Another assumption we can make is that every player owns exactly the

vertices of his own priority, therefore eliminating the need for knowing the

partition of V into V0 and V1.
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Lemma 2.3. Any parity game G = (V,E,λ) can be converted into an equivalent game

G ′ = (V ′,E ′,λ′) such that ∀v ∈V ′.v ∈V ′0 ⇐⇒ λ′(v) is even. Moreover |V ′|< 2.|V |.

Proof. We can assume that no vertex of V has a priority 1 or 2. If this is not the

case we can increase the priority of each vertex by two. Take a vertex v ∈V vi-

olating the assumption. Without loss of generality consider the case v ∈V0 and

λ(v) = p is odd. We introduce a new vertex v′ of P1, put λ′(v′) = p,λ′(v) = 2, and

modify E by replacing each edge (u,v)∈ E with a pair of edges (u,v′), (v′,v). As

P1 has no choice in v′ (there is only one outgoing edge) and max(λ(v′),λ(v)) = p,

the new game is equivalent to G . By iterative application of the construction

above we can convert G into a game satisfying that each player own vertices

of his priority. Because each newly introduced vertex satisfies this restriction,

the construction finishes in at most n iterations adding one vertex each.

By a similar construction we can also convert any parity game into one in

which players alternate their moves. The edge relation E of such a game must

satisfy E ⊆ V0×V1 ∪V1×V0, and in that case we call such a game 0-1 bipartite

parity game.

Lemma 2.4. Any parity game G = (V,E,λ) can be converted into an equivalent game

G ′ = (V ′,E ′,λ′) such that E ′ ⊆V0×V1∪V1×V0. Moreover |V ′| ≤ |V |2 + |V |.

Proof. As in the previous proof assume that there is no vertex with priority 1 or

2. We replace edge (u,w) ∈V0×V0 with two edges (u,v) and (v,w), where v ∈V ′1
is a new vertex with λ′(v) = 1. Similarly we split each edge (u,w) ∈V1×V1 with

a new vertex v ∈ V ′0 with λ′(v) = 2. This new game is clearly equivalent to the

original game and the number of new vertices is bounded by the number of

edges in G, which is in turn bounded by |V |2.

To sum up, for the purposes of proving properties of parity games and

establishing whether there is a polynomial-time algorithm for solving these

games, we prefer to use games in the following normal form:

Definition 2.9. The parity game G = (V,E,λ) is in normal form if it is a game

with a maximal number of priorities such that v ∈V0 iff λ(v) is even.

As both the parity function λ and the partition of V are implicit, we can

identify the parity game G = (V,E,λ) in normal form with its game graph G =

(V,E). We will therefore freely talk about ‘parity game G = (V,E)’ in this case.
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That every parity game can be turned into one in normal form is a corollary

of Lemma 2.2 and Lemma 2.3.

Corollary 2.1. Each parity game G = (V,E,λ) can be turned into an equivalent parity

game G ′ = (V ′,E ′) in normal form, where |V ′| ≤ 2.|V |.

Finally combining all the requirements we get:

Definition 2.10. Parity game G = (V,E) is in strong normal form, if

• G = (V,E) is in normal form, and

• each vertex of V has out-degree at most two, and

• the game graph is bipartite.

Corollary 2.2. Each parity game G = (V,E,λ) can be turned into an equivalent parity

game G ′ = (V ′,E ′,λ′) in strong normal form, where |V ′|= O(|V |2).

Proof. We first apply the Lemma 2.1 to get a game where vertices have out-

degree at most two. Note that the number of edges of this graph is at most

2.|V |2. In the next step we convert the game into a bipartite one (Lemma 2.4),

and follow by application of Lemma 2.3. The number of introduced edges is

linear in the number of edges already present. Finally we convert the game

into one with a maximal number of priorities (Lemma 2.2).

2.4 Force Sets

A notion we use a lot in this thesis is the one of forcing and force sets [Tho95,

McN93]. Starting with a set of vertices S ⊆ V , the force set of S for player Pi

is the set of all vertices from which player Pi can force a play to S. Alterna-

tive name for force sets used in the literature is attractor sets. Here is a formal

definition of force set:

Definition 2.11 (Force set). For player Pi, and S ⊆ V we define Fi(S), the force

set of S for player Pi as a fixed point of the following system of equations:

F0
i (S) = S

Fk+1
i (S) = Fk

i (S) ∪

{u ∈Vi | ∃v ∈ Fk
i (S).(u,v) ∈ E} ∪

{u ∈V1−i | ∀v ∈V.(u,v) ∈ E =⇒ v ∈ Fk
i (S)}
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Definition 2.12 (Reachability set). We define R(S), the set of vertices from

which we can reach S⊆V , as

R(S) = {v ∈V | ∃w ∈ S s.t. there is a path v→∗w in G}

In both cases Fi(S) and R(S) we overload the notation and write Fi(v) (R(v))

instead of Fi({v}) (R({v})). We also write Rσ(S) (and Rσ(v)) if we restrict the

computation of the set R to the graph Gσ, where the strategy σ is fixed.

Definition 2.13. If v ∈ Fi(X) then the rank of v, written rank(v,Fi(X)), is the

least index k such that v ∈ Fk
i (X). Given F0(X) and a strategy σ ∈ Σ0 we say

that σ is a rank strategy if for each v ∈V0∩ (F0(X)r X) we have rank(v,F0(X)) =

rank(σ(v),F0(X))+1.

The following property of parity games says that solving a parity game

is equivalent to having an algorithm which for each parity game identifies at

least one vertex in the winning set W0 or W1.

Theorem 2.4. Let G = (V,E,λ) be a parity game and S ⊆Wi(G) be a part of the

winning region of player Pi. Then also Fi(S)⊆Wi(G) . Moreover G ′ = G r Fi(S) is a

subgame of G and for w ∈V (G′) we have w ∈Wi(G) ⇐⇒ w ∈Wi(G ′).

Proof. The first claim, that Fi(S) ⊆Wi(G), is obvious. It follows from the fact

that player P1−i cannot leave (by definition of the force set) the set Wi. Next

we show that G ′ is a subgame of G . If it is not, then there must be a vertex

v ∈ V (G′) s.t. it has no successor in V (G′). Let j be the least index such that

v has all the successors in F j
i (S). By definition of force set then v ∈ F j+1

i (S), a

contradiction.

For the second part first assume w ∈Wi(G). Therefore there is a winning

strategy σ ∈ Σi s.t. there is no opponents cycle in G. But by definition of Fi it is

not possible that v ∈V (G′) and σ(v) ∈ Fi(S), so σ is winning in G ′. The opposite

implication holds for the same reasons.

Sometimes we need a slightly more general version of force sets. For two

sets of vertices U,W ⊆ V we want to compute the set of vertices from which

player Pi can force the play to U without leaving the set W :
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Definition 2.14 (Force set). For player Pi, and U,W ⊆V we define Fi(U,W ), the

force set of U for player Pi with respect to W , as a fixed point of the following:

F0
i (U,W ) = U ∩W

Fk+1
i (U,W ) = Fk

i (U,W ) ∪

{u ∈Vi∩W | ∃v ∈ Fk
i (U,W ).(u,v) ∈ E} ∪

{u ∈V1−i∩W | ∀v ∈W.(u,v) ∈ E =⇒ v ∈ Fk
i (U,W )}

Similarly we can restrict the reachability function R(U). We define R(U,W )

to be the set of all vertices which can reach U ⊆V while staying in the set W ⊆V :

R0(U,W ) = U ∩W

Rk+1(U,W ) = Rk(U,W ) ∪

{u ∈W | ∃v ∈ Rk(U,W ).(u,v) ∈ E}

2.5 Modal µ-calculus

The modal µ-calculus is a fixpoint logic of Kozen [Koz83]. It is an extension

of Hennessy-Milner logic with variables and fixpoint operators ν (maximal

fixpoint operator) and µ (minimal fixpoint operator).

Definition 2.15 (syntax). Let Var be a countable set of variables. The modal

µ-calculus is a set of formulas defined by the syntax

ϕ ::= tt | ff | X | ϕ1∧ϕ2 | ϕ1∨ϕ2 | [·]ϕ | 〈·〉ϕ | νX .ϕ | µX .ϕ

where X ∈ Var.

Before we present the semantics, we need the model on which we will evaluate

µ-calculus formulas. This is usually done on transition systems.

Definition 2.16. A (unlabelled) transition system is a pair T = (S,→), where:

• S is a set of states,

• →⊆ S×S is a transition relation.

Instead of (s, t) ∈→we write s→ t.
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As we can see, unlabelled transition systems are just directed graphs and we

will treat them as such. The semantics of the µ-calculus is defined with re-

spect to a valuation of free variables. Valuation V is defined as a mapping

V : Var→2S, assigning to every variable X a set of states. Valuation V [X := T ],

where T ⊆ S, is the same as the valuation V except for the variable X for which

V [X := T ](X) = T . Now we can define the semantics as follows:

JttKT
V = S

JffKT
V = /0

JXKT
V = V (X)

Jϕ1∧ϕ2KT
V = Jϕ1KT

V ∩ Jϕ2KT
V

Jϕ1∨ϕ2KT
V = Jϕ1KT

V ∪ Jϕ2KT
V

J[·]ϕKT
V = {s | ∀ t ∈ S s.t. s→ t we have t ∈ JϕKT

V }

J〈·〉ϕKT
V = {s | ∃ t ∈ S s.t. s→ t and t ∈ JϕKT

V }

JνX .ϕ(X)KT
V =

[
{T ⊆ S | T ⊆ JϕKT

V [X :=T ]}

JµX .ϕ(X)KT
V =

\
{T ⊆ S | JϕKT

V [X :=T ] ⊆ T}

Let T = (S,→) be a transition system, s ∈ S a state of this transition system,

V a valuation and ϕ a modal µ-calculus formula. Then we say that the formula

ϕ holds in the state s of T under valuation V , written as (T ,s) |=V ϕ, if s∈ JϕKT
V .

If the formula ϕ is a sentence (closed formula), then we write just (T ,s) |= ϕ as

the set of states defined by the formula does not depend on the valuation.

The model checking problem for the modal µ-calculus is the question whether

(T ,s) |=V ϕ.

2.5.1 Alternation

The number of alternations between the minimal and maximal fixed points

in a µ-calculus formula ϕ is an important factor in the complexity of model

checking problem for ϕ. The alternation hierarchies have been first defined and

studied by Emerson and Lei [EL86] and Niwiński [Niw86]. See also [Niw97]

for a comparison of the two slightly different definitions.

Even though we could simply count the syntactic alternations between the

least and greatest fixed point in the formula, we present here the more precise

definition of Niwiński, which also gives tighter complexity bounds.
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Definition 2.17. For a formula ϕ of modal µ-calculus we define the alternation

depth δ(ϕ) inductively as:

δ(tt) = δ(ff) = δ(X) = 0

δ(ϕ1∧ϕ2) = δ(ϕ1∨ϕ2) = max(δ(ϕ1),δ(ϕ2))

δ(〈·〉ϕ) = δ([·]ϕ) = δ(ϕ)

δ(νX .ϕ) = max({1,δ(ϕ)}∪{δ(µY.ψ)+ 1 | µY.ψ is a subformula of ϕ and X

is free in µY.ψ})

δ(µX .ϕ) = max({1,δ(ϕ)}∪{δ(νY.ψ)+ 1 | νY.ψ is a subformula of ϕ and X

is free in νY.ψ})

2.5.2 Parity Games to µ-calculus

It is not very hard to show how to reduce the problem of solving a parity game

to the µ-calculus model checking problem. The first to present such a reduction

were Emerson and Jutla in [EJ91]. Let G = (V,E,λ) be a parity game. Without

loss of generality we can assume that the set λ(V ) = {1, . . . ,n} and the highest

priority n is even (if it is odd, the formula ϕ would start µZn.νZn−1 . . . instead).

Take the graph G = (V,E) as the transition system T , and the formula

ϕ = νZn.µZn−1. . . .µZ1.

(_
i≤n

(Y0∧Xi∧〈·〉Zi)∨
_
i≤n

(Y1∧Xi∧ [·]Zi)

)

Finally let V be a valuation satisfying

V (Xi) = {v ∈V | λ(v) = i}

V (Y0) = V0

V (Y1) = V1

Theorem 2.5. Let G = (V,E,λ) be a parity game, and be T , V , and ϕ be the transition

system, valuation and µ-calculus formula given by the translation above. Then

v ∈W0(G) ⇐⇒ (T ,v) |=V ϕ

Note that the alternation depth of this formula is equal to the number of

priorities in the parity game. This is no coincidence. In the next section we

will see that for the translation going the opposite direction this holds as well.
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2.5.3 µ-calculus to Parity Games

In this section we show how to reduce the model checking problem for the

modal µ-calculus to the problem of solving parity games. This construction can

be described as first translating the µ-calculus formula to a parity tree automa-

ton and taking the synchronised product of this automaton and the system to

be checked in the spirit of [EJ91, Sti95]. The translation given here is adapted

from [Sti01].

Let T = (S,→) be a transition system and ϕ a µ-calculus formula. We will

construct the parity game G =(V,E,λ) as follows: For the set of vertices we take

all pairs S× Sub(ϕ), where Sub(ϕ) is the set of all subformulas of ϕ. Moreover

let δ(ϕ) be the alternation depth of ϕ as described in Section 2.5.1. Finally take

ψ ∈ Sub(ϕ), s ∈ S and v = (s,ψ). We define the edge relation E, the partition of

V into V0 and V1, and the priority function λ by the following set of rules:

1. ψ = X , X is free in ϕ, s ∈ V (X)

λ(v) = 2, (v,v) ∈ E

2. ψ = X , X is free in ϕ, s 6∈ V (X)

λ(v) = 1, (v,v) ∈ E

3. ψ = tt

λ(v) = 2, (v,v) ∈ E

4. ψ = ff

λ(v) = 1, (v,v) ∈ E

5. ψ = ψ1∧ψ2

v ∈V1, (v,(s,ψ1)) ∈ E and (v,(s,ψ2)) ∈ E

6. ψ = ψ1∨ψ2

v ∈V0, (v,(s,ψ1)) ∈ E and (v,(s,ψ2)) ∈ E

7. ψ = [·]ψ′ and {t | s→ t}= /0

λ(v) = 2, (v,v) ∈ E

8. ψ = [·]ψ′ and T = {t | s→ t} 6= /0

v ∈V1, (v,(t,ψ′)) ∈ E for all t ∈ T
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9. ψ = 〈·〉ψ′ and {t | s→ t}= /0

λ(v) = 1, (v,v) ∈ E

10. ψ = 〈·〉ψ′ and T = {t | s→ t} 6= /0

v ∈V0, (v,(t,ψ′)) ∈ E for all t ∈ T

11. ψ = νXi.ψ
′

(v,(s,ψ′)) ∈ E, and λ(v) =

δ(ψ)+2 if δ(ψ) is even

δ(ψ)+1 otherwise

12. ψ = µXi.ψ
′

(v,(s,ψ′)) ∈ E, and λ(v) =

δ(ψ)+2 if δ(ψ) is odd

δ(ψ)+1 otherwise

13. Xi and ρXi.ψ ∈ Sub(ϕ)

(v,(s,ρXi.ψ)) ∈ E

In the cases where λ(v) is not defined we put λ(v) = 1, and similarly where

it is not given we put v ∈ V0. Finally we put into V only those pairs (t,ψ)

reachable from the vertex (s,ϕ) for some s ∈ S.

Example 2.2. In Fig. 2.3 you can see the parity game created by this construction for

the formula µX .P∨ (Q∧ [·]X)), transition system T (Fig. 2.2), and valuation V such

that V (P) = {c} and V (Q) = {a,b}.

ba c

Figure 2.2: Transition system T

Theorem 2.6. Let T = (S,→) be a transition system, ϕ a µ-calculus formula, and

G = (V,E,λ) the parity game given by the translation above. Then

(T ,s) |= ϕ ⇐⇒ (s,ϕ) ∈W0(G)

Also note that the number of priorities is equal to the alternation depth of a

formula. (More precisely its depth plus two. We could modify the construction

to get rid of this artefact, but for the price of losing simplicity.)
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v1 v2 v4 v7v6 v8 v9 v11 v13

v3 v5 v10 v12 v14

v15v16v17

v19 v20v18

v21

v1 : (a,µX .P∨ (Q∧ [·]X)) v11 : (b,Q∧ [·]X)

v2 : (a,P∨ (Q∧ [·]X)) v12 : (b,Q)

v3 : (a,P) v13 : (b, [·]X)

v4 : (a,Q∧ [·]X) v14 : (c,X)

v5 : (a,Q) v15 : (c,µX .P∨ (Q∧ [·]X))

v6 : (a, [·]X) v16 : (c,P∨ (Q∧ [·]X))

v7 : (b,X) v17 : (c,P)

v8 : (b,µX .P∨ (Q∧ [·]X)) v18 : (c,Q∧ [·]X)

v9 : (b,P∨ (Q∧ [·]X) v19 : (c,Q)

v10 : (b,P) v20 : (c, [·]X)

v21 : (a,X)

Figure 2.3: Parity game for T , µX .P∨ (Q∧ [·]X) and V (P) = {c}, V (Q) = {a,b}.
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2.6 More General Games

In this section we are going to present two more two-player games related to

parity games. The reason why we mention them here is that 1) the complexity

of solving these games is also in NP∩co-NP, and 2) the problem of finding a

winner in a parity game can be reduced to the problem of finding a winner in

either of these two games. Moreover the strategy improvement algorithm we

will talk about in Chapter 6 originated in the strategy improvement algorithm

for stochastic games [HK66], which also can be used to solve simple stochastic

games [Con92].

2.6.1 Mean Payoff Games

Mean payoff games have been introduced by Ehrenfeucht and Mycielski in

[EM79], and their associated decision problem was shown to belong NP∩co-

NP by Zwick and Paterson [ZP96]. Here we present a decision version of the

game.

The mean payoff game G = (V,E,ω,ν) consists of a directed graph G = (V,E),

where the vertex set V is a disjoint union of V0 and V1, a weight function ω :

E→{−w, . . . ,0, . . .w} assigning an integral weight between −w and w to each

edge of G, and finally an integral threshold ν ∈ N. The game is played in the

same way as the parity game, the only difference is the winning condition.

Player P0 wins the infinite play π = π1π2 . . . iff

liminf
n→∞

1
n

n

∑
i=1

ω((πi,πi+1))≥ ν

The reduction from parity games to mean payoff games has been discov-

ered independently by Puri [Pur95] and Jerrum [Sti95]. In [Jur98] the reduction

has been used in the proof that the problem of solving parity games belongs to

UP∩co-UP.

2.6.2 Simple Stochastic Games

Unlike both parity games and mean payoff games, simple stochastic games

(SSG) are games of chance. They were introduced originally by Shapley [Sha53].

Condon [Con92] was the first to study simple stochastic games from the com-
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plexity perspective, showing that the associated decision problem is also in

NP∩co-NP. We present here the definition of SSG used in the latter paper.

The simple stochastic game G = (V,E,v0,v1) consists of a game graph G =

(V,E) with two special vertices v0,v1 ∈ V called 0-sink and 1-sink, which have

no successors. The vertex set V r {v0,v1} is partitioned into three sets of ver-

tices V0,V1 and V1/2. As in previous cases, player P0 controls the vertices in

V0 and player P1 the vertices in V1. The vertices of V1/2 are called average ver-

tices, and have exactly 2 successors. Play is defined similarly as in the previous

cases, with the following exception: if a play reaches an average vertex v, the

successor of v is chosen uniformly at random (each with the probability 1/2).

Player P0 wins the simple stochastic game G if he is able to reach the 0-sink

with probability of at least 1/2.

Simple stochastic games were the first of the three games we have seen here

for which a sub-exponential (2O(
√

n)) algorithm was shown to exist [Lud95].

This has been later improved to a strongly sub-exponential (sub-exponential

on graphs with unbounded vertex out-degree) algorithm running in 2O(
√

n·logn)

in [Hal04]. The reduction from mean payoff games (through a variant of mean

payoff games, called discounted payoff games) to simple stochastic games has

been discovered by Zwick and Paterson in [ZP96].



Chapter 3

Algorithms for Solving Parity Games

In this chapter we are going to give a brief overview of the existing algorithms

for solving parity games. The algorithms considered are not covered to the

same extent. In some cases we give the full algorithm, whereas sometimes we

just mention the complexity bound achieved. This chapter is meant to give an

overview of the various ways of solving parity games, particularly focusing on

the current state of the art. For detailed information on the algorithms pointers

to the relevant sources are given.

We start by presenting a simple algorithm which is a consequence of the

memoryless determinacy proof of McNaughton [McN93], adapted to parity

games by Zielonka [Zie98]. In this only case we also prove correctness of this

algorithm. After that we mention several other algorithms with better com-

plexity bounds, which were published as algorithms for the modal µ-calculus

model checking. Then we go on to, up till very recently, the best (from the com-

plexity point of view) deterministic algorithm for solving parity games [Jur00].

This algorithm by Jurdziński is based on small progress measures, a concept

defined for parity games by Walukiewicz [Wal96].

Next we discuss the available randomised sub-exponential algorithms of

which the currently best one is by Björklund et al. [BSV03]. These results are ul-

timately based on non-trivial randomisation schemes of Ludwig [Lud95] and

Kalai [Kal92]. We explain what is the underlying machinery and describe the

exact complexity bounds.

A special place belongs to the strategy improvement algorithm of Vöge

and Jurdziński [VJ00]. We deal with this algorithm in Chapter 6. Here we

just mention that for this algorithm no exponential counterexample is known,

25
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which is in contrast with most of the other algorithms.

Very recently Jurdziński, Paterson and Zwick [JPZ06] came up with a deter-

ministic algorithm whose complexity matches the complexity of the best ran-

domised algorithms. What may be surprising is that their algorithm is ‘just’ a

clever modification of the simple algorithm presented in Section 3.1.

All the algorithms above deal with general parity games. In the last two

sections we mention two fast algorithms for solving parity games on special

classes of graphs. In the first of the two sections we consider ‘undirected’

graphs, i.e. graphs where the edge relation is symmetric. The observation

of Serre [Ser03] is that for this class of graphs we have a linear-time algorithm

for solving parity games. In the second section we consider parity games on

trees with back edges. This class of graphs is in a sense both simple and com-

plicated, occurring naturally in many areas of computer science. As observed

by Niwiński [Niw], we have a polynomial time algorithm for solving parity

games on trees with back edges. Neither of the two results have been pub-

lished before and we think they present another facet of the challenging prob-

lem of solving parity games.

3.1 Simple Algorithm for Parity Games

The following simple exponential-time algorithm for solving parity games is

based on the work of McNaughton [McN93]. For parity games it was first

explicitly presented by Zielonka [Zie98]. The algorithm is obtained from a

constructive proof of memoryless determinacy of parity games, and is imple-

mented by the procedure PGSolve.

Theorem 3.1. Let G be a parity game. Then PGSolve(G)=(W0(G), W1(G)). More-

over the running time of PGSolve is 2O(n), where n = |V (G)|.

Proof. The proof goes by induction on the size of V (G). If V (G) = /0 we are

finished, since the theorem obviously holds. Otherwise V (G) is non-empty

and the algorithm works as follows. We start with the set V p = Y ⊆ V (G) of

vertices of the highest priority p. W.l.o.g. we can assume p is even. Then

we compute the solution (W0,W1) for the smaller game G ′ = G r F0(Y ). By

induction hypothesis W0 and W1 are the winning sets of players P0 and P1 in

the smaller game G ′.
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Procedure PGSolve(G)
if V (G) = /0 then return ( /0, /0)

p:=max{λ(v) | v ∈V (G)}
Y :=λ−1(p); i:=o(p)

(W0,W1):=PGSolve (G r Fi(Y ))

if W1−i = /0 then

Wi:=V (G)

else

(W0,W1):=PGSolve (G r F1−i(W1−i))

Wi:=V (G)rW1−i
return (W0,W1)

There are two separate cases to be considered. If W1 = /0, then the player

P0 has a winning strategy σ in the game G ′. By definition of force set player

P0 cannot leave the set V (G′), whereas player P1 cannot leave the set F0(Y ).

Therefore if P0 uses the strategy σ for vertices in V (G′) and a rank strategy

for vertices in F0(Y ), each play in the whole game G either stays in V (G′), or

passes infinitely often through a vertex of priority p. In the first case the play is

winning for the player P0 since σ is a winning strategy in G ′ and in the second

case the play is winning since the highest priority seen infinitely often is even.

In the second case W1 is non-empty. As player P0 cannot leave the set V (G′),

W1 ⊆W1(G). By Theorem 2.4 also F1(W1) ⊆W1(G). The algorithm now asks

for solution of the game G r F1(W1). By a similar argument as for the previous

case, player W0 ⊆W0(G), and loses for all other vertices.

To obtain the complexity bound notice that at every iteration the proce-

dure PGSolve is called recursively at most twice, in both cases on a smaller

game. Except for the recursive calls the time of one iteration is bounded by

the number of edges of G (which is how long the computation of the force sets

could take), therefore is in O(n2). If we denote T (n) the running time of the

algorithm for a game with n vertices, we have T (n) ≤ 2.T (n− 1)+ O(n2), and

therefore T (n) ∈ 2O(n).

Note that in this case we get a bound which is not dependent on the number

of priorities. By a more careful analysis it is actually possible to decrease the

bound on the running time to roughly O(m · (n/d)d) [Jur00].
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3.2 Better Deterministic Algorithms

Many algorithms which are used to solve parity games were originally formu-

lated as algorithms for solving the modal µ-calculus model checking problem.

We know there is a linear translation from parity games to the modal µ-calculus

(see Section 2.5.2). Moreover this translation preserves the graph of the parity

game, and the alternation depth of the resulting formula is equal to the number

of priorities. Therefore the complexity bounds for the modal µ-calculus model

checking problem translate directly to the problem of solving parity games.

Before continuing further let us remember that for a game G = (V,E,λ)

we have defined n = |V |,m = |E| and d = |λ(V )|. The standard algorithm of

Emerson and Lei [EL86] has time complexity O(m · nd). This has been later

improved by Long, Browne, Clarke, Jha, and Marrero [LBC+94] to roughly

O(d2 ·m ·ndd/2e). A further improvement came from Seidl [Sei96], who showed

how to decrease this bound to O(d ·m · n+d
d
dd/2e

). Up till recently the best known

algorithm has been the algorithm of Jurdziński based on small progress mea-

sures [Jur00]. Its time complexity is shown to be in O(d ·m · n
bd/2c

bd/2c) and

the algorithm can be made to work in time O(d ·m · n+d
d
dd/2e

), thus matching

the complexity of the previous algorithms. Moreover this algorithm works in

space O(d · n), whereas the other two algorithms have exponential worst case

space behaviour. As the small progress measures algorithm is quite interest-

ing, we present it in the next section.

3.2.1 Small Progress Measures

Progress measures [KK91] are decorations of graphs whose local consistency

guarantees some global, and often infinitary, properties of graphs. Progress

measures have been used successfully for complementation of automata on

infinite words and trees [Kla91, Kla94]. A similar notion, called signature, oc-

curs in the study of modal µ-calculus [SE89], and signatures have also been

used to prove the determinacy of parity games [EJ91, Wal96]. The algorithm

is based on the notion of game parity progress measures, which were called

consistent signature assignments by Walukiewicz [Wal96]. The algorithm pre-

sented here was obtained by Jurdziński [Jur00]. For detailed description of the

algorithm and the related proofs we refer the reader to [Jur00].
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In this section we stick as much as possible to the notation of [Jur00]. There-

fore the parity games we consider the lowest priority appearing infinitely often

is winning, and 0 is the lowest priority. The algorithm is built around a data

structure MG. If G = (V,E,λ) is a parity game, we use np = |V p| to denote the

size of the set of vertices of priority p. Let |k| = {0,1, . . . ,k− 1} be the set of k

elements 0 to k−1. We can assume that priorities come from the set [d], i.e. the

highest priority is d−1. Then MG ⊆ Nd is for even d defined as

MG = [1]× [n1 +1]× [1]× [n3 +1]×·· ·× [1]× [nd−1 +1]

and for odd d we have the same equation except · · ·× [1]× [nd−2 +1]× [1] being

at the end. In other words MG is the finite set of d-tuples of integers with

zeros on even positions, and non-negative integers bounded by |V p| at every

odd position p. We define M>G to be the set MG ∪ {>}, where > is an extra

element. We use the standard comparison symbols ≤,=,≥ to denote the order

on M>G which extends the standard lexicographic order on M>G by taking > as

the maximal element, i.e. m < > for all m ∈ MG. When subscripted by i ∈ N
(e.g. ≥i, >i) they denote the extended lexicographic order restricted to the first

i components.

For a function ρ : V→M>G and an edge (v,w) ∈ E by Prog(ρ,v,w) we denote

the least m ∈ M>G such that m ≥λ(v) ρ(w), and if λ(v) is odd, then either the

inequality is strict, or m = ρ(v) =>.

Definition 3.1. A function ρ : V→M>G is a game parity progress measure if for all

v ∈V it satisfies:

• if v ∈V0 then ρ(v)≥λ(v) Prog(ρ,v,w) for some (v,w) ∈ E, and

• if v ∈V1 then ρ(v)≥λ(v) Prog(ρ,v,w) for all (v,w) ∈ E.

By ||ρ||we denote the set ||ρ||= {v ∈V | ρ(v) 6=>}.

For every parity game progress measure ρ we define the associated strategy

ρ̃ ∈ Σ0 by putting ρ̃(v) to be the successor w of v which minimises ρ(w).

Theorem 3.2. If ρ is a game parity progress measure then ρ̃ is a winning strategy for

P0 from vertices in ||ρ||. In addition there is a game parity progress measure such that

||ρ||= W0.
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Before we can present the algorithm, we need to define an ordering on

measures. For µ,ρ : V→M>G we put µ v ρ if µ(v) ≤ ρ(v) for all v ∈ V . We write

µ @ ρ iff µ v ρ and µ 6= ρ. The relation v gives a complete lattice structure on

the set of functions V→M>G . Finally we define operator Lift(ρ,v) for v ∈V as

Lift(ρ,v)(u) =


ρ(u) if u 6= v

max{ρ(v),min(v,w)∈E Prog(ρ,v,w)} if u = v ∈V0

max{ρ(v),max(v,w)∈E Prog(ρ,v,w)} if u = v ∈V1

The following two lemmas are easy to prove.

Lemma 3.1. For every v ∈V the operator Lift(·,v) is v-monotone.

Lemma 3.2. A function ρ : V→M>G is a game parity progress measure iff it is a

simultaneous pre-fixed point of all Lift(·,v) operators, i.e. if Lift(ρ,v)v ρ for all v ∈V .

From Knaster-Tarski theorem it follows that thev-least game parity progress

measure must exist and can be computed by the procedure ProgressMeasureLifting.

Procedure ProgressMeasureLifting
µ:=λv ∈V.(0, . . . ,0)

while µ @ Lift(µ,v) for some v ∈V do

µ:=Lift(µ,v)

Theorem 3.3. For a parity game G the procedure ProgressMeasureLifting

computes the winning sets W0 and W1 and a winning strategy σ ∈ Σ0 in space O(d ·n)

and time

O

(
dm ·

(
n
bd/2c

)bd/2c
)

3.3 Randomised Algorithms

Although there is currently no known polynomial-time algorithm for solving

parity games, there are several algorithms with a known sub-exponential up-

per complexity bound. Historically the first such result is due to Ludwig [Lud95],

who gave a randomised algorithm for simple stochastic games based on linear

programming, with time complexity 2O(
√

n). (But there is a catch, as we will see

later.) With only a minor modification this algorithm can be applied to parity
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games, giving the same complexity bound. Petersson and Vorobyov [PV01]

gave a similar algorithm based on graph optimisations.

The Ludwig-style algorithm works on binary parity games. For these games

each strategy σ ∈ Σ0 can be associated with a corner of n0-dimensional hyper-

cube (where n0 = |V0|). If there is an appropriate way of assigning values to

strategies, the algorithm can be described by the following steps:

1. Start with some strategy σ0 of player P0.

2. Randomly choose a facet F of the hypercube containing σ0.

3. Recursively find the best strategy σ′ on F .

4. Let σ′′ be the neighbour of σ′ on the opposite facet F . If σ′ is better than

or equal to σ′′, then return σ′. Otherwise recursively find the optimum

on F , starting from σ′′.

For binary parity games the upper bound on complexity is 2O(
√

n). How-

ever if the parity game to be solved is not binary, we need to translate it into

one that is. In the worst case this may result in a quadratic blowup in the

number of states (cf. Lemma 2.1) and the algorithm becomes exponential in n.

Therefore both the algorithms are sub-exponential only for games where ver-

tex out-degree is bounded by a constant. (This is to be expected. For example

it is comparatively easy to come up with an algorithm for solving parity games

in polynomial time on graphs of bounded DAG-width if the vertex out-degree

is bounded.)

The first truly sub-exponential algorithm is due to Björklund, Sandberg and

Vorobyov [BSV03]. Instead of applying the randomisation scheme of Ludwig,

they rely on a different randomised scheme of Kalai [Kal92], used for linear

programming. This scheme can be applied to games of arbitrary out-degree,

without the need for the quadratic translation to binary parity games. The

complexity is then bounded by 2O(
√

n logn).

The algorithm can be described by the sequence of steps presented below.

Since we allow vertices to have an arbitrary out-degree, we must redefine the

notion of a facet. For a game G , a vertex v ∈ V0 and an edge (v,w) ∈ E, a facet

F is the subgame of G created by fixing the edge (v,w) and removing all other

edges leaving v. This corresponds to fixing the strategy σ(v) = w.



Chapter 3. Algorithms for Solving Parity Games 32

1. Collect a set M containing r pairs (F,σ) of σ0-improving facets F of G
and corresponding witness strategies σ (r is a parameter controlling the

complexity).

2. Select one pair (F,σ1) ∈ M uniformly at random. Find an optimal strat-

egy σ in F by applying the algorithm recursively, taking σ1 as the initial

strategy.

3. If σ is an optimal strategy also in G , return σ. Otherwise let σ′ be a strat-

egy differing from σ by an attractive switch. Restart from step 1 using

the new strategy σ′.

Termination is guaranteed by the fact there is an optimal strategy.

3.4 Deterministic Sub-exponential Algorithm

The sub-exponential algorithms we have seen in the previous section are all

ultimately based upon the randomised sub-exponential simplex algorithms of

Kalai [Kal92] and Matoušek et al. [MSW96] These are very deep results and

randomness seems to play an essential role in these results. However very re-

cently Jurdziński, Paterson and Zwick [JPZ06] came up with a deterministic al-

gorithm which achieves roughly the same time complexity as the randomised

algorithm of Björklund et al. [BSV03] – the complexity of this new algorithm is

nO(
√

n) if the vertex out-degree is not bounded.

As surprising as it may seem, this algorithm is a modification of the sim-

ple algorithm of McNaughton [McN93] and Zielonka [Zie98] we have seen in

Section 3.1. The idea behind the modification is subtle: By doing some extra

computation before starting the recursive descent, and also by a careful com-

plexity analysis, we get a better complexity bound. The key notion is defined

below:

Definition 3.2. A set W ⊂ V (G) is said to be i-dominion if player Pi can win

from any vertex of W without leaving the set W . By dominion we mean either

0-dominion or 1-dominion.

Clearly W0 is a 0-dominion and W1 is 1-dominion. The following lemma

gives us an important property of dominions:
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Lemma 3.3. Let G = (V,E,λ) be a parity game, n = |V |, and let l ≤ n/3. A dominion

of G of size at most l, if one exists, can be found in time O((2en/l)l).

Proof. If l ≤ n/3 then for all i≤ l we have that
(n

i

)
/
( n

i−1

)
≥ 2. Therefore the num-

ber ∑
l
i=1
(n

i

)
of subsets W of V of size at most l is O(

(n
l

)
). For each such subset W

if G[W ] is not a subgame, then obviously W is not a dominion. Otherwise we

can apply the algorithm PGSolve to G[W ] and in time O(2l) find out whether

W0(G[W ]) = W or W1(G[W ]) = W , in which case W must be a dominion. The

total running time is O(2l(n
l

)
) = O((2en/l)l) as required.

To get the sub-exponential algorithm we modify the procedure PGSolve in

the following way. At the beginning the modified procedure PGSolve2 starts

by checking whether there is a dominion of size at most l = d
√

ne. The param-

eter l is chosen in this way to minimise the running time. If such a dominion is

found, then it is easy to remove the dominion and its force set from the game

(using Theorem 2.4) and recurse on the remaining subgame. If no such domin-

ion is found, the procedure PGSolve2 behaves exactly like PGSolve (except for

calling PGSolve2 instead of PGSolve on recursive descent).

Theorem 3.4. Let G = (V,E,λ) be a parity game. Then PGSolve2(G)=(W0(G),

W1(G)). Moreover the running time of PGSolve2 is nO(
√

n), where n = |V (G)|.

Proof. The correctness follows from the correctness of the algorithm PGSolve,

which was proved in Section 3.1, and the definition of dominions. By careful

analysis of the algorithm we can see that the running time for a graph of n

vertices is given by the following equation:

T (n)≤ nO(
√

n) +T (n−1)+T (n− l)

From this reccurence relation it can be derived that T (n) = nO(
√

n) (the proof is

a bit technical, but not hard).

3.5 Games on Undirected Graphs

In this section we consider the problem of solving parity games on undirected

graphs, for which we allow each edge of the graph to be traversed in both

directions. This is equivalent to solving parity games for which the following

is true:

∀v,w ∈V.(v,w) ∈ E iff (w,v) ∈ E (3.1)
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The results in this section were first observed by Olivier Serre [Ser03].

To be able to give a clear presentation we will make the following two as-

sumptions: 1) G is a parity game with a maximum number of priorities, and

2) the game graph is 0-1 bipartite.

Theorem 3.5. Let G = (V,E,λ) be a 0-1 bipartite parity game with a maximum num-

ber of priorities satisfying (3.1) above. Then we can solve G in time O(|E|).

Proof. We create a graph G′ = (V,E ′) from G by taking the following prescrip-

tion for E ′:

E ′ = {(v,w) | {v,w} ∈ E and v ∈V0,w ∈V1,max{λ(v),λ(w)} is even }∪

∪ {(v,w) | {v,w} ∈ E and v ∈V1,w ∈V0,max{λ(v),λ(w)} is odd }

The graph G′ must be acyclic: the definition above and the fact that G is a

game with a maximal number of priorities guarantee that for any edge (v,w) ∈
E ′.λ(v) > λ(w).

We can actually view G ′ as a game between players P0 and P1 with a reach-

ability condition. Let

F = {v ∈V1 | v has no successors in G′}

Then P0 wins a play starting in v0 iff the play reaches F . The following state-

ment relates G and G ′. Let G and G ′ be the games as above and v ∈ V . Then

v ∈W0(G) iff v ∈ F0(F), where the force set F0(F) is taken in the game G ′. We

will prove only one direction, the other follows from duality of parity games.

The proof goes by induction on the structure of G. The only interesting case

is actually the base case. Let v ∈V1 be a vertex with no successors, and let U =

{u ∈V | (u,v) ∈ E ′}. Then surely U ⊆V0 because G is bipartite. Moreover from

definition of E ′ we have ∀u ∈U.max{λ(u),λ(v)} is even. By setting σ(u) = v for

all u ∈ U we get a partial winning strategy of P0 and therefore U ∪{v} ⊆W0.

The inductive step is trivial.

In the previous we assumed that the graph G is bipartite. Note that in the

case G is not bipartite, we cannot just simply apply the Lemma 2.4 to convert it

into a one which is. The catch here is that the construction used there to make

the graph bipartite splits each non-conforming edge with a new vertex, which

means we would not get a graph where the edge relation is symmetric.
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What we need to do is to insert just a single extra vertex for every pair of

offending edges of G with the same ends. If we have two vertices of the same

player with priorities i < j joined by an edge, we insert a new vertex of priority

k s.t. i < k < j and k has the same parity as j. The conversion is shown in Fig 3.1.

Having done the transformation for all edges between two vertices of the same

player, the new game is obviously equivalent to the original one.

i j

(a)

ji k

(b)

Figure 3.1: Conversion to bipartite game: (a) before, and (b) after conversion

3.6 Trees with Back Edges

A tree with back edges is a structure which appears quite often at different

places in computer science. For example it is the structure obtained when run-

ning Depth First Search algorithms. Second, a graph of a µ-calculus formula is

a tree with back edges. Finally, trees with back edges separate different notions

of directed graph decompositions. The fact that parity games can be solved

in polynomial time on trees with back edges has been observed by Niwiński

[Niw], but to our knowledge this is the first time the proofs were actually writ-

ten down.

For a directed graph G = (V,E), a subset of edges D ⊆ E and two vertices

v,w ∈ V we write v <D w iff there is a directed path from v to w. We also write

v≤D w iff v <D w or v = w.

Definition 3.3 (Tree with back edges). A directed graph T = (V,E) is a tree with

back edges if there is a partition of E = F ]B into the sets of tree (forward) edges F

and back edges B such that (V,F) is a directed tree and (u,v) ∈ B implies v <F u.

In the text to follow we will always consider trees with back edges not to

contain simple loops (of size one). We also define the complete tree with back

edges to be a tree with back edges s.t. for each two vertices v,w ∈ V we have

that v <F w implies (w,v) ∈ B. For technical convenience for vertex v ∈ V we

define the set B(v) = {w ∈V | (v,w) ∈ B} – i.e. the set of all predecessors directly
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reachable form v. The following lemma shows us an important property of

trees with back edges, and is very easy to prove by induction on the depth of

the tree T .

Lemma 3.4. Let T = (V,E) be a tree with back edges, and E = F ]B. Then every

simple cycle in T is of the form v→+
F w→B v.

It turns out that for parity games whose graphs are trees with back edges

we indeed have a good decomposition of the game graph into subgames. This

immediately gives us an algorithm linear in the size of the graph.

Theorem 3.6. Let G = (V,E,λ) be a parity game whose game graph G is a tree with

back edges with a root v0. Then there is an algorithm which can solve the parity game

G(v0) in time O(m), where m = |E|.

Proof. Let us first define the graphs Gv and Gvw for v,w ∈ V (G). Gv is the sub-

graph of G obtained by removing all backward edges for all vertices on the

(unique) path v0→∗F v (excluding v). Gv,w for an edge (v,w) ∈ E(G) is equal to

Gv where all edges with the tail v are removed with the exception of the edge

(v,w). Both of these subgraphs corresponds to fixing partial strategies σ ∈ Σ0

and τ ∈ Σ1 for the vertices on the path v0→∗F v. Note that for (v,w) ∈ F(G) we

have Gvw = Gw.

Parity games whose graphs are trees with back edges have one important

property. If we fix a strategy for v0 (i.e. choose an edge (v0,w)∈F(G)), the game

Gv0w = Gw is a subgame of G such that there are no edges from the part of the

graph Gw reachable from v0 to the rest of the graph. Moreover the following is

true:

Claim: Let v ∈ V (G) and let w1, . . . ,w j be all its successors. If v ∈ V0, then P0

wins the game Gv(v) iff he wins at least one of the games Gvwi(wi) for 1≤ i≤ j.

Similarly if v∈V1, then P0 wins the game Gv(v) iff he wins all the games Gvwi(wi)

for 1≤ i≤ j.

With this in mind we can give an algorithm for solving G(v). We start with

v = v0 and recursively do the following: Taking v∈V with successors w1, . . . ,w j

we recursively solve the games Gvwi(wi). The solution to Gv(v) is then given

by the claim above. Now if (v,wi) ∈ B(G), then to find the winner for Gvwi(wi)

equals to checking the highest priority on the path from wi→+
F v. (Note that in

Gvwi each vertex on the simple cycle wi→+
F v→B wi has only one successor). As
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leaves have only backwards edges, and we recursively follow the tree edges

of G, this guarantees us that the algorithm would finish after at most m steps,

where m = |E(G)|. Moreover the check for back-edges (v,wi) can be done in

constant time. Therefore we find the winner for G(v0) = Gv0(v0) in time O(m).



Chapter 4

Bounded Tree-Width

This chapter is based on the paper [Obd03].

Tree-width is a graph theoretic concept introduced first by Robertson and

Seymour [RS84] in their work on graph minors. Roughly speaking, tree-width

measures how close is the given graph to being a tree. Graphs of low tree-

width then allow decomposition of the problem being solved into subprob-

lems, decreasing the overall complexity – many NP-complete problems were

shown to be solvable in linear (or polynomial) time on the graphs of bounded

tree-width. (Following the intuition that solving problems on trees is much

easier than on general graphs. E.g. modal µ-calculus model checking can be

done in linear time on trees.) See Bodlaender’s paper [Bod97] for an excellent

survey.

Even though the concept of tree-width is quite restrictive, in practice the

systems considered are (may be surprisingly) often of a low tree-width. In

[Tho98] it was shown that all C programs (resp. their control-flow graphs)

are of tree-width at most 6, and Pascal programs of tree-width at most 3! This

result does not hold for Java, as the labelled versions of break and continue can

be as harmful as goto [GMT02]. In practice, however, programs with control-

flow graphs of high tree-width do not appear (since they are written by sane

humans).

The fact that parity games can be solved in polynomial time on graphs of

bounded tree-width seems to be a consequence of a general theorem of Cour-

celle [Cou90]: For a fixed MSO formula ϕ and a graph of (bounded) tree-width

k the model checking problem can be solved in time O(n ·α(k,ϕ)), where α(k,ϕ)

is a term which depends on k and the formula ϕ, but not on n. This means the

38
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time is linear in the size of the graph if both k and ϕ are fixed. To get an MSO

formula characterising the winning region, we could use the reduction of par-

ity games to the modal µ-calculus model checking problem (see Section 2.5.2

for more details). The resulting modal µ-calculus formula is then easily trans-

lated into an equivalent MSO formula by using a well known algorithm – see

e.g. [GTW02]. Note that using this translation the size of the formula depends

on the number of priorities, i.e. on n in the worst case.

The theorem from [Cou90], however, does not provide any estimate on the

size of the constant α(k,ϕ) (which heavily depends on the formula ϕ) hidden

in the O notation (except for being ‘large’). Fairly recently it was shown [FG02]

that the function α is not even elementary. However for parity games we usu-

ally consider the number of priorities to be part of the input, and not fixed in

advance. Moreover the algorithm presented in [Cou90] itself is quite compli-

cated and does not provide any insight into what are the results/strategies in

the underlying game.

In contrast, our algorithm does not require translating the winning condi-

tion to a MSO formula, and in addition one can easily follow the workings of

the algorithm as well as the evolving strategies (we will actually get the win-

ning strategy for free). We show that parity games on graphs of tree-width

k can be solved in time O(n · (k + 1)2 · nα(k)), where α(k) is a polynomial in k

and does not depend on the size/shape of the parity game considered (more

specifically not on the number of priorities). As argued above, this result is

new and does not follow from [Cou90]. We then extend this to give a new

µ-calculus model checking algorithm.

4.1 Tree Decompositions

Here we present the relevant facts about tree decompositions and tree-width,

which will be needed later in the text.

Definition 4.1 (Tree decomposition). A tree decomposition of an (undirected)

graph G is a pair (T,X ), where T is a tree (its vertices are called nodes through-

out this chapter) and X = {Xt | t ∈ T} is a family of subsets of V (G) satisfying

the following three conditions:

(T1) V (G) =
S

t∈V (T ) Xt ,
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(T2) for every edge {v,w} ∈ E(G) there exists t ∈V (T ) s.t. {v,w} ⊆ Xt , and

(T3) for all t, t ′, t ′′ ∈ V (T ) if t ′ is on the (unique) path from t to t ′′ in T , then

Xt ∩Xt ′′ ⊆ Xt ′ .

The width of a tree decomposition (T,X ) is maxt∈V (T ) |Xt |−1. The tree-width

of a graph G (written as tw(G)) is the minimum width over all possible tree

decompositions of G. Trees have tree-width one. One obtains an equivalent

definition if the third condition is replaced by:

(T3’) For all v ∈V , the set of nodes {t ∈V (T ) | v ∈ Xt} is a connected subtree of

T .

There is an easy way to generalise the concept of tree-width to directed

graphs: For a directed graph G we put tw(G) = tw(G′) where G′ is obtained

from G by forgetting the orientation of the edges (i.e. an edge {u,v} of G′ can

correspond to two edges (u,v) and (v,u) of G). We can therefore freely talk

about tree-width and tree decompositions of directed graphs. (Later we will

see that this generalisation is in some sense not ‘optimal’.)

To better understand the definition look at the example in Fig. 4.1. There is

a graph with six vertices a to f , together with its tree decomposition. There is

a dashed line showing which triples of vertices correspond to each node of the

tree decomposition. As there are at most three vertices in each node, the width

of the shown decomposition is two.

bde

abd cbe

def

ca

b

d e

f

Figure 4.1: Graph and its tree decomposition
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One would expect that since tree-width should measure how close a given

graph is to a tree, cliques should have high tree-width and this is indeed the

case:

Fact 4.1. Let Kn be a clique of n vertices. Then Kn has tree-width n−1.

Another class of structures of high tree-width are grids.

Fact 4.2. For n > 1 (a graph which is) a grid of size n×n has tree-width n.

Both facts are easy to prove using the Tree-width Duality Theorem, which

we will see later (Theorem 4.1, p. 44).

Before proceeding further we will need some extra notation. For technical

reasons we will assume that for each tree decomposition (T,X ) of G the tree

T is a rooted tree (i.e. one vertex is designated to be the root) with all edges

oriented away from the root. With this assumption in mind we define Tt for

t ∈V (T ) to be the largest subtree of T rooted in the node t. (More precisely we

start in t and include all the nodes of T reachable from t by an oriented path.)

Having Tt defined we use the following notation:

Vt =
S

s∈V (Tt) Xs, the vertices of G appearing in Tt

V>t = Vt r Xt

The next fact about tree decompositions is one of the basic properties of

graphs of bounded tree-width, which allows for all the interesting results.

Fact 4.3. Let (T,X ) be a tree decomposition and t a node of T . Then the only vertices

of Vt adjacent to vertices V (G)rVt are those belonging to Xt . In other words, Xt is an

interface between G[V>t ] and the rest of the graph (i.e. the graph G rVt).

Presenting dynamic algorithms working on general tree decompositions is

often a tedious exercise. However we can at least avoid most of the purely

technical problems. The following notion of nice tree decomposition allows us to

significantly simplify the construction of our algorithm. This choice is justified

by Lemma 4.1.

Definition 4.2 (Nice tree decomposition). Tree decomposition (T,X ) is called

nice tree decomposition, if the following three conditions are satisfied:

1. every node of T has at most two children,
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2. if a node t has two children t1 and t2, then Xt1 = Xt2 = Xt , and

3. if a node t has one child t1, then either |Xt | = |Xt1|+ 1 and Xt1 ⊆ Xt , or

|Xt |= |Xt1|−1 and Xt ⊆ Xt1 .

Lemma 4.1 (See [Klo94]). Every graph G of tree-width k has a nice tree decomposi-

tion of width k. Furthermore, if n is the number of vertices of G then there exists a nice

tree decomposition with at most 4n nodes. Moreover given a decomposition of width

k with O(n) nodes, a nice tree decomposition of this size and the same width can be

constructed in time O(n).

The proof of this lemma is constructive - i.e. it gives an algorithm for trans-

forming every tree decomposition into a nice tree decomposition. The restric-

tion to O(n) nodes in the Lemma above is there just to eliminate tree decompo-

sitions where some nodes/subtrees are unnecessarily repeated along paths of

the tree. As can be seen from the definition, in a nice tree decomposition (T,X )

every node is one of four possible types. These types are:

Start If a node t is a leaf, it is called a start node.

Join If a node t has two children t1 and t2, it is called a join node (note that by

(T3) the subgraphs of its children are then disjoint except for Xt).

Forget If a node t has one child t ′ and |Xt |< |Xt ′|, node t is called a forget node.

Introduce If a node t has one child t ′ and |Xt |> |Xt ′|, node t is called an introduce

node.

Moreover, we may assume that start nodes contain only a single vertex. If

this is not the case, we can transform each nice tree decomposition into one

having this property by adding a chain of introduce nodes in place of each non-

conforming start node.

We will also need a notion of terminal graph, which is closely related to tree

decompositions.

Definition 4.3 (Terminal graph). A terminal graph is a triple H = (V,E,X), where

(V,E) is a graph and X an ordered subset of vertices of V called terminals. The

operation ⊕ is defined on pairs of terminal graphs with the same number of

terminals: H⊕H ′ is obtained by taking the disjoint union of H and H ′ and then
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identifying the i-th terminal of H with i-th terminal of H ′ for i ∈ {1, . . . , l}. A

terminal graph H is a terminal subgraph of a graph G iff there exists a terminal

graph H ′ s.t. G = H⊕H ′. Finally we define Ht to be G[Vt ] taken as a terminal

subgraph with Xt as a set of its terminals (the ordering of Xt is not important

here).

4.2 Cops and Robber Games

Tree-width is closely related to a certain cops-and-robber game on graphs. This

game not only provides us with a valuable insight into the inner working of

tree decompositions, but also provides us with an alternative characterisation

of the class of graphs of bounded tree-width.

The original game first appeared in [ST93]. The robber stands on a ver-

tex of the graph, and can at any time run at great speed to any other vertex

along a path of the graph. He is not permitted to run through a cop, however.

There are k cops, each of whom at any time either stands on a vertex or is in

a helicopter. The goal of the player controlling the cops is to land a cop via

a helicopter onto a vertex currently occupied by the robber, and the robber’s

objective is to elude capture. (The point of the helicopter is that cops are not

constrained to move along the paths of the graph.) The robber can see the

helicopter landing and may run to a new vertex before it actually lands.

More formally, the game is played on a graph G by two players: the cop

player, and the robber player. It is played according to the following rules:

At the beginning the robber player chooses a vertex u ∈ V (G), giving us an

initial game position ( /0,u). Given a position (X ,v), the cop player chooses a set

X ′ ⊆ [V ]≤k, and the robber player a vertex v′ ∈ V (G)r X ′ such that both v and

v′ lie in the same connected component of the graph Gr (X ∩X ′), giving us the

next position (X ′,v′). A play is a maximal sequence of positions formed from

an initial game position according to the rule above. The play is winning for

the cop player if it is finite – i.e. for the final position (X ,v) of the play it is true

that there is X ′ ∈ [V ]≤k such that no vertex of the graph V (G)rX ′ is in the same

connected component of the graph Gr{X ∩X ′} as v (this immediately implies

v ∈ X ′). On the other hand the robber player wins if the play is infinite. If k

cops can capture the robber in G (i.e. the cop player wins) we say that k cops

can search G. Moreover if they can do so without revisiting a vertex then they
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can monotonely search G.

It turns out that in this game there are particularly nice strategies for the

robber, which correspond to the notions of bramble and haven. Let w be an

integer. A haven1 of order w in a graph G is a function which assigns to every

set Z ⊆V (G) with |Z|< w the vertex set of a connected component of G in such

a way that if Z′ ⊆ Z ⊆V (G) then β(Z)⊆ β(Z′).

The notion of bramble is very closely related to havens. We say that two

subsets of V (G) touch if they have a common vertex, or there is an edge with

one end in each of the two sets. Moreover we say that set of vertices S ⊆ V

covers Y ⊆ 2V iff for each Y ∈ Y we have S∩Y 6= /0. A bramble in G is set of

mutually touching subsets of V (G). The least number of vertices covering a

bramble is its order.

The following theorem comes from [ST93]:

Theorem 4.1 ([ST93]). Let G be a (undirected) graph. Then the following are equiv-

alent:

(i) G has a haven of order ≥ k

(ii) G has a bramble of order ≥ k

(iii) < k cops cannot search G

(iv) < k cops cannot monotonely search G

(v) G has tree-width ≥ k−1

The equivalence (i)⇐⇒ (v) is often called Tree-width Duality Theorem. The

hardest part of the proof is the implication (v) =⇒ (i). It is proved by con-

traposition, using amalgamation of tree decompositions of subgraphs of G. A

streamlined proof of the duality theorem has later appeared in [BD02].

4.3 Obtaining Tree Decompositions

To be able to use an algorithm which exploits small tree-width of input graphs

we need to find a tree decomposition with tree-width bounded by a constant

1The notion of haven as originally defined in [ST93] is slightly less restrictive than the def-
inition presented here, which was taken from [JRST01]. The original definition is almost the
same as that of a bramble.
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(not necessarily optimal). If the complexity of this step is too high, the fact that

we have an algorithm which runs very fast on tree decompositions of bounded

tree-width does not account for much.

We start with a bad news. In general, the problem ’Given a graph G and

an integer k, is the tree-width of G at most k?’ was shown to be NP-complete

[ACP87]. Therefore much effort has been directed into solving this problem

for the case that k is a constant. The final result is summed up by the following

theorem:

Theorem 4.2 ([Bod93]). For all k ∈ N there exists a linear time algorithm that tests

whether a given graph G of n vertices has tree-width at most k, and if so, outputs a

tree-decomposition of G of tree-width at most k.

In practice we are quite often in a much better position. The graphs consid-

ered are usually not just random graphs we know nothing about, but have un-

derlying structure which we may successfully exploit. For example in software

verification the graphs are control-flow graphs of programs written in high-

level programming languages, which are structured. The result of Thorup

[Tho98] shows that tree-width (of control-flow graphs) of programs written in

C is at most 6 and in PASCAL at most 3. Moreover we can easily get the desired

tree decompositions by a simple syntactic analysis of the programs in ques-

tion. However in the case of programs written in JAVA the tree-width can be

unbounded. This is due to the presence of labelled break and continue state-

ments in the language, as well as the exception handling mechanism [GMT02].

Nevertheless in practice the usual tree-width of JAVA programs is two or three,

and programs of tree-width greater than five are virtually unheard of.

4.4 The Algorithm for Parity Games

We are now going to present a polynomial-time algorithm for solving parity

games on graphs of bounded tree-width. For the rest of this section let us fix

a parity game G = (V,E,λ) s.t. there is no loop. (Loop is cycle of length one.

If there is such a cycle we can convert it into a cycle of length two, adding an

extra vertex in order to do so.) Let G be the game graph of G and (T,X ) be a

nice tree decomposition of G of width k (we can restrict ourselves to nice tree

decompositions by Lemma 4.1).
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Our algorithm follows the general approach for solving problems on graphs

of bounded tree-width (see [Bod97]). The crux of the algorithm lies in comput-

ing a bounded representation of the exponential set of strategies. Given a node

t of T , we only need to know the effect of any given strategy on vertices in the

interface Xt , the size of which is bounded by a (small) constant. We compute

the effects of strategies (called borders) at nodes of T in bottom-up manner.

From the set of all possible borders for the root we can then quickly decide

the winner for vertices in the root node. Using force-sets or some similar tech-

nique, winners for the other vertices can be found as well (the complexity then

increases by at most a factor of n, where n is the number of vertices of G).

4.4.1 Borders

For a node t we need to somehow describe the effect of all plays confined to

G[Vt ] on the rest of the graph (G rVt). Let us first consider the case where the

strategies σ of P0 and τ of P1 are fixed. Let v = π0 ∈ Xt , and π = π0π1 . . .πi . . . be

a play of the game G respecting the strategies σ and τ. Let π[t] be the maximal

prefix of π when restricted to vertices of V>t (with the exception of π0). We

define the outcome of such path π[t] to be

Rτ
σ(v, t)=


⊥ if π[t] is infinite and winning for P1

> if π[t] is infinite and winning for P0

(w, p) if π[t] : π0, . . . ,π j; w = π j+1 and p = max{λ(πi) | 0≤ i≤ j +1}

Note that in the last case it must be that w ∈ Xt .

The next step is to fix only a strategy σ of P0 and try to find the best results

player P1 can achieve against this strategy. Two cases are simple. If there is a

winning cycle of P1 reachable from v in the subgame Gσ[V>t ], then we know P1,

starting in v, can win against the strategy σ of P0 both in the game restricted to

V>t and in the whole game Gσ. On the other hand if all paths starting in v lead

to a winning cycle for P0, then P1 loses every play starting in v also in the game

Gσ.

The third possibility is that there is no winning cycle for P1 in Gσ[V>t ], but P1

can force the play to a vertex of Xt . Then the ‘value’ of such play π is the highest

priority of a vertex on this path. However there can be more paths starting in

v which lead to some vertex w ∈ Xt . In that case it is in player P1’s interest to
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choose the one with the lowest score w.r.t. the reward ordering ‘v’. Moreover,

there may be paths starting in v but leading to different vertices of the set Xt .

Then we remember the best achievable result for each of these ‘leave’ vertices.

To formalise the description above, we need to extend the ‘v’ ordering to

pairs (v, p). For two such pairs (v, p),(w,q) we put (v, p) v (w,q) iff v = w and

pv q. Specifically if v 6= w then the two pairs are incomparable. We furthermore

extend the ordering v by adding the maximal element >, and the minimal

element ⊥. For a set X ⊆ (V ×N)∪{>,⊥} we denote minvX to be the set of

v-minimal elements of X . Note that minvX = {⊥} iff ⊥ ∈ X and minvX = {>}
iff X = {>}. Moreover for Z = minvX it is true that if Z 6= {⊥} and Z 6= {>} then

Z contains at most one pair (v, p) for each vertex v.

With all the machinery in place we now define

Rσ(v, t) = min
v
{Rτ

σ(v, t) | τ ∈ Σ1}

Now we get to the definition of a border. A border of a node t tells us what

happens inside the subgraph G[Vt ] – i.e. we take vertices of Xt as entry points

for G[Vt ], but not as its inner vertices. We start with some useful definitions.

Definition 4.4 (border). A border α of t is a function α mapping Xt to either ⊥,

>, or a subset of 2Xt×N in which case α(t) contains at most one pair (v, p) for

each v ∈ Xt . Border α of t corresponds to a strategy σ ∈ Σ0 if

∀v ∈ Xt .α(v) = Rσ(v, t)

We will use letters from the start of the Greek alphabet to denote borders. For

a node t and a strategy σ we also use αt
σ to denote the border of t which corre-

sponds to σ.

Note that there can be many strategies which correspond to the same bor-

der. This ‘compression’ is what makes the algorithm work. Elements of α(v)

are called entries. For each pair v,w ∈ Xt there is at most one entry (w, p) ∈ α(v)

when α(v) 6= ⊥ or >. This allows us to overload the notation a little bit and

write α(v,w) = p as a shorthand for (w, p) ∈ α(v).

In addition to border α being a function, we can look at α as being a table of

priorities with dimensions (k +1)× (k +1). In this table the rows and columns

are labelled by vertices of Xt , and the value position at v,w is α(v,w). Likewise

if symbols⊥ or> appear in a row, then the whole row must be marked by this

symbol.
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Example 4.1. An example of a border is in Fig. 4.2. There you can see a parity game

together with a tree decomposition of the game graph and border α for the node t with

Xt = {1,3,4} and a corresponding strategy σ. Just for completeness Vt = {1,2,3,4}.

1

2

3

4

5

6

156

145

134

123

σ = {1 7→ 2,3 7→ 4}
α 1 4 3

1 2 - -

4 4 - -

3 3 - -

Figure 4.2: Example of a border

It is not hard to prove that αt
σ contains all we need to know about the sub-

graph Gσ[Vt ] in order to check whether P0 wins for some vertex in V rV>t using

the strategy σ. To do so we will need the notion of a link:

Definition 4.5 (link). A link of a border α of t is a terminal graph H = (Xt ∪W ∪
{v⊥,v>},E ∪{(v⊥,v⊥),(v>,v>)},Xt) and priority function λ s.t.:

• we start with W = /0 and E = /0
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• for every pair u,w ∈ Xt with α(u,w) = p for some p ∈ N we put a new

vertex v into W and two edges (u,v) and (v,w) into E. We also set λ(v) =

α(u,w).

• for every v ∈ Xt with α(v) =⊥we insert an edge (v,v⊥) into E.

• for every v ∈ Xt with α(v) =>we insert an edge (v,v>) into E.

• λ(v) for v ∈ Xt is the same as in original game, λ(v⊥) = 1, and λ(v>) = 2.

We also write Link(α) for the link of a border α, using the same notation for

both the game graph and the induced game (when we take λ into account).

In other words Link(αt
σ) together with λ is just a graph having the same

properties w.r.t. winning the game as Gσ[Vt ] does. The formal proof of this

statement is subject of the following lemma:

Lemma 4.2. Let αt
σ be the border of t corresponding to σ. Let H be s.t. Gσ = Gσ[Vt ]⊕

H and v a vertex in V rV>t . Then P1 has a winning strategy in Gσ(v) iff she has a

winning strategy for v in L = Link(αt
σ)⊕H.

Proof. ⇒ Suppose P0 does not win in Gσ. Then there must be an odd cycle

ρ : ρ1 . . .ρkρk+1 = ρ1 reachable from v. Let π be some path from v to a

vertex of ρ. There are two cases to be considered:

1. V (ρ)⊆V>t

Then there must be i∈N s.t. πi = w∈ Xt by Fact 4.3 and αt
σ(w) =⊥ by

definition of αt
σ . From definition of Link(αt

σ) player P1 has a winning

strategy for v in L (she can force play to v⊥ and then loop through

this vertex).

2. Otherwise

Let j ∈N be s.t. ρ j ∈Xt and ∀i≤ j.ρi ∈V>t (such j must exist). Then ρ j

is also reachable in L (by definition of Link(αt
σ)). Moreover, let ρ′ be a

cycle obtained from ρ by substituting every sequence u = ρi . . .ρi+l =

v, where u,v ∈ Xt and {ρi+1 . . .ρi+l} ⊆V>t , by a path uwu,vv. Then ρ′ is

a cycle of L and it is easy to check that P1 also wins the cycle ρ′ of L.

⇐ similar
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Finally we define the set of all possible outcomes for a node t:

Border(t) = {αt
σ | σ ∈ Σ0}

The following important corollary says how we can derive the desired in-

formation from Border(r), where r is the root of T .

Corollary 4.1. Let (T,X ) be a tree decomposition of G, r its root node and v ∈ Xr a

vertex of G. Then P0 has a winning strategy for G(v) iff there is α ∈ Border(r) s.t. P0

has a winning strategy for v in Link(α).

It should be noted that the test whether P0 wins in the game Link(α)(v) can

be done in constant time, which depends only on the tree-width of G.

4.4.2 Computing Border(t)

Having a nice tree decomposition (T,X ), we compute the set Border(t) for ev-

ery node t of T in a bottom-up manner. Here we give an algorithm for each of

the four node types.

Start Node Let t be a start node, Xt = {v}. We put Border(t) = {α}, where

α(v) = /0.

Forget Node Let t be a forget node with a single child t ′ and Xt ′ = Xt ∪ {v}.
By definition of tree decompositions we know that there is no edge connect-

ing v with V rVt , since v does not appear anywhere in the part of T yet to be

explored. We will modify each α ∈ Border(t ′) according to the value of α(v),

creating α′ (a new function which is defined only for w ∈ Xt). There are three

cases to be considered.

α(v) =⊥ or α(v,v) = p, p odd

α
′(w) =

⊥ if α(w,v) = q for some q

α(w) otherwise

α(v) => or α(v) = {(v, p)}, p even

α
′(w) =

> if α(w) = {(v,q)} for some q

α(w) otherwise
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None of the previous

Let βp = {(u,max{p,q}) | (u,q) ∈ α(v),u 6= v}, i.e. we take all elements

of α(v) except for α(v,v), and replace the original priority with p if p is

bigger. Now we put

α
′(w) =

minv (α(w)∪βp) if (v, p) ∈ α(w)

α(w) otherwise

Let α′′(w) be α′(w) minus any pair (v,q) for some q. For all three cases we put

mod(α)(w) = α′′(w) for w ∈ Xt and claim that

Border(t) = {mod(α) | α ∈ Border(t ′)}

The correctness follows from the definition of border.

Introduce Node Let t be an introduce node with a child t ′, and Xt = Xt ′ ∪{v}.
Let α∈ Border(t). We now have to connect all edges between v and Xt ′ . We start

with the edges going from Xt to v. Let us define the following operation

mod(α,U,v)(u) =

α(u)∪{(v,max(λ(u),λ(v)))} if u ∈U

α(u) otherwise

Let U1 be the set of odd vertices in Xt ′ with edges to v, i.e. U1 = {u ∈ Xt ′ ∩V1 |
(u,v) ∈ E}, and U0(α) the set of even vertices in Xt ′ which have v as a successor

and for which no choice has been made yet, i.e. U0(α) = {u∈Xt ′∩V0 | (u,v)∈E∧
α(u) = /0}. Then we define U(α) = {mod(β,U,v) |U ⊆U0(α)∧β = mod(α,U1,v)}.
In other words we first create β by considering all choices of P1, and then player

P0 sets strategy for a subset of the vertices where is he not yet decided.

In the second stage we connect the edges going from v to Xt ′ . We use a

similar operator to mod:

mod2(α,v,W )(u) =

{(w,max(λ(v),λ(w))) | w ∈W} if u = v

α(u) otherwise

Let W = {w ∈ Xt ′ | (v,w) ∈ E}. We define Border(t) depending on the player

owning v.

v ∈V1

Border(t) = {mod2(γ,v,W ) | γ ∈U(α),α ∈ Border(t ′)}
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v ∈V0

Border(t)= {mod2(γ,v,{w}) | γ∈U(α),α∈Border(t ′),w∈W}∪{U(α) |α∈Border(t ′)}

(In the first case we added all edges from v to Xt . In the second case we

include all possible choices of V0’s strategy for v.) The correctness again follows

from the definition of border.

Join Node Let t be a join node with t1 and t2 as its children. If we take α1 ∈
Border(t1) and α2 ∈ Border(t2), we are not guaranteed that there is a strategy σ

s.t. α1 = α
t1
σ and α2 = α

t2
σ . Instead of checking whether this is really the case we

actually require a weaker condition:

Definition 4.6. Let α1 ∈ Border(t1) and α2 ∈ Border(t2). We say that α1 and α2

are compatible if one of the following is satisfied for each v ∈ Xt ∩V0:

1. α1(v) = /0,α2(v) 6= /0

2. α2(v) = /0,α1(v) 6= /0

3. α1(v) = α2(v) = /0 and there is w ∈V rVt such that (v,w) ∈ E

4. α1(v) = α2(v) 6= /0

For compatible borders α1 ∈ Border(t1) and α2 ∈ Border(t2) we define the

following operator J:

α1Jα2(v) =



α1(v) if v ∈V0 and α2(v) = /0

α2(v) if v ∈V0 and α1(v) = /0

α1(v) if v ∈V0 and α1(v) = α2(v)

minv(α1(v),α2(v)) if v ∈V1

Lemma 4.3. Let t be a join node with t1 and t2 as its children. Then

Border(t) = {α1Jα2 | α1 ∈ Border(t1),α2 ∈ Border(t2), α1 compatible with α2}

Proof. We first show that Border(t) is included in the set on the right – this is

the easy inclusion. For each αt
σ ∈ Border(t) consider α

t1
σ and α

t2
σ , the borders

corresponding to σ for the nodes t1 and t2. By definition of Border we have
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α
t1
σ ∈ Border(t1) and α

t2
σ ∈ Border(t2). It is easy to check that α

t1
σ and α

t2
σ are

compatible and that αt
σ = α

t1
σ Jα

t2
σ .

For the other inclusion take α
t1
σ1 ∈ Border(t1) and α

t2
σ2 ∈ Border(t2) which are

compatible, and define the strategy σ by the following prescription:

σ(x) =



σ1(x) if x ∈V>t1

σ2(x) if x ∈V>t2

σ1(x) if x ∈ Xt and α
t2
σ2(x) = /0

σ2(x) if x ∈ Xt and α
t1
σ1(x) = /0

σ1(x) if x ∈ Xt and α
t1
σ1(x) = α

t2
σ2(x)

By definition of tree-width Vt1 ∩Vt2 = Xt (i.e. G[Vt1] and G[Vt2] are disjoint except

for their common interface), so we only have to check the choices made for ver-

tices in V0∩Xt . Obviously if α
t1
σ1(x) = /0, then no successor has been chosen for

the vertex v in G[Vt1]. Similarly for α
t2
σ2(x) = /0. Finally if α

t1
σ1(x) = α

t2
σ2(x) it does

not matter which strategy we use for the vertex x. Altogether we get α
t1
σ1Jα

t2
σ2 =

αt
σ for the strategy σ defined above and therefore α

t1
σ1Jα

t2
σ2 ∈ Border(t).

4.4.3 Main Result

Theorem 4.3. Let G = (V,E,λ) be a parity game, (T,X ) a tree decomposition of G of

width k and v ∈ V . Then we can solve G(v) in time roughly O(n · (k + 1)2d2(k+1)2
),

where n = |V | and d = |{λ(v) | v ∈V}|.

Proof. We first convert the tree-decomposition (T,X ) (assuming it has O(n)

nodes) into a nice tree-decomposition using Lemma 4.1, which says that a nice

tree decomposition of at most 4n (and of the same width) nodes can be con-

structed from (T,X ) in O(n) time.

Let r ∈V (T ) be a node such that v ∈ Xr and orient T so r is the root. We now

compute the set Border(r) using the algorithm above. Finally we can find the

winner of G(v) applying the Corollary 4.1.

It remains to establish the time needed to compute Border(t) for t ∈ V (T ).

The size of Border(t) is roughly d(k+1)2
for each t ∈V (T ), because α ∈ Border(t)

can be thought of as a table of priorities of size (k+1)×(k+1). (To get a precise

bound we need to consider also the elements ⊥ and >. That would give us the

bound of (dk+1 +2)k+1.)
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The time to compute Border(t) is different for the four different types of

nodes. What dominates is the time needed for join nodes. For each join node t

we have to consider all pairs α1 ∈ Border(t1), α2 ∈ Border(t2). The time needed

for testing compatibility and computing α1Jα2 is at most (k + 1)2. Therefore

the time to compute Border(t) can be bounded by (k +1)2 ·d2(k+1)2
.

As there are at most 4n nodes the time needed to compute Border(r) is

roughly in O(n · (k + 1)2 · d2(k+1)2
). This is also the bound on the time needed

to find a winner for G(v), as the test in Corollary 4.1 can be performed in time

O((k + 1)2). It remains to mention that in the general case the number of pri-

orities d is from the range 〈1,n〉, and therefore our algorithm is polynomial in

n.

We have been able to identify examples of parity games for which the stan-

dard algorithm based on computing approximants needs exponential time, but

which are of very low tree-width. In [Mad97] there is an example of such a

parity game. This example is parametrised by n – the number of vertices. The

game graph in Fig. 4.3 shows an instance of size 10. Note that the tree-width

of this game graph is only 2 (this value does not depend on n).

10 9 8 7 6 5 4 3 2 1

Figure 4.3: Parity game example

4.5 Adaptation to µ-calculus

In this section we explain how to adapt the algorithm for parity games to µ-

calculus model checking. As an instance of a model checking problem, we are

given a transition system T of size n and a µ-calculus formula ϕ of size m, and

alternation depth d. Moreover, we assume that T has a tree decomposition of

tree-width k and therefore also a nice tree decomposition (T,X ) of the same

size.

The most straightforward way would be to translate T and ϕ into a parity

game G following the construction given in Section 2.5.3. The game graph of

G is by construction somewhere between synchronous and parallel product of
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T and Sub(ϕ), the set of all subformulas of ϕ. (Both synchronous and parallel

product G of G1 and G2 have the set of vertices V (G) = V (G1)×V (G2). The set

of edges is E(G) = {((v,w)(v′,w′)) | (v,v′) ∈ E(G1),(w,w′) ∈ E(G2)} in the case of

synchronous product, and E(G) = {((v,w)(v,w′)) | v ∈ V (G1),(w,w′) ∈ E(G2)}∪
E(G) = {((v,w)(v′,w)) | w ∈ V (G2),(v,v′) ∈ E(G1)}.) However, how can we be

sure that the tree-width of G is bounded by k, as the T is? Note that in general

the product of G1 and G2 can be of much higher tree-width than the graphs G1

and G2. An example of this is in Fig. 4.4 for parallel product. The tree-width

of both G1 and G2 is one, however the tree-width of G1×G2 is 4, as it is a 4×4

grid. (The construction works for a synchronous product as well. We just have

to add loops to all vertices of G1 and G2.)

G1 G2 G1×G2

Figure 4.4: Graphs G1, G2 and their parallel product

But let us closely look at the construction of the parity game in Section 2.5.3.

The vertices of the game are pairs (v,ψ), where v ∈V (T ) and ψ ∈ Sub(ϕ). Note

that all the edges (except those created in steps 8. and 10.) are of the form

((v,ψ),(v,ψ′)) – i.e. only the formula component of the vertex changes. In the

remaining cases 8. and 10. the edges are of the form ((v,ψ),(w,ψ′)), where

(v,w) ∈ E(T ). This leads us to the following modification of the algorithm for

parity games: We compute on the tree-decomposition of T , but for each vertex

v ∈ V (T ) we include all pairs (v,ψ), ψ ∈ Sub(ϕ) in the border. In other words

we still play the game G , but let T to tell us which vertices of V (G) we see.

Formally, let (T,X ) be the tree-decomposition of T of width k. Then the

border of t ∈ V (T ) will be a function β : Xi× Sub(ϕ)→{⊥,>,2Xi×Sub(ϕ)×P} (cf.

Definition 4.4). In other words, borders will be tables with rows and columns

annotated by pairs from the set Xi× Sub(ϕ). If we put m = |Sub(ϕ)|, then the

border dimensions will be at most (k +1) ·m× (k +1) ·m.

Having modified borders, we have to modify the algorithm as well. This is
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easy – instead of adding (Introduce nodes) or removing (Forget note) a single

vertex v we add/remove all vertices (v,ψ) for ψ ∈ Sub(ϕ). Start nodes are ob-

vious. Finally when dealing with Join nodes, we just modify the check when

two borders correspond to the same strategy. The existence of edges between

vertices of G (pairs (v,ψ)) can easily be checked on the fly. That we deal with all

the edges is guaranteed by the above-mentioned fact that all the edges (except

those created in cases 8. and 10.) are of the form ((v,ψ),(v,ψ′)), and in cases 8.

and 10. the edges are of the form ((v,ψ),(w,ψ′)), where (v,w) ∈ E(T ).

4.5.1 Complexity

Theorem 4.4. Let T be a transition system of n vertices with a tree decomposition of

tree-width k, and ϕ a formula of size m and alternation depth d. Then we can solve the

model checking problem for T and ϕ in time time O(n · ((k +1) ·m)2d2((k+1)·m)2
).

Proof. We start with the complexity estimate for parity games. In the µ-calculus

case, the size of borders has grown from k+1 to (k+1) ·m. However, we do not

increase the number of nodes in tree-decomposition. The number of priorities

is equal to d. The rest follows from Theorem 4.3.

Comparing to the result of [LBC+94], our algorithm is linear in the size

of the system, no matter what the formula is. It should be also noted, that

the estimated running time is really the upper bound and the algorithm may

benefit from further optimisation.

4.5.2 Application to Software Model Checking

The algorithm presented above looks suitable for model checking software.

Programs written in structured programming languages have a low tree-width

and, moreover, we can find the tree decomposition just by performing a simple

syntactic analysis [Tho98]. In practice it is usually the case that the size of the

system itself is huge, whereas the formula is quite small. This is where the fact

that our algorithm is linear in the size of the system may give better results

compared to previous algorithms.
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DAG-width

Most of the results presented in this chapter, with the notable exception of

the algorithm for parity games (Section 5.6, which has been adapted from

[BDHK06]), have been published in slightly different form in [Obd06].

In the previous chapter we have seen that on graphs of bounded tree-width

we can solve parity games in polynomial time. One drawback of this approach

is that for the purposes of tree decomposition we ignore the orientation of

edges. However there are graphs on which it is easy to solve a parity game

in polynomial time, but can which can be of tree-width equal to the number

of its vertices. A typical example of such a graph is a directed clique of size n,

which arises from an undirected clique of the same size by orienting edges in

such a way they form a DAG (with one source and one sink). As we have seen

in the previous chapter (page 41) Kn, a clique of size n, has tree-width n−1 but

it is easy to solve parity games on DAGs. (By DAGs in this context we mean

directed acyclic graphs. In the case of parity games we allow (and require) self

loops at leaves, guaranteeing every vertex has a successor, so that the parity

game is well defined.) Similarly it is easy to solve parity games on trees with

back edges – see Section 3.6.

Therefore we may look for some decomposition similar to tree decomposi-

tion, which is defined on directed graphs. As surprising as it may seem, there

are not that many such decompositions around. The main reason for this has

been the problem of finding the right ‘separation lemma’ for directed graphs

(more or less a canonical way of dividing a graph using smallest possible cut-

sets).

Of the few notions of decomposition which appear in the literature [JRST01,

57
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BG04, Saf05], the notion of directed tree-width defined by Johnson, Robertson,

Seymour and Thomas in [JRST01] has probably been the most important. (Some

background on directed tree-width can also be found in [Ree99].) The decom-

position structure of a graph in this case is a tree (as for tree decompositions),

but this time directed (i.e. with a designated root). In their paper the authors

present an algorithm for solving problems like Hamiltonian cycle in polyno-

mial time on graphs of bounded directed tree-width.

However, the notion of directed tree-width has had less impact than tree-

width. We try to identify reasons why this is so. It appears as though in the at-

tempt to capture as broad a class of graphs as possible, the definition is too gen-

eral. The main problem seems to be that the separator sets are not monotone

with respect to decomposition (called arboreal decomposition). This makes

reasoning about directed tree-width complicated and error prone (if you want

to read the [JRST01] paper, check also the addendum [JRST02]). Also the re-

quirement of non-empty sets in the nodes of the decomposition causes several

other issues.

Our goal is therefore to find a measure with nice algorithmic and graph the-

oretical properties, which is simpler to use and reason about and retains gen-

erality. We introduce a new connectivity measure called DAG-width, whose

decomposition structure is a DAG.

This measure has been first published at SODA’06 by the author of this the-

sis. Independently Berwanger, Dawar, Hunter and Kreutzer came up with ex-

actly the same measure, even giving it the same name (this latter fact is not that

surprising, since ‘DAG-width’ is an obvious choice). Their paper [BDHK06]

appeared at STACS’06 later than [Obd06], but in addition to the results pre-

sented in [Obd06] it also contains the algorithm for solving parity games which

is not included in [Obd06]. We are now working together on exploring the

DAG-width. A joint journal paper should appear soon.

The rest of this chapter is organised as follows: In the following section we

present the notion of directed tree-width as defined in [JRST01]. The next sec-

tion contains the definition of DAG-width and some of its properties including

a normal form. Then we present a variant of cops-and-robber games related

to the definition of DAG-width. We continue by proving that this measure is

a little stricter than directed tree-width and show also the relationship to tree-

width of undirected graphs. Finally in the last section we present a modified
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version of the algorithm [BDHK06] for solving parity games in polynomial

time on graphs of bounded DAG-width.

5.1 Directed Tree-width

Directed tree-width was introduced by Johnson, Robertson, Seymour and Thomas

in [JRST01] (also see [Ree99]) as a counterpart of tree-width for directed graphs.

The decomposition structure is still a tree, though this time directed (i.e. with a

designated root). We will see that the definition looks quite different from that

of tree-width, while being still closely related. Before we present the definition

we need to introduce some more notation.

For a directed acyclic graph R we use the following notation: If r,r′ ∈ V (R)

we write r < r′ iff there is a directed path with initial vertex r and terminal

vertex r′. We write r ≤ r′ iff r < r′ or r = r′. Finally if e ∈ E(R) then e∼ r iff e is

incident with r. For a graph G a set S⊆V r Z is Z-normal if there is no directed

path in G r Z with first and last vertices in S that uses a vertex of G r (S∪Z).

I.e. no path can leave S and then return back to S without passing through a

vertex in Z.

Definition 5.1 (arboreal decomposition). An arboreal decomposition of a graph

G is a triple (R,X ,W ) where R is a directed tree, and X = {Xe | e ∈ E(R)}, W =

{Wr | r ∈V (R)} are sets of vertices of G satisfying:

(R1) W is a partition of V (G) into nonempty sets

(R2) for e ∈ E(R), e = (r1,r2) the set
S
{Wr | r ∈V (R) and r ≥ r2} is Xe-normal.

The width of (R,X ,W ) is the least integer w such that for all r ∈ V (R), the

union of Wr and the sets Xe on neighbouring edges has at most w elements

(formally |Wr ∪
S

e∼r Xe| ≤ w). The directed tree-width of a graph G (written as

dtw(G)) is the minimum width over all possible arboreal decompositions of G.

You can see an example of arboreal decomposition of width 1 in Fig. 5.1.

Sets Wr are drawn in the nodes and edges are annotated by sets Xe.

5.1.1 Game Characterisation

As in the case of tree-width, the authors of directed tree-width attempted to

give a game characterisation of graphs of bounded directed tree-width. The
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a b c d
a

bc

d

{b} {c}

Figure 5.1: Graph and its arboreal decomposition

original informal definition goes like this: The robber stands on a vertex of the

graph, and can at any time run at a great speed to any other vertex along an

oriented path of the graph. He is not permitted to run through a cop, and must

stay in the same strongly connected component of G r Z, where Z is the set of

vertices currently occupied by the cops. There are k cops, each of whom at

any time either stands on a vertex or is in a helicopter. The goal of the player

controlling the cops is to land a cop via a helicopter onto a vertex currently

occupied by the robber, and the robber’s objective is to elude capture. (The

point of helicopters is that cops are not constrained to move along the paths of

the graph.) The robber can see the helicopter landing and may run to a new

vertex before it actually lands.

More formally, the game is played on a graph G by two players: the cop

player, and the robber player. It is played according to the following rules:

At the beginning the robber player chooses a vertex u ∈ V (G), giving us an

initial game position ( /0,u). Given a position (X ,v), the cop player chooses a

set X ′ ⊆ [V ]≤k, and the robber player a vertex v′ ∈ V (G) r X ′ such that both v

and v′ lie in the same strongly connected component of the graph Gr (X ∩X ′),

giving us the next position (X ′,v′). A play is a maximal sequence of positions

formed from an initial game position according to the rule above. The play is

winning for the cop player if it is finite – i.e. for the final position (X ,v) of the

play it is true that there is X ′ ∈ [V ]≤k such that no vertex of the graph V (G)rX ′

is in the same strongly connected component of the graph G r {X ∩X ′} (this

immediately implies v ∈ X ′). On the other hand the robber player wins if the

play is infinite. If k cops can capture the robber in G we say that k cops can

search G. Moreover if they can do so without revisiting a vertex then they can

monotonely search G.

If we compare this game to the game characterising tree-width (see Sec-

tion 4.2), we see that there are two main differences: 1. the robber must re-
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spect the orientation of edges, and 2. he must stay in the same strongly con-

nected component of G r Z. The first restriction is very natural, as it is the

most straightforward generalisation. However restricting the robber to stay in

the same strongly connected component is something which makes the game

rather different. One possible explanation is that this restriction is closely re-

lated to the restrictions we consider when working in the domain of network

flows, which is one of the traditional applications of directed graphs and sep-

arator sets. At least the paper [Ree99] seems to support this explanation. An-

other explanation is the restriction to strongly connected components allows

to generalise the notion of haven for the cops and robber game.

It has also been shown in [JRST01] that monotone and non-monotone strate-

gies for cops are not necessarily equivalent, this being in sharp contrast with

games for the undirected case of tree-width. Their example is in Fig 5.2. Here

we use the convention that an undirected edge represents two edges with the

same ends, one in each direction. This graph has directed tree-width three,

but there is no monotone search strategy for four cops - they have to revisit a

previously occupied vertex in order to capture the robber.

Figure 5.2: Graph for which monotone and non-monotone search strategies are not

equivalent

As for the undirected case of the game, there is a notion of haven. Let G be

a directed graph and w > 0. A haven of order w in D is a function β assigning to

every set Z ⊆ V (G) with |Z| < w vertex set of a strongly connected component

of G r Z in such a way that if Z′ ⊆ Z ⊆ V (G) with |Z| < w, then β(Z′) ⊆ β(Z). It

is easy to see that if there is a haven of order w in the graph G, then the robber

can win against w− 1 cops by staying in β(Z), where Z is the set of vertices

currently occupied by the cops. As we pointed out earlier, the definition of

haven very closely resembles the one for the undirected case (cf. page 44).
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Regarding the relationship between directed tree-width and the games de-

fined above, the following is shown in [JRST01]:

Theorem 5.1 ([JRST01]). Let G be directed graph and k an integer. If the robber has

a haven of order k, then the directed tree-width of G is at least k−1.

The proof of this theorem is simple and constructive. However the authors

were not able to prove the opposite implication. What the authors have actu-

ally proved is the following weaker statement:

Theorem 5.2 ([JRST01]). Let G be directed graph and k > 0 an integer. Then either

the directed tree-width of G is at most 3k− 2, or there is a haven of order k (which

implies the robber has a winning strategy against k−1 cops).

We can actually show that the converse of Theorem 5.1 does not hold. See

the graph in Fig. 5.3. This graph has four components: K6,K4a,K4b, and K2.

Double arrow between the components signifies that there is an edge from

every vertex of the tail component to every vertex of the head component. (So

from each vertex of K6 you can get to any other vertex, and from each vertex

of K4a (K4b) you can get to both vertices of K2.)

In this graph six cops can capture the robber, even using a monotone strat-

egy. Their strategy is following:

1. occupy K5

2a. if the robber moves to K4a, occupy the vertex a

3a. occupy K2 (using the cops from x and y)

4a. occupy the rest of K4a, using the remaining cops from K5

2b-4b. as 2a-4a, but working on b, K4b instead

On the other hand there is no arboreal decomposition of width five for this

graph. The proof of this fact is a tedious analysis, and can be done by an

exhaustive search in the space of possible decompositions. The intrinsic rea-

son why we cannot find a decomposition of width 5 is that the definition of

arboreal decomposition requires the sets Wr to form a partition of V (G) into

nonempty sets. If we allowed the sets Wr to be empty, this problem would not

arise and the graph in Fig. 5.3 would have an arboreal decomposition of width

five.
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K2

a b

yx

K4a K4b

Figure 5.3: Graph which can be searched by 6 cops, but has directed tree-width > 5

Unknown to the author up till few days before submitting this thesis, Adler

[Adl] has proved among other things the same result. The paper [Adl] contains

a different example together with a full proof.

5.1.2 Algorithms

In their paper [JRST01], the authors present a generic algorithm to solve many

NP-hard problems in polynomial time. As in the case of ordinary tree-width,

the dynamic programming approach is used, computing a table of partial so-

lutions for each node of the decomposition. Here the authors show a generic

requirement for the algorithm to run in polynomial time: For every integer k

there is a real number α such that the two following properties are true about

the tables of partial solutions (here called itineraries).

Axiom 1 Let G be a graph and A,B ⊆ V (G) disjoint sets of vertices such that

no edge of G has head in A and tail in B. Then the itinerary for A∪B can be

computed from itineraries for A and B in time O((|A|+ |B|)α).
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Axiom 2 Let G be a graph and A,B⊆V (G) disjoint sets of vertices such that A

is Z-normal for some Z ⊆V (G) and |B| ≤ k. Then the itinerary for A∪B can be

computed from itineraries for A and B in time O((|A|+1)α).

The construction of a polynomial algorithm for a given itinerary is ob-

vious: We go through nodes in the order given by <. For a node d with

multiple successors we compute first the information for G[W ′], where W ′ =S
(d,d′)∈E(R)W>d′ . This we can do by iterative application of Axiom 1. Then they

apply Axiom 2 to G[W ′] and Wd . There is however a problem in the original

proof, which was first pointed out by the author of this thesis and subsequently

fixed in [JRST02].

Using this approach, the paper continues to show that using the generic

approach above the following problems can be decided in polynomial time on

graphs of bounded directed tree-width: Hamiltonian path and Hamiltonian

cycle, even cycle through a specified vertex etc.

5.2 DAG-width

The main issue with the directed tree-width is that arboreal decompositions

are not intuitively related to the graphs they decompose. More specifically,

the problematic element are the sets Xe. The only structural restriction on these

sets is that the elements of Xe cannot belong to the subtree at the head of e. One

would expect a restriction like: ‘for each vertex v∈V (G), the sets Xe (respective

their associated edges) s.t. v ∈ Xe form a connected subtree of R’. Design of

algorithms working on arboreal decompositions is then very complicated, as

we cannot exploit any extra structure.

This is probably the reason why there have not been many papers citing

[JRST01] and the measure proved to be very difficult to use for designing algo-

rithms1. The author of this thesis tried for some time to come up with polyno-

mial algorithm for solving parity games on graphs of bounded directed tree-

width, but failed miserably probably because of the issues above.

Since there is still need for a good measure of a directed graph, we would

like to propose a new measure called DAG-width, which rectifies some of the

problems associated with directed tree-width. The design goals for the new

measure are summarised below:
1This is the opinion of most of the graph theorists the author has talked to.
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• The decomposition must be reasonably intuitive.

• There should exist a straightforward game characterisation.

• The new measure should have a close relationship to both tree-width and

directed tree-width.

• And it should be closed under directed unions.

The main difference with both tree-width and directed tree-width is that we

use a DAG instead of a (directed) tree as basis for the decomposition. (By DAG

in the rest of this chapter we mean directed acyclic graph, without self-loops.

Also any vertex with no incoming edges is called root of the DAG throughout

this chapter. The relation v on vertices of a DAG is the same as defined in

Section 5.1. ) This indeed looks natural for the case of directed graphs. The

definition of DAG-width is below. Note that the properties (D1)-(D3) closely

correspond to (T1)-(T3) in Definition 4.1.

Definition 5.2 (DAG decomposition). A DAG decomposition of a (directed) graph

G is a pair (D,X ) where D is a DAG and X = {Xd | d ∈ V (D)} is a multiset of

subsets of V (G) satisfying:

(D1) V (G) =
S

d∈V (D) Xd

(D2) If (d,d′)∈ E(D), then for each (v,w)∈ E s.t. v∈ X≥d′rXd we have w∈ X≥d′ ,

where X≥c =
S

c′≥c Xc′ .

If d is a root we require for each v ∈ X≥d and (v,w) ∈ E that also w ∈ X≥d .

(D3) for all d,d′,d′′ ∈D if d′ lies on (some) path from d to d′′, then Xd∩Xd′′ ⊆Xd′ .

In the rest of this paper we will also use X>d to denote the set X≥d r Xd .

The width of a DAG decomposition (D,X ) is maxd∈D |Xd| − 1. The DAG-width

of a graph G (written dgw(G)) is the minimum width over all possible DAG

decompositions of G. DAGs have DAG-width zero. To get a better intuition

consider Fig. 5.4.

The properties (D1) and (D3) in the definition of DAG-width are self-expla-

natory, but (D2) deserves some comments. It says that if vertex v ∈ X≥d′ r Xd

(‘below’ and including the node d′, but not in the node d), then all its successors

must be in X≥d′ . An alternative definition can be given using ‘guarding’. We
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Figure 5.4: Graph G and its DAG decomposition

say that a set W ⊆ V guards a set V ′ ⊆ V if whenever there is an edge (u,v) ∈ E

such that u ∈ V ′ and v 6∈ V ′, then v ∈W . Using guarding D2 can be rephrased

as:

(D2’) For each (d,d′) ∈ E(D) the set Xd ∩Xd′ guards X≥d′ r Xd . For the root d of

D the set X≥d is guarded by /0.

In addition to the root of D there is a different kind of root nodes. Node

d ∈V (D) is a root node of vertex v ∈V (G) if there exists (d′,d) ∈ E(D) such that

v 6∈ Xd′ . I.e. at least one of the predecessors of d must not contain v. We denote

XR(v) the set of all root nodes for a vertex v. (Obviously by (D1) for each vertex

of G this set contains at least one element.)

From the definition of DAG decomposition it is apparent that root nodes

play an important role - and there is an associated normal form. We say that

a DAG decomposition (D,X ) is in normal form, if in addition to (D1)-(D3) the

following two properties hold:

(i) for every edge (d,d′) ∈ E(D) there is no other path from d to d′ in D.

(ii) every node d ∈ D is a root node of some vertex v ∈V (G)

Lemma 5.1 (normal form). Let G be a graph and (D,X ) its DAG decomposition of

width k. Then there is an algorithm which converts (D,X ) into (D′,X ′) of width k in

normal form in time linear in the size of D.

Proof. We will construct a sequence (D,X ) = (D0,X0), . . . ,(D f ,X f ) = (D′,X ′) of

pairs (Di,Xi) by iteratively removing (one at a time) edges violating (i) and

nodes violating (ii) in the definition of normal form above, while maintaining

the invariant that (Di,Xi) is a DAG decomposition of G.

(D0,X0) satisfies the DAG decomposition axioms by definition. Let (Di,Xi)

be the DAG decomposition after the i-th iteration. For case (i) we put V (Di+1) =
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V (Di),E(Di+1) = E(Di) r {(d,d′)},Xi+1 = Xi. It is clear that removing an edge

(d,d′) s.t. there is some other path from d to d′ in Di does not violate any of

(D1)-(D3).

For case (ii) assume there is a node d ∈ V (Di) s.t. d is not a root node for

any vertex. Let s1, . . . ,sk be its predecessors and t1, . . . , tl its successors. We put

V (Di+1) = V (Di) r {d}, Xi+1 = Xi r Xd and E(Di+1) = {e ∈ E(Di) | e 6∼ d} ∪ E ′

where E ′ = {(si, t j) | 1≤ i≤ k,1≤ j ≤ l}. I.e. we remove the node d and add an

edge from each direct predecessor of d to each direct successor of d.

(D1) is preserved since d is not a root node for any vertex, and therefore

each vertex must also be in some other set Xd′ .. To prove (D2) it is sufficient

to note that we must have Xd ⊆ Xsi for 1 ≤ i ≤ k as d is not a root node for any

vertex. Finally (D3) is also easy, as that property is not affected by removing a

node on any path in D.

A natural question to ask would be whether we get a normal form for

graphs of DAG-width k if (ii) above is replaced by ‘every node d ∈ D is a root

node of exactly one vertex v ∈ V (G)’, giving us a bijection between vertices of

G and nodes of D. However using this restriction we would run into simi-

lar difficulties as in the case of directed tree-width – our definition would not

correspond to the most natural extension of the cops and robber games charac-

terising tree-width [ST93]. An example to illustrate this is the graph in Fig. 5.3.

In any DAG decomposition of this graph of DAG-width five we need to have

two roots for the vertices in K2.

We also could have made the root nodes more prominent in the definition

of DAG decomposition. The following property (D2”) can be used instead of

(D2) without changing the class of the DAG decompositions:

(D2”) if (v,w) ∈ E(G) then for each d ∈ XR(v) either w ∈ Xd or there exists d′ ∈
XR(w) s.t. d < d′.

To see that (D2) implies (D2”) consider an edge (v,w) ∈ E(G) and a node

d ∈XR(v). Because d is a root node of v, there must be a node d′ s.t. (d′,d)∈E(D)

and v 6∈ Xd′ . As Xd′ ∩Xd guards X≥d rXd′ , then either w ∈ Xd , or there is a path in

D from d to d′′ where w appears for the first time. In the latter case by definition

d′′ ∈ XR(v). The proof that (D2”) implies (D2) is very similar.
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In addition to root nodes for a vertex v we also define root node for a DAG

decomposition (D,X ) to be a node d with no predecessor in D (in other words

source vertex of D). Since D is a DAG a root node of D must always exist.

Moreover, by the following lemma, we can always assume that D has a unique

root node. In the text to follow we will usually assume that this is the case.

Lemma 5.2. Let (D,X ) be a DAG decomposition of width k where D has multi-

ple roots d1, . . . ,dm. Then the decomposition (D′,X ′), where V (D′) = V (D)∪ {d0},
E(D′) = E(D)∪{(d0,di) | 1≤ i≤ m} and X ′ = X ∪{Xd0}, where Xd0 = /0, is a DAG

decomposition of G of width k.

Proof. The process of adding a new root is depicted in Fig. 5.5. As Xd0 = /0

and we have not changed the rest of the decomposition it is easy to see that

(D1)-(D3) still hold.

Xd1 Xd1XdmXd2 Xdm

/0

Xd2

Figure 5.5: Adding a unique root to a DAG decomposition

In [JRST01] the authors mention two other attempts at defining a version

of tree-width for directed graphs which did not work because they were not

closed under directed unions. (A graph G is a directed union of graphs G1 and

G2 if G1 and G2 are induced subgraphs of G, V (G1)∪V (G2) =V (G) and no edge

of G has a head in V (G1) and tail in V (G2).) DAG decompositions are indeed

closed under directed unions:

Lemma 5.3. Let G,G1,G2 be as above with dgw(G1) = k1 and dgw(G2) = k2. Then

dgw(G) = max{k1,k2}.

Proof. We assume that the set of vertices V (G1) and V (G2) are disjunct. Let

(D1,X1) [(D2,X2)] be the decomposition of G1 (G2) of width k1 (k2), and let d2

be the unique root of D2. Then (D,X ), where V (D) = V (D1)∪V (D2), E(D) =

E(D1)∪E(D2)∪{(d,d2) | d ∈ D1} and X = X1∪X2, is a DAG decomposition of

width max(k1,k2).
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5.3 Games for DAG-width

We are now going to give a game characterisation of graphs of bounded DAG-

width. The game we are considering is again a variant of the, by now familiar,

cops-and-robber game. There are k cops moving around in a helicopter and a

robber who is trying to avoid them. The only difference to the game for tree-

width (cf. Sec 4.2) is that the robber must respect the orientation of edges. This

means that in contrast to the case of directed tree-width games (cf. Sec 5.1.1) we

do not require the robber to stay in the same strongly connected component,

meaning we get a more natural generalisation to directed graphs.

Formally, the game is played on a graph G by two players: the cop player,

and the robber player. It is played according to the following rules: At the

beginning the robber player chooses a vertex u ∈ V (G), giving us an initial

game position ( /0,u). Given a position (X ,v), the cop player chooses a set X ′ ⊆
[V ]≤k, and the robber player a vertex v′ ∈V (G)rX ′ such that there is a directed

path from v to v′ in the graph Gr(X ∩X ′), giving us the next position (X ′,v′). A

play is a maximal sequence of positions formed from an initial game position

according to the rule above. The play is winning for the cop player if it is finite

– i.e. for the final position (X ,v) of the play it is true that there is X ′ ∈ [V ]≤k

such that no vertex of the graph V (G) r X ′ is reachable from v in the graph

G r {X ∩X ′} (this immediately implies v ∈ X ′). On the other hand the robber

player wins if the play is infinite. If k cops can capture the robber in G we say

that k cops can search G. Moreover if they can do so without revisiting a vertex

then they can monotonely search G.

We are now going to show that this game indeed characterises DAG-width.

We start with the easier direction:

Theorem 5.3. Let G be a directed graph of DAG-width k. Then it can be monotonely

searched by k +1 cops.

Proof. Let (D,X ) be a DAG decomposition of G of width k. We will assume that

the DAG D has a single root. If this is not so, we can convert (D,X ) into a DAG

decomposition of the same width having this property by Lemma 5.2. The

winning monotone strategy for the cops is as follows. In the first move cops

will occupy Xd0 , where d0 is the root of D. The robber now must be in some

vertex v ∈ X>d0 . Since D is a rooted DAG with every node accessible from the

root, there must be an edge (d0,d1)∈ E(D) s.t. some d ∈ XR(v) is reachable from
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d1. In the next move the cops in Xd0 r Xd1 will take off, leaving only Xd0 ∩Xd1

occupied. By (D2) the robber must stay in X≥d1 . The cops now occupy the

remaining vertices of Xd1 , forcing the robber into X>d1 and so on. Continuing

in this way the robber will be eventually captured. The number of cops is

limited by maxd∈D |Xd|= dgw(G)+1.

Unlike the case of directed tree-width we can prove that the opposite is true

as well:

Theorem 5.4. Let G be a directed graph which can be monotonely searched by k + 1

cops. Then G has DAG-width at most k.

Proof. Let π be a monotone search strategy for k + 1 cops. It is not hard to see

that we can always restrict ourselves to the case where at most one cop moves

at a time. We will construct a DAG decomposition (D,X ) of width k as follows:

The nodes of our decomposition will be pairs (Y,C), where Y ∈ [V ]<k+1 and

C is a strongly connected component of G rY . Here Y stands for the set of

vertices currently occupied by the cops and C is the strongly connected com-

ponent of G rY containing the robber. We set V (D) to be the set of all game

positions (Y,C) from which the cop player wins using the strategy π.

Now fix a node (Y,C) ∈ V (D), and let Y ′ be the next position of the cops

given by the strategy π. Then for each strongly connected component C′ of

G rY ′ s.t. C′ is reachable from a vertex of C in the graph G r (Y ∩Y ′) we insert

the edge ((Y,C),(Y ′,C′)) into E(D). Finally we put X(Y,C) = Y for every node

(Y,C) ∈V (D).

Obviously the number of vertices in each node is at most k + 1, the num-

ber of cops. It remains to be checked that the properties (D1) to (D3) hold,

which is not hard: (D1) is obvious, and (D2) together with (D3) hold since π is

monotone.

Note that the Theorem 5.4 provides us with an upper bound on the minimal

number of nodes in a DAG decomposition. The bound is polynomial in n and

exponential in k, which is in contrast to both tree and arboreal decompositions.

In the case of arboreal decompositions the number of nodes can be at most n,

as the sets Xr are by definition non-empty and form a partition of V . In the case

of tree decompositions, we have the bound 4n for nice tree decompositions

(Lemma 4.1), which are already in a very special form.
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It remains an open problem whether monotone and general strategies are

equivalent - it indeed looks quite likely. As a step in this direction, the next

theorem provides us with a way of describing a winning strategy for a robber:

Theorem 5.5. A graph G cannot be searched by < k cops iff there is a function σ map-

ping each X ∈ [V (G)]<k to a nonempty union σ(X) of strongly connected components

of G r X s.t. if X ⊆ Y ∈ [V (G)]<k then:

1. ∀S ∈ σ(X).∃T ∈ σ(Y ) s.t. there is a directed path from S to T in G r X

2. ∀S ∈ σ(Y ).∃T ∈ σ(X) s.t. there is a directed path from S to T in G r X

Proof. If such a function σ exists, the robber can remain uncaptured by choos-

ing the corresponding element of σ(X) in each step. Conversely, suppose that

< k cops cannot search the graph. Then for each X ∈ [V (G)]<k let σ(X) be the

union of all strongly connected components of GrX s.t. the robber player can

guarantee a win from those components. Then σ clearly satisfies the theorem.

(To keep the size of σ(X) small we can always chose the greatest subset s.t.

there is not a (directed) path between any two strongly connected components

in this set.)

The function σ above plays the same role as havens for graphs of bounded

tree-width/directed tree-width. When one compares the definition of σ and

either of the two definitions of haven, he may ask whether we really need σ(X)

to be a union of strongly connected components, and not just a single strongly

connected component. The answer is yes and the reason can be seen of Fig. 5.6.

The graph GX there cannot be searched by less than three cops. But it is easy

to see that σ({b,c}) = Ga∪Gd (where Ga and Gd are single-vertex components

consisting only of a and d respectively), since two cops can force the robber

from a to d and back again.

a b c d

Figure 5.6: Graph GX
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5.4 Nice DAG Decompositions

As in the case of tree decompositions, providing algorithms working on gen-

eral DAG decompositions would be unnecessarily complicated. Therefore in

this section we introduce the notion of nice DAG decomposition, closely mod-

elled after the nice tree decompositions for tree-width (cf. page 41).

Definition 5.3 (Nice DAG decomposition). DAG decomposition (D,X ) is called

a nice DAG decomposition, if the following four conditions are satisfied:

1. D has a unique root node

2. every node of D has at most two children,

3. if a node d has two children d1 and d2, then Xd = Xd1 = Xd2 , and

4. if a node d has one child d′, then either |Xd| = |Xd′|+ 1 and Xd′ ⊆ Xd , or

|Xd|= |Xd′|−1 and Xd ⊆ Xd′ .

Theorem 5.6. Every graph G of DAG-width k has a nice DAG decomposition of

width k. Furthermore let (D,X ) be a DAG decomposition of G of with n nodes. Then

we can in time O(n2) construct a nice DAG decomposition (D′,X ′) of the same width

with O(n2) nodes.

Before we present the proof of this theorem, we will need the following

lemmas:

Lemma 5.4. Let (D,X ) be a DAG decomposition of G, (d,d′) ∈ E(D) such that Xd′ ⊂
Xd , and take X ⊂ (Xd r Xd′). Let d′′ be a new node not in D. We define (D′,X ′) by

putting:

• V (D′) = V (D)∪{d′′}

• E(D′) = (E(D)r{(d,d′)})∪{(d,d′′),(d′′,d′)}

• X ′ = X ∪Xd′′ , where Xd′′ = Xd′ ∪X

Then (D′,X ′) is a DAG decomposition of G of the same width as (D,X ).

Proof. The properties (D1) and (D3) are obviously satisfied. (D2) holds for the

new edge (d,d′′) since X≥d′′rXd = X≥d′rXd , and for the other new edge (d′′,d′)

since Xd′′ ⊃ Xd .
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Lemma 5.5. Let (D,X ) be a DAG decomposition of G, (d,d′) ∈ E(D) such that Xd ⊂
Xd′ , and take X ⊂ (Xd′ r Xd). Let d′′ be a new node not in D. We define (D′,X ′) by

putting:

• V (D′) = V (D)∪{d′′}

• E(D′) = (E(D)r{(d,d′)})∪{(d,d′′),(d′′,d′)}

• X ′ = X ∪Xd′′ , where Xd′′ = Xd ∪X

Then (D′,X ′) is a DAG decomposition of G of the same width as (D,X ).

Proof. Similar to the proof of 5.4.

Proof of Theorem 5.6. Let (D,X ) be a DAG decomposition of width k. We are

going to transform this decomposition into a nice DAG decomposition (D′,X ′)
in several stages.

First if (D,X ) does not have a single root, we can add one using Lemma 5.2.

Second for each node d which has at least two successors d1, . . . ,dl we replace

this node with a binary branching tree with l leaves, such that every leaf has a

single successor di. For all the new nodes d′ we set Xd′ = Xd . An example of this

transformation for l = 3 is shown on Fig. 5.7. It is clear that the axioms (D1) to

(D3) do hold, and therefore we have a DAG decomposition.

Xd

Xd Xd

Xd Xd

Xd3

Xd2 Xd3Xd1

Xd

Xd1 Xd2

Figure 5.7: Reducing the number of successors to two

Finally we are going to apply Lemmas 5.4 and 5.5. Before we can do so,

we need to make sure that for every node d with a single child d′ we have

either Xd ⊂ Xd′ or Xd′ ⊂ Xd . First note that if Xd = Xd′ , we can contract the edge

(d,d′). In all other cases we substitute the edge (d,d′) with two edges (d,d′′)

and (d′′,d′), where d′′ is a new node with Xd′′ = Xd ∩Xd′ .
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Now for every two nodes d,d′ such that d′ is a child of d and |Xd|− |Xd′| =
m > 1 let Xd = X0 ⊃ X1 ⊃ . . . ⊃ Xm = Xd′ be a decreasing sequence of sets. We

replace the edge (d,d′) with a sequence of edges (d,d1),(d1,d2), . . . ,(dm−1,d′).

By iterative application of Lemma 5.4 the result is again a DAG decomposition

of G. If d′ is a child of d and |Xd′|−|Xd|= m > 1 we apply the dual construction,

using the increasing sequence Xd = X0 ⊂ X1 ⊂ . . .⊂ Xm = Xd′ and Lemma 5.5.

By construction and Lemmas 5.2, 5.4 and 5.5 the decomposition we get is a

nice DAG decomposition and we are finished.

For the bound on the size of the decomposition let us examine the number

of nodes added in each step. In the first step we add at most one node. In step

two the number of new nodes for a node with m successors is at most 2(m−1).

As any node can have at most n successors, and there are n + 1 nodes in total,

the number of new nodes can be bounded by 2n2.

Finally for the step three we introduce at most 2k + 1 new nodes for each

non-conforming edge. However all these edges must have been edges in the

original decomposition (D,X ) and their number is thus bounded by n2. Alto-

gether we add at most O(n2) new nodes.

In a nice DAG decomposition (D,X ), as in nice tree decomposition, every

node is one of four possible types. These types are:

Start If a node is a leaf, it is called a start node.

Join If a node has two children, it is called a join node

Forget If a node d has one child d′ and Xd ⊂ Xd′ , the node d is called a forget

node.

Introduce If a node d has one child d′ and Xd ⊃ Xd′ , the node d is called an

introduce node.

(The forget and introduce names relate to the way algorithms on DAG de-

compositions work – from leaves towards the root.) Moreover, we may assume

that start nodes contain only a single vertex. If this is not the case, we can trans-

form every nice tree decomposition into one having this property by adding a

chain of introduce nodes in place of non-conforming start nodes. Similarly we

may assume that the (unique) root node also contains a single vertex.
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5.5 Relationship to Other Measures

Here we present the relationship between DAG-width and both tree-width

and directed tree-width. As one could expect, DAG-width falls in between the

two measures.

Theorem 5.7. Let G be a directed graph. Then dgw(G) ≤ tw(G). Moreover for each

natural number k > 0 there is a graph Gk such that tw(Gk) = k−1 and dgw(Gk) = 0.

Proof. A tree decomposition (T,X ) of a (directed) graph G can be easily turned

into a DAG decomposition (D,X ) of G, where the DAG D is created from the

tree T by selecting one node as a root and orienting all edges away from this

root. To prove that (D,X ) is a DAG decomposition of D we show that (D1)-

(D3) hold. (D1) and (D3) are easy to prove, since they are immediately implied

by (T1) and (T3) for (T,X ). For (D2) assume that there is (d,d′) ∈ V (D) and

(v,w) ∈ E(G) violating this property. By (T2) there must be a node c ∈ V (D)

such that {v,w} ⊆ Xd . However by (T3) no node outside of X≥d′ contains v and

similarly no node inside X≥d′ contains w, a contradiction. The width is clearly

the same for both the decompositions.

For the second proposition it is enough to take for Gk the directed clique of

size k, i.e. a graph created by taking an (undirected) clique of k vertices and

orienting all edges so they form a DAG (with a single source and single sink).

Fig. 5.8 is an example of such a directed clique for k = 5. Since cliques of size k

have tree-width k−1 (see page 41) the result follows.

Figure 5.8: Directed 5-clique

The next lemma confirms that DAG-width is ‘correct’ counterpart of tree-

width on directed graphs. (Directed tree-width also enjoys this property.)
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Lemma 5.6. Let G be an undirected graph of tree-width k. Then the directed graph

G′ created by replacing each edge of G with a pair of oppositely oriented edges has

DAG-width k.

Proof. By Theorem 5.7 we already know that dgw(G′)≤ tw(G). Because tw(G) =

k there must be a haven σ in G of size k + 1. But this σ also satisfies the as-

sumptions from Theorem 5.5 (i.e. is a haven) and therefore by Theorem 5.3

dgw(G′) > k, which finishes the proof.

The relationship to directed tree-width is a little bit more complicated. An

obvious approach is to use the Theorem 5.2, which states that for each G and

k either G has tree-width at most 3k− 2, or it has a haven of order k. It re-

mains to observe that a haven of order k in a directed graph gives a winning

strategy for a robber against k− 1 cops in the (directed tree-width version of)

cops-and-robber game, which easily translates to a winning strategy against

the same number of cops in the DAG-width version of the game (the robber is

actually more powerful here). Therefore directed tree-width and DAG-width

are within a constant factor of each other. For an example of a graph G s.t.

dtw(G) < dgw(G) take the graph G in Fig. 5.9. It is easy to see that dtw(G) = 1

and dgw(G) = 2.

a b c d

bc

{b} {c}

a

bc

d bca bcd

Figure 5.9: Graph G, its arboreal decomposition and DAG decomposition

The natural question is whether we can convert a DAG decomposition into

an arboreal decomposition of the same width. We will show how to do that for

a subclass of DAG decompositions.

Definition 5.4. A DAG decomposition (D,X ) of a graph G is called simple if, in

addition to (D1) - (D3), it also satisfies the following:

(D4) ∀v ∈ V (G) we have |XR(v)| = 1 (i.e. each vertex of G has exactly one root

node)
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Lemma 5.7. Let (D,Y ) be a simple DAG decomposition of graph G of width k in

normal form and d0 its root. Then (R,X ,W ) computed by the Alg. 3 is an arboreal

decomposition of G of the same width as (D,Y ).

Proof. Note that this algorithm is a standard DFS topological sort. We write

d ≺ d′ for d,d′ ∈V (R) iff γ[d] < γ[d′]. Then ≺ is a linearisation of < on D.

Algorithm 3: DAGtoTree
input : DAG decomposition (D,Y )

output: arboreal decomposition (R,X ,W )

i:=0

V (R):=V (D); E(R):= /0

X := /0; W :=
S

d∈V (R)Wd = /0

Wd0 :=Yd0 ; DFS (d0)

Procedure DFS(d)
for each d′ s.t. e = (d,d′) ∈ E(D) do

if have not seen d′ before then

Wd′ :=Yd′ rYd

E(R):=E(R)∪{e}
Xe:=Yd ∩Yd′ ; X :=X ∪{Xe}
DFS (d′)

γ[d]:=i++

To begin W is clearly a partition of V (G) (the vertices left in each Wd are

exactly those vertices of Yd for which d is the root node). Moreover for (d,d′) ∈
E(R) the set Wd′ is empty only when Yd′ ⊆ Yd , which is not possible since the

DAG decomposition is in normal form. We will prove (R2) by induction on

γ[d]. In the rest of the proof let ed ∈ E(R) be the only edge of R with head d. We

claim that (R2) holds for ed .

For d with γ[d] = 0 we have that d is a leaf (i.e. vertex with no successors) in

D. Then (R2) holds for ed by construction and (D2). Similarly in the inductive

step we are done if all the successors of d in D are also successors of d in R (us-

ing the induction hypothesis for these successors). For contradiction assume

there is a cycle violating (R2). Therefore there must be some v ∈Wd , d′ ∈ V (R)

s.t. (d,d′) ∈ E(D),(d,d′) 6∈ E(R), and w ∈ X>d s.t. this cycle starts with the edge

(v,w).
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Since the edge (d,d′) was not included in E(R), then d′ must have been

finished before d was (d′ ≺ d), and therefore ed′ satisfies induction hypothe-

sis. However by (D4) we must have Xed′ ⊆ Xe∪Wd which completes the proof.

Finally note that the width of (R,X ,W ) is at most k, since Wd∪
S

d∼e Xe⊆Yd .

For general DAG decompositions we run into technical difficulties. It seems

that the wording of (R1) is too restrictive - the main problem being the require-

ment for the sets Wd to be non-empty. However if we drop this requirement

(which looks like the only way forward) the algorithm above can be easily

modified to work on general DAG decompositions.

5.6 The Algorithm for Parity Games

In this section we are going to present a polynomial algorithm for solving par-

ity games on graphs of bounded DAG-width. The author of this thesis came up

with all the key ideas himself, but at GAMES’06 Berwanger et. al. [BDHK06]

presented him with (already submitted) fully written proof of the same result,

obtained independently. As author did not have a fully written proof of the re-

sult at that time, what is presented here is an adaptation of their (much nicer)

proof which later appeared in [BDHK06].

The algorithm is, on a high level, similar to the one for graphs of bounded

tree-width, as presented in Section 4.4. However we cannot just simply mod-

ify that algorithm to work on DAG decompositions instead of tree decom-

positions – there is an important conceptual difference. In the case of tree-

decomposition, the set Xt for a node t acts as an interface between the vertices

in the nodes below t and the rest of the graph. I.e. all paths leaving and en-

tering X>t must pass through the set Xt . In the case of DAG decompositions it

is only the paths leaving the set X>d which must pass trough Xd – a path com-

ing from outside can enter X>d at any vertex of this set. Therefore if we have

only used the algorithm for tree-width, we would have to consider borders of

size n.k (tables with n rows of ‘enter’ vertices and k columns of ‘leave’ vertices,

cf. page 47) and the running time of such algorithm would be exponential,

as the number of possible borders is pn·k, where p is the number of priorities.

Therefore we must come up with a new solution.

In contrast to the algorithm for tree-width we will consider not just memo-
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ryless strategies, but general strategies with access to history. I.e. a strategy of

player P0 (P1) is a function σ : V ∗V0→V (τ : V ∗V1→V ). It is interesting to note

that even though we know that parity games are memorylessly determined,

using the general strategies allows us to present a simpler algorithm.

For now fix a parity game G and let Y ⊆V (G) guarded by the set S⊆V (G)r
Y . Let us first consider the case where the strategies σ of P0 and τ of P1 are fixed.

Let π = π0π1 . . .πi . . . be a play of the game G respecting the strategies σ and τ.

Let π[Y ] be maximal prefix of π when restricted to vertices of Y . We define the

result of π[Y ] to be

resultτσ(v,Y )=


⊥ if π[Y ] is infinite and winning for P1

> if π[Y ] is infinite and winning for P0

(w, p) if π[Y ] = π0, . . . ,π j, w = π j+1 and p = max{λ(πi) | 0≤ i≤ j +1}

The next step is to fix a strategy σ of P0 and try to find the best results player

P1 can achieve against this strategy. Two cases are simple. If there is a winning

cycle of P1 reachable from v in the subgame G[Yσ], then we know P1 can win

against the strategy σ if starting in v, both in the game restricted to Yσ and in

the whole game Gσ. On the other hand if all paths in Yσ starting in v lead to a

winning cycle for P0, then P1 loses every play starting in v also in the game Gσ.

The third possibility is that there is no winning cycle for P1 in Yσ, but P1 can

force the play into a vertex of S. Then the ‘value’ of such play π is the highest

priority of a vertex on this path. However note that there can be more paths

starting in v which lead to a given vertex w ∈ S. In that case it is in the player

P1’s interest to choose the one with the lowest score w.r.t. the ‘v’ ordering.

Moreover, there may be paths starting in v but leading to different vertices of

the set S. Then we remember the best achievable result for each of these ‘leave’

vertices.

To formalise the description above, we need to extend the ‘v’ ordering to

pairs (v, p). For two such pairs (v, p),(w,q) we put (v, p) v (w,q) iff v = w and

p v q. Specifically if v 6= w then the two pairs are incomparable. We extend

the ordering v by adding the maximal element >, and the minimal element

⊥. For a set X ⊆ (V ×N)∪{>,⊥} we denote minvX to be the set of v-minimal

elements of X . Note that minvX = {⊥} iff ⊥∈ X and minvX = {>} iff X = {>}.
Moreover for Z = minvX if Z 6= {⊥} and Z 6= {>}, then Z contains at most one

pair (v, p) for each vertex v.
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With all the machinery in place we now define

resultσ(v,Y ) = min
v
{(w, p) | ∃τ s.t. (w, p) = resultτσ(v,Y )}

For the rest of this section we fix a parity game G and its game graph G,

together with a nice DAG decomposition (D,X ) of G of width k. For each node

d ∈V (D) we have the set X>d which is guarded by Xd . What we want to know

are the results for all possible strategies σ of P0 and all vertices of X>d . So we

define the following structure:

Frontier(d) = {(v,α) | v ∈ X>d and ∃σ s.t. α = resultσ(v,X>d)}

It is sometimes useful to split the set Frontier(d) according to the first com-

ponent of the pair (v,α). To this end we define

Frontierv(d) = {(v,α) | (v,α) ∈ Frontier(d)}

Note that Frontier(d) = {Frontierv(d) | v ∈ X>d}.
Before we explain the algorithm, let us look at the sizes of the sets we have

defined. First note that the set Y = minvX for X ⊆ ([V ]≤d ×N) can have at

most k elements, each chosen from the set of available priorities, which can be

bounded by n. Therefore Frontierv(d) can contain at most (n + 1)k + 2 different

elements. Finally Frontier(d) can be of size at most n.((n+1)k +2).

We will use dynamic programming on D to compute the set Frontier(d) for

each node d ∈ V (D) from the frontiers of its successors. There are four cases,

depending on the type of the node in nice DAG decomposition.

Start node We put Frontier(d) = /0, because for each start node d we have

X>d = /0,

Join node Let d be a join node with two children d1 and d2. We are going to

prove that Frontier(d) = Frontier(d1)∪Frontier(d2).

First let (v,α) ∈ Frontier(d1)∪ Frontier(d2). If v ∈ X>d1 r X>d2 , then clearly

(v,α) ∈ Frontier(d) as Xd = Xd1 by definition of join node. The case v ∈ X>d2 r
X>d1 is symmetrical. The last case is v ∈ X>d1 ∩X>d2 . Since Xd1 = Xd2 , by the

axiom (D2) we get (v,α) ∈ Frontier(d1) ⇐⇒ (v,α) ∈ Frontier(d2). Therefore also

(v,α) ∈ Frontier(d).

For (v,α) ∈ Frontier(d) we can use similar reasoning to show that (v,α) ∈
Frontier(d1) or (v,α) ∈ Frontier(d2).
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Introduce node Let d be an introduce node with a child d′, and Xd = Xd′ ∪{v}.
By definition of DAG decompositions X>d = X>d′ . Moreover all paths from a

vertex of Xd′ to v must pass through a vertex of Xd′ and Xd′ ⊂ Xd . Therefore

Frontier(d) = Frontier(d′).

Forget node This is the most difficult case. Let d be a forget node with a single

child d′ and let Xd = Xd′r{v}. We are now going to remove the vertex v from the

set of separating vertices. To get the set Frontier(d), we need to first compute its

subset, the set Frontierv(d). Assuming we have already computed this set, it is

comparatively easy to compute Frontierw(d) for the remaining vertices w∈ X>d .

To do so, we start with an element (w,α) ∈ Frontierw(d′). If α contains a pair

(v, p) for some p we need to consider all possible ways of extending the path

from w to v with an element of Frontierv(d). The way of combining the two

frontiers is formally defined by the operator weld:

Definition 5.5 (weld). Let (w,α) ∈ Frontier(d′), (v,β) ∈ Frontier(d), and w 6= v.

Then

weld(α,v,β) =

minv ((α∪βp)r{(v, p)}) if (v, p) ∈ α for some p

α otherwise

where βp = {(u,max{p,q}) | (u,q) ∈ β}.

Lemma 5.8. Frontierw(d) = {weld(α,v,β) | α ∈ Frontierw(d′),β ∈ Frontierv(d)}

Proof. If (w,γ) ∈ Frontierw(d), then γ = resultσ(w,X>d) for some σ. It is not hard

to see γ = weld(α,v,β), where α = resultσ(w,X>d′) and β = resultσ(v,X>d).

For the other direction let α = resultσ1(w,X>d′) and β = resultσ2(v,X>d). There

are two cases to consider. First if no pair of the form (v, p) is included in α,

then the player P1 cannot, starting from w, reach v in X>d when P0 is using the

strategy σ1. Therefore weld(α,v,σ) = α = resultσ1(w,X>d). For the other case

(α contains a pair (v, p)) take the strategy σ which behaves like σ1 till a play

reaches v and then behaves like σ2. Clearly weld(α,v,β) = resultσ(w,X>d), as we

consider all possible extensions of the ‘best’ path leading to v (the set βp), and

then take the minimal elements from βp∪α minus the pair (v, p) (as v 6∈ Xd).

We are now going to show how to compute the set Frontierv(d) in the first

place. Take all successors of the vertex v. Let u1, . . . ,uk be the successors which
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are in the set Xd , and v1, . . . ,vl the successors in the set X>d . (Note that by (D2)

all successors of v must be in the set X≥d = Xd ∪X>d .)

Let us compute the effect of choosing each of the successors of v. The sim-

pler case is for the vertices u1, . . . ,uk. Here the game starts in v and in one step

moves to ui, where it stops since ui ∈ Xd . Let mod(ui) = (ui,max(λ(ui),λ(v)).

Then we put M0 = {mod(ui) | 1 ≤ i ≤ k} and M0 = {{α} | α ∈ M0}. In other

words, M0 contains the results of each two-vertex path (v,ui), and M0 contains

these results as one element sets (having both the sets M0 and M0 simplifies the

proof a bit).

On the other hand, if the game starting in v moves in one step to some vi, we

must consider all possible results for a game starting in vi and not leaving X>d′

– i.e. the elements of Frontiervi(d
′). For an α ∈ Frontiervi(d

′) we will construct

α′ as follows: First we detect the cycles in X>d going through v: If there is a

pair (v, p) ∈ α, we put ⊥ into α′ if max(p,λ(v)) is odd, and > if it is even. Then

for each other pair (w, p) ∈ α (with w 6= v) we insert the pair (w,max(p,λ(v)).

We then choose the minimal elements of α′, the set minvα′, and call the result

mod(α) (here we overload the notation a bit). For all possible choices of α ∈
Frontiervi(d

′) this gives us the set

Mi = {mod(α) | α ∈ Frontiervi(d
′)}

We now split our analysis into two cases, depending whether v ∈ V0, or

v ∈V1. We start with the simpler case, which is v ∈V0.

Lemma 5.9. If v ∈V0, then Frontierv(d) =
Sl

i=0 Mi.

Proof. Clearly the strategy σ of player P0 at vertex v can choose any of the suc-

cessors u1, . . . ,uk,v1, . . . ,vl . If σ(v) = ui then mod(ui) = resultσ(v,X>d) belongs to

Frontierv(d). If σ(v) = vi then let α = resultσ(vi,X>d′)∈Frontiervi(d
′). Then clearly

mod(α) ∈ Frontierv(d).

Now to the other direction. The case α ∈M0 is clear. So let α ∈Mi for some

1 ≤ i ≤ l. Then α = mod(β), where β = resultσ(vi,X>d′) for some strategy σ of

P0. Let σ′ = σ[v→vi] (the strategy which behaves as σ on all elements except v,

where σ′(v) = vi). Then mod(β) = resultσ′(v,X>d).

The rest of the proof will be concerned with the case v ∈V1.

Lemma 5.10. If v ∈ V1, then α ∈ Frontierv(d) iff there are α1, . . . ,αl , with αi ∈ Mi,

such that α = minv(M0∪
Sl

i=1 αi).
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Proof. Let α ∈ Frontierv(d). Then α = resultσ(v,X>d) for some σ. We put αi =

resultσ(vi,X>d′). Then clearly α = mins qe(M0 ∪
Sl

i=1 αi), as the player P1 can

freely choose among the vertices u1, . . . ,uk (the relevant results are in M0), and

v1, . . . ,vl (the relevant results are α1, . . . ,αl).

For the other direction each αi = mod(resultσi(v,X>d′)). Then for strategy σ

which behaves like σi on all paths starting v,vi. Clearly α = resultσ(v,X>d) ∈
Frontierv(d).

However we cannot apply the Lemma 5.10 directly by trying all combina-

tions of αi’s. The reason is that there are ((n+1)k +2)l many possible combi-

nations and our algorithm would become exponential (as any vertex can have

at most n successors). Note however that the size of Frontierv(d) is bounded

by (n + 1)k + 2. If we could check in polynomial time for each potential pair

(w, p) whether it does belong to Frontierv(d), then we could compute the set

Frontierv(d) also in polynomial time. Fortunately there is a way to do exactly

that.

The trick is in noticing that if α ∈ Frontierv(d) has m elements, then, since

each of them has to come from some αi, there are at most m such indices i

such that αi contributes to α. This is formalised by the following lemma (cf.

Lemma 5.10):

Lemma 5.11. If v ∈ V1, then α ∈ Frontierv(d) iff there is a set I ⊆ 1,2, . . . , l and

α1, . . . ,αl , with αi ∈Mi, such that

1. α = minv (M0∪
S

i∈I αi), and

2. for each i 6∈ I we have αv αi.

Proof. The forward direction is simple. Take the αi’s as defined in the proof of

Lemma 5.10. As we mentioned earlier, at most |α| of them contribute to the set

α. Put indices of these contributing αi’s into the set I. The remaining αi’s now

serve to satisfy the condition (ii). In the other direction take the αi’s from both

(i) and (ii). Then they clearly satisfy the conditions of Lemma 5.10.

Now since |α| ≤ k we can check all possible subsets of {1,2, . . . , l} of size

≤ |α| as candidates for I – there are at most nk such subsets. As size of the sets

|Mi| is bounded by (n+1)k +2, for each such I there are at most ((n+1)k +2)|I|

combinations of αi’s to be tried. For each such combination we must check that
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every set Mi, i 6∈ I, contains an element αi such that α v αi. This can be done

in time n.((n + 1)k + 2). Altogether the time needed for each forget node is in

O(nk2
).

Theorem 5.8. Let G be a parity game, n =V (G), and (D,X ) a DAG decomposition of

its game graph G of width k. Then there is an algorithm which solves the parity game

G in time polynomial in n.

Proof. We start by converting the DAG decomposition (D,X ) into a nice DAG

decomposition (D′,X ′). By Theorem 5.6 this can be done in time O(m2), where

m is the number of nodes of D. This number can in turn be bounded by nk by

Theorem 5.4. Therefore D′ has at most n2k nodes. Therefore we can compute

the set Frontier(d) for each node in D′ in polynomial time as was shown above.

Now D′ must have a unique root d0. As this root is not guarded, for each vertex

v ∈V (G) we must have Frontierv(d0) equal either to ⊥ or to >. By definition of

the set Frontierv(d0) we get that P0 wins the parity game G(v) iff Frontierv(d0) =

>. Note that this gives us the answer for all possible choices of the starting

vertex, as Frontierv(d0) is defined for each vertex v ∈ V (G) (the reason being

X≥d0 = V ).
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Strategy Improvement

The new results in this chapter are joint work with Colin Stirling.

Among the different algorithms for parity games, the strategy improve-

ment algorithm of Vöge and Jurdziński [VJ00] is somewhat special. There are

several reasons for this. For example there is no known example of a parity

game where this algorithm needs more than a linear number of stages (each

running in time cubic in the number of vertices). This is not the case with

most of the other known algorithms, for which we have examples of parity

games where the respective algorithms need an exponential number of steps.

Secondly, it can be proved that at each stage there is a choice available which

guarantees the strategy improvement algorithm to finish by going through a

linear number of stages.

The strategy improvement algorithm of [VJ00] is based on the algorithm of

Puri [Pur95] for discounted payoff games, which in turn is an adaptation of

a well known strategy improvement algorithm for stochastic games of Hoff-

man and Karp [HK66]. The main contribution of Vöge and Jurdziński is that

their algorithm is discrete and using graph theoretical arguments, whereas the

algorithms of [Pur95] and [HK66] are based on continuous methods, and in-

volve manipulating real numbers and solving non-trivial linear programming

instances.

The first part of this chapter is a self-contained description of the discrete

strategy improvement algorithm. Nevertheless we omit most of the proofs –

the interested reader can find them in the original paper [VJ00]. The reader

should note that the description of the algorithm and its notation sometime

differs from the one provided in [VJ00]. The reason is that we want to give

85
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here a simple and readable account, as the original paper is considered quite

technical (which is necessitated by the need to present all the proofs).

In the second part of the chapter we analyse the strategy improvement

algorithm. We start with a section which examines the structure of strategy

space. Here we contribute several new results. Next we shift our interest to

the choice of improvement policy and discuss some particular policies in more

detail. We conclude the chapter by presenting an example of a parity game

which has an improvement policy of exponential length. Note that the policy

used is not the maximal policy given in [VJ00]. This example has been found

by Serre [Ser], but it has not been published before.

In this chapter we assume that parity games are in normal form (Defini-

tion 2.9) – i.e. we consider games with a maximum number of priorities where

each player owns vertices of ‘her’ priority. (This allows us to identify the game

G with its game graph G.) Also one of the issues in the analysis of the strategy

improvement algorithm is that there may be more than one improvement on a

given vertex available at any time. This can happen whenever the number of

successors is greater than two. In this chapter we therefore restrict the graphs

of parity games to at most two outgoing edges per vertex (which is possible by

Lemma 2.1 with at most quadratic growth in the number of states).

6.1 Discrete Strategy Improvement Algorithm

The algorithm is modelled after an optimisation problem. Assume we have a

pre-order v1 on Σ0, the set of strategies of player P0, satisfying the following

two axioms:

P1. There is a maximal element in the pre-order (Σ0,v), i.e. there is a strategy

κ ∈ Σ0 such that σv κ for all σ ∈ Σ0.

P2. If κ is a maximal element in the pre-order (Σ0,v), then κ is a winning

strategy of P0 for all elements in W0.

Assume we also have a function Improve : Σ0→Σ0 satisfying the following

two axioms:
1A word of warning: In this chapter we overload the relation symbolv a lot, but the mean-

ing should always be clear from the context. We think this is better than introducing several
different symbols for almost the same relation based on the ‘reward’ ordering introduced in
Section 2.1.1.
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I1. If σ is not a maximal element in the pre-order (Σ0,v), then σ @ Improve(σ).

I2. If κ is a maximal element in the pre-order (Σ0,v), then Improve(κ) = κ.

A generic strategy improvement algorithm is then given by the following

procedure:

Algorithm 5: Strategy Improvement Algorithm
choose σ ∈ Σ0 at random

while σ 6= Improve(σ) do

σ:=Improve(σ)

Termination is guaranteed by I1. and the fact that there are only finitely

many strategies. I2. then guarantees that when the algorithm stops, we have a

maximal element. Altogether we have the following:

Theorem 6.1. If pre-order (v,Σ0) satisfies P1. and P2., and the Improve operator

satisfies I1. and I2., then the strategy improvement algorithm stops and returns a

winning strategy for the player P0 from each of the vertices in W0.

The problem is to come up with a good definition of the pre-orderv and of

the operator Improve.

6.2 Ordering on Strategies

In this section we show how to define a pre-order on strategies of one player,

in this case the player P0. The pre-order on strategies we are going to present

is induced by a measure for vertices under a strategy σ. We therefore start by

defining this measure.

The intuition behind the definition of measure which is given below is this:

Player P0 fixes a strategy σ. Now it is player P1 who wants to reply to σ in the

best way possible. We define the value for a vertex v ∈V and a strategy σ ∈ Σ0

to be the outcome for P1 if he plays optimally against σ.

Of course the best thing from the point of view of P1 is to reach an odd cycle

in Gσ. If this is not possible (all the cycles reachable from that initial vertex are

even), then a cycle with the smallest winning priority. To describe the highest

priority of the winning cycle we define the notion of pivot.
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Definition 6.1. We say that p ∈ V is the pivot of v ∈ V under strategy σ if p =

minv{w ∈ V | ∃w′ ∈ Rσ(w,V≤w) s.t. (w,w′) ∈ Eσ and v ∈ Rσ(w)}. We also define

function Λσ : V→V such that Λσ(v) = p if p is the pivot of v. Finally we put

Pivots(σ) = {p | ∃v ∈V.Λσ(v) = p} to be the set of all pivots in the game G, and

V p
σ = {v ∈V | Λσ(v) = p}, the set of all vertices with pivot p.

Lemma 6.1. For a strategy σ the set Vσ =
S

p∈Pivots(σ)V p
σ forms a partition of V such

that for every p ∈ Pivots(σ)

1. V p
σ = Rσ(p,V p

σ )

2. G[V p
σ ] is a subgame of G

3. Pi wins G[V p
σ ] iff p ∈Vi

Proof. We first show that the lemma holds for p = minvPivots(σ). Then clearly

V p
σ = Rσ(p) = Rσ(p,V p

σ ), which proves 1. By definition of force set and the fact

that there is (v,w) ∈ Eσ such that w ∈ Rσ(p,V p
σ ) by definition of p we have also

2. The last claim is obvious, as p is the highest vertex in V p
σ and there is a loop

on p.

Now put W = V rV p
σ . By definition of force set and by 1. there is no vertex

in W with all successors in V p
σ , and therefore Gσ[W ] is a subgame of Gσ. Also,

since we have taken p to be the minimal element (w.r.t. v) of Pivots(σ), we also

have V p
σ ∩Pivots(σ) = {p}. Therefore we can take p′ = minvPivots(σ)r{p} and

repeat our argument.

To rephrase the previous lemma, in the subgame V p
σ the player P1 can force

the play to a cycle with the priority p and stay in such a cycle. Now we need

to define the ordering inside each set V p
σ . A key ingredient here is a priority

profile, a set of vertices B ⊆ {v ∈ V | v > p} such that player P1 can force play

from v to p and pass through all elements of B and avoid all elements in {w ∈
V | w > p}−B. Another ingredient is the distance between v and p.

Definition 6.2. A path v1→ . . .→vk is simple if all vi are pairwise distinct. For a

simple path π = v1→ . . .→vm and p ∈ N let B(π, p) = {v1, . . . ,vm}∩{v | v > p} be

its priority profile and d(π) = m its distance.

Remember that we have defined the order ‘v’ on sets in Section 2.1.1. Using

this order we can extend v to pairs (B,d).
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Definition 6.3. The value ordering, @, is defined as follows: (B,d) @ (B′,d′) if

B @ B′, or B = B′ and d < d′. We also write (B,d) v (B′,d′) if (B,d) @ (B′,d′), or

B = B′ and d = d′.

We can now define the measure Πσ(v) for vertices v that belong to the same set

V p
σ :

Definition 6.4. If Λσ(v) = p then

Πσ(v) = minv{(B(π, p),d(π)) | π is a simple path v→∗ p ∈V p
σ }

If Πσ(v) = (B,d), then the projections Π1
σ(v) = B and Π2

σ(v) = d. We call Πσ(v)

the value of vertex v for the strategy σ.

For instance, for the pivot p it follows that Πσ(p) = ( /0,0). Combining the

value inside the set V p
σ and the pivot p, we get Ωσ.

Definition 6.5. For v ∈V and σ ∈ Σ0 we define

Ωσ(v) = (Λσ(v),Πσ(v))

and call Ωσ the measure of strategy σ and Ωσ(v) the value of v under the strategy

σ.

We also extend the ordering v to pairs (p,(B,d)) in the obvious way:

Definition 6.6. The value ordering,v, is defined as follows: (p,(B,d))@ (p′,(B′,d′))

if p @ p′, or p = p′ and (B,d)@ (B′,d′). We put (p,(B,d))v (p′,(B′,d′)) if (p,(B,d))@

(p′,(B′,d′)), or p = p′,B = B′ and d = d′.

Having defined a value for each vertex, we can finally define the pre-order

on strategies by comparing the values for each vertex point-wise:

Definition 6.7. For σ,σ′ ∈ Σ0 we write σv σ′ if ∀v ∈V.Ωσ(v)v Ωσ′(v). We also

write σ @ σ′ if σv σ′ and σ 6= σ′.

6.2.1 Optimal Counter-strategy, Value Tree

Let us look at the definition of Πσ in more detail. We are interested in the

structure of Gσ[V p
σ ].
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Definition 6.8. Let σ∈ Σ0 and p∈ Pivots(σ). We construct the strategy σ̂∈ Σ1 as

follows: Let v ∈V p
σ . If v has only one successor w in the set V p

σ , then σ̂(v) = w. If

v has two successors w1,w2 in the set V p
σ , we put σ̂(v) = w1 if Πσ(w1)vΠσ(w2),

and σ̂(v) = w2 otherwise. We call such σ̂ the optimal counter-strategy of P1 for

the strategy σ.

Definition 6.9. Let σ ∈ Σ0 and p ∈ Pivots(σ). Then we define T p
σ = Gσ̂

σ[V p
σ ] and

call T p
σ the value tree of σ and p.

If we look at the graph T p
σ for p ∈ Pivots(σ) then by definition of Πσ and

the best counter-strategy σ̂ it must be a tree (if we ignore the edge with tail p)

with the root p and all edges oriented towards the root. Moreover take an edge

(v,w) ∈ E(T p
σ ). Then

Πσ(v) =

(Π1
σ(w)∪{v},Π2

σ(w)+1) if v > p

(Π1
σ(w),Π2

σ(w)+1) otherwise

Note that the above implies for each v ∈ V p
σ that Πσ(v) = (B(π, p),d(π)), where

π : v→+ p is the unique path from v to p in the value tree T p
σ . To sum up, the

value tree of σ and p is a structural representation of the measure Πσ, and will

be useful later when discussing the different types of switches. We will also

use the relation ≺σ.

Definition 6.10. Let σ ∈ Σ0 and u,v ∈ V . Then v ≺σ u if Λσ(u) = Λσ(v) = p and

there is a path u→+ v in T p
σ . In that case we say that u is above v in T p

σ .

An example of a value tree can be seen is in Fig. 6.1. Dotted lines show

those edges of G which are not in σ or σ̂, and thick lines show the strategy σ.

6.2.2 Short Priority Profiles

In the definitions above we considered the priority profile to be a set of vertices

on a simple path. Here we give an alternative definition of priority profile,

equivalent to the original one. One advantage of this definition is that the new

priority profiles are usually of at most the same length (and usually shorter)

as they provide only the information we need to keep the vertices in the same

order.

Definition 6.11. For a simple path π = u1→ . . .→um−1→um let C(π, p)= {ui1, . . . ,uik}
be the maximal subset of {u1, . . . ,um}∩{v | v > p} such that
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Figure 6.1: Value tree T 5
σ

• 1≤ i1 < .. . < ik ≤ m, and

• ∀ j : 1≤ j < k.∀n : 1≤ n < i j+1.un ≤ ui j .

• ∀n : 1≤ n≤ m.un ≤ uik

Then we call C(π, p) the short priority profile of π.

Note that the definition above implies we can create a simple priority profile

C(π, p) by following the path π from u1 to um and adding to C(π, p) each vertex

greater than p which is also greater then any of the vertices already in the set.

Fact 6.1. Let π be a simple path, B(π, p) its priority profile and C(π, p) its short prior-

ity profile. Then C(π, p)⊆ B(π, p).

The next lemma implies that we can replace priority profiles with short priority

profiles in the definition of Πσ. From now on let W ÷W ′ abbreviate (W rW ′)∪
(W ′rW ), the symmetric difference of W and W ′.

Lemma 6.2. Let σ ∈ Σ0, p ∈ Pivots(σ) and v,w ∈V p
σ . Let π : v→+ p and π′ : w→+ p

be the unique paths from v and w to p in the value tree T p
σ . Then

B(π, p)v B(π′, p) ⇐⇒ C(π, p)vC(π′, p)

Proof. Obviously if B(π′, p) = B(π′, p) then also C(π, p) = C(π′, p). On the other

hand let u = minC(π, p). Since we have a game with maximum number of

priorities, the vertex u is common to both π and π′ (as well as the suffixes of

π and π′ from u onwards). Also (by definition of C(π, p)) all vertices in the
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prefixes of π and π′ before the vertex u must be smaller than p, which gives us

B(π, p) = B(π′, p).

So let B(π, p) @ B(π′, p) and be u the highest separator u = max(B(π, p)÷
B(π′, p)). By definition D = B(π, p)∩{v ∈ V | v > u} = B(π′, p)∩{v ∈ V | v > u}
and therefore all vertices in D must lie in the common suffix of π and π′. As u

is the next highest vertex and lies in only one of the two paths π and π′, we get

C(π, p) @ C(π′, p). The opposite direction is even simpler.

6.3 Operator Improve, Switching

In this section we deal with switching and define the operator Improve. Re-

member we consider only games where every vertex has at most two succes-

sors. We can therefore introduce the following notation:

Definition 6.12. Let σ be a strategy of P0 and v∈V . Then we use σ(v) to denote

the successor of v which is not σ(v). Moreover σ[v] is the strategy defined as

σ[v](u) =

σ(u) iff u = v

σ(u) otherwise

By a switch of σ on a vertex v ∈ V0 we mean the change of strategy from σ

to σ[v]. This notation extends naturally to sets X ⊆V0 (i.e. σ[X ]). Similarly by a

switch on X ⊆V0 we mean the change of strategy from σ to σ[X ].

Now we can finally define the Improve operator. We allow P0 to change his

strategy σ for all vertices such that Ωσ(σ(x)) @ Ωσ(σ(x)).

Definition 6.13. Let σ be a strategy. We define a set of enabled vertices as

Enabled(σ) = {v ∈V |Ωσ(σ(x)) @ Ωσ(σ(x))}

The operator Improve is then defined as

Improve(σ) = σ[X ] where X ⊆ Enabled(σ)

Note that in [VJ00] the authors suggest using Improve(σ) = σ[X ] where X =

Enabled(σ) (i.e. take all possible improvements).

The following theorems shows that the operator Improve is well defined.

We do not give the proof here and refer the reader to [VJ00] for details. Nev-

ertheless we would like to mention that the proof is easy to come up with for

the case that |X |= 1.
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Theorem 6.2 ([VJ00]). Let σ ∈ Σ0 and X ⊆ Enabled(σ). Then σv σ[X ].

It is also possible to show the converse of the previous theorem, i.e. if none

of the switches is enabled, then we do not improve the strategy σ.

Theorem 6.3 ([VJ00]). Let σ ∈ Σ0 and X ⊆ V such that X ∩Enabled(σ) = /0. Then

σ[X ]v σ.

This theorem has also an important consequence.

Corollary 6.1 (maximal strategy). There is a strategy κ ∈ Σ0 which is the maximal

element in the pre-order (v,Σ0), i.e. σv κ holds for each σ ∈ Σ0.

We will use κ to denote this maximal strategy in this chapter. As we can

see, the definition of Improve gives us a free hand in choosing the subset X of

Enabled(σ). In general strategy improvement policy is a function P : Σ0→2V such

that for each σ ∈ Σ0 we have P(σ) ⊆ Enabled(σ). In the concrete case of fixed

σ ∈ Σ0, a strategy improvement policy for σ is a sequence X1, . . . ,Xk of subsets of V

such that if we put σ0 = σ and define

σi+1 =

σi[Xi+1] if i < k

σi if i≥ k

then Xi ⊆ Enabled(σi) and for σk+1 we have Enabled(σk+1) = /0. Finally for a

policy P we call the sequence σ = σ0σ1 . . .σk where P(σi) = σi+1 the improvement

sequence.

The proof of the following theorem can be found in [VJ00].

Theorem 6.4. The pre-orderv on strategies given by Definition 6.7 satisfies the prop-

erties P1 and P2 and the operator Improve given by Definition 6.13 satisfies the prop-

erties I1 and I2 from Section 6.1.

6.3.1 Different Types of Switches

If we look at the definition of Ωσ, we can distinguish three different kinds of

switches. Let σ ∈ Σ0,v ∈ Enabled(σ), and Ωσ(σ(v)) = (p,(B,d)) and Ωσ(σ(v)) =

(p′,(B′,d′)). Then the switch on v is either

pivot switch if p @ p′,
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priority switch if p = p′ and B @ B′, or

distance switch if p = p′, B = B′ and d < d′.

We are now going to examine the different types of switches in more detail.

Before we do so we will need a variant of the force set:

Definition 6.14. Let σ ∈ Σ0, W ⊆V and w ∈W . We define Fσ(w,W ), the force set

of w under a strategy σ with respect to W , as a fixed point of the following:

F0
σ (w,W ) = {w}

Fk+1
σ (w,W ) = Fk

σ (w,W ) ∪

{u ∈V0∩W | ∃v ∈ Fk
σ (v,W ) s.t. (u,v) ∈ E and σ(u) = v} ∪

{u ∈V1∩W | ∀v ∈W.(u,v) ∈ E =⇒ v ∈ Fk
σ (v,W )}

In other words, Fσ(w,W ) is the set of vertices from which P1 cannot avoid

ending-up in the vertex w in the graph Gσ[W ].

6.3.2 Changing the Pivot

Let σ ∈ Σ0, v ∈ V0 and p ∈ Pivots(σ). The first question to ask is in which case

it is true that p is no longer a pivot after a switch σ[v]. This can only happen if

there is no cycle on p in Gσ[v], as by Theorem 6.2 the value of p must increase.

So how could we break the cycle on p? Note that if p is a pivot there must be

a successor q of p with the score Ωσ(q) = (p,( /0,d)). Let us assume that p ∈ V1

(if p ∈ V0, P0 is already winning that set) and there is only one such successor

of p. (If there are two, the reasoning is similar.) To break the cycle on p we

have to switch some vertex v on the path from q to p in T p
σ . Let us deal with

the different types of switches. Let X = {u |Ωσ(u) = (p,( /0,d)) for some d ∈ N}.

• If σ[v] is a pivot switch, then we break the cycle on p if p ∈ Fσ(v,X).

• If σ[v] is a priority switch, then we always break the cycle on p.

• If σ[v] is a distance switch, then we break the cycle only if σ(v) ∈ Fσ(v,X r
{p}) (note that this implies v≺σ σ(v)) and p ∈ Fσ(v,X).
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6.3.3 Pivot-neutral Switches

In the previous part we showed under which circumstances a pivot p stops

being a pivot. On the other hand a switch in V p
σ which keeps p as a pivot will

only change the values of vertices above v in the value tree T p
σ .

Proposition 6.1. Let σ ∈ Σ0, and v ∈ Enabled(σ) with Λσ(v) = p such that p ∈
Pivots(σ[v]). Then for all w ∈V p

σ such that v 6≺σ w we have

Ωσ(w) = Ωσ[v](w)

Pivot Switch This kind of switch is the most straightforward one. Let v ∈ V p
σ

for p∈ Pivots(σ). With a pivot switch σ[v] we remove from V p
σ the vertices from

which P1 is forced to v. I.e. V p
σ[v] =V p

σ rFσ(v,V p
σ ). This means that if p∈ Fσ(v,V p

σ )

there is no cycle on p in Gσ[v]. Obviously for each vertex v the number of pivot

switches on this vertex is bounded by n, as every time we do such a switch we

increase the value of Λσ(v).

Priority and Distance Switches There are two cases we want to distinguish

here. Either v≺σ σ(v) (i.e. σ(v) is above v), or not. We start with the latter case

first. Then in addition to Proposition 6.1 we can prove the following:

Proposition 6.2. Let σ ∈ Σ0, and v ∈ Enabled(σ) with Λσ(v) = p, and v 6≺σ σ(v)

such that p ∈ Pivots(σ[v]). Then for all w ∈V p
σ we have

Λσ(w) = p = Λσ[v](w)

The second kind of switch, where σ(v) is above v, is more complicated. By

definition v must be enabled. In the case of priority switch the highest vertex

w on the path σ(v)→∗ v in the value tree T p
σ must belong to V0. In the case

of distance switch the highest vertex on this path is smaller than p. That in

both cases implies p @ w and, if P1 kept the counter-strategy σ̂ after the switch,

at least the cycle v→σ(v)→∗ v would be removed from V p
σ . The next lemma

shows in which circumstances we do not change the set V p
σ :

Proposition 6.3. Let σ ∈ Σ0, and v ∈ Enabled(σ) with Λσ(v) = p, and v ≺σ σ(v)

such that p ∈ Pivots(σ[v]). Then

V p
σ[v] =

V p
σ if σ(v) 6∈ Fσ(v,V p

σ )

V p
σ r Fσ(v,V p

σ ) otherwise
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6.3.4 Complexity Analysis Restrictions

In addition to classifying switches by the component of measure they improve

on, we can classify them by the effect on the v relation among vertices.

Definition 6.15. Let σ ∈ Σ0 and X v Enabled(σ). We say that the switch on X is

substantial, if for some v ∈V it is true that Λσ(v) @ Λσ[X ](v).

From what we have seen earlier, a single vertex substantial switch is each

pivot switch, and some priority and distance switches on v where v ≺ σ(v).

Obviously in any improvement policy there can be at most O(n2) substantial

improvement steps – at most n for each vertex.

So to have an exponential improvement sequence there must be exponen-

tially many non-substantial improvement steps. That means in analysing the

strategy improvement algorithm we can restrict ourselves to analysing switches

in a single set V p
σ . In that case we ask how many non-substantial switches we

have to make before a substantial switch becomes available. Moreover we can

assume that there are no pivot switches available in the set V p
σ , as these do not

depend on the inner structure of Gσ[V p
σ ] and can be performed at any time.

Finally we can assume that each vertex p ∈ Pivots(σ) is odd, i.e. p ∈ V1.

If this is not the case, than σ is already a winning strategy for all vertices in

F0(X) = X , where X =
S

p∈Pivotsσ∩V0
V p

σ . We can therefore remove the set X from

the game by Theorem 2.4.

6.4 On the Structure of Strategy Space

In this section we are going to present some interesting facts about the struc-

ture of the pre-order (Σ0,v). The motivation here is that by understanding

this structure, we may either be able to bound the number of iterations more

tightly, find examples of parity games where an exponential number of itera-

tions is needed for a given strategy improvement policy, find an effective way

of choosing the initial strategy etc. All the results in this section are ours, unless

indicated otherwise.

We start with a simple lemma with interesting consequences, some of which

appeared already in [VJ00].

Lemma 6.3. Let σ be a strategy and Z ⊆V0 s.t. all vertices of Z are disabled in σ[Z].

Then some vertex of Z is enabled in σ.
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Proof. Assume not. By Theorem 6.3 we have both σ @ σ[Z] (all vertices of Z are

disabled in σ[Z]) and σ[Z] @ σ (all vertices of Z are disabled in σ), which is a

contradiction.

Let κ ∈ Σ0 be the maximal strategy. Then for each strategy σ ∈ Σ0 s.t. σ 6= κ

we have that κ = σ[Z] for some Z ⊆ V , Z 6= /0. Together with the fact that by

definition Enabled(κ) = /0 we get the following:

Corollary 6.2. For every strategy σ∈ Σ0 where κ = σ[Z] for some Z 6= /0 there is z∈ Z

which is enabled in σ.

Corollary 6.3 ([VJ00]). For every initial strategy there is a strategy improvement

policy of length at most n. Moreover there is such a policy switching exactly one

vertex in every improvement step.

When games are restricted to at most two successors per each vertex we can

however prove a stronger proposition: The elements of Z can be ordered in

such a way that none of the switches is enabled after it has been done.

Theorem 6.5. Let σ0 be a strategy and Z ⊆V0 s.t. σ0[Z] = κ, where κ is the maximal

strategy. Then the elements of Z can be ordered in a sequence z1, . . . ,zk such that in the

sequence ρ : σ0
z1→ σ1

z2→ . . .
zk→ σk = κ the following holds for all 1≤ i≤ k :

1. zi+1 ∈ Enabled(σi)

2. ∀ j ≤ i.z j 6∈ Enabled(σi)

Proof. We will prove the theorem by induction, more specifically by construct-

ing the sequence ρ in reverse, starting with σk = κ. The base case is clear, as κ

is the maximal strategy and therefore Enabled(κ) = /0, implying 2.

For the inductive step assume we already know the vertices zi+2 . . .zk and

the strategy σi+1. Let Y = Z r {zi+2 . . .zk} – then Y ∩Enabled(σi+1) = /0 (by 2.).

Now chose y ∈Y to be a vertex s.t. for any other z ∈Y we have σi+1[y] 6v σi+1[z].

Obviously there must be such an element. We argue that then Enabled(σi+1[y])∩
Y = {y}. For contradiction assume that there is an element x ∈ Y , which is en-

abled in σi+1[y].

Then σi+1[y] @ σi+1[{y,x}], since x is enabled. Moreover, x cannot be enabled

in σi+1[{y,x}] (that would imply σi+1[y] @ σi+1[{y,x}] @ σi+1[y], which is impos-

sible). By Corollary 6.2 y must then be enabled. Therefore σi+1[{y,x}] @ σi+1[x],

which gives us σi+1[y] @ σi+1[x], a contradiction with the maximality of σi+1[y].

Therefore we put zi+1 = y and σi = σi+1[y] and we are done.
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6.4.1 Restrictions on Improvement Sequences

The following theorem tells us something about the structure of the strategy

space. It subsumes several special cases, which we will discuss later.

Theorem 6.6. Let σ,σ′ ∈ Σ0, σ @ σ′, Z ⊆V such that σ′ = σ[Z], X = Enabled(σ) and

X ′ = Enabled(σ′). Then Z∩X 6⊆ X ′.

Proof. By contradiction – assume that Z ∩X ⊆ X ′, and let Z′ = Z r X . We have

that σ v σ′ and it also must be the case that σ′ v σ′[Z ∩X ], as Z ∩X ⊆ X ′ and

therefore Z ∩X is enabled in σ′. However σ′[Z ∩X ] = σ[Z′], and by definition

none of the vertices in Z′ is enabled in σ. Therefore σ[Z′] v σ, a contradiction.

Corollary 6.4. Let σ0σ1 . . .σk be an improvement sequence of strategies for some im-

provement policy P. Take i, j such that 0 ≤ i < j ≤ k, Xi = Enabled(σi) and X j =

Enabled(σ j), and Z ⊆V such that σ j=σi[Z]. Then Z∩Xi 6⊆ X j.

The corollary above tells us more about the possible improvement sequences,

ruling out some impossible ones. The hope was that we could show there is a

sub-exponential bound on the length of such a sequence. That this is not true

is shown in Sec. 6.6.

A simpler version of the corollary above, the Corollary 6.5, appeared first in

in [MS99] as a property of general strategy improvement algorithm (the paper

deals with strategy improvement for Markov Decision Processes). This result

is not mentioned in [VJ00], and was unknown to the author of this thesis at

the time we proved Theorem 6.6. We also present it here, as it is not widely

known in the community, and is highly relevant to understanding the strategy

improvement algorithm.

Corollary 6.5. Let σ0σ1 . . .σk be a improving sequence of strategies for some policy

P. Then for every 0≤ i < j ≤ k: Enabled(σi) 6⊆ Enabled(σ j)

Finally we have this easy consequence:

Corollary 6.6. Let σ ∈ Σ0 such that |Enabled(σ)|= 1|. Then κ(v) = σ(v).

The corollary suggests a useful heuristic: Whenever (during a run of strat-

egy improvement algorithm) we encounter a strategy σ with a single enabled

vertex v, we know the value of κ(v). This can be used in several ways. One
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possibility is to search for strategies with only a single improvement available.

Another one is to run several parallel strategy improvement algorithms (with

different starting strategies), updating the others whenever we reach a strategy

with a single enabled vertex in one of the parallel runs.

6.4.2 Inverse and Minimal Strategies

Here we introduce the concepts of inverse and minimal strategies, which may

be useful in understanding the structure of strategy space.

Definition 6.16. Let σ ∈ Σ0 be a strategy. We define σ̃ = σ[V ] and call σ̃ the

inverse strategy to σ.

Let us have a look at the inverse strategy to κ, where κ is the maximal

strategy. This strategy, κ̃, is the strategy for which there is the longest minimal

improvement sequence – we need to make at least n switches if we switch one

vertex at a time.

On the other hand the minimal strategy κ′ is the minimal element in the

pre-order (Σ0,v). Again, as for the case of κ, we can prove that that there is

only one minimal element – i.e. the dual of Corollary 6.1. The relationship

between the minimal strategy κ′ and the inverse to the maximal strategy κ̃ is

that κ′ v κ̃v κ.

An interesting way to use the inverse strategies would be, for example, to

perform improvements on both the strategy σ and its inverse σ′ in parallel and

try to correlate the outcomes.

6.5 Choice of the Improvement Policy

There are two important choices to be made when running the strategy im-

provement algorithm. The first choice is which initial strategy to start with.

The second one is which improvement policy to use, and we will concentrate

on this aspect. The most obvious is the maximal policy, which for a strategy σ

switches all vertices in Enabled(σ). Unfortunately this policy is also the hard-

est one to analyse. More suitable for analysis are policies which always switch

only one vertex at a time (single-vertex improvement policies). In this section

we will deal only with the latter policies.
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A short discourse. Strategy improvement has long been studied in the AI com-

munity. In the case of simple stochastic games Melekopoglou and Condon showed

in [MC94] examples of games for which several very natural single-vertex improve-

ment policies have an exponential length. However whether the strategy improve-

ment algorithm (for simple stochastic games) using the maximal policy finishes in

sub-exponential number of steps is still an open question.

This contrasts with the SI algorithm for parity games, where we have not been able

to find examples of games with improvement sequences of exponential length for any

of the natural single-vertex improvement policies shown below.

Minimal Distance policy The idea behind this policy comes from the fact that a

switch on vertex v∈V p
σ , can potentially change the values for all vertices above

v (i.e. the vertices w ∈ V p
σ s.t. v ≺ w). Therefore switching a vertex with the

shortest distance to the pivot should increase the value of the greatest number

of vertices. Also the following lemma provides us with some hope.

Lemma 6.4. Let σ ∈ Σ0 and v ∈V p
σ such that Π2

σ(v) = 1 (i.e. σ(v) = p). Then in any

improvement sequence σ = σ0σ1 . . .σk where p remains being a pivot there is at most

one switch on v.

Proof. Easily follows from the fact that the value of the pivot p cannot increase,

and at the time of the switch (say for in σi) it must be the case that Ωσi(p) @

Ωσi(p).

Maximal Set policy This is a variant of the previous policy. Instead of choos-

ing a vertex with the shortest distance to pivot, we choose the vertex v ∈ V p
σ

maximising cardinality of the set {w ∈V p
σ | v≺ w}.

Maximal Separator policy In this policy we try to maximise the increase in the

value of a vertex v. For a strategy σ and a vertex v ∈ Enabled(σ) we define

the maximal separator as MaxSep(v) = Π1
σ(v)÷Π2

σ(v) (the highest priority in the

symmetric difference of the respective priority profiles). Now in every step we

chose the vertex v such that MaxSep(v) > MaxSep(w) for all w ∈ Enabled(σ)∩V p
σ .

The idea here is that bigger increases in value get us closer to the maximal

value in shorter time.
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Fair policies In a fair policy we do not switch a vertex again if we have a

choice. More precisely for each vertex v we keep a value ρ(v), which is a

time-stamp of a last switch on this vertex, and select always some vertex of

Enabled(σ) with a minimal value of ρ(v). Any of the policies above has of

course its fair version.

The idea behind using fair policies is that we can avoid repeatedly switch-

ing a vertex with seemingly better properties, while missing on an important

switch.

6.5.1 Experimental Results

We tried to analyse the policies above to see whether using such a policy can

allow us to derive a sub-exponential bound on the number of improvement

steps. However we have not been successful in this quest.

We therefore tried to experimentally evaluate these policies on a large test

set of parity games. This set contained games on random graphs, games on

standard regular graphs (grids, trees with back edges) as well as games on

which some known algorithm needs exponential time.

The results were not much surprising. All the ‘reasonable’ (or ‘natural’)

policies above finished in quite a small number of iterations (linear in the num-

ber of vertices). Their ‘stupid’ versions (like Maximal Distance or Minimal

Separator) did much worse. Finally we would like to mention that none of the

(single-vertex) improvement policies was able to beat the standard maximal

policy, switching all enabled vertices at each time.

6.6 Improvement Policy of Exponential Length

In this section we are going to present a family of parity games G2n parametri-

sed by n ∈ N, for each of which there exists an initial strategy and an improve-

ment policy such that the number of iterations of the strategy improvement

algorithm is exponential in n. This example was first discovered by Serre [Ser],

however it has never been published. Since it gives an insight into the strat-

egy improvement algorithm, we present it here. To get a general idea, you can

have look at the graph G6 in Fig. 6.2. The initial strategy is given by the full

edges.
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Figure 6.2: Graph G6

The game graph of G2n is defined recursively. All vertices in the game graph

graph belong to P0, and their priority will be given by their subscript - i.e.

λ(vi) = i. We start with the game graph G2 with three vertices v0,v1 and v2,

which is in Fig. 6.3.

2 1 0

Figure 6.3: Graph G2

The graph G2n+2 is then constructed from the graph G2n by adding a new

vertex v2n+2. We proceed by adding an edge (v,v2n+2) for every vertex of v of

G2n except the vertex v0. The new vertex v2n+2 has a single successor v0. The

construction is schematically shown on Fig. 6.4. Formally:

V (G2n+2) = V (G2n)∪{v2n+2}

E(G2n+2) = E(G2n)∪{(v,v2n+2) | v ∈V (G2n),v 6= v0}∪{(v2n+2,v0)}

02n

2n+2

12i

G2n

Figure 6.4: Construction of G2n+2

Note that there is only one cycle in each graph G2n - the cycle on v0. There-

fore all our improvement steps will be non-substantial. The initial strategy σ0
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satisfies:

σ0(vi) =

1 if i = 2

0 otherwise

Now we are going to give the improvement sequence. We again use an

inductive definition. For G2 we have only one improvement step, (v2 7→ v0).

For the graph G2n+2 the sequence is as follows:

1. Perform the improvement sequence on G2n

2. (v1 7→ v2n+2)

3. Make n improvement steps (v2i 7→ v2n+2) for i = 1..n in an increasing order

(i.e. starting with v2 and finishing with v2n).

4. Perform the improvement sequence on G2n.

Next we have to show that each step is an improvement. For the graph G2

it is obvious. For G2n+2 we go by the improvement sequence given above:

1. all steps are improvements by induction hypothesis

2. is improvement, as v2n+2 has the highest priority and no edges currently

point to it (so it cannot be in the priority profile of v1)

3. is improvement as for each edge (v2i,v2 j) ∈ E(G2n) we have that i < j for

all 1≤ i, j ≤ n

4. all steps are improvements, the reason being that σ now looks almost like

the initial strategy, except that all vertices point to v2n+2 instead of 0.

It remains to compute the number of steps. Let C(n) be the number of im-

provement steps for the game G2n. Then from the construction we get the

following system of equations, from which we can conclude that C(n) is expo-

nential in n.

C(2) = 1

C(2n+2) = C(n)+1+n+C(n)
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Spine

The work described in this chapter has been done in collaboration with Colin

Stirling.

In this chapter we present a new algorithm (actually two algorithms, but

they have much in common) for solving parity games. The algorithm is based

on the notion of spine, a structural way of capturing the (possible) winning

sets and counter-strategies. The definition of spine and the algorithms were

inspired by the strategy improvement algorithm (described in the previous

chapter), but there are important differences. For one, we do not start with

an arbitrary strategy for one of the players, but with computing the ‘obvious’

starting (partial) strategies for both players. Second, in our algorithm we do

not perform arbitrary improvement steps. Instead we try to get rid of win-

ning cycles by (hopefully temporarily) making the associated measure worse.

Third, we tried to give an algorithm which is symmetric, i.e. which allows us

to make improvement steps for both the players in alternation. We succeeded

only partially in this respect, but the issues encountered were stimulating.

The hope behind the structure of spine and algorithms working on it were

that it could provide us with a polynomial time algorithm for solving parity

games. This has not been achieved, at least in the sense that we were not

able to obtain a polynomial bound on the running time of the algorithm. As

is customary for the problem of solving parity games, the only estimate we

have is the trivial exponential bound. On the other hand, neither were we

able to produce a counterexample on which the number of iterations needed is

exponential. We hope that this new algorithm can provide further insight into

the complexity of solving parity games.

104
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Parity games we consider in this chapter are in the special normal form as

defined in Section 2.3. In this normal form the vertices are identified with their

priorities (each vertex has a unique priority) and each player owns the vertices

with ‘her’ priorities (i.e. P0 owns all even vertices). This restriction to normal

form allows us to present our algorithm in a concise way, without introducing

unnecessary complexity. However it can be modified, if needed, to deal with

the case where the number of priorities is significantly smaller then the number

of vertices, giving us ‘better’ complexity bounds.

7.1 Definitions

Here we introduce the fundamental definition of this chapter, a structure called

a spine. A spine for a game G is a structural representation of the underlying

game and has several nice properties, which will be useful later.

Definition 7.1 (Spine). Let G = (V,E) be a parity game and X : V→V a function.

For such an X we define B(X) = {b | ∃v∈V s.t. X(v) = b} and Xb = {v∈V |X(v) =

b}. Moreover we can assume that B = {b1, . . . ,bk}, where b1 > b2 > .. . > bk. We

say that X is a spine of a game G = (V,E) if the following axioms are true for

each b ∈ B:

I1. ∀v ∈ Xb.v≤ b

I2. ∀v ∈ Xb if v 6= b then there exists w ∈ Xb s.t. (v,w) ∈ E

I3. if b ∈ Xb, then there exists b′ ∈ B(X) and w ∈ Xb′ s.t. b′ ≤ b and (v,w) ∈ E.

I4. ∀v ∈V0∩Xb.(v,w) ∈ E =⇒ X(w)v X(v) (E4).

∀v ∈V1∩Xb.(v,w) ∈ E =⇒ X(v)v X(w) (O4).

I5. If b ∈V0 (b ∈V1) then G[Xb] is won by P0 (P1).

For a spine X we call a vertex b ∈ B(X) a base vertex of the set Xb and the set

Xb the upper set of the vertex b. Note that we do not require for the base vertices

themselves to be elements of their upper sets – i.e. it is not necessarily true that

b ∈ Xb. Finally we say X(v) is the score of vertex v ∈V in spine X .

Let us look at the definitions of I1-I5 to see what they mean. The first prop-

erty, I1, says that every upper set can contain only vertices smaller than or
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Figure 7.1: Spine

equal to the base vertex. Properties I2 and I3 then require the existence of at

least one successor in the same upper set for each vertex of that set, with a pos-

sible exception of the base vertex. In that case the base vertex is constrained

specifically by I3.

To understand the property I4, have a look at Fig. 7.1. This figure shows

how to think about the structure of a spine pictorially. Here the base vertices

b1, . . . ,bk are ordered from left to right by v (therefore we can talk about ‘even

side’ and ‘odd side’ of a spine), and their upper sets are drawn above them.

In this representation the property I4 basically says even vertices have their

successors ‘to the left’ (or in the same set; E4), whereas odd vertices have theirs

‘to the right’ (or in the same set; O4).

Finally I5 states that each player wins any of the sets on his side when they

are considered as separate games. Note that from I2 it follows that every game

G[Xb] has at most one extra edge which is not in E (the edge (b,b)); and the

extra edge is present only in the case when the base vertex b is a member of

the set, but does not have any successors in this set. From I5 it follows that

there must be a partial strategy σX such that σX is defined only on vertices inS
b∈B(X)∩V0

Xb and σX restricted to Xb is a winning strategy of P0 in each of the

games Xb for b ∈ B(X)∩V0. Similarly we can define a strategy τX for player P1.

As is possible to see from the definition, each spine defines a decomposition

of a parity game G into a number of upper sets Xb with some specific proper-

ties. Before we proceed further we need to show that every parity game has at

least one spine, so we have our starting point.

Lemma 7.1. For every game G , the function X=InitialSpine(G) is a spine of the

game G . We call this X initial spine in the rest of the paper.
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Proof. The algorithm works as follows. In U it keeps the list of vertices not yet

processed, starting with U = V (G). Now in each iteration it selects the highest

vertex not already in some upper set and makes it a new base vertex b. Now

the player who owns b tries to force as many vertices from U to b and the

resulting set is taken to be the upper set Xb. This set is then removed from U

and the algorithm continues with a new iteration.

To prove that X is indeed a spine we need to check that the properties I1-

I5 hold, and that X is defined for all vertices in V . The latter fact is obvious

from the algorithm. I1 holds since we always select b to be the highest vertex

not yet present in any of the already created upper sets, and I2 holds from the

definition of force set. I5 must also hold by definition of the force set, as the

player owning the base vertex b can force the play to this vertex. Moreover if

b has a successor in Xb he wins since b is the highest vertex in Xb and he can

force a cycle on this vertex. The other case, that b does not have a successor in

Xb, is even easier, as there is the winning edge (b,b) in the game G [Xb].

Finally the properties I3 and I4 are implied by the following three invari-

ants (I3 by i, I4 by ii and iii), which are easy to prove by induction. In these

invariants U i and X i mean the value of U and X at the beginning of i-th iteration

of the while cycle.

i. ∀v ∈U i.∃w ∈U i.(v,w) ∈ E

ii. v ∈U i∩V0 =⇒ ∀(v,w) ∈ E.w ∈U i∨X i(v) ∈V1

iii. v ∈U i∩V1 =⇒ ∀(v,w) ∈ E.w ∈U i∨X i(v) ∈V0

Procedure InitialSpine(U)
U :=V (G); X := empty function

while U 6= /0 do

b := max(U)

Y := Fo(b)({b},U)

foreach v ∈ Y do X(v) = b

U := U rY
return X
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As is possible to see from the definition, there are two different types of

upper sets. We say that upper set Xb is a cyclic upper set, if b ∈ Xb and b has

some successor in the set Xb. Otherwise the upper set is called acyclic upper

set and b ∈ Xb by definition. From now on we will use ‘cyclic set’ and ‘acyclic

set’ to mean cyclic upper set and acyclic upper sets (so dropping the adjective

‘upper’). The important property of spines is that it is not possible to have all

upper sets acyclic.

Lemma 7.2. In every spine there is at least one upper set which is cyclic.

Proof. Let X be a spine and b be the minimal base vertex (with respect to the

’≤’ ordering). Then Xb must be cyclic, otherwise I3 would contradict the mini-

mality of b.

7.2 Switching

Consider a cyclic set Xb (w.l.o.g. we assume b ∈ V0). Then, according to the

definition of a spine, G [Xb] is a proper subgame of G (G[Xb] does not contain

any extra edges not already present in G). From I5 we have that P0 wins G [Xb].

Therefore it is in player P1’s interest not to stay in the subgame G [Xb] when

playing on the full graph G. In other words he wants to ‘switch’ his strategy

out of the set Xb. This motivates the following definition:

Definition 7.2 (switch). Let X be a spine of G and b ∈ B(X) s.t Xb is a cyclic

set in X . We say that the pair (v,w) is a b-switch in spine X if v ∈ Xb,o(v) 6=
o(b),(v,w) ∈ E(G) and b = X(v) < X(w) = b′. We say that a pair (v,w) is a switch

in spine X , if it is a b-switch for some b ∈ B(X). We also define for U ⊆ V and

spine X the set Switches(U,X) = {(v,w) | v ∈U,(v,w) is a switch in X}. Finally if

Switches(U,X) 6= /0, then we define MinSwitch(U,X)= (v,w) where (v,w)∈ Switches(U,X)

and ∀(v′,w′) ∈ Switches(U,X).w≤ w′.

An example is in Fig. 7.2. Here P1 has a 4-switch (3,6) (the dotted arrow),

which allows him to escape from the losing cycle on 4. Notice that the defini-

tion of switch implies that if b ∈V0 and (v,w) is a b-switch, then v ∈V1 and also

X(v) @ X(w), since X must satisfy O4 for b. Now that we have the definition of

b-switch, we can formalise the paragraph at the beginning of this section.
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Figure 7.2: Switch example

Lemma 7.3. If Xb is a cyclic set in spine X such that there is no b-switch available,

then Xb ⊆Wo(b).

Proof. W.l.o.g we can assume that v∈V0. By I5 P0 must have a winning strategy

σ in the game G [Xb]. By definition of b-switch and O4 we have that for each

w ∈ V1 ∩Xb all successors of w are included Xb. Therefore σ is also a winning

strategy for the vertices of Xb in the full game G .

Now observe that if we had an algorithm which is always able to find a

spine with a cyclic set Y such that there are no switches available for Y , then

we could easily solve the parity game G . The goal of our algorithm will be

exactly that: Given a spine X we want to find a new spine X ′ (possibly with

many steps in between) containing a cyclic set with no available switches.

On the other hand, if there are switches available, we would like to have

a transformation which, given a spine X and a switch (v,w), would create a

new spine X ′ which reflects the effect of the switch on X . Moreover, we would

like to do it in a way which guarantees that our algorithm finishes after a fi-

nite number of iterations. One way is to define a measure which can compare

spines and show that every time we apply a switch the measure grows.

The most straightforward way of capturing the effect of a switch (v,w) (with

X(v) = b and X(w) = b′) on the spine X is to move the vertex v over to the set

Xb′ . However that would definitely break at least the axiom I4 with no easy

way of fixing it later. The next best thing we can do is to move the whole set

R(v,Xb). Now if we try to recompute the spine in a similar way as computing

the initial spine, we would succeed if Xb was a strongly connected component

and therefore Xb = R(v,Xb).

The solution to this problem is not only to make one switch out of a cyclic

set Xb , but let the player P1 make switches out of this set until no cycle re-

mains, or there are no more switches available. We leave the recomputation of
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the spine till this point, i.e. we do not recompute after a single switch. This

is what we call breaking cycles in Xb and what is described by the algorithm

BreakEven for the case b ∈ V0. The case b ∈ V1 is symmetric, and the corre-

sponding algorithm is called BreakOdd.

Procedure BreakEven(U,X)

X ′:=X

while U 6= /0 do

if Switches(U,X) = /0 then

return (U , X ′)

else

b:=MinSwitch(U,X)

Y :=R(b,U)

foreach v ∈ Y do X ′(v) = X(w)

U :=U rY
return ( /0, X ′)

Before we show how to recompute the spine after breaking the upper set U

we need to prove two lemmas about the procedure BreakEven. The first one

shows the existence of several invariants which will be useful later, while the

second says what happens if we cannot break all the cycles in Xb.

Lemma 7.4. Let X be a spine, b ∈ V0 and Xb a cyclic set. If BreakEven(Xb, X)=

( /0,X ′) then the following holds:

A1) X ′ satisfies I1, I2, O4

A2) ∀v ∈V0 r B(X).X ′(v)v X ′(σX(v))

A3) ∀v ∈V (G).X(v)v X ′(v), and ∀v ∈ Xb.X(v) @ X ′(v)

Proof. The algorithm BreakEven works as follows: We start with U being the

cyclic set Xb. Then we select the smallest switch available (say (v,w)) and move

all vertices in U which can reach v to the set Xb′ , where b′ = X(w). If U 6= /0 then

we repeat this process. However since we take the minimal available switch in

each iteration, we know that for the next selected switch (v′,w′) it must be the

case X(w)v X(w′). We continue this way until U = /0.

Before we proceed further note, that X ′(v) differs from X(v) only on the

vertices originally in U (i.e. the set Xb). Then A3 holds, since for each switch
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(v,w) used in some iteration we know X(v) @ X(w) by O4 and the definition of

switch.

Next we prove A2. Again we have to show this only for vertices which were

originally in Xb. This can be done by a simple induction, using the fact that

every time some u ∈ R(v,U)∩V0, then either also σX(u) ∈ R(v,U) (and therefore

X ′(u) = X(σX(u))), or σ(u) ∈ (U r R(v,U)) and then X(u) v X(σX(u)) follows

from the fact that when σX(u) is actually moved, it goes to a higher set (in the

‘v’ ordering).

Finally I1 holds because for each switch (v,w) used in the algorithm X(v) <

X ′(w), and I2 by definition of switch and R(v,U). O4 can be possibly broken

only for vertices in Xb, but this cannot happen as we always select the minimal

switch and compute a reachability set for this switch. Altogether we have that

A1 also holds.

Lemma 7.5. Let X be a spine, b ∈ V0 and Xb a cyclic set. If BreakEven(Xb, X)=

(Y ,X ′) and Y 6= /0 then Y ⊆W0.

Proof. If Y 6= /0, then there is no switch available for the set Y and by O4 all

successors of vertices in V1∩Y must also be in Y . Then σX is a winning strategy

for P0 in the game G for all vertices in Y .

7.2.1 Recomputing the Spine

If we have successfully managed to break all cycles in Xb, what we get back

from the procedure BreakEven is a structure Y . But this Y does not have to

be a spine. What we need to do next is to bring Y into a consistent state –

a new spine X ′. The algorithm RecomputeEven behind this is in some sense

similar to the algorithm InitialSpine for computing the initial spine, but tries

to preserve the existing upper even sets. The following important lemma says

that RecomputeEven does exactly what we want it to do.

Lemma 7.6. Let X be a spine of a game G , b ∈ V0, and Xb a cyclic set such that

BreakEven(Xb, X)=( /0,Y ). Then X ′=RecomputeEven(Y ) is a spine of G and ∀v ∈
V (G).X(v)v X ′(v), and ∀v ∈ Xb.X(v) @ X ′(v).

Proof. The algorithm works in a similar way as the algorithm InitialSpine

with the following exception: Throughout the algorithm we keep in c the high-

est even base vertex in Y which has not been yet processed (by construction this
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Procedure RecomputeEven(Y)
U :=

S
b∈B(Y )Yb; X ′:=empty function

while U 6= /0 do

c:=max{(B(Y )r B(X ′))∩V0}
if c≥max(U) then

b := c

Z := F0(U ∩Yc,U)
else

b := max(U)

Z := Fo(b)({b},U)
foreach v ∈ Z do X ′(v) = b

U := U r Z
return X ′

is equivalent to c not being a base vertex of X ′). If c > max(U) at any iteration,

we select c as the new base vertex and compute the force set of Yc ∩U , thus

preserving the existing even upper sets.

The following invariants are easy to prove by induction. In these invariants

Ui, X i, and ci are the values of U , X , and c at the beginning of i-th iteration of

the while cycle.

i. ∀v ∈Ui.∃w ∈Ui.(v,w) ∈ E

ii. v ∈Ui∩V0 =⇒ ∀(v,w) ∈ E.w ∈Ui∨X i(v) ∈V1

iii. v ∈Ui∩V1 =⇒ ∀(v,w) ∈ E.w ∈Ui∨X i(v) ∈V0

iv. ∀v ∈V.ci v Y (v) =⇒ v 6∈Ui

v. ∀v 6∈Ui.Y (v)v X ′(v)

Note that from the last two properties we automatically get ∀v ∈ V.Y (v) v
X ′(v). By applying Lemma 7.4 also ∀v∈V.X(v)v X ′(v) and ∀v∈ Xb.Y (v) @ X ′(v).

We now split our analysis into three separate cases.

case b = ci(b∈V0): We show that I1-I5 hold for Ui∩Yc. The fact that they hold

also for F0(Ui∩Yc) can be shown in the same way as in the proof of Lemma 7.1.

I1: By Lemma 7.4 I1 holds for Yc. For a contradiction assume there is a

vertex v ∈Ui∩Yc s.t. v has no successor in U . Let w be any of the successors of
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v in Yc - by I1 for Yc there must be at least one. If v ∈ V0 then because w 6∈Ui,

by ii and v we get a contradiction with v ∈ U . Similarly for v ∈ V1 we get a

contradiction with i and O4 for Y .

I2 holds since b≥maxUi, and I3 can be proved by using ii. I4 follows from

ii and iii. Finally we show that I5 has to hold. Assume this is not the case.

Then there must be some x ∈ V0∩Yc such that σX(x) 6∈ Yc. But by property 2 of

Lemma 7.4 c @ X ′(σX(x)) and therefore by ii x 6∈Ui, a contradiction.

case b = max(U),b > c(b ∈ V0): Proof of I1-I5 is done in the same way as in

Lemma 7.1.

case b∈V1: Again, the proof of I1-I5 is done in the same way as in Lemma 7.1.

The only thing we have to check is that for all vertices in the set v ∈ Z =

F1({b},Ui) we have Y (z) v b. This follows from iv, v and the fact that b =

max(Ui).

Note that both new even and odd sets, cyclic or not, can appear in the

recomputed spine X ′. On Fig. 7.3 you can see a spine with only one switch

available: (3,6). After running BreakEven and RecomputeEven we get a new

spine with an odd cyclic set X ′1 = {1}. Similarly for spine in Fig. 7.4 we get a

new even cyclic set X ′4 = {1,4}.

3

65 4

1

Figure 7.3: New odd cyclic set after the switch (3,6)

3

6

4

5 4

1

Figure 7.4: New even cyclic set after the switch (3,6)
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7.3 Symmetric Algorithm

We are now ready to present the first of the two algorithms for solving par-

ity games. The idea of this algorithm is quite simple. We start by comput-

ing an initial spine X , using the algorithm InitialSpine. Now we proceed

in iterations. In each iteration we choose a cyclic set Xb, which must exist by

Lemma 7.2. Assuming b ∈ V0 let (U,X ′)=BreakEven(Xb, X). There are two pos-

sibilities as to the value of U . 1) If U 6= /0, then F0(U) ⊆W0 by Lemma 7.5. We

can remove the set F0(U) from the game and restart the algorithm on the game

G r F0(U). 2) Otherwise U = /0 and X ′ is a spine by Lemma 7.6. We put X := X ′

and start with a new iteration. In the case that b∈V1 the reasoning is symmetric

(we call BreakOdd, RecomputeOdd and compute F1(U)).

The question is whether we are able to always guarantee that this algo-

rithm terminates. Before providing the answer, we will first consider a specific

case. Let us assume that every time there is a cyclic set, there is also an even

cyclic set. This allows us to choose an even cyclic set in each iteration. In that

case the convergence is implied by the fact that for all vertices v ∈ V (G) we

have X(v)v X ′(v), and moreover ∀v ∈ Xb.X(v) @ X ′(v). Since there are at most n

upper sets through which a vertex can pass (and there are n vertices), the num-

ber of iterations is bounded by n2 and therefore we would have a polynomial

algorithm for solving parity games.

Unfortunately it is not hard to find a game G and spine X of G such that 1)

there is no even cyclic upper set and 2) W0 is not an empty set. An example of

such a spine is in Fig. 7.5. Here P0 can always win the cycle on 4 by using the

strategy σ(4) = 4, but X6 is not cyclic.

63

4

Figure 7.5: No even cyclic set, but W0 6= /0

As we have just seen, unless we modify the notion of spine we cannot keep

switching on one side of the spine only. To be able to keep the notion of spine

unchanged we therefore need to find a way of guaranteeing termination of
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the algorithm, as doing both even and odd switches can both increase and

decrease the score of a vertex in both the ‘v’ and ‘≤’ orderings. To get a con-

vergence in a reasonably straightforward way we will use a modified version

of the algorithm RecomputeEven. The new algorithm, called KRecomputeEven,

is exactly the same as RecomputeEven except for one modification. Let c be the

highest element of B(X) = B(Y ) such that Xc 6= Yc (by Lemma BreakEven actu-

ally Xc ⊂ Yc). Then we verbatim copy from X all upper sets Xb such that b > c,

i.e. we lay X ′(v) = Y (v) = X(v) for all vertices v ∈ V.X(v) > c. Also instead of

putting U =
S

b∈B(Y )Yb we start with U =
S

b∈B(Y ),b>cYb. We leave the rest of the

algorithm (including the whole while cycle) unchanged.

We claim that the variant of Lemma 7.6 where we replace RecomputeEven

with KRecomputeEven holds, i.e. X ′ is a spine and the score does not decrease

for any of the vertices of G, while strictly increasing for the vertices in Xb.

Using the procedure KRecomputeEven we can now finally present the new

algorithm, called SpineSymmetric. The way it works is very simple. Given

a game G it starts by computing the initial spine. Then it selects some cyclic

set Xb in the spine, and tries to break cycles in this set. If it succeeds, then

the spine is recomputed. Otherwise the force set of the unbreakable cycle is

removed from the game and the whole algorithm is restarted.

Procedure SpineSymmetric(G)

W0:= /0;W1:= /0;V =V (G)

l1 while V 6= /0 do

X :=InitialSpine (V )

while true do

choose b ∈ B(X) s.t. Xb is cyclic

if b ∈V0 then

(U,Y ):=BreakEven (Xb, X)

if U = /0 then X :=KRecomputeEven (Y,X)

else W0:=W0∪F0(U); V :=V r F0(U); break l1
else

(U,Y ):=BreakOdd (Xb, X)

if U = /0 then X :=KRecomputeOdd (Y,X)

else W1:=W1∪F1(U); V :=V r F1(U); break l1
return W0,W1



Chapter 7. Spine 116

Theorem 7.1. Let G be a parity game and n = |V (G)|. Then SpineSymmetric(G)=(W0,W1)

and SpineSymmetric stops after at most O(nn) iterations.

Proof. The correctness of the algorithm follows from the Lemmas 7.4, 7.5, 7.6,

and Theorem 2.4. The bound on the number of iterations follows from the fact

that we use the modified version of recomputing (procedures KRecomputeEven

and KRecomputeOdd). This modification guarantees that the sets with base ver-

tices higher than the one currently used as a target for the switch will stay the

same, and the target set increases. It is easy to check that a vertex can be re-

moved from an upper set only if actually some greater (w.r.t. >) increases in

size.

7.3.1 Optimisations

As in the case of strategy improvement, the performance of the algorithm

strongly depends on how we select the upper sets Xb we are going to break.

Let B′ ⊆ B(X) be the set of bases of cyclic upper sets. There are several obvious

choices:

1. Choose maxB′.

2. Choose b ∈ B′ such that if we put mod(b) to be the base of the highest

modified set, then ∀b′ ∈ B′.mod(b′)≤ mod(b).

3. Always prefer a base from B′∩V0 if this set is non-empty.

We do not know if any of these choices will provide us with a better (possi-

bly polynomial) estimate on the number of iterations of the algorithm SpineSymmetric.

The complexity analysis for each of these cases is very interesting, but compli-

cated and hard to pinpoint.

7.4 Recursive Spine

Although the algorithm presented in the previous section is not too compli-

cated, it is hard to get any decent complexity estimate. The reason behind this

is that the algorithm is not monotone, in the sense that the scores of vertices do

not grow monotonely in at least one of the v and ≤ orderings. On the other

hand, we have seen that if we do only switches for one of the players (and
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in this section we will assume it is the player P0), we get monotonicity with

respect to the ’reward’ ordering v.

Let us focus on the problematic case of the spine on Fig. 7.5, where there is

no cyclic set for P0, even though W0 6= /0. The reason why there is no even cyclic

set is because the spine does not tell us the full story. There is a cycle on ‘4’, but

it is overshadowed by the ‘more profitable’ upper set of ‘6’. We therefore need

some refinement of acyclic upper even sets.

Consider an acyclic set Xb in a spine X , where b ∈ V0. Then, from the def-

inition of spine, we know that P0 wins all vertices in G [Xb]. But this is true at

least partly because of adding the edge (b,b), which is not present in E(G). The

plays which go through b in G [Xb] are not plays of G . In other words, in G [Xb]

we assume that P0 wins the vertex b.

If we want to analyse the game G [Xb] independently, we need to remove

this assumption. We do it by going to the opposite extreme, i.e. by assuming

that it is the player P1 who wins b. In that case it is in his interest to force the

play into b, and we put Y = Xb rF1({b},Xb). Note that now it must be true that

G [Y ] is a subgame of G , since all vertices of Y have at least one successor in Y .

Therefore the game G [Y ] must have a spine XY , which may or may not contain

even cycles. But to all acyclic sets in XY we can again apply the same reasoning

as to Xb. This more or less gives us a recursive refinement of the notion of

spine. Pictorially the situation is described in Fig. 7.6.
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Figure 7.6: Recursive spine

Before we present the formal definition, let us consider the following. In

the case of standard (non-recursive) spine X , every vertex v is associated to a

single base vertex b = X(v) such that v is in the upper set of this base vertex. In

other words, the spine is completely defined by giving the value X(v) for each
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vertex. For the recursive case the values X(v) will not be single vertices, but

ordered sequences of base vertices whose associated upper sets contain v. We

will also need to extend the ‘reward’ ordering ‘v’ to these ordered sequences

of vertices. This can be done in almost the same way as in the case of strategy

improvement (see Definition 2.3 on page 9):

Definition 7.3. Let α,β ∈V ∗, α1 = v1 . . .vk and β = w1 . . .wl . Then we put α @ β

iff one of the following two propositions holds:

• ∃i.1≤ i≤min(k, l) s.t. vi @ wi and ∀ j.1≤ j < i.v j = w j

• k < l and ∀i.1≤ i≤ k.vi = wi

We say that αv β iff either α @ β or α = β.

For practical reasons we need to extend the order v to V ∪{⊥,>}, where ⊥
and > are new symbols such that ∀v ∈V.⊥@ v @> (also v >> and v >⊥). We

also define new sets V⊥ = V ∪{⊥} and V> = V ∪{>}.
We are now going to give the definition of recursive spine.

Definition 7.4 (Recursive spine). Let G =(V,E) be a parity game and X :V→V ∗0 .V>
a function such that for each v ∈ V the sequence X(v) = b1 . . .bk is a nonempty

sequence of vertices satisfying b1 > .. . > bk. Using X we define the following

sets and functions:

Prefix(X) = {α | ∃v ∈V,β ∈V +
> r{>} s.t. X(v) = α.β},

X=α = {v ∈V | X(v) = α},
X≥α = {v ∈V | ∃β ∈V ∗ s.t. X(v) = α.β}, the upper set of α,

X>α = X≥α r X=α,

Xα : X>α→V , where α∈ Prefix(X), is defined as Xα(v) = b ⇐⇒ v∈ X≥α.b, and

Xα : X>α→V ∗0 .V>, where α ∈ Prefix(X), is defined as Xα(v) = β ⇐⇒ X(v) =

α.β.

We say that X is a recursive spine of a game G if the following axioms are true:

J1) Xα is a spine for each α ∈ Prefix(X)

J2) b ∈V0 and X≥α.b acyclic in Xα implies X=α.b = F1({b},X≥α.b)

J3) b ∈V0 and X≥α.b cyclic in Xα iff ∀v ∈ X≥α.b.X(v) = α.b.>
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The notions of cyclic and acyclic upper sets can be easily adapted to re-

cursive spine. We say that X≥α.b is cyclic in X if it is a cyclic set in Xα. (By

definition X≥α.b = (Xα)b.) Similarly we call X(v) the score of a vertex v. Also

note that for α ∈ Prefix(X) the function Xα is again a recursive spine. The ‘>’ el-

ement is added for technical convenience, to allow us easily distinguish cyclic

sets. Finally we assume that Prefix(X) always contains the empty sequence ε.

In the text to follow we will also need two functions defined on the set V +
> .

Let α = v1 . . .vk. Then tail(α) = vk, and head(α) = v1 . . .vk−1. In the case of spine

X and a vertex v s.t. X(v) = α the function tail(α) returns the topmost base set v

is in, and head(α) returns the prefix of the topmost spine in which v is included.

For computing the initial recursive spine we can reuse the procedure InitialSpine,

performing a recursive descent on acyclic even upper sets. This is imple-

mented by the procedure RInitialSpine. The reason why we do not go re-

cursive on acyclic odd sets is that in the algorithm we will only be breaking

even cyclic sets – in other words only switches for player P1 will be consid-

ered. Of course the algorithm may be equally well presented for the player P1

by taking the dual definition of recursive spine.

Procedure RInitialSpine(V,α)

X := InitialSpine (V )

foreach b ∈ B(X)∩V0 s.t. Xb is cyclic do

foreach v ∈ Xb do X ′(v):=α.b.>
foreach b ∈ B(X)∩V0 s.t. Xb is acyclic do

Y :=F1(b,Xb)

foreach v ∈ Y do X ′(v):=α.b

Z:=Xb rY

RInitialSpine (Z,α.b)
foreach b ∈ B(X)∩V1 do

foreach v ∈ Xb do X ′(v):=α.b

Lemma 7.7. For every game G , the function X = RInitialSpine(V (G),ε) is a

recursive spine of G (called the initial recursive spine in the rest of the paper).

Proof. The algorithm is self explanatory, both R2 and R3 being obviously ful-

filled. R1 follows from the construction and Lemma 7.1.
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In exactly the same way as for non-recursive spine, we can always guaran-

tee that there is at least one cyclic set in any recursive spine X . To prove that

one needs only to take Xε and apply the Lemma 7.2. However in the case of

recursive spines we can also prove that if there are no cyclic sets for one of the

players, then the opponent wins all vertices in the game. To prove this, we will

need a lemma about winning for non-recursive spines.

Before presenting this lemma we introduce some more notation. Remem-

ber that the game G [Y ] for Y ⊆ V (G) is the game G restricted to vertices of Y ,

such that if there is v ∈ Y with no successor in Y , then we add an edge (v,v).

Similarly we define the game G〈Y 〉 for Y ⊆ V (G) as the the game G restricted

to vertices of Y , but for a vertex v ∈ Vi with no successor we add a new vertex

w ∈ V1−i and edges (v,w) and (w,w). In other word reaching a vertex with no

successor is a win for the opponent. Now we are ready to present the lemma:

Lemma 7.8. Let X be a (non-recursive) spine of G such that P1 wins the game G〈Xb〉
for each b ∈V0∩B(X). Then W0 = /0.

Proof. The proof goes by induction on the size of B(X). The base case is B(X) =

{b}. As Xb must be cyclic by Lemma 7.2, we must have b∈V1 and by I5 P1 wins

all vertices.

For the inductive step let B(X) = {b1,b2, . . . ,bk+1}. Take the game G ′ = G r
Xb1 . By I2 and I3 all vertices in V (G′) have at least one successor in V (G′) and

therefore G ′ is really a game. We define function X ′ by putting X ′(v) = X(v) for

all v∈V (G′). Clearly X ′ is a spine of G ′ with base vertices B(X ′) = {b2, . . . ,bk+1}.
By induction hypothesis P1 has a winning strategy τ for the game G ′. The

analysis now splits into two cases.

If b1 ∈ V0, then by I4 there is no edge (v,w) ∈ E(G) s.t. v ∈ V (G′)∩V0 and

w ∈ Xb1 . By the premise of this lemma P0 cannot win by staying in Xb1 and

cannot create a new even cycle of P1 keeps to strategy τ once the play reaches

V (G′). Therefore W0 = /0.

The second case is b1 ∈V1. By similar reasoning the only way for P0 to win

for some vertex in G is to play from some vertex of G ′ to X1. However P1 using

his winning strategy for the game G [X1] can either win without leaving the set

X1, or the play must pass through the vertex b1. If this is a winning play for

P0, it cannot stay in V (G′) and must infinitely often pass again through b1. As

b1 ∈V1 and b1 = max(V ), P1 wins such a play, thus we get a contradiction.
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Now we can prove the property we mention earlier in this section.

Lemma 7.9. Let G be a game and X its recursive spine, such that there is no even

cyclic set in X . Then W1 = V (G).

Proof. We will prove that the player P1 will win every game G [X>α] for α ∈
Prefix(X)∩V ∗0 . As X>ε = V (G) this would prove the proposition. The proof

goes by induction on the depth of spine nesting (length of α), starting with the

innermost spine.

Let α ∈ Prefix(X)∩V ∗0 such that α is not a prefix of any other α′ ∈ Prefix(X).

Let Y = Xα. Then for all b ∈ B(Y )∩V0 we must have Yb = F1(b,Yb) (since Yb

cannot be cyclic). So Y satisfies the requirements of Lemma 7.8 and P1 wins all

vertices in X>α.

For the inductive case take α ∈ Prefix(X)∩V ∗0 and assume we have proved

the proposition for all prefixes α.β, β∈V +
0 . Let Y = Xα. Then for all b∈B(Y )∩V0

we must have Yb is acyclic, and P1 wins the game G [Yb r F1(b,Yb)]. However

it is easy to see that P1 also must win the game G〈Yb〉, as there is no edge

(v,w) ∈ E(G) s.t. v ∈ (F1(b,Yb)∩V0) and w ∈ (Yb r F1(b,Yb)) (by definition of

F1(b,Yb)). By application of Lemma 7.8 we get P1 wins the game G [X>α].

7.5 Recursive Switching

So far we have given an algorithm for constructing an initial spine, and studied

what happens if there is no cyclic even upper set available. But if there is an

even cyclic set, we need to adapt the algorithms for breaking cyclic sets and

recomputing the spine to work on recursive spines, and show that we preserve

monotonicity w.r.t. the extended ‘v’ ordering. Fortunately most of the hard

work has already been done in the Section 7.2. In addition to the results shown

there we will need the following generalisation of Lemma 7.6. In short it states,

that the result of RecomputeEven on a modified spine X will again be a spine,

even if we add vertices P1 cannot reach from V ′ and remove F0(S) for some set

S⊆V .

Lemma 7.10. Let G be a parity game, V ′ ⊆V s.t. G ′ = G [V ′] is a subgame of G and

X spine of the game G ′ (or a result of running RecomputeEven on some spine of

G ′).
Moreover let Y ⊆V rV ′ such that
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1. each vertex of Y has a successor in Y ∪V , and

2. no vertex of V ′∩V1 has a successor in Y .

Finally let U ⊆ (V ′∪Y ) such that U = F0(U,(V ′∪Y )).

And define

Z(v) =


X(v) if v ∈V ′rU

⊥ if v ∈ Y rU

undef. otherwise

Then X ′=RecomputeEven(Z) is a spine of G[(V ′∪Y )rU ] and ∀v∈ (V ′rU).X(v)v
X ′(v).

Proof. The lemma is sketched in Fig. 7.7. The proof itself is very similar to the

one of the Lemma 7.6. I5 is guaranteed by the following: If we fix a strategy σ

s.t. σ is a winning strategy for each even upper set in X , then by definition of

F0 we have σ(x) ∈U =⇒ x ∈U . The fact X(v) v X ′(v) holds since there is no

edge P1 can choose going from from V ′ to Y . The proofs of other properties are

either obvious, or can be modified similarly.

Y V ′
V

U

Figure 7.7: Lemma 7.10

Procedure RBreakEven(U,α,X)

β:=head(α); b:=tail(α)

(U,Y ):=BreakEven (U,Xβ)

foreach v ∈ X>β s.t. Xβ(v) 6= Y (v) do

X(v):=β.Y (v)

if U = /0 then return ( /0, β, X)

else if β = ε then return (U , β, X)

else return RBreakEven (U,β,X)
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Breaking even cycles in a recursive spine is done by the algorithm RBreakEven,

which works as follows: We start with a recursive spine X and even cyclic set

U = X=α.b.>, where α ∈ Prefix(X) and b ∈V0. First we try to break cycles in U by

running the procedure BreakEven on U in the context of Xα, the (non-recursive)

spine where U is the upper set of b. Note that the spine Xhead(α) has not changed

in this process.

If the new U is non-empty, we have to recursively repeat the process, this

time allowing more switches by running BreakEven on (now smaller) U in

Xhead(α). This is repeated until either U 6= /0∧α = ε or U = /0. In the first case

we have U ⊆W0, as for every v ∈U ∩V1 and (v,w) ∈ E also w ∈U , and for each

v ∈ U ∩V0 we have σ(v) ∈ U , where σ is the winning strategy of P0 in G [U ].

(The existence of such σ is implied by the fact that U is an even cyclic set.) In

the second case (U = /0) we are at the point at which we have to recompute

the spine X with α being the current prefix. Note that the algorithm did not

affect any vertices outside X>α and also for each prefix α′ of α, the spine Xα′ is

unchanged.

After breaking the cycles on U we have to recompute the recursive spine.

This is handled by the algorithm RRecomputeEven.

Lemma 7.11. Let X be a recursive spine, α ∈ Prefix(X), and U = X=α.b.> a cyclic set

in Xα such that RBreakEven(U , α, X)=( /0, α, Y ). Then X ′=RRecomputeEven(Y ,

α) is a recursive spine and ∀v ∈V (G).X(v)v X ′(v), and ∀v ∈U.X(v) @ X ′(v).

Proof. During the run of the algorithm we will modify the function Y , keeping

the current state in the function X ′. We will show that the following invariant

holds throughout the execution of RRecomputeEven: ∀v ∈V.X(v)v X ′(v). At the

beginning this is guaranteed as X ′ = Y and ∀v ∈ V.X(v) v Y (v) by (a recursive

application of) Lemma 7.4.

The procedure RRecomputeEven takes over at the prefix α, where X ′α is the

outermost spine modified by the procedure RBreakEven. Since X ′α a normal

spine, we can call the procedure RecomputeEven on it. Let S = RecomputeEven(X ′α).

Then by the Lemma 7.6 ∀v ∈ X ′>α.X ′α(v) v S(v). The base vertices of S will give

us the first element of the score suffix: if S(v) = b, then X ′(v) will from now on

contain the prefix α.b.

The analysis now splits into three cases, according to the base vertices of

the sets Sb. If b ∈ V1, then we put X ′(v) = α.b for all v ∈ Sb and we are done. If
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Procedure RRecomputeEven(X ′,α)

S:=RecomputeEven (X ′α)

foreach b ∈ B(S) do

if b ∈V1 then

foreach v ∈ Sb do X ′(v)=α.b

else if b ∈V0, and Sb is cyclic then

foreach v ∈ Sb do X ′(v)=α.b.>
else if b ∈V0, and Sb is acyclic then

if α.b 6∈ Prefix(X) then

Z:=Sb r F1({b},Sb)

foreach v ∈ Z do X ′(v)=α.b

RInitialSpine (Z, α.b)
else

foreach v ∈ Sb r X≥α.b do X ′(v)=α.b.⊥
Z:=Sb r F1({b},Sb)

foreach v ∈ Z do X ′(v)=α.b

RRecomputeEven (X ′,α.b)
return (X ′)
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b ∈V0, and Sb is cyclic, we are finished as well, by putting X ′(v) = α.b.> for all

vertices of Sb. In both cases we must have ∀v ∈ Sb.X(v)v X ′(v) by construction

(in the second case this is implied by the fact that ∀v ∈V.v @>).

The remaining case b ∈ V0 and Sb acyclic is the crucial one. We first check

whether X≥α.b is an upper set in X . If not, then we know that ∀v ∈ Sb.X(v) @

Sb(v), as the score of all vertices in Sb must have increased by Lemma 7.6. So in

this case we compute the set Z = F1(v,Sb), put X ′(v) = α.b for each vertex of Z,

and simply run RInitialSpine(Sb r Z, α.b) to compute the precise value of X ′

for v∈ Z. As ∀β∈V ∗>.α.bvα.b.β, we keep all the time the invariant X(v) @ X ′(v)

for v ∈ Z.

On the other hand if there is an upper set X≥α.b in X , we also start with

computing the set Z = F1(v,Sb) and put X ′(v) = α.b for each v∈ Z. In this case we

first have to show that X(v)vX ′(v) for all vertices in Z. Let v∈ Z. If v 6∈X≥α.b we

are finished, as X(v) @ X ′(v). Therefore for contradiction take v∈ X>α.b with the

lowest rank in F1(v,Sb). If v ∈ V1, we get a contradiction with O4 for the spine

X ′α, as there must be w∈ F1(v,Sb) s.t. w 6∈ X≥α.b. This contradicts v being in X>α.b.

The case for v ∈V0 is similar. Therefore X(v)v X ′(v) for all v ∈ Z = F1(v,Sb).

Now we get to the important moment. By construction there are two classes

of vertices in Sb: Those which were in the set X≥α.b and the ones which came

to this set during cycle breaking or recomputation. For the latter ones we

set their score in X ′ to α.b.⊥ (so that now Sb r Z = X ′>α.b). By construction

X(v) v X ′(v) also for those vertices. We now recursively apply run the al-

gorithm RRecomputeEven on X ′>α.b. Again we start by running the algorithm

RecomputeEven. This time to prove that S is a spine of X ′>α.b we need to apply

a generalised version of Lemma 7.6, the Lemma 7.10.

7.6 Asymmetric Algorithm

We are now ready to present the second, asymmetric, algorithm based on the

structure of a spine. This time we work with with recursive spines. The al-

gorithm works as follows: Given a game G it starts by computing an initial

recursive spine X . Providing there are some even cyclic sets in X it tries to

break cycles by running the procedure RBreakEven. If this is successful, the re-

cursive spine is recomputed (algorithm RRecomputeEven). Otherwise the force

set of the unbreakable cycles is removed and we start again. Finally if there are
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not any even cyclic sets, all the remaining vertices are won by P1.

Procedure SpineAsymmetric(G)

W0:= /0;W1:= /0;V =V (G)

while V 6= /0 do

X :=RInitialSpine (V,ε)

while there is even cyclic set in X do

choose α.b ∈ Prefix(X) s.t. Xb is cyclic and b ∈V0

(U,β,Y ):=RBreakEven (Xb, α.b, X)

if U = /0 then

X :=RRecomputeEven (Y,α)

else

W0:=W0∪F0(U)

V :=V r F0(U)

break
W1:=W1∪{U}; break

return W0,W1

Theorem 7.2. Let G be a parity game and n = |V (G)|. Then SpineAsymmetric(G)=(W0,W1)

and SpineAsymmetric stops after at most O(nn) iterations.

Proof. The correctness of the algorithm follows from the Lemmas 7.4, 7.10, and

7.11. The bound on the number of iterations is given by the fact that in every

switch we do not decrease the score for any of the vertices, and increase the

score for at least one vertex.

The remaining question is the complexity of a single iteration. The running

time of the procedure RBreakEven is governed by the by the number of calls to

the procedure BreakEven in the first part of the algorithm and RecomputeEven it

the procedure RRecomputeEven. Obviously BreakEven is called at most n times

as U ⊆V . RecomputeEven is called at most n times as each vertex of V can be a

base vertex only once. Therefore the complexity of a single iteration is O(n5).



Chapter 8

Concluding Remarks

The original goal the author of this thesis set out to reach was to come up with

a polynomial algorithm for solving parity games. Even though this has not

been achieved, he still thinks the odds that there is a polynomial algorithm are

high. One reason to feel this way is the existence of the strategy improvement

algorithm of Vöge and Jurdziński [VJ00]. Even though the understanding of

this algorithm has advanced a bit, we are still a long way from showing it is

actually polynomial or finding an example of a parity game on which it would

need an exponential number of improvement steps. But even experimenting

with large sets of examples neither we, nor others, have not been able to find

one on which the algorithm needs significantly more than n steps, where n is

the number of vertices in the parity game. That suggests that we can learn a

great deal more by continuing research in this direction.

We think that one way forward in the search for a polynomial-time algo-

rithm (or proving its non-existence) is to study the effect of the structure of the

game graph on the shape of the winning regions. In this thesis we pursued

this idea in Chapter 7. But the question is more general. Take the specific case

of strategy improvement. We still do not know how does the structure of the

game graph affect the set of available improvements steps. For example is it

true that on graphs of bounded tree-width the number of iterations is guaran-

teed to be polynomial?

While we were not able to prove the (non-)existence of polynomial-time

algorithm for solving parity games, we may study parity games on restricted

classes of graphs. One of the best known and well studied classes of graphs

are graphs of bounded tree-width, and in this thesis we gave a polynomial

127
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time algorithm for solving parity games on this class. As tree-width is de-

fined for undirected graphs only, it is often too coarse for describing the struc-

ture of directed graphs. When we tried to find a corresponding counterpart of

tree-width for directed graphs we realized there is not any suitable available.

We therefore defined the DAG-width and presented the result of [BDHK06]

that we can indeed solve parity games in polynomial time also on this class of

graphs.

Both tree-width and DAG-width are measures which measure how little

the graph is connected – graphs of low tree-width are ‘almost trees’, while

graphs of low DAG-width are ‘almost DAGs’. On the opposite end of the spec-

trum is a measure called clique-width (introduced in [ER97] and studied in de-

tail in [CO00]), which measures how close a given graph is to being a clique or,

more precisely, to being a complete bipartite graph. This measure comes in two

flavours, both for directed and undirected graphs. An interesting question is

whether we can solve parity games in polynomial time on graphs of bounded

(directed) clique-width. At first sight this seems not to be much difficult – one

would just apply the techniques used for parity games on graphs of bounded

tree-width and DAG-width. However they are not directly applicable. The

problem here is that the clique-width of a graph is defined, instead by giving a

decomposition, as the minimum number of labels needed to construct G using

the following operations: creation of a new vertex v with label i (denoted v(i)),

disjoint union (⊕), connecting vertices with specified labels (ηi, j) and renam-

ing labels (ρi, j). Unfortunately the operation ηi, j can connect a great number

of edges at a time, which makes any naı̈ve algorithm exponential. However

we have some plausible ideas how to construct a polynomial-time algorithm,

which we have not pursued for a lack of time.
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[Büc62] J. R. Büchi. On a decision method in restricted second order aith-

metic. In International Congress on Logic, Methodology and Philosophy

of Science, pages 1–11. Stanford University Press, 1962.
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[GTW02] E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and

Infinite Games, volume 2500 of LNCS. Springer-Verlag, 2002.

[Hal04] N. Halman. Discrete and Lexicographic Helly Theorems and Their Re-

lations to LP-type Problems. PhD thesis, Tel-Aviv University, 2004.

[Her89] B. Herwig. Zur Modelltheorie von Lµ. PhD thesis, Universität

Freiburg, Germany, 1989.

[HK66] A.J. Hoffman and R.M. Karp. On nonterminating stochastic games.

Management Science, 12(5):359–370, 1966.
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[MSW96] J. Matoušek, M. Sharir, and E. Welzl. A subexponential bound for

linear programming. Algorithmica, 16(4/5):498–516, 1996.

[Mul63] D. E. Muller. Infinite sequences and finite machines. In Proceedings

of the 4th IEEE Symposium on Switching Circuit Theory and Logical

Design, pages 3–16, 1963.



Bibliography 134

[MV99] P. B. Miltersen and N. V. Vinodchandran. Derandomizing arthur-

merlin games using hitting sets. In Proceedings of IEEE FOCS’99,

pages 71–80, 1999.
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