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1. Introduction

Searching has always been one of the most prominent data processing operations
because of its useful purpose of delivering required information eÆciently. How-
ever, exact match retrieval, typical for traditional databases, is not suÆcient
or feasible for data types of present digital age, that is image databases, text
documents, audio and video collections, DNA or protein sequences, to name
a few. What seems to be more useful, if not necessary, is to base the search
paradigm on a form of proximity, similarity, or dissimilarity of query and data
objects. Roughly speaking, objects that are near to a given query object form
the query response set. In this place, the notion of mathematical metric space
[20] provides a useful abstraction for nearness.

Similarity search is needed as a fundamental computational task in a variety
of application areas, including multimedia information retrieval, data mining,
pattern recognition, machine learning, computer vision, genome databases, data
compression, and statistical data analysis. This problem, originally mostly stud-
ied within the theoretical area of computational geometry, is recently attracting
more and more attention in the database community, because of the increasingly
growing needs to deal with large volumes of data.

An index structure supporting similarity retrieval should be able to execute
similarity queries without any limitations, for example performing range queries
with any search radius. However, a signi�cant group of applications needs re-
trieval of objects which are in a very near vicinity of the query object { e.g.,
copy (replica) detection, cluster analysis, DNA mutations, corrupted signals af-
ter their transmission over noisy channels, or typing (spelling) errors. Thus in
some cases, special attention may be warranted.

The development of Internet services often requires an integration of het-
erogeneous sources of data. Such sources are typically unstructured whereas
the intended services often require structured data. The main challenge is to
provide consistent and error-free data, which implies the data cleaning, typically
implemented by a sort of similarity join. In order to perform such tasks, similar-
ity rules are speci�ed to decide whether speci�c pieces of data may actually be
the same things or not. However, when the database is large, the data cleaning
can take a long time, so the processing time (or the performance) is the most
critical factor that can only be reduced by means of convenient similarity search
indexes.

Several storage structures, such as [25, 6, 14, 5], have been designed to sup-
port eÆcient similarity search execution over large collections of metric data
where only a distance measure for pairs of objects is possible to quantify. How-
ever, the performance is still not satisfactory and further investigation is needed.
Though all of the indexes are trees, many tree branches have to be traversed to
solve a query, because similarity queries are basically range queries that typically
cover data from several tree nodes or some other content-speci�c partitions. In
principle, if many data partitions need to be accessed for a query region, they
are not contrasted enough and such partitioning is not useful from the search
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point of view.
This thesis concentrates on investigation of new strategies which support

eÆcient similarity search executions. The rest of this proposal is organized as
follows. Section 2 embraces background and de�nitions of similarity searching
in metric spaces. In Section 3, a survey of existing index structures for metric
spaces is contained. The plan of thesis is outlined in Section 4. In addition,
current results of my study are summarized in Appendix A.

2. Metric Space Searching

This section introduces the problem of indexing of metric spaces and provides
an essential background and de�nitions of metric spaces and similarity queries.

2.1 Motivation

The classical approach to the search problem is based on exact match paradigm.
That is, a search query is given and a record (number or string) which is exactly
equal to the search query is retrieved. Traditional databases are built on the
concept of exact match searching. However, more sophisticated searches such
as range queries rely on the full linear order of searched domain.

New data types, images, audio records, video sequences, �ngerprints to name
a few, cannot be meaningfully queried in the classical sense. There are no
applications which are interested in searching an audio clip exactly the same
as a given query. Furthermore, these data types cannot be linearly ordered,
thus the classical range search cannot be applied. Practically all multimedia
applications are interested in objects similar to a given query.

Imagine a collection of images. Interesting queries are of the type "�nd an
image of a lion with a savanna background". The classical scheme can be applied
if the collection has been tagged, it means that every image has assigned a list of
text descriptions of objects contained in it. Unfortunately, such a tagging is not
possible to make automatically due to immature state of objects' recognition
in real world scenes regardless of issues of descripting some image elements,
for example textures, in natural language. Another possible query can specify
a part of an image and wants to retrieve all images that contains this image
fraction.

The problem of correcting misspelled words in written text is rather old, and
the experience reveals that 80% of these errors are corrected allowing just one
insertion, deletion, or transposition. But the problem is not only grammatical,
because an incorrect word that is entered in the database cannot be retrieved
anymore on the exact match bases. According to [21], text typically contain
about 2% of typing and spelling errors. Moreover, text collections digitalized
via optical character recognition (OCR) contain a non negligible percentage
of errors (7 � 16%). Such numbers are even higher for text obtained through
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conversion from a voice.
These short examples share the same concept of similarity searching, that

means the problem of �nding objects which are close to a given query object.

2.2 Metric Spaces

A convenient way to assess similarity between two objects is to apply metric
functions to decide the closeness of objects as a distance, that is the dis-similarity
of objects. A metric space M = (D; d) is de�ned by a domain of objects
(elements, points) D and a total (distance) function d.

Distance functions, used in metric spaces, must satisfy the following proper-
ties:

� 8x; y 2 D; d(x; y) � 0 (positiveness),

� 8x; y 2 D; d(x; y) = 0, x = y (identity),

� 8x; y 2 D; d(x; y) = d(y; x) (symmetry)

� 8x; y; z 2 D; d(x; z) � d(x; y) + d(y; z) (triangle inequality)

We also assume that the maximum distance never exceeds d+, thus we consider
a bounded metric space.

2.3 Distance Functions

Distance functions (metrics) are usually speci�ed by an expert, however, their
de�nitions are not restricted to any type of queries that can be asked. In the
following, we provide some examples of similarity measures in more detail.

Similarity of images can be measured in many ways, such a quanti�cation can
be based on a shape extraction, textures, color histograms, image patterns. The
distance between histograms can be measured by a Minkowski metric function,
so-called Ln distance function, de�ned as

Ln[(x1; : : : ; xk); (y1; : : : ; yk)] =
n

vuut kX
i=1

jxi � yijn:

L1 metric is called theManhattan distance, L2 denotes well-known the Euclidean
distance and L1 = maxki=1jxi � yij is named the maximum distance. The us-
age of Ln family of metric functions to compute distance between histograms
does not introduce any correlations among individual colors. Therefore, more
complex measures such as a quadratic form must be applied [18]. However, be-
cause color histograms are typically high-dimensional vectors (256 or 64 distinct
colors) the distance measure is computationally expensive.
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Another example of distance, that can be applied on histograms, is the
Hausdor� metric [19]. This metric measures a distance between two sets A,B
and it is de�ned as follows:

dp(x;B) = inffd(x; y); y 2 Bg

dp(A; y) = inffd(x; y); x 2 Ag

ds(A;B) = supfdp(x;B); x 2 Ag

ds(B;A) = supfdp(A; y); y 2 Bg:

Then the Hausdor� distance is:

d(A;B) = maxfds(A;B); ds(B;A)g:

Apparently, the Hausdor� distance is a very time-consuming operation since its
time complexity is O(n2).

Text strings are usually compared by the edit distance, so-called the Leven-
stein distance [22]. This measure computes the minimal number of insertions,
deletions, and replacements of one character needed to transform one string into
another. This distance function can be also applied on other granularities, such
as words, paragraphs, or whole documents. All known algorithms implementing
the edit distance have the time complexity O(n2). Thus, the evaluation of edit
distance is a time-consuming operation. The nice survey [23] presents numerous
solutions to this problem.

There are many other similarity measures which can be used on various data
types. However, computationally expensive distance functions are not excep-
tions. Generally, metric space indexing structures consider a metric function
as a high CPU consuming operation. Therefore, their aim is to minimize the
number of evaluations of a distance function.

2.4 Similarity Queries

In general, the problem of indexing metric spaces can be de�ned as follows.

Problem 1 Let D be a set, d a distance function de�ned on D, andM = (D; d)
a metric space. Given a set X � D, preprocess or structure the elements of X
so that similarity queries can be answered eÆciently.

A similarity query returns objects which are close to a given query object. We
typically distinguish three fundamental types of similarity queries:

� Range Query (q; r) { retrieves all objects which are within the distance
of r to the query object q, that is fo 2 X; d(q; x) � rg,

� k-Nearest Neighbor Query NNk(q) { retrieves the k closest objects
to the query object q, that is a set fR � X; jRj = k and 8x 2 R; y 2
X �R; d(q; x) � d(q; y)g,
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� Join Query JQt { retrieves all pairs of objects (x; y) 2 X �X such that
the distance between x and y is less than or equal to a threshold t, that
is f(x; y) 2 X �X; d(x; y) � tg.

Notice that a query object q does not necessary have to belong to an indexed
set of objects X , i.e. q 62 X . However, the query object must be included in the
domain of metric space D, that is q 2 D.

Other similarity queries can be de�ned, nevertheless, they are often com-
binations of these three basic types. For example, a meaningful query is the
nearest neighbor query NNk where the maximum distance r to the furthest
nearest neighbor is speci�ed. Similarly, the join query can be bounded to the
number of retrieved pairs.

3. Indexing techniques

In this section, we provide a short survey on existing indexes for metric spaces.
The more complete and more detailed survey is available in [12]. Presented
index structures are divided into two categories with respect to the type of
distance function they support:

� discrete distance function,

� continuous distance function.

Indexing techniques of metric spaces assume that a discrete distance function is
a function which returns only a small set of values, while a continuous distance
function is a function which delivers an in�nite set of possible values or a very
large set of alternatives. These assumptions are far away from strict mathe-
matical de�nitions, nevertheless, they are suÆcient for the case of our usage.
A typical example of the discrete distance function is the edit distance, while
Minkowski distance measures are typical representatives of the other type.

The remaining part of this section is organized into three subsections. The
�rst part presents several index structures for discrete distance functions while
several techniques for continuous functions are described in the second subsec-
tion. Finally, the last part concerns the problem of selecting convenient pivots.

3.1 Discrete Distance Functions

In this section, structures which take the advantage of discrete distance func-
tions, i.e. small sets of values, are introduced.

3.1.1 Burkhard-Keller Tree

Probably the �rst solution to support searching in metric spaces is presented
in [8]. A BKT tree (Burkhard-Keller Tree) is proposed and it is de�ned as
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follows: an arbitrary object p 2 X is selected as the root of tree. For each
distance i > 0, Xi is de�ned as the set of all objects with the distance of i to
the root p, Xi = fo 2 X; d(o; p) = ig. A child node of the root p is built for
every non-empty set Xi. All child nodes are recursively re-partitioned until no
new child node can be created. Objects assigned as roots of sub-trees, saved in
internal nodes, are called pivots.

The range search (q; r) starts at the root p of the tree and enters all child
nodes i such that

d(q; p)� r � i � d(q; p) + r (3.1)

and proceed down recursively. If d(q; p) � r holds the object p is reported.
Notice that the inequality 3.1 cuts out some branches of the tree.

Pruning some branches of the tree is allowed by validity of the triangle in-
equality. Assume a pruned branch and an object o stored in this branch, the
distance between o and its parent p is equal to i, that is d(p; o) = i. The condi-
tion jd(p; q)� ij > r holds (from the pruning criterion 3.1), because this branch
has already been excluded. From the triangle inequality d(p; q) � d(p; o)+d(o; q)
we get d(o; q) � d(p; q)� d(p; o) > r.

Figure 3.1 shows an example where the BKT tree is constructed from objects
of the space which is illustrated in the left side of �gure. Objects p, o1, and
o4 are selected as roots of sub-trees, so-called pivots. The range query is also
presented and speci�ed by the object q and radius r = 2. The search algorithm
evaluating the query (q; 2) discards some branches, the accessed branches are
emphasized.

Obviously, if the search radius of range query grows, the number of accessed
subtrees (branches) increases. This leads to higher search costs which are mea-
sured in the number of distance computations needed to answer a query. The
increasing number of distance computations can be attributed to the fact that
di�erent pivots are selected at the same level of tree. The following structure,
FQT trees, reduces such the costs.

The BKT trees are linear in space (O(n)). The search time complexity is
O(n�) where 0 < � < 1 and depends on the search radius and on the structure
of indexed space [12].

3.1.2 Fixed Queries Tree

The FQT (Fixed Queries Tree), originally presented in [2], is an extension of
BKT tree. Fixed Queries Trees use the same pivot at the same level, that is
in contrast to BKT trees where several pivots per level are used. Objects of a
given metric space are stored in leaf nodes only. The range search algorithm is
the same as for the BKT. The advantage of this structure is following, if more
than one subtree must be accessed only one distance computation between the
query object and the pivot per level is computed because all nodes at the same
level share the same pivot. The experiments, presented in [2], reveal that FQTs
perform less distance computations than BKTs.
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Figure 3.1: On the left, partitioning of the space by pivot p. On the right,
corresponding BKT and FQT trees.

An example of FQT tree is demonstrated in Figure 3.1. The tree is built from
objects depicted on the left, where objects p and o4 are pivots of corresponding
levels. Notice that all objects are stored in leaves, including objects selected as
pivots. The range query (q; 2) is de�ned and accessed branches of the tree are
highlighted.

The space complexity is superlinear, because the objects selected as pivots
are duplicated, and is upper-bounded by O(n logn). The time complexity is
O(n�) where 0 < � < 1 depending on the query radius and an indexed space.

In [2, 3], the authors propose a variant of FQT trees, called FHFQT (Fixed-
Height Fixed Queries Tree). This structure has all leaf nodes at the same
level, that is, leaves are at the same depth h. This make some branches of the
tree deeper than necessary, however, this makes sense because any additional
distance computations are not needed since they were already computed at
upper levels.

3.1.3 Fixed Queries Array

The Fixed Queries Array (FQA) is presented in [11, 10]. Generally, the FQA is
not a tree structure, however, its organization comes out from a construction of
a tree. The FHFQT tree [3] with �xed height h is built on a given set of objects.
The leaf nodes of the FHFQT are concatenated to an array and the result is
the FQA. For every member of the array, h numbers are computed. These
numbers represents the path from the root to the leaf. Indeed, these h numbers
are distances to h pivots used in the FHFQT tree. Each of these h distances
is coded in b bits and concatenated together to form one hb-bit number where
the most signi�cant bits correspond to higher levels of the tree. The FQA is a
sorted array of these hb-bit numbers.

FQAs are able to use more pivots at the same space than FHFQT trees, this
improves the eÆciency. The authors of [11] show that the FQA outperform the
FHFQT.
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3.2 Continuous Distance Functions

The usage of discrete distance functions is restrictive on the application domain.
The discrete case is, in fact, a specialization of the continuous case. This section
concentrates on index structures supporting continuous distance functions.

Structures designed for usage of discrete distance functions cannot be applied
on the continuous case without any changes. In a metric space with a continuous
distance function, there is usually very small probability that a pair of objects
will have the same distance. Therefore, the usage of tree structures designed for
discrete functions results in a 
at tree of height of 2. In fact, this is the same
as the sequential scan.

3.2.1 Vantage Point Tree

The Metric Tree, published in [24], is a tree structure designed for continuous
distance functions. More complete work [25] using the same idea presents the
VPT (Vantage-Point Tree). The tree is built recursively in the following way:
at random an object p (pivot) is picked and promoted to the root. The median
of all distances to other objects is computed (M = medianfd(p; o); o 2 Xg) and
all objects are partitioned by the median into the left and the right subtree,
fo 2 X; d(o; p) � Mg and fo 2 X; d(o; p) > Mg respectively. Subtrees are
re-partitioned until they are empty. This procedure produces a balanced tree.

A range query (q; r) execution traverses the tree from the root to leaves
and computes distances d(p; q) between the query object q and the node p. All
objects p that satis�es d(p; q) � r are reported to output. Some tree branches
can be discarded using this following criterion: if d(p; q)� r �M holds, the left
subtree is accessed, and vice versa, if d(p; q) + r > M holds, the right subtree is
entered. Notice that both subtrees can be visited.

If the search algorithm has to enter both subtrees, no objects are excluded
from the search procedure and its performance deteriorates. This issue is han-
dled by extending the VPT tree to anm-ary tree. This variant usesm-thresholds
(percentiles) instead of one median to partition the data set into m spherical
cuts, where m > 2. These modi�ed trees are called Multi-Way Vantage Point
Trees (mw-VPTs) and presented in [4, 5].

Unfortunately, the experiments reveal that the performance of mw-VPT
trees is not very satisfactory because the spherical cuts become thin for more
percentiles and again more tree branches have to be examined during the search.

The VPT trees take O(n) space. The time complexity for very small range
query radii is O(log n).

Extensions of algorithms for similarity queries are presented in [13].

3.2.2 Multi Vantage Point Tree

In [4, 5], the MVPT (Multi Vantage-Point Tree) is presented. MVPTs are
de�ned very similarly as VPTs but they use more pivots in internal nodes. An
internal node splits a given set into 2m partitions instead of 2 partitions, wherem
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is the number of pivots in the internal node usually greater than 2. An internal
node of MVPT which employs 2 pivots and partitions a set into 4 partitions can
be viewed as a VPT tree consisting of 2 levels, however, using the same pivot
at the second level. While the VPT stores objects in all nodes (internal nodes
and leaves), the MVPT stores objects in leaf nodes only. Moreover, leaf nodes
of the MVPT are buckets where more objects can be stored.

A new idea is being introduced. In the construction time, many distance
computations between objects and pivots are evaluated. These distances are
saved in leaves. During the evaluation of search algorithm, these precomputed
distances are used for excluding objects without actually computing distances
to the query object. If the search algorithm enters a leaf node where more
objects are stored, every object o has to be checked on the condition d(o; q) � r.
Actually, before computing the distance d(o; q) the exclusion condition jd(o; pi)�
d(q; pi)j > r is checked for each saved distance, i.e. for each pivot pi, and if it
holds for any pivot the object o is excluded. This concept of using precomputed
distances in search algorithms is called pivot-based strategy.

Experiments evaluated in [5] show that MVPTs outperform VPTs, because
the pivot-based strategy saves many distance computations.

3.2.3 Excluded Middle Vantage Point Forest

The VPF (Excluded Middle Vantage Point Forest), presented in [26], is a gen-
eralization of vantage point trees. It introduces a notion of excluding middle
distances to pivots, that is, a pivot p divides objects into two sets and an exclu-
sion set as follows: objects which satisfy d(p; o) �M � � form the �rst set (i.e.
the left subtree), objects satisfying d(p; o) > M + � are grouped in the second
set (the right subtree), any other objects are excluded from the partitioning
process and form an exclusion set, whereM is the median of distances from the
pivot p to all objects. The left and right subtree are recursively re-partitioned
and excluded objects are accommodated in the exclusion set until subtrees are
empty. The second tree is created from the exclusion set of the �rst tree. This
process is repeated and the forest of vantage point trees is obtained.

This idea of excluding the middle gives the worst-case sublinear time of range
searches with radii upto �. The expected search time is O(n1�� logn) where
0 < � < 1 depends on �. Since objects are stored in both internal nodes and
leaf nodes the space is linear.

3.2.4 Generalized Hyperplane Tree

The previous approaches employ one pivot and a threshold to divide a set into
two partitions { the inner and outer partition. Following structures uses di�erent
technique to partition metric data sets. This technique is based on clustering,
that is, a partition is built around a pivot and accommodates close objects
to the pivot. Notice the relationship between this idea and the Voronoi-like
partitioning [1].
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The GHT (Generalized Hyperplane Tree) is proposed in [24]. The tree is
built recursively as follows: two objects p1; p2 are selected and promoted to
pivots. Objects closer to p1 forms the left subtree while objects closer to p2
forms the right subtree. At the search time, the hyperplane between two pivots
p1; p2 are used as the pruning criterion. In more detail, the left subtree is
entered if d(q; p1) � r < d(q; p2) + r holds and the right subtree is visited if
d(q; p1) + r � d(q; p2)� r is satis�ed. Once again, it is possible to access both
subtrees. The authors of [24] claim that GHTs could work better than VPTs in
high dimensional vector spaces.

The search algorithm, traversing the tree, enters an internal node and have
to decide whether the left or right subtree or both subtrees must be visited or
not. This decision is based on distances to both pivots used in the internal
node and on application of the pruning criterion. This process is repeated in
child nodes. The idea of reusing one of the parent pivots can save one distance
computation in a child node since this distance had to be evaluated in the parent
node. Trees adopting the idea are presented in [7].

The GHT trees are linear in space. The time complexity of range search
algorithm was not analyzed by the authors.

3.2.5 Geometric Near-neighbor Access Tree

The GNAT (Geometric Near-neighbor Access Tree) is an extended version of
the GHT, presented in [6]. The generalized hyperplane partitioning principle,
which is used by GHT, is modi�ed as follows: m pivots (p1; : : : ; pm) are se-
lected and corresponding m partitions (X1; : : : ; Xm) are de�ned, Xi = fo 2
X; d(pi; o) < d(pj ; o);8j 6= ig. Each partition Xi is re-partitioned until it is
empty. At construction time, the tree stores an O(m2) size table in each in-
ternal node. This table contains minimum and maximum distances from each
pivot to each partition, that is rangeij = [mino2Xj

(pi; o);maxo2Xj
(pi; o)] for

every pivot pi and partition Xj . Thus, the space complexity is O(nm2).
The search algorithm utilizes these tables for pruning branches of the tree. If

the interval [d(pi; q)� r; d(pi; q)+ r] does not intersect rangeij for any pivot pj ,
then the partition Xj can be discarded. This rule is applied on the range query
(q; r) until no partition can be excluded. Thereafter, the search algorithm enters
all non-discarded subtrees. Experiments reveals the fact that GHT is worse than
the VPT, while GNAT of arities between 50 and 100 outperforms them. Authors
also mention that arities of subtrees could vary from level to level of the tree,
but give no clear criteria of doing that.

3.2.6 M-Tree

The MT (M-Tree) data index [14, 27] provides dynamic capabilities and good
I/O performance in addition to few distance computations. The MT stores
objects in leaves, while internal nodes are used for partitioning only. The par-
titioning principle of the MT is similar to the GNAT's strategy. An internal
node contains several pivots and their distances to a corresponding parent pivot.
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Pivots divide an indexed set in the following way: an object is assigned to a par-
tition of the closest pivot. The authors of [14] claims that this strategy leads to
unbalanced splits, i.e. di�erent cardinalities of partitions. However, this is the
most e�ective variant. Each pivot also stores the covering radius of its subtree.

At search time, the query is compared against all pivots of the internal node
and the algorithm enters recursively into all subtrees that cannot be discarded
using the covering radius criterion. This criterion is based on application of the
triangle inequality and employs covering radii and stored distances to parent
pivots. The formal speci�cation of this criterion is in [14].

The MT provides dynamic capabilities, that is, insertions and deletions.
Insertions into the MT are handled in the similar way as for the B-Tree, that
is, the tree grows from leaves to the root. Applying such the insertion strategy
assures the balanced tree regardless of how many insertions have been made.
Speci�cally, a new object is inserted in the most suitable leaf, it means that the
tree is descended from the root along the subtree for which no enlargement or
the least enlargement of its covering radius is needed. If the leaf is full the split
algorithm is triggered. The problem of node splitting is discussed in [14] and
several algorithms are de�ned.

3.3 Choosing References

The problem of choosing reference objects (pivots) is important for any search
technique in general metric spaces, because all such structures need, directly or
indirectly, some "anchors" for partitioning and search pruning, see Section 3.
It is well known that the way in which pivots are selected can a�ect the per-
formance of search algorithms. This has been recognized and demonstrated by
several researchers, e.g. [25] or [5], but speci�c suggestions for choosing good
reference objects are rather vague.

Due to the problem complexity, pivots are often chosen at random, or as
space outliers, i.e. having large distances to other objects in the metric space.
Obviously, independent outliers are good pivots, but any set of outliers does
not ensure that the set is good. Qualitatively, the current experience can be
summarized as:

� good pivots are far away from the rest of objects of the metric space,

� good pivots are far away from each other.

Recently, the problem was systematically studied in [9], and several strategies
for selecting pivots have been proposed and tested.

4. Thesis Plan

The subject of indexing multimedia data can be divided into two di�erent areas.
The �rst area concerns the problem of �nding a suitable metric (distance func-
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tion) for the data domain. This issue is brie
y discussed in Subsection 2.3. The
second area is involved in the design of eÆcient indexing techniques for fast sim-
ilarity searches, see Section 3. This thesis is concentrated on the development
of indexing structures.

4.1 Critical view

The growing need to deal with large, possibly distributed, archives requires
an indexing support to speedup retrieval. Most of existing techniques are not
primarily designed to support a disk memory storage and they operate in the
main memory only. Therefore they are not able to deal with large collections
of data because the main memory is several degrees of magnitude smaller in
capacity than a disk memory storage.

The development of index structures which support a disk storage introduces
a new performance issue. Two types of possible applications can be speci�ed: in
the �rst one, the similarity of text strings of one hundred characters is computed
by using the edit distance, which has a quadratic computational complexity; in
the second application, one hundred dimensional vectors of 4-byte real numbers
are compared by the inner product, with a linear computational complexity.
Since the text objects are four times shorter than the vectors and the distance
computation on the vectors is one hundred times faster than the edit distance,
the minimization of I/O accesses for the vectors is much more important that
for the text strings. On the contrary, the CPU costs are more signi�cant for
computing the distance of text strings than for the distance of vectors. In
general, indexes based on distances and using a disk storage should minimize
both of the cost components. Besides, we would mention that most of existing
indexing techniques optimize only the CPU costs.

The next issue is involved in dynamic capabilities. Existing index designs
su�er from being intrinsically static, which limits their applicability in dynamic
environments that are permanently a subject of change as a function of time.
In such environments, updates (insertions or deletions) are inevitable and the
costs of update are becoming a matter of concern.

Most of index structures presented in Section 3 do not support dynamic
capabilities by their design. It is certainly feasible to insert or delete objects into
them but it will lead to unbalanced trees. Hence the search costs increase and
the performance of similarity searches deteriorates. The unbalanced tree can be
re-built, of course, but it takes enormous time, thus it is unfeasible. Moreover,
some trees do not provide delete capability directly because some stored objects
are promoted to pivots and used for partitioning of indexed space, thus deletion
of them is impossible.
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4.2 Objectives

The aim of this work is to point out weaknesses and merits of existing ap-
proaches for indexing metric spaces and to design a new metric space index
structure which eliminates weak properties. Therefore, a proposed technique
should satisfy the following characteristics:

� Dynamic Capabilities { the proposed index structure must support inser-
tions and deletions of objects and minimize the costs to insert or delete an
object. Minimal costs are need in dynamic environments where insertions
and deletions are performed permanently.

� Disk storage { support of a disk memory storage is the �rst prerequisite
to deal with large volumes of data.

� Scalability { if data stored in an index structure doubles, search algorithms
of the index structure should stay eÆcient, that is, the search costs should
increase linearly at maximum.

� I/O and CPU costs { it is very important to optimize both these costs be-
cause di�erent distance measures with completely di�erent CPU require-
ments can be applied. This issue is discussed in the previous subsection.

� Search algorithms { the basic types of similarity queries, such as range,
nearest-neighbor, and join queries, must be supported.

� Parallelism { the structure and its algorithms must not be restricted to
one CPU or one computer, that is, the structure must be easily modi�able
to a parallel and distributed environment.

The proposed structure will be evaluated and its properties will be veri�ed on
di�erent data sets, both synthetic and real world data sets with di�erent distance
distributions, to demonstrate its wide range of applicability. The structure will
be also compared with other index structures, for example M-Tree [14].

4.3 The Structure Outline

We propose a multi-level metric structure, consisting of the search-separable
buckets at each level. The structure supports easy insertion and bounded search
costs because at most one bucket needs to be accessed at each level for range
queries up to a prede�ned value of search radius �. At the same time, the applied
pivot-based strategy, which uses precomputed distances, signi�cantly reduces
the number of distance computations in accessed buckets. In the following, we
provide a brief overview of this structure.

The partitioning principles of the proposed structure are based on a multiple
de�nition of a mapping function, called the �-split function, as illustrated in
Figure 4.1a. This function uses one pivot xv and the medium distance dm to
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Figure 4.1: The bps split function (a) and the combination of two bps functions
(b).

partition a data set into three subsets. The result of the following bps function
gives a unique identi�cation of the set to which the object x belongs:

bps(x) =

8<
:

0 if d(x; xv) � dm � �

1 if d(x; xv) > dm + �

� otherwise

The subset of objects characterized by the symbol '�' is called the exclusion
set, while the subsets of objects characterized by the symbols 0 and 1 are the
separable sets, because any range query with radius not larger than � cannot
�nd qualifying objects in both the subsets.

More separable sets can be obtained as a combination of bps functions, where
the resulting exclusion set is the union of the exclusion sets of the original split
functions. Furthermore, the new separable sets are obtained as the intersection
of all possible pairs of separable sets of the original functions. Figure 4.1b gives
an illustration of this idea for the case of two split functions. The separable sets
and the exclusion set form the separable buckets and the exclusion bucket of
one level of the structure, respectively.

Naturally, the more separable buckets we have, the larger the exclusion
bucket is. For large exclusion bucket, the structure allows an additional level
of splitting by applying a new set of split functions on the exclusion bucket of
the previous level. The exclusion bucket of the last level forms the exclusion
bucket of the whole structure. The �-split functions of individual levels should
be di�erent but they must use the same �. Moreover, by using di�erent number
of split functions (generally decreasing with the level), the structure can have
di�erent number of buckets at individual levels. In order to deal with over-

ow problems and growing �les, buckets are implemented as elastic buckets and
consist of the necessary number of �xed-size blocks (pages) { basic disk access
units.

Due to the mathematical properties of the split functions precisely de�ned
in [16], the range queries up to a radius � are solved by accessing at most one
bucket per level, plus the exclusion bucket of the whole structure. This can
intuitively be comprehended by the fact that an arbitrary object belonging to
a separable bucket is at distance at least 2� from any object of other separable
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bucket of the same level. With additional computational e�ort, the structure
executes range queries of radii greater than �. The structure is able to support
other similarity queries, such as nearest-neighbor queries and similarity joins.

4.4 Future Plans

The proposed structure has already been designed and its working prototype
has been implemented. Algorithms for range search and nearest-neighbor search
queries were implemented. In Autumn Term 2002, several join algorithms will be
outlined and implemented. Their properties will be evaluated and compared. In
Spring Term 2003, we will concentrate on developing methodologies that would
support an optimal design of the proposed structure for speci�c applications,
that is, specifying variable parameters of the proposed index structure. The
proposed structure and its properties will be described in the Ph.D. thesis.
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A. Current Results of My Study

Last two years of my study at Faculty of Informatics, Masaryk University, Brno,
I was interested in the area of indexing techniques of multimedia data. The �rst
year, I concentrated on becoming familiar with the basic principles and existing
structures for indexing metric spaces. I focused on principles of partitioning
of metric spaces into separable subsets. Several principles were proposed and
compared in [15]. The results have also been presented on the poster session of
Seminar on Informatics.

During the last year, the design of the new metric index structure (D-Index)
was developed and the �rst prototype was implemented. This prototype was
tested on synthetic data sets to validate its properties. In Autumn Term 2001,
the range search and nearest-neighbor search algorithms were implemented.
Properties of these algorithms and the whole structure were tested on real world
data sets and the results are summarized and presented in [16]. Principles of
the D-Index were also presented as a poster in Seminar on Informatics.

In Spring Term 2002, the principle of storing objects of the D-Index has
been revised and evaluated. A preliminary version of algorithm for similarity
join operation was designed and implemented to the D-Index. The similarity
join was evaluated on large text string collections with edit distance metric
function and the results are presented in [17]. Currently, we are working on more
sophisticated algorithm for similarity joins. In this term, the paper concerning
basic principles and algorithms for searching in metric spaces was prepared for
presentation on Seminar on Informatics.

During my study, I cooperate with my supervisor Pavel Zezula and my col-
leagues Claudio Gennaro and Pasquale Savino from ISTI-CNR, Pisa, Italy. I
am also supervising a master thesis by Milan Pindry�c.
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B. Summary / Souhrn

Summary: The problem of searching the elements of a set which are close
to a given query element under some similarity criterion has a vast number of
applications in many branches of computer science, from pattern recognition to
textual and multimedia information retrieval. We are interested in the general
case where the similarity criterion de�nes a metric space. As the complexity
and volume of modern data grows, there is an increasing need of index struc-
tures which support disk memory storages. Unfortunately, many existing index
structures operate in the main memory only thus they are not able to deal with
large, possibly distributed, collections of data. Existing index structures su�er
from being intrinsically static, which limits their applicability in dynamic en-
vironments that are permanently a subject of change. In such environments,
updates (insertions or deletions) are inevitable and the costs of update are be-
coming a matter of concern. This work is aimed at the development of a novel
similarity search index structure that combines the clustering technique and the
pivot-based strategy to speed up execution of similarity search queries. The pro-
posed structure supports easy insertions/deletions and bounded search costs. It
is suitable for distributed and parallel implementations.

Souhrn: Probl�em vyhled�av�an�� prvk�u mno�ziny, kter�e jsou vzhledem k jist�emu
podobnostn��mu krit�eriu bl��zk�e dan�emu dotazov�emu prvku, se vyskytuje v r�uz-
n�ych odv�etv��ch po�c��ta�cov�e v�edy (computer science), od aplikac�� rozpozn�av�an��
vzor�u a�z po vyhled�av�an�� v textov�ych a multimedi�aln��ch datech. V obecn�em
p�r��pad�e je vhodnou abstrakc�� podobnostn��ho krit�eria metrick�y prostor. S ros-
touc�� slo�zitost�� a objemem modern��ch dat se zvy�suje pot�reba indexovac��ch struk-
tur, kter�e umo�z�nuj�� pou�zit�� diskov�ych �ulo�zi�st'. Bohu�zel mnoho existuj��c��ch in-
dexovac��ch struktur podporuje pou�zit�� pouze opera�cn�� pam�eti, tedy nen�� schopno
pracovat s velk�ymi, n�ekdy i distribuovan�ymi, datab�azemi. Sou�casn�e indexovac��
struktury byly navr�zeny jako statick�e, co�z omezuje jejich pou�zit�� v dynamick�ych
prost�red��ch. Aktualizace dat jsou v t�echto prost�red��ch nevyhnuteln�e a t��m se
n�aklady na ukl�ad�an�� nebo maz�an�� st�avaj�� v�yznamn�ymi a je nutn�e je minima-
lizovat. Tato pr�ace se zam�e�ruje na vytvo�ren�� nov�e indexovac�� struktury pro
podobnostn�� hled�an��, kter�a kombinuje techniku shlukov�an�� (clustering) a pivo-
tovac�� strategii (pivot-based strategy) s c��lem zrychlit prov�ad�en�� podobnostn��ch
dotaz�u. Navrhovan�a struktura m�a n��zk�e n�aklady na ukl�ad�an��/maz�an�� dat a
shora omezuje cenu vyhled�av�an��, je schopna pracovat v distribuovan�ych a pa-
raleln��ch prost�red��ch.
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