
PL/SQL

User’s Guide and Reference

Release 8.1.6

December 1999

Part No. A77069-01

PL/SQL User’s Guide and Reference, Release 8.1.6

Part No. A77069-01

Copyright © 1999, Oracle Corporation. All rights reserved.

Author: Tom Portfolio

Graphics Artist: Valarie Moore

Contributors: Dave Alpern, Chandrasekharan Iyer, Ervan Darnell, Ken Jacobs, Sanjay
Kaluskar, Sanjay Krishnamurthy, Janaki Krishnaswamy, Neil Le, Kannan Muthukkaruppan,
Shirish Puranik, Chris Racicot, Ken Rudin, Usha Sangam, Ajay Sethi, Guhan Viswanathan

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle, Oracle Call Interface, Oracle Developer, Oracle Forms, Oracle Reports, and SQL*Plus are
registered trademarks of Oracle Corporation. Net8, Oracle8i, PL/SQL, Pro*C, and Pro*C/C++ are
trademarks of Oracle Corporation. All other company or product names mentioned are used for
identification purposes only and may be trademarks of their respective owners.

i

Contents

Send Us Your Comments .. xv

Preface ... xvii

1 Overview

Main Features .. 1-2
Block Structure.. 1-2
Variables and Constants .. 1-3
Cursors ... 1-5
Cursor FOR Loops.. 1-6
Cursor Variables ... 1-6
Attributes ... 1-7
Control Structures .. 1-9
Modularity... 1-11
Data Abstraction ... 1-13
Information Hiding .. 1-15
Error Handling.. 1-16

Architecture.. 1-17
In the Oracle Server .. 1-18
In Oracle Tools .. 1-19

Advantages of PL/SQL... 1-20
Support for SQL.. 1-20
Support for Object-Oriented Programming ... 1-21
Better Performance ... 1-21

ii

Higher Productivity.. 1-22
Full Portability... 1-23
Tight Integration with SQL ... 1-23
Tight Security .. 1-23

2 Fundamentals

Character Set .. 2-2
Lexical Units... 2-2

Delimiters... 2-3
Identifiers ... 2-4
Literals .. 2-7
Comments .. 2-10

Datatypes .. 2-11
Number Types... 2-12
Character Types .. 2-15
National Character Types.. 2-20
LOB Types.. 2-22
Other Types ... 2-23

User-Defined Subtypes .. 2-25
Defining Subtypes .. 2-25
Using Subtypes.. 2-26

Datatype Conversion.. 2-28
Explicit Conversion .. 2-28
Implicit Conversion .. 2-28
Implicit versus Explicit Conversion... 2-29
DATE Values ... 2-29
RAW and LONG RAW Values... 2-30

Declarations ... 2-30
Using DEFAULT... 2-31
Using NOT NULL... 2-32
Using %TYPE .. 2-32
Using %ROWTYPE... 2-33
Restrictions... 2-36

iii

Naming Conventions ... 2-36
Synonyms .. 2-37
Scoping... 2-37
Case Sensitivity ... 2-37
Name Resolution .. 2-37

Scope and Visibility ... 2-38
Assignments... 2-41

Boolean Values.. 2-41
Database Values.. 2-42

Expressions and Comparisons ... 2-42
Operator Precedence .. 2-43
Logical Operators ... 2-44
Comparison Operators .. 2-45
Concatenation Operator .. 2-47
Boolean Expressions... 2-47
Handling Nulls ... 2-49

Built-In Functions ... 2-52

3 Control Structures

Overview .. 3-2
Conditional Control: IF Statements .. 3-2

IF-THEN... 3-3
IF-THEN-ELSE.. 3-3
IF-THEN-ELSIF... 3-4
Guidelines.. 3-5

Iterative Control: LOOP and EXIT Statements ... 3-6
LOOP.. 3-6
WHILE-LOOP ... 3-9
FOR-LOOP... 3-10

Sequential Control: GOTO and NULL Statements ... 3-15
GOTO Statement... 3-15
NULL Statement ... 3-19

iv

4 Collections and Records

What Is a Collection?.. 4-2
Understanding Nested Tables .. 4-2
Nested Tables versus Index-by Tables .. 4-3
Understanding Varrays ... 4-4
Varrays versus Nested Tables... 4-4

Defining and Declaring Collections.. 4-5
Declaring Collections ... 4-7

Initializing and Referencing Collections ... 4-8
Referencing Collection Elements.. 4-10

Assigning and Comparing Collections... 4-11
Comparing Whole Collections.. 4-13

Manipulating Collections.. 4-13
Some Nested Table Examples ... 4-13
Some Varray Examples .. 4-16
Manipulating Individual Elements .. 4-18
Manipulating Local Collections.. 4-20

Using Collection Methods... 4-21
Using EXISTS... 4-22
Using COUNT... 4-22
Using LIMIT .. 4-22
Using FIRST and LAST .. 4-23
Using PRIOR and NEXT.. 4-23
Using EXTEND ... 4-24
Using TRIM.. 4-25
Using DELETE .. 4-26
Applying Methods to Collection Parameters ... 4-27

Avoiding Collection Exceptions... 4-27
Taking Advantage of Bulk Binds... 4-29

How Do Bulk Binds Improve Performance? .. 4-30
Using the FORALL Statement .. 4-32

Rollback Behavior of FORALL ... 4-33
Using %BULK_ROWCOUNT... 4-34
Restrictions on FORALL.. 4-35

v

Using the BULK COLLECT Clause... 4-37
Bulk Fetches... 4-38
Bulk Returns .. 4-39
Restrictions on BULK COLLECT ... 4-40

Using FORALL and BULK COLLECT Together... 4-41
Using Host Arrays... 4-41
What Is a Record?.. 4-42
Defining and Declaring Records.. 4-42

Declaring Records... 4-43
Initializing and Referencing Records ... 4-44

Referencing Records... 4-45
Assigning and Comparing Records .. 4-47

Comparing Records.. 4-49
Manipulating Records ... 4-49

5 Interaction with Oracle

SQL Support .. 5-2
Data Manipulation ... 5-2
Transaction Control.. 5-2
SQL Functions ... 5-3
SQL Pseudocolumns .. 5-3
SQL Operators... 5-5

Managing Cursors .. 5-6
Explicit Cursors... 5-6
Implicit Cursors .. 5-11

Packaging Cursors .. 5-12
Using Cursor FOR Loops .. 5-13

Using Subqueries .. 5-14
Using Aliases... 5-14
Passing Parameters... 5-15

Using Cursor Variables .. 5-15
What Are Cursor Variables? ... 5-16
Why Use Cursor Variables? .. 5-16
Defining REF CURSOR Types .. 5-17
Declaring Cursor Variables ... 5-17

vi

Controlling Cursor Variables .. 5-19
Example 1... 5-25
Example 2... 5-26
Example 3... 5-26
Example 4... 5-29
Reducing Network Traffic... 5-31
Avoiding Errors .. 5-32
Restrictions on Cursor Variables .. 5-34

Using Cursor Attributes... 5-35
Explicit Cursor Attributes.. 5-35
Implicit Cursor Attributes ... 5-39

Processing Transactions ... 5-41
How Transactions Guard Your Database ... 5-42
Using COMMIT .. 5-43
Using ROLLBACK.. 5-44
Using SAVEPOINT... 5-45
Implicit Rollbacks ... 5-46
Ending Transactions... 5-46
Using SET TRANSACTION.. 5-47
Overriding Default Locking.. 5-48

Using Autonomous Transactions ... 5-52
Advantages of Autonomous Transactions.. 5-52
Defining Autonomous Transactions.. 5-53
Controlling Autonomous Transactions ... 5-56
Using Autonomous Triggers... 5-58
Calling Autonomous Functions from SQL ... 5-60

Improving Performance ... 5-61
Use Object Types and Collections .. 5-61
Use Bulk Binds .. 5-62
Use Native Dynamic SQL.. 5-63
Use External Routines .. 5-63
Use the NOCOPY Compiler Hint... 5-64
Use the RETURNING Clause.. 5-64

vii

Use Serially Reusable Packages.. 5-65
Use the PLS_INTEGER Datatype... 5-66
Avoid the NOT NULL Constraint ... 5-67
Rephrase Conditional Control Statements.. 5-67
Avoid Implicit Datatype Conversions... 5-68

Ensuring Backward Compatibility.. 5-69

6 Error Handling

Overview .. 6-2
Advantages of Exceptions ... 6-3
Predefined Exceptions.. 6-4
User-Defined Exceptions ... 6-7

Declaring Exceptions.. 6-7
Scope Rules.. 6-7
Using EXCEPTION_INIT .. 6-8
Using raise_application_error .. 6-9
Redeclaring Predefined Exceptions ... 6-10

How Exceptions Are Raised.. 6-11
Using the RAISE Statement... 6-11

How Exceptions Propagate ... 6-12
Reraising an Exception .. 6-14
Handling Raised Exceptions... 6-15

Exceptions Raised in Declarations ... 6-16
Exceptions Raised in Handlers ... 6-17
Branching to or from an Exception Handler .. 6-17
Using SQLCODE and SQLERRM .. 6-18
Unhandled Exceptions... 6-19

Useful Techniques .. 6-20
Continuing after an Exception Is Raised... 6-20
Retrying a Transaction... 6-21
Using Locator Variables .. 6-22

viii

7 Subprograms

What Are Subprograms?.. 7-2
Advantages of Subprograms .. 7-3
Understanding Procedures.. 7-3
Understanding Functions .. 7-6

Using the RETURN Statement.. 7-8
Controlling Sides Effects.. 7-9

Declaring Subprograms ... 7-10
Packaging Subprograms .. 7-11
Actual versus Formal Parameters... 7-12
Positional versus Named Notation.. 7-13

Using Positional Notation ... 7-13
Using Named Notation.. 7-13
Using Mixed Notation.. 7-13

Specifying Parameter Modes .. 7-14
Using the IN Mode ... 7-14
Using the OUT Mode ... 7-14
Using the IN OUT Mode.. 7-16
Summary of Parameter Modes ... 7-16

Using the NOCOPY Compiler Hint .. 7-17
The Trade-Off for Better Performance ... 7-18
Restrictions on NOCOPY .. 7-19

Using Parameter Defaults ... 7-20
Understanding Parameter Aliasing ... 7-22
Using Overloading.. 7-24

Restrictions on Overloading.. 7-25
How Calls Are Resolved.. 7-27
Invoker Rights versus Definer Rights... 7-29

Advantages of Invoker Rights .. 7-30
Using the AUTHID Clause.. 7-31
Who Is the Current User? .. 7-32
How External References Are Resolved.. 7-32
Overriding Default Name Resolution ... 7-34

ix

Granting Privileges... 7-35
Using Roles .. 7-36
Using Views and Database Triggers.. 7-36
Using Database Links .. 7-37
Using Object Types... 7-37

Understanding and Using Recursion.. 7-39
What Is a Recursive Subprogram? ... 7-39
Using Mutual Recursion.. 7-42
Recursion versus Iteration... 7-43

Calling External Routines ... 7-44
Using PL/SQL Server Pages .. 7-45

8 Packages

What Is a Package?.. 8-2
Advantages of Packages .. 8-5
The Package Spec.. 8-6

Referencing Package Contents ... 8-7
The Package Body... 8-8
Some Examples.. 8-9
Private versus Public Items... 8-15
Overloading Packaged Subprograms ... 8-15
Package STANDARD... 8-16
Product-specific Packages.. 8-17

DBMS_ALERT... 8-17
DBMS_OUTPUT... 8-17
DBMS_PIPE ... 8-18
UTL_FILE... 8-18
UTL_HTTP .. 8-18

Guidelines .. 8-18

x

9 Object Types

The Role of Abstraction ... 9-2
What Is an Object Type? .. 9-3
Why Use Object Types? ... 9-5
Structure of an Object Type .. 9-5
Components of an Object Type.. 9-7

Attributes ... 9-7
Methods.. 9-8

Defining Object Types ... 9-12
Object Type Stack .. 9-13
Object Type Ticket_Booth .. 9-16
Object Type Bank_Account ... 9-18
Object Type Rational ... 9-20

Declaring and Initializing Objects .. 9-22
Declaring Objects .. 9-22
Initializing Objects .. 9-23
How PL/SQL Treats Uninitialized Objects .. 9-24

Accessing Attributes... 9-24
Calling Constructors... 9-25
Calling Methods.. 9-26
Sharing Objects ... 9-27

Using Refs .. 9-28
Forward Type Definitions ... 9-29

Manipulating Objects .. 9-30
Selecting Objects ... 9-31
Inserting Objects ... 9-35
Updating Objects .. 9-37
Deleting Objects .. 9-37

xi

10 Native Dynamic SQL

What Is Dynamic SQL?.. 10-2
The Need for Dynamic SQL ... 10-2
Using the EXECUTE IMMEDIATE Statement.. 10-3

Some Examples ... 10-4
Backward Compatibility.. 10-5
Specifying Parameter Modes .. 10-6

Using the OPEN-FOR, FETCH, and CLOSE Statements .. 10-7
Opening the Cursor Variable.. 10-7
Fetching from the Cursor Variable .. 10-8
Closing the Cursor Variable.. 10-8
Some Examples ... 10-9

Tips and Traps ... 10-11
Improving Performance... 10-11
Passing the Names of Schema Objects .. 10-11
Using Duplicate Placeholders... 10-12
Using Cursor Attributes .. 10-13
Passing Nulls... 10-13
Doing Remote Operations... 10-14
Using Invoker Rights ... 10-14
Using Pragma RESTRICT_REFERENCES .. 10-15
Avoiding Deadlocks... 10-15

11 Language Elements

Assignment Statement ... 11-3
AUTONOMOUS_TRANSACTION Pragma .. 11-7
Blocks .. 11-10
CLOSE Statement ... 11-17
Collection Methods .. 11-19
Collections.. 11-24
Comments... 11-30
COMMIT Statement .. 11-31
Constants and Variables .. 11-33
Cursor Attributes .. 11-37

xii

Cursor Variables .. 11-42
Cursors .. 11-48
DELETE Statement ... 11-52
EXCEPTION_INIT Pragma ... 11-56
Exceptions... 11-58
EXECUTE IMMEDIATE Statement... 11-61
EXIT Statement.. 11-65
Expressions... 11-67
FETCH Statement.. 11-77
FORALL Statement... 11-82
Functions... 11-84
GOTO Statement .. 11-89
IF Statement ... 11-91
INSERT Statement .. 11-94
Literals... 11-97
LOCK TABLE Statement .. 11-100
LOOP Statements... 11-102
NULL Statement... 11-109
Object Types.. 11-110
OPEN Statement... 11-119
OPEN-FOR Statement... 11-121
OPEN-FOR-USING Statement.. 11-124
Packages ... 11-127
Procedures ... 11-133
RAISE Statement.. 11-138
Records ... 11-140
RESTRICT_REFERENCES Pragma .. 11-144
RETURN Statement... 11-147
ROLLBACK Statement ... 11-149
%ROWTYPE Attribute.. 11-151
SAVEPOINT Statement .. 11-153
SELECT INTO Statement ... 11-154
SERIALLY_REUSABLE Pragma.. 11-159
SET TRANSACTION Statement .. 11-161

xiii

SQL Cursor... 11-163
SQLCODE Function ... 11-166
SQLERRM Function... 11-168
%TYPE Attribute... 11-170
UPDATE Statement .. 11-172

A Sample Programs

B CHAR versus VARCHAR2 Semantics

C Wrap Utility

D Name Resolution

E PL/SQL Program Limits

F Reserved Words

Index

xiv

xv

Send Us Your Comments

PL/SQL User’s Guide and Reference, Release 8.1.6

Part No. A77069-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

publication. Your feedback is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,

section, and page number (if available). You can send comments to the Information Development

department in the following ways:

■ E-mail: infodev@us.oracle.com

■ Fax: (650) 506-7228 Attn: Oracle Server Documentation

■ Letter:

Oracle Corporation

Server Documentation Manager

500 Oracle Parkway

Redwood Shores, CA 94065 USA

If you would like a reply, please give your name, address, and telephone number below.

If you have problems with the software, please contact your local Oracle Support Services.

xvi

xvii

Preface

PL/SQL, Oracle’s procedural extension of SQL, is an advanced fourth-generation

programming language (4GL). It offers modern features such as data encapsulation,

overloading, collection types, exception handling, and information hiding. PL/SQL

also offers seamless SQL access, tight integration with the Oracle server and tools,

portability, and security.

This guide explains all the concepts behind PL/SQL and illustrates every facet of

the language. Good programming style is stressed throughout and supported by

numerous examples. Using this guide, you learn PL/SQL quickly and efficiently.

Major Topics
Audience

How This Guide Is Organized

Notational Conventions

Sample Database Tables

xviii

Audience
Anyone developing PL/SQL-based applications for Oracle8i will benefit from

reading this guide. Written especially for programmers, this comprehensive

treatment of PL/SQL will also be of value to systems analysts, project managers,

and others interested in database applications. To use this guide effectively, you

need a working knowledge of Oracle8i, SQL, and a 3GL such as Ada, C, or COBOL.

You will not find installation instructions or system-specific information in this

guide. For that kind of information, see the Oracle installation or user’s guide for

your system.

How This Guide Is Organized
The PL/SQL User’s Guide and Reference has 11 chapters and 6 appendices. Chapters 1

through 10 introduce you to PL/SQL and show you how to use its many features.

Chapter 11 serves as a reference to PL/SQL commands, syntax, and semantics.

Appendices A through F provide sample programs, supplementary technical

information, and a list of reserved words.

Chapter 1, "Overview" This chapter surveys the main features of PL/SQL and

points out the advantages they offer. It also acquaints you with the basic concepts

behind PL/SQL and the general appearance of PL/SQL programs.

Chapter 2, "Fundamentals" This chapter focuses on the small-scale aspects of

PL/SQL. It discusses lexical units, scalar datatypes, user-defined subtypes, data

conversion, expressions, assignments, block structure, declarations, and scope.

Chapter 3, "Control Structures" This chapter shows you how to structure the flow

of control through a PL/SQL program. It describes conditional, iterative, and

sequential control. You learn how to apply simple but powerful control structures

such as IF -THEN-ELSE and WHILE-LOOP.

Chapter 4, "Collections and Records" This chapter focuses on the composite

datatypes TABLE, VARRAY, and RECORD. You learn how to reference and manipulate

whole collections of data, and how to treat related but dissimilar data as a logical

unit. You also learn how to improve performance by bulk-binding collections.

Chapter 5, "Interaction with Oracle" This chapter shows you how PL/SQL

supports the SQL commands, functions, and operators that let you manipulate

Oracle data. You also learn how to manage cursors, process transactions, and

safeguard your database.

xix

Chapter 6, "Error Handling" This chapter provides an in-depth discussion of error

reporting and recovery. You learn how to detect and handle errors using PL/SQL

exceptions.

Chapter 7, "Subprograms" This chapter shows you how to write and use

subprograms. It discusses procedures, functions, forward declarations, actual and

formal parameters, positional and named notation, parameter modes, the NOCOPY
compiler hint, parameter default values, aliasing, overloading, invoker rights, and

recursion.

Chapter 8, "Packages" This chapter shows you how to bundle related PL/SQL

types, items, and subprograms into a package. Once written, your general-purpose

package is compiled, then stored in an Oracle database, where its contents can be

shared by many applications.

Chapter 9, "Object Types" This chapter introduces you to object-oriented

programming based on object types, which provide abstract templates for

real-world objects. You learn how to define object types and manipulate objects.

Chapter 10, "Native Dynamic SQL" This chapter shows you how to use dynamic

SQL, an advanced programming technique that makes your applications more

flexible and versatile. You learn two simple ways to write programs that can build

and process SQL statements "on the fly" at run time.

Chapter 11, "Language Elements" This chapter uses syntax diagrams to show

how commands, parameters, and other language elements are sequenced to form

PL/SQL statements. Also, it provides usage notes and short examples to help you

become fluent in PL/SQL quickly.

Appendix A, "Sample Programs" This appendix provides several PL/SQL

programs to guide you in writing your own. The sample programs illustrate

important concepts and features.

Appendix B, "CHAR versus VARCHAR2 Semantics" This appendix explains the

subtle but important semantic differences between the CHAR and VARCHAR2 base

types.

Appendix C, "Wrap Utility" This appendix shows you how to run the Wrap Utility,

a stand-alone programming utility that enables you to deliver PL/SQL applications

without exposing your source code.

xx

Appendix D, "Name Resolution" Thus appendix explains how PL/SQL resolves

references to names in potentially ambiguous SQL and procedural statements.

Appendix E, "PL/SQL Program Limits" This appendix helps you deal with the

program limits imposed by the PL/SQL compilation and run-time system.

Appendix F, "Reserved Words" This appendix lists those words reserved for use

by PL/SQL.

Notational Conventions
This guide follows these conventions:

PL/SQL code examples follow these conventions:

Convention Meaning

Italic Italic font denotes terms being defined for the first time, words
being emphasized, error messages, and book titles.

Courier Courier font denotes PL/SQL code, keywords, program
names, file names, and path names.

Convention Meaning

-- A double hyphen begins a single-line comment, which extends
to the end of a line.

/* */ A slash-asterisk and an asterisk-slash delimit a multi-line
comment, which can span multiple lines.

... An ellipsis shows that statements or clauses irrelevant to the
discussion were left out.

lower case Lower case is used for names of constants, variables, cursors,
exceptions, subprograms, and packages.

UPPER CASE Upper case is used for keywords, names of predefined
exceptions, and names of supplied PL/SQL packages.

Mixed Case Mixed case is used for names of user-defined datatypes and
subtypes. The names of user-defined types begin with an
upper-case letter.

xxi

Syntax definitions use a simple variant of Backus-Naur Form (BNF) that includes

the following symbols:

Sample Database Tables
Most programming examples in this guide use two sample database tables named

dept and emp. Their definitions follow:

CREATE TABLE dept (
 deptno NUMBER(2) NOT NULL,
 dname VARCHAR2(14),
 loc VARCHAR2(13));

CREATE TABLE emp (
 empno NUMBER(4) NOT NULL,
 ename VARCHAR2(10),
 job VARCHAR2(9),
 mgr NUMBER(4),
 hiredate DATE,
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(2));

Sample Data
Respectively, the dept and emp tables contain the following rows of data:

DEPTNO DNAME LOC
------- ---------- ---------
10 ACCOUNTING NEW YORK
20 RESEARCH DALLAS
30 SALES CHICAGO
40 OPERATIONS BOSTON

Symbol Meaning

[] Brackets enclose optional items.

{ } Braces enclose items only one of which is required.

| A vertical bar separates alternatives within brackets or braces.

... An ellipsis shows that the preceding syntactic element can be
repeated.

delimiters Delimiters other than brackets, braces, vertical bars, and
ellipses must be entered as shown.

xxii

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
----- ------- --------- ------ --------- ------ ------ -------
 7369 SMITH CLERK 7902 17-DEC-80 800 20
 7499 ALLEN SALESMAN 7698 20-FEB-81 1600 300 30
 7521 WARD SALESMAN 7698 22-FEB-81 1250 500 30
 7566 JONES MANAGER 7839 02-APR-81 2975 20
 7654 MARTIN SALESMAN 7698 28-SEP-81 1250 1400 30
 7698 BLAKE MANAGER 7839 01-MAY-81 2850 30
 7782 CLARK MANAGER 7839 09-JUN-81 2450 10
 7788 SCOTT ANALYST 7566 19-APR-87 3000 20
 7839 KING PRESIDENT 17-NOV-81 5000 10
 7844 TURNER SALESMAN 7698 08-SEP-81 1500 30
 7876 ADAMS CLERK 7788 23-MAY-87 1100 20
 7900 JAMES CLERK 7698 03-DEC-81 950 30
 7902 FORD ANALYST 7566 03-DEC-81 3000 20
 7934 MILLER CLERK 7782 23-JAN-82 1300 10

Your Comments Are Welcome
We in Information Development appreciate your comments and suggestions. In

fact, your opinions are the most important feedback we receive. We encourage you

to use the Reader’s Comment Form at the front of this guide. You can also send

comments to us by

■ Email: infodev@us.oracle.com

■ Fax: (650) 506-7228 Attn: Oracle Server Documentation

■ Letter:

Oracle Corporation

Server Documentation Manager

500 Oracle Parkway

Redwood Shores, CA 94065 USA

Overview 1-1

1
Overview

The limits of my language mean the limits of my world. —Ludwig Wittgenstein

This chapter surveys the main features of PL/SQL and points out the advantages

they offer. It also acquaints you with the basic concepts behind PL/SQL and the

general appearance of PL/SQL programs. You see how PL/SQL bridges the gap

between database technology and procedural programming languages.

Major Topics
Main Features

Architecture

Advantages of PL/SQL

Main Features

1-2 PL/SQL User’s Guide and Reference

Main Features
A good way to get acquainted with PL/SQL is to look at a sample program. The

program below processes an order for a tennis racket. First, it declares a variable of

type NUMBER to store the quantity of tennis rackets on hand. Then, it retrieves the

quantity on hand from a database table named inventory . If the quantity is

greater than zero, the program updates the table and inserts a purchase record into

another table named purchase_record . Otherwise, the program inserts an

out-of-stock record into the purchase_record table.

-- available online in file ’examp1’
DECLARE
 qty_on_hand NUMBER(5);
BEGIN
 SELECT quantity INTO qty_on_hand FROM inventory
 WHERE product = ’TENNIS RACKET’
 FOR UPDATE OF quantity;
 IF qty_on_hand > 0 THEN -- check quantity
 UPDATE inventory SET quantity = quantity - 1
 WHERE product = ’TENNIS RACKET’;
 INSERT INTO purchase_record
 VALUES (’Tennis racket purchased’, SYSDATE);
 ELSE
 INSERT INTO purchase_record
 VALUES (’Out of tennis rackets’, SYSDATE);
 END IF;
 COMMIT;
END;

With PL/SQL, you can use SQL statements to manipulate Oracle data and

flow-of-control statements to process the data. Moreover, you can declare constants

and variables, define procedures and functions, and trap runtime errors. Thus,

PL/SQL combines the data manipulating power of SQL with the data processing

power of procedural languages.

Block Structure
PL/SQL is a block-structured language. That is, the basic units (procedures,

functions, and anonymous blocks) that make up a PL/SQL program are logical

blocks, which can contain any number of nested sub-blocks. Typically, each logical

block corresponds to a problem or subproblem to be solved. Thus, PL/SQL

supports the divide-and-conquer approach to problem solving called stepwise
refinement.

Main Features

Overview 1-3

A block (or sub-block) lets you group logically related declarations and statements.

That way, you can place declarations close to where they are used. The declarations

are local to the block and cease to exist when the block completes.

As Figure 1–1 shows, a PL/SQL block has three parts: a declarative part, an

executable part, and an exception-handling part. (In PL/SQL, a warning or error

condition is called an exception.) Only the executable part is required.

The order of the parts is logical. First comes the declarative part, in which items can

be declared. Once declared, items can be manipulated in the executable part.

Exceptions raised during execution can be dealt with in the exception-handling

part.

Figure 1–1 Block Structure

You can nest sub-blocks in the executable and exception-handling parts of a

PL/SQL block or subprogram but not in the declarative part. Also, you can define

local subprograms in the declarative part of any block. However, you can call local

subprograms only from the block in which they are defined.

Variables and Constants
PL/SQL allows you to declare constants and variables, then use them in SQL and

procedural statements anywhere an expression can be used. However, forward

references are not allowed. So, you must declare a constant or variable before
referencing it in other statements, including other declarative statements.

[DECLARE
 -- declarations]
BEGIN
 -- statements
[EXCEPTION
 -- handlers]
END;

Main Features

1-4 PL/SQL User’s Guide and Reference

Declaring Variables
Variables can have any SQL datatype, such as CHAR, DATE, or NUMBER, or any

PL/SQL datatype, such as BOOLEAN or BINARY_INTEGER. For example, assume

that you want to declare a variable named part_no to hold 4-digit numbers and a

variable named in_stock to hold the Boolean value TRUE or FALSE. You declare

these variables as follows:

part_no NUMBER(4);
in_stock BOOLEAN;

You can also declare nested tables, variable-size arrays (varrays for short), and

records using the TABLE, VARRAY, and RECORD composite datatypes.

Assigning Values to a Variable
You can assign values to a variable in three ways. The first way uses the assignment

operator (:=), a colon followed by an equal sign. You place the variable to the left of

the operator and an expression (which can include function calls) to the right. A few

examples follow:

tax := price * tax_rate;
valid_id := FALSE;
bonus := current_salary * 0.10;
wages := gross_pay(emp_id, st_hrs, ot_hrs) - deductions;

The second way to assign values to a variable is by selecting (or fetching) database

values into it. In the example below, you have Oracle compute a 10% bonus when

you select the salary of an employee. Now, you can use the variable bonus in

another computation or insert its value into a database table.

SELECT sal * 0.10 INTO bonus FROM emp WHERE empno = emp_id;

The third way to assign values to a variable is by passing it as an OUT or IN OUT
parameter to a subprogram. As the following example shows, an IN OUT parameter

lets you pass initial values to the subprogram being called and return updated

values to the caller:

DECLARE
 my_sal REAL(7,2);
 PROCEDURE adjust_salary (emp_id INT, salary IN OUT REAL) IS ...
BEGIN
 SELECT AVG(sal) INTO my_sal FROM emp;
 adjust_salary(7788, my_sal); -- assigns a new value to my_sal

Main Features

Overview 1-5

Declaring Constants
Declaring a constant is like declaring a variable except that you must add the

keyword CONSTANT and immediately assign a value to the constant. Thereafter, no

more assignments to the constant are allowed. In the following example, you

declare a constant named credit_limit :

credit_limit CONSTANT REAL := 5000.00;

Cursors
Oracle uses work areas to execute SQL statements and store processing information.

A PL/SQL construct called a cursor lets you name a work area and access its stored

information. There are two kinds of cursors: implicit and explicit. PL/SQL implicitly

declares a cursor for all SQL data manipulation statements, including queries that

return only one row. For queries that return more than one row, you can explicitly

declare a cursor to process the rows individually. An example follows:

DECLARE
 CURSOR c1 IS
 SELECT empno, ename, job FROM emp WHERE deptno = 20;

The set of rows returned by a multi-row query is called the result set. Its size is the

number of rows that meet your search criteria. As Figure 1–2 shows, an explicit

cursor "points" to the current row in the result set. This allows your program to

process the rows one at a time.

Figure 1–2 Query Processing

Multi-row query processing is somewhat like file processing. For example, a

COBOL program opens a file, processes records, then closes the file. Likewise, a

PL/SQL program opens a cursor, processes rows returned by a query, then closes

the cursor. Just as a file pointer marks the current position in an open file, a cursor

marks the current position in a result set.

7369

7566

7876

7902

SMITH

JONES

ADAMS

FORD

CLERK

MANAGER

CLERK

ANALYST

cursor Current Row

Result Set

7788 SCOTT ANALYST

Main Features

1-6 PL/SQL User’s Guide and Reference

You use the OPEN, FETCH, and CLOSE statements to control a cursor. The OPEN
statement executes the query associated with the cursor, identifies the result set, and

positions the cursor before the first row. The FETCH statement retrieves the current

row and advances the cursor to the next row. When the last row has been processed,

the CLOSE statement disables the cursor.

Cursor FOR Loops
In most situations that require an explicit cursor, you can simplify coding by using a

cursor FOR loop instead of the OPEN, FETCH, and CLOSE statements. A cursor FOR
loop implicitly declares its loop index as a record that represents a row fetched from

the database. Next, it opens a cursor, repeatedly fetches rows of values from the

result set into fields in the record, then closes the cursor when all rows have been

processed. In the following example, the cursor FOR loop implicitly declares emp_
rec as a record:

DECLARE
 CURSOR c1 IS
 SELECT ename, sal, hiredate, deptno FROM emp;
 ...
BEGIN
 FOR emp_rec IN c1 LOOP
 ...
 salary_total := salary_total + emp_rec.sal;
 END LOOP;

To reference individual fields in the record, you use dot notation, in which a dot (.)

serves as the component selector.

Cursor Variables
Like a cursor, a cursor variable points to the current row in the result set of a

multi-row query. But, unlike a cursor, a cursor variable can be opened for any

type-compatible query. It is not tied to a specific query. Cursor variables are true

PL/SQL variables, to which you can assign new values and which you can pass to

subprograms stored in an Oracle database. This gives you more flexibility and a

convenient way to centralize data retrieval.

Main Features

Overview 1-7

Typically, you open a cursor variable by passing it to a stored procedure that

declares a cursor variable as one of its formal parameters. The following procedure

opens the cursor variable generic_cv for the chosen query:

PROCEDURE open_cv (generic_cv IN OUT GenericCurTyp,choice NUMBER) IS
BEGIN
 IF choice = 1 THEN
 OPEN generic_cv FOR SELECT * FROM emp;
 ELSIF choice = 2 THEN
 OPEN generic_cv FOR SELECT * FROM dept;
 ELSIF choice = 3 THEN
 OPEN generic_cv FOR SELECT * FROM salgrade;
 END IF;
 ...
END;

Attributes
PL/SQL variables and cursors have attributes, which are properties that let you

reference the datatype and structure of an item without repeating its definition.

Database columns and tables have similar attributes, which you can use to ease

maintenance. A percent sign (%) serves as the attribute indicator.

%TYPE
The %TYPE attribute provides the datatype of a variable or database column. This is

particularly useful when declaring variables that will hold database values. For

example, assume there is a column named title in a table named books . To

declare a variable named my_title that has the same datatype as column title ,

use dot notation and the %TYPE attribute, as follows:

my_title books.title%TYPE;

Declaring my_title with %TYPEhas two advantages. First, you need not know the

exact datatype of title . Second, if you change the database definition of title
(make it a longer character string for example), the datatype of my_title changes

accordingly at run time.

%ROWTYPE
In PL/SQL, records are used to group data. A record consists of a number of related

fields in which data values can be stored. The %ROWTYPEattribute provides a record

type that represents a row in a table. The record can store an entire row of data

selected from the table or fetched from a cursor or cursor variable.

Main Features

1-8 PL/SQL User’s Guide and Reference

Columns in a row and corresponding fields in a record have the same names and

datatypes. In the example below, you declare a record named dept_rec . Its fields

have the same names and datatypes as the columns in the dept table.

DECLARE
 dept_rec dept%ROWTYPE; -- declare record variable

You use dot notation to reference fields, as the following example shows:

my_deptno := dept_rec.deptno;

If you declare a cursor that retrieves the last name, salary, hire date, and job title of

an employee, you can use %ROWTYPE to declare a record that stores the same

information, as follows:

DECLARE
 CURSOR c1 IS
 SELECT ename, sal, hiredate, job FROM emp;
 emp_rec c1%ROWTYPE; -- declare record variable that represents
 -- a row fetched from the emp table

When you execute the statement

FETCH c1 INTO emp_rec;

the value in the ename column of the emp table is assigned to the ename field of

emp_rec , the value in the sal column is assigned to the sal field, and so on.

Figure 1–3 shows how the result might appear.

Figure 1–3 %ROWTYPE Record

JAMES

950.00

03–DEC–95

CLERK

emp_rec

emp_rec.ename

emp_rec.sal

emp_rec.hiredate

emp_rec.job

Main Features

Overview 1-9

Control Structures
Control structures are the most important PL/SQL extension to SQL. Not only does

PL/SQL let you manipulate Oracle data, it lets you process the data using

conditional, iterative, and sequential flow-of-control statements such as

IF-THEN-ELSE , FOR-LOOP, WHILE-LOOP, EXIT-WHEN, and GOTO. Collectively,

these statements can handle any situation.

Conditional Control
Often, it is necessary to take alternative actions depending on circumstances. The

IF-THEN-ELSE statement lets you execute a sequence of statements conditionally.

The IF clause checks a condition; the THEN clause defines what to do if the

condition is true; the ELSE clause defines what to do if the condition is false or null.

Consider the program below, which processes a bank transaction. Before allowing

you to withdraw $500 from account 3, it makes sure the account has sufficient funds

to cover the withdrawal. If the funds are available, the program debits the account.

Otherwise, the program inserts a record into an audit table.

-- available online in file ’examp2’
DECLARE
 acct_balance NUMBER(11,2);
 acct CONSTANT NUMBER(4) := 3;
 debit_amt CONSTANT NUMBER(5,2) := 500.00;
BEGIN
 SELECT bal INTO acct_balance FROM accounts
 WHERE account_id = acct
 FOR UPDATE OF bal;
 IF acct_balance >= debit_amt THEN
 UPDATE accounts SET bal = bal - debit_amt
 WHERE account_id = acct;
 ELSE
 INSERT INTO temp VALUES
 (acct, acct_balance, ’Insufficient funds’);
 -- insert account, current balance, and message
 END IF;
 COMMIT;
END;

A sequence of statements that uses query results to select alternative actions is

common in database applications. Another common sequence inserts or deletes a

row only if an associated entry is found in another table. You can bundle these

common sequences into a PL/SQL block using conditional logic.

Main Features

1-10 PL/SQL User’s Guide and Reference

Iterative Control
LOOP statements let you execute a sequence of statements multiple times. You place

the keyword LOOP before the first statement in the sequence and the keywords END
LOOP after the last statement in the sequence. The following example shows the

simplest kind of loop, which repeats a sequence of statements continually:

LOOP
 -- sequence of statements
END LOOP;

The FOR-LOOP statement lets you specify a range of integers, then execute a

sequence of statements once for each integer in the range. For example, suppose

that you are a manufacturer of custom-made cars and that each car has a serial

number. To keep track of which customer buys each car, you might use the

following FOR loop:

FOR i IN 1..order_qty LOOP
 UPDATE sales SET custno = customer_id
 WHERE serial_num = serial_num_seq.NEXTVAL;
END LOOP;

The WHILE-LOOP statement associates a condition with a sequence of statements.

Before each iteration of the loop, the condition is evaluated. If the condition is true,

the sequence of statements is executed, then control resumes at the top of the loop.

If the condition is false or null, the loop is bypassed and control passes to the next

statement.

In the following example, you find the first employee who has a salary over $2500

and is higher in the chain of command than employee 7499:

-- available online in file ’examp3’
DECLARE
 salary emp.sal%TYPE := 0;
 mgr_num emp.mgr%TYPE;
 last_name emp.ename%TYPE;
 starting_empno emp.empno%TYPE := 7499;
BEGIN
 SELECT mgr INTO mgr_num FROM emp
 WHERE empno = starting_empno;
 WHILE salary <= 2500 LOOP
 SELECT sal, mgr, ename INTO salary, mgr_num, last_name
 FROM emp WHERE empno = mgr_num;
 END LOOP;
 INSERT INTO temp VALUES (NULL, salary, last_name);
 COMMIT;

Main Features

Overview 1-11

EXCEPTION
 WHEN NO_DATA_FOUND THEN
 INSERT INTO temp VALUES (NULL, NULL, ’Not found’);
 COMMIT;
END;

The EXIT-WHEN statement lets you complete a loop if further processing is

impossible or undesirable. When the EXIT statement is encountered, the condition

in the WHEN clause is evaluated. If the condition is true, the loop completes and

control passes to the next statement. In the following example, the loop completes

when the value of total exceeds 25,000:

LOOP
 ...
 total := total + salary;
 EXIT WHEN total > 25000; -- exit loop if condition is true
END LOOP;
-- control resumes here

Sequential Control
The GOTO statement lets you branch to a label unconditionally. The label, an

undeclared identifier enclosed by double angle brackets, must precede an

executable statement or a PL/SQL block. When executed, the GOTO statement

transfers control to the labeled statement or block, as the following example shows:

IF rating > 90 THEN
 GOTO calc_raise; -- branch to label
END IF;
...
<<calc_raise>>
IF job_title = ’SALESMAN’ THEN -- control resumes here
 amount := commission * 0.25;
ELSE
 amount := salary * 0.10;
END IF;

Modularity
Modularity lets you break an application down into manageable, well-defined

modules. Through successive refinement, you can reduce a complex problem to a

set of simple problems that have easy-to-implement solutions. PL/SQL meets this

need with program units. Besides blocks and subprograms, PL/SQL provides the

package, which allows you to group related program items into larger units.

Main Features

1-12 PL/SQL User’s Guide and Reference

Subprograms
PL/SQL has two types of subprograms called procedures and functions, which can

take parameters and be invoked (called). As the following example shows, a

subprogram is like a miniature program, beginning with a header followed by an

optional declarative part, an executable part, and an optional exception-handling

part:

PROCEDURE award_bonus (emp_id NUMBER) IS
 bonus REAL;
 comm_missing EXCEPTION;
BEGIN
 SELECT comm * 0.15 INTO bonus FROM emp WHERE empno = emp_id;
 IF bonus IS NULL THEN
 RAISE comm_missing;
 ELSE
 UPDATE payroll SET pay = pay + bonus WHERE empno = emp_id;
 END IF;
EXCEPTION
 WHEN comm_missing THEN
 ...
END award_bonus;

When called, this procedure accepts an employee number. It uses the number to

select the employee’s commission from a database table and, at the same time,

compute a 15% bonus. Then, it checks the bonus amount. If the bonus is null, an

exception is raised; otherwise, the employee’s payroll record is updated.

Packages
PL/SQL lets you bundle logically related types, variables, cursors, and

subprograms into a package. Each package is easy to understand and the interfaces

between packages are simple, clear, and well defined. This aids application

development.

Packages usually have two parts: a specification and a body. The specification is the

interface to your applications; it declares the types, constants, variables, exceptions,

cursors, and subprograms available for use. The body defines cursors and

subprograms and so implements the specification.

In the following example, you package two employment procedures:

CREATE PACKAGE emp_actions AS -- package specification
 PROCEDURE hire_employee (empno NUMBER, ename CHAR, ...);
 PROCEDURE fire_employee (emp_id NUMBER);
END emp_actions;

Main Features

Overview 1-13

CREATE PACKAGE BODY emp_actions AS -- package body
 PROCEDURE hire_employee (empno NUMBER, ename CHAR, ...) IS
 BEGIN
 INSERT INTO emp VALUES (empno, ename, ...);
 END hire_employee;
 PROCEDURE fire_employee (emp_id NUMBER) IS
 BEGIN
 DELETE FROM emp WHERE empno = emp_id;
 END fire_employee;
END emp_actions;

Only the declarations in the package specification are visible and accessible to

applications. Implementation details in the package body are hidden and

inaccessible.

Packages can be compiled and stored in an Oracle database, where their contents

can be shared by many applications. When you call a packaged subprogram for the

first time, the whole package is loaded into memory. So, subsequent calls to related

subprograms in the package require no disk I/O. Thus, packages can enhance

productivity and improve performance.

Data Abstraction
Data abstraction lets you extract the essential properties of data while ignoring

unnecessary details. Once you design a data structure, you can forget the details

and focus on designing algorithms that manipulate the data structure.

Collections
The collection types TABLE and VARRAY allow you to declare index-by tables,

nested tables, and variable-size arrays (varrays for short). A collection is an ordered

group of elements, all of the same type. Each element has a unique subscript that

determines its position in the collection.

To reference an element, use standard subscripting syntax. For example, the

following call references the fifth element in the nested table (of type Staff)

returned by function new_hires :

DECLARE
 TYPE Staff IS TABLE OF Employee;
 staffer Employee;
 FUNCTION new_hires (hiredate DATE) RETURN Staff IS
 BEGIN ... END;

Main Features

1-14 PL/SQL User’s Guide and Reference

BEGIN
 staffer := new_hires(’10-NOV-98’)(5);
 ...
END;

Collections work like the arrays found in most third-generation programming

languages. Also, collections can be passed as parameters. So, you can use them to

move columns of data into and out of database tables or between client-side

applications and stored subprograms.

Records
You can use the %ROWTYPE attribute to declare a record that represents a row in a

table or a row fetched from a cursor. But, with a user-defined record, you can

declare fields of your own.

Records contain uniquely named fields, which can have different datatypes.

Suppose you have various data about an employee such as name, salary, and hire

date. These items are dissimilar in type but logically related. A record containing a

field for each item lets you treat the data as a logical unit.

Consider the following example:

DECLARE
 TYPE TimeRec IS RECORD (hours SMALLINT, minutes SMALLINT);
 TYPE MeetingTyp IS RECORD (
 date_held DATE,
 duration TimeRec, -- nested record
 location VARCHAR2(20),
 purpose VARCHAR2(50));

Notice that you can nest records. That is, a record can be a component of another

record.

Object Types
In PL/SQL, object-oriented programming is based on object types. An object type
encapsulates a data structure along with the functions and procedures needed to

manipulate the data. The variables that form the data structure are called attributes.

The functions and procedures that characterize the behavior of the object type are

called methods.

Object types reduce complexity by breaking down a large system into logical

entities. This allows you to create software components that are modular,

maintainable, and reusable.

Main Features

Overview 1-15

When you define an object type using the CREATE TYPE statement (in SQL*Plus for

example), you create an abstract template for some real-world object. As the

following example of a bank account shows, the template specifies only those

attributes and behaviors the object will need in the application environment:

CREATE TYPE Bank_Account AS OBJECT (
 acct_number INTEGER(5),
 balance REAL,
 status VARCHAR2(10),
 MEMBER PROCEDURE open (amount IN REAL),
 MEMBER PROCEDURE verify_acct (num IN INTEGER),
 MEMBER PROCEDURE close (num IN INTEGER, amount OUT REAL),
 MEMBER PROCEDURE deposit (num IN INTEGER, amount IN REAL),
 MEMBER PROCEDURE withdraw (num IN INTEGER, amount IN REAL),
 MEMBER FUNCTION curr_bal (num IN INTEGER) RETURN REAL
);

At run time, when the data structure is filled with values, you have created an

instance of an abstract bank account. You can create as many instances (called

objects) as you need. Each object has the number, balance, and status of an actual

bank account.

Information Hiding
With information hiding, you see only the details that are relevant at a given level of

algorithm and data structure design. Information hiding keeps high-level design

decisions separate from low-level design details, which are more likely to change.

Algorithms
You implement information hiding for algorithms through top-down design. Once

you define the purpose and interface specifications of a low-level procedure, you

can ignore the implementation details. They are hidden at higher levels. For

example, the implementation of a procedure named raise_salary is hidden. All

you need to know is that the procedure will increase a specific employee’s salary by

a given amount. Any changes to the definition of raise_salary are transparent to

calling applications.

Main Features

1-16 PL/SQL User’s Guide and Reference

Data Structures
You implement information hiding for data structures though data encapsulation. By

developing a set of utility subprograms for a data structure, you insulate it from

users and other developers. That way, other developers know how to use the

subprograms that operate on the data structure but not how the structure is

represented.

With PL/SQL packages, you can specify whether subprograms are public or

private. Thus, packages enforce data encapsulation by letting you put subprogram

definitions in a black box. A private definition is hidden and inaccessible. Only the

package, not your application, is affected if the definition changes. This simplifies

maintenance and enhancement.

Error Handling
PL/SQL makes it easy to detect and process predefined and user-defined error

conditions called exceptions. When an error occurs, an exception is raised. That is,

normal execution stops and control transfers to the exception-handling part of your

PL/SQL block or subprogram. To handle raised exceptions, you write separate

routines called exception handlers.

Predefined exceptions are raised implicitly by the runtime system. For example, if

you try to divide a number by zero, PL/SQL raises the predefined exception ZERO_
DIVIDE automatically. You must raise user-defined exceptions explicitly with the

RAISE statement.

You can define exceptions of your own in the declarative part of any PL/SQL block

or subprogram. In the executable part, you check for the condition that needs

special attention. If you find that the condition exists, you execute a RAISE
statement. In the example below, you compute the bonus earned by a salesperson.

The bonus is based on salary and commission. So, if the commission is null, you

raise the exception comm_missing .

DECLARE
 ...
 comm_missing EXCEPTION; -- declare exception
BEGIN
 ...
 IF commission IS NULL THEN
 RAISE comm_missing; -- raise exception
 END IF;
 bonus := (salary * 0.10) + (commission * 0.15);
EXCEPTION
 WHEN comm_missing THEN ... -- process the exception

Architecture

Overview 1-17

Architecture
The PL/SQL compilation and run-time system is a technology, not an independent

product. Think of this technology as an engine that compiles and executes PL/SQL

blocks and subprograms. The engine can be installed in an Oracle server or in an

application development tool such as Oracle Forms or Oracle Reports. So, PL/SQL

can reside in two environments:

■ the Oracle server

■ Oracle tools

These two environments are independent. PL/SQL is bundled with the Oracle

server but might be unavailable in some tools. In either environment, the PL/SQL

engine accepts as input any valid PL/SQL block or subprogram. Figure 1–4 shows

the PL/SQL engine processing an anonymous block. The engine executes

procedural statements but sends SQL statements to the SQL Statement Executor in

the Oracle server.

Figure 1–4 PL/SQL Engine

PL/SQL Engine

Oracle Server

SQL Statement Executor

PL/SQL
Block

Procedural
Statement
Executor

SQL

procedural
PL/SQL
Block

Architecture

1-18 PL/SQL User’s Guide and Reference

In the Oracle Server
Application development tools that lack a local PL/SQL engine must rely on Oracle

to process PL/SQL blocks and subprograms. When it contains the PL/SQL engine,

an Oracle server can process PL/SQL blocks and subprograms as well as single SQL

statements. The Oracle server passes the blocks and subprograms to its local

PL/SQL engine.

Anonymous Blocks
Anonymous PL/SQL blocks can be embedded in an Oracle Precompiler or OCI

program. At run time, the program, lacking a local PL/SQL engine, sends these

blocks to the Oracle server, where they are compiled and executed. Likewise,

interactive tools such as SQL*Plus and Enterprise Manager, lacking a local PL/SQL

engine, must send anonymous blocks to Oracle.

Stored Subprograms
Subprograms can be compiled separately and stored permanently in an Oracle

database, ready to be executed. A subprogram explicitly CREATEd using an Oracle

tool is called a stored subprogram. Once compiled and stored in the data dictionary,

it is a schema object, which can be referenced by any number of applications

connected to that database.

Stored subprograms defined within a package are called packaged subprograms.

Those defined independently are called stand-alone subprograms. Those defined

within another subprogram or within a PL/SQL block are called local subprograms,

which cannot be referenced by other applications and exist only for the convenience

of the enclosing block.

Stored subprograms offer higher productivity, better performance, memory savings,

application integrity, and tighter security. For example, by designing applications

around a library of stored procedures and functions, you can avoid redundant

coding and increase your productivity.

You can call stored subprograms from a database trigger, another stored

subprogram, an Oracle Precompiler application, an OCI application, or interactively

from SQL*Plus or Enterprise Manager. For example, you might call the stand-alone

procedure create_dept from SQL*Plus as follows:

SQL> CALL create_dept(’FINANCE’, ’NEW YORK’);

Architecture

Overview 1-19

Subprograms are stored in parsed, compiled form. So, when called, they are loaded

and passed to the PL/SQL engine immediately. Also, they take advantage of shared

memory. So, only one copy of a subprogram need be loaded into memory for

execution by multiple users.

Database Triggers
A database trigger is a stored subprogram associated with a table. You can have

Oracle automatically fire the trigger before or after an INSERT, UPDATE, or DELETE
statement affects the table. One of the many uses for database triggers is to audit

data modifications. For example, the following table-level trigger fires whenever

salaries in the emp table are updated:

CREATE TRIGGER audit_sal
 AFTER UPDATE OF sal ON emp
 FOR EACH ROW
BEGIN
 INSERT INTO emp_audit VALUES ...
END;

The executable part of a trigger can contain procedural statements as well as SQL

data manipulation statements. Besides table-level triggers, there are system-event
triggers and, for views, instead-of triggers. For more information, see Oracle8i
Application Developer’s Guide - Fundamentals.

In Oracle Tools
When it contains the PL/SQL engine, an application development tool can process

PL/SQL blocks and subprograms. The tool passes the blocks to its local PL/SQL

engine. The engine executes all procedural statements at the application site and

sends only SQL statements to Oracle. Thus, most of the work is done at the

application site, not at the server site.

Furthermore, if the block contains no SQL statements, the engine executes the entire

block at the application site. This is useful if your application can benefit from

conditional and iterative control.

Frequently, Oracle Forms applications use SQL statements merely to test the value

of field entries or to do simple computations. By using PL/SQL instead, you can

avoid calls to the Oracle server. Moreover, you can use PL/SQL functions to

manipulate field entries.

Advantages of PL/SQL

1-20 PL/SQL User’s Guide and Reference

Advantages of PL/SQL
PL/SQL is a completely portable, high-performance transaction processing

language that offers the following advantages:

■ support for SQL

■ support for object-oriented programming

■ better performance

■ higher productivity

■ full portability

■ tight integration with Oracle

■ tight security

Support for SQL
SQL has become the standard database language because it is flexible, powerful,

and easy to learn. A few English-like commands such as SELECT, INSERT, UPDATE,
and DELETE make it easy to manipulate the data stored in a relational database.

SQL is non-procedural, meaning that you can state what you want done without

stating how to do it. Oracle determines the best way to carry out your request.

There is no necessary connection between consecutive statements because Oracle

executes SQL statements one at a time.

PL/SQL lets you use all the SQL data manipulation, cursor control, and transaction

control commands, as well as all the SQL functions, operators, and pseudocolumns.

So, you can manipulate Oracle data flexibly and safely. Also, PL/SQL fully supports

SQL datatypes. That reduces the need to convert data passed between your

applications and the database.

PL/SQL also supports dynamic SQL, an advanced programming technique that

makes your applications more flexible and versatile. Your programs can build and

process SQL data definition, data control, and session control statements "on the fly"

at run time.

Advantages of PL/SQL

Overview 1-21

Support for Object-Oriented Programming
Object types are an ideal object-oriented modeling tool, which you can use to

reduce the cost and time required to build complex applications. Besides allowing

you to create software components that are modular, maintainable, and reusable,

object types allow different teams of programmers to develop software components

concurrently.

By encapsulating operations with data, object types let you move data-maintenance

code out of SQL scripts and PL/SQL blocks into methods. Also, object types hide

implementation details, so that you can change the details without affecting client

programs.

In addition, object types allow for realistic data modeling. Complex real-world

entities and relationships map directly into object types. That helps your programs

better reflect the world they are trying to simulate.

Better Performance
Without PL/SQL, Oracle must process SQL statements one at a time. Each SQL

statement results in another call to Oracle and higher performance overhead. In a

networked environment, the overhead can become significant. Every time a SQL

statement is issued, it must be sent over the network, creating more traffic.

However, with PL/SQL, an entire block of statements can be sent to Oracle at one

time. This can drastically reduce communication between your application and

Oracle. As Figure 1–5 shows, if your application is database intensive, you can use

PL/SQL blocks and subprograms to group SQL statements before sending them to

Oracle for execution.

PL/SQL stored procedures are compiled once and stored in executable form, so

procedure calls are quick and efficient. Also, stored procedures, which execute in

the server, can be invoked over slow network connections with a single call. That

reduces network traffic and improves round-trip response times. Executable code is

automatically cached and shared among users. That lowers memory requirements

and invocation overhead.

Advantages of PL/SQL

1-22 PL/SQL User’s Guide and Reference

Figure 1–5 PL/SQL Boosts Performance

PL/SQL also improves performance by adding procedural processing power to

Oracle tools. Using PL/SQL, a tool can do any computation quickly and efficiently

without calling on the Oracle server. This saves time and reduces network traffic.

Higher Productivity
PL/SQL adds functionality to non-procedural tools such as Oracle Forms and

Oracle Reports. With PL/SQL in these tools, you can use familiar procedural

constructs to build applications. For example, you can use an entire PL/SQL block

in an Oracle Forms trigger. You need not use multiple trigger steps, macros, or user

exits. Thus, PL/SQL increases productivity by putting better tools in your hands.

Moreover, PL/SQL is the same in all environments. As soon as you master PL/SQL

with one Oracle tool, you can transfer your knowledge to other tools, and so

multiply the productivity gains. For example, scripts written with one tool can be

used by other tools.

SQL
IF ... THEN

SQL
ELSE

SQL
END IF;
SQL

RPC

SQL

SQL

SQL

SQL

Application

Application

Application

Other DBMSs

Oracle8 i
with PL/SQL

Oracle8 i
with PL/SQL
and Stored
Procedures

Advantages of PL/SQL

Overview 1-23

Full Portability
Applications written in PL/SQL are portable to any operating system and platform

on which Oracle runs. In other words, PL/SQL programs can run anywhere Oracle

can run; you need not tailor them to each new environment. That means you can

write portable program libraries, which can be reused in different environments.

Tight Integration with SQL
The PL/SQL and SQL languages are tightly integrated. PL/SQL supports all the

SQL datatypes and the non-value NULL. That allows you manipulate Oracle data

easily and efficiently. It also helps you to write high-performance code.

The %TYPE and %ROWTYPE attributes further integrate PL/SQL with SQL. For

example, you can use the %TYPE attribute to declare variables, basing the

declarations on the definitions of database columns. If a definition changes, the

variable declaration changes accordingly the next time you compile or run your

program. The new definition takes effect without any effort on your part. This

provides data independence, reduces maintenance costs, and allows programs to

adapt as the database changes to meet new business needs.

Tight Security
PL/SQL stored procedures enable you to partition application logic between the

client and server. That way, you can prevent client applications from manipulating

sensitive Oracle data. Database triggers written in PL/SQL can disable application

updates selectively and do content-based auditing of user inserts.

Furthermore, you can restrict access to Oracle data by allowing users to manipulate

it only through stored procedures that execute with their definer’s privileges. For

example, you can grant users access to a procedure that updates a table, but not

grant them access to the table itself.

Advantages of PL/SQL

1-24 PL/SQL User’s Guide and Reference

Fundamentals 2-1

2
Fundamentals

There are six essentials in painting. The first is called spirit; the second, rhythm; the third,
thought; the fourth, scenery; the fifth, the brush; and the last is the ink. —Ching Hao

The previous chapter provided an overview of PL/SQL. This chapter focuses on the

small-scale aspects of the language. Like every other programming language,

PL/SQL has a character set, reserved words, punctuation, datatypes, rigid syntax,

and fixed rules of usage and statement formation. You use these basic elements of

PL/SQL to represent real-world objects and operations.

Major Topics
Character Set

Lexical Units

Datatypes

User-Defined Subtypes

Datatype Conversion

Declarations

Naming Conventions

Scope and Visibility

Assignments

Expressions and Comparisons

Built-In Functions

Character Set

2-2 PL/SQL User’s Guide and Reference

Character Set
You write a PL/SQL program as lines of text using a specific set of characters. The

PL/SQL character set includes

the upper- and lower-case letters A .. Z and a .. z
the numerals 0 .. 9
the symbols () + - * / < > = ! ~ ^ ; : . ’ @ % , " # $ & _ | { } ? []
tabs, spaces, and carriage returns

PL/SQL is not case sensitive, so lower-case letters are equivalent to corresponding

upper-case letters except within string and character literals.

Lexical Units
A line of PL/SQL text contains groups of characters known as lexical units, which

can be classified as follows:

delimiters (simple and compound symbols)

identifiers, which include reserved words

literals

comments

To improve readability, you can separate lexical units by spaces. In fact, you must

separate adjacent identifiers by a space or punctuation. The following line is illegal

because the reserved words END and IF are joined:

IF x > y THEN high := x; ENDIF; -- illegal

However, you cannot embed spaces in lexical units except for string literals and

comments. For example, the following line is illegal because the compound symbol

for assignment (:=) is split:

count : = count + 1; -- illegal

To show structure, you can divide lines using carriage returns and indent lines

using spaces or tabs. Compare these IF statements for readability:

IF x>y THEN max:=x;ELSE max:=y;END IF; | IF x > y THEN
 | max := x;
 | ELSE
 | max := y;
 | END IF;

Lexical Units

Fundamentals 2-3

Delimiters
A delimiter is a simple or compound symbol that has a special meaning to PL/SQL.

For example, you use delimiters to represent arithmetic operations such as addition

and subtraction. Simple symbols consist of one character. A list follows:

Symbol Meaning

+ addition operator

% attribute indicator

’ character string delimiter

. component selector

/ division operator

(expression or list delimiter

) expression or list delimiter

: host variable indicator

, item separator

* multiplication operator

" quoted identifier delimiter

= relational operator

< relational operator

> relational operator

@ remote access indicator

; statement terminator

- subtraction/negation operator

Lexical Units

2-4 PL/SQL User’s Guide and Reference

Compound symbols consist of two characters. A list follows:

Identifiers
You use identifiers to name PL/SQL program items and units, which include

constants, variables, exceptions, cursors, cursor variables, subprograms, and

packages. Some examples of identifiers follow:

X
t2
phone#
credit_limit
LastName
oracle$number

Symbol Meaning

:= assignment operator

=> association operator

|| concatenation operator

** exponentiation operator

<< label delimiter (begin)

>> label delimiter (end)

/* multi-line comment delimiter (begin)

*/ multi-line comment delimiter (end)

.. range operator

<> relational operator

!= relational operator

~= relational operator

^= relational operator

<= relational operator

>= relational operator

-- single-line comment indicator

Lexical Units

Fundamentals 2-5

An identifier consists of a letter optionally followed by more letters, numerals,

dollar signs, underscores, and number signs. Other characters such as hyphens,

slashes, and spaces are illegal, as the following examples show:

mine&yours -- illegal ampersand
debit-amount -- illegal hyphen
on/off -- illegal slash
user id -- illegal space

The next examples show that adjoining and trailing dollar signs, underscores, and

number signs are allowed:

money$$$tree
SN##
try_again_

You can use upper, lower, or mixed case to write identifiers. PL/SQL is not case

sensitive except within string and character literals. So, if the only difference

between identifiers is the case of corresponding letters, PL/SQL considers the

identifiers to be the same, as the following example shows:

lastname
LastName -- same as lastname
LASTNAME -- same as lastname and LastName

The size of an identifier cannot exceed 30 characters. But, every character, including

dollar signs, underscores, and number signs, is significant. For example, PL/SQL

considers the following identifiers to be different:

lastname
last_name

Identifiers should be descriptive. So, avoid obscure names such as cpm. Instead, use

meaningful names such as cost_per_thousand .

Lexical Units

2-6 PL/SQL User’s Guide and Reference

Reserved Words
Some identifiers, called reserved words, have a special syntactic meaning to PL/SQL

and so should not be redefined. For example, the words BEGIN and END, which

bracket the executable part of a block or subprogram, are reserved. As the next

example shows, if you try to redefine a reserved word, you get a compilation error:

DECLARE
 end BOOLEAN; -- illegal; causes compilation error

However, you can embed reserved words in an identifier, as the following example

shows:

DECLARE
 end_of_game BOOLEAN; -- legal

Often, reserved words are written in upper case to promote readability. However,

like other PL/SQL identifiers, reserved words can be written in lower or mixed

case. For a list of reserved words, see Appendix F.

Predefined Identifiers
Identifiers globally declared in package STANDARD, such as the exception

INVALID_NUMBER, can be redeclared. However, redeclaring predefined identifiers

is error prone because your local declaration overrides the global declaration.

Quoted Identifiers
For flexibility, PL/SQL lets you enclose identifiers within double quotes. Quoted

identifiers are seldom needed, but occasionally they can be useful. They can contain

any sequence of printable characters including spaces but excluding double quotes.

Thus, the following identifiers are valid:

"X+Y"
"last name"
"on/off switch"
"employee(s)"
"*** header info ***"

The maximum size of a quoted identifier is 30 characters not counting the double

quotes. Though allowed, using PL/SQL reserved words as quoted identifiers is a

poor programming practice.

Lexical Units

Fundamentals 2-7

Some PL/SQL reserved words are not reserved by SQL. For example, you can use

the PL/SQL reserved word TYPEin a CREATE TABLEstatement to name a database

column. But, if a SQL statement in your program refers to that column, you get a

compilation error, as the following example shows:

SELECT acct, type, bal INTO ... -- causes compilation error

To prevent the error, enclose the uppercase column name in double quotes, as

follows:

SELECT acct, "TYPE", bal INTO ...

The column name cannot appear in lower or mixed case (unless it was defined that

way in the CREATE TABLE statement). For example, the following statement is

invalid:

SELECT acct, "type", bal INTO ... -- causes compilation error

Alternatively, you can create a view that renames the troublesome column, then use

the view instead of the base table in SQL statements.

Literals
A literal is an explicit numeric, character, string, or Boolean value not represented by

an identifier. The numeric literal 147 and the Boolean literal FALSE are examples.

Numeric Literals
Two kinds of numeric literals can be used in arithmetic expressions: integers and

reals. An integer literal is an optionally signed whole number without a decimal

point. Some examples follow:

030 6 -14 0 +32767

A real literal is an optionally signed whole or fractional number with a decimal

point. Several examples follow:

6.6667 0.0 -12.0 3.14159 +8300.00 .5 25.

PL/SQL considers numbers such as 12.0 and 25. to be reals even though they

have integral values.

Lexical Units

2-8 PL/SQL User’s Guide and Reference

Numeric literals cannot contain dollar signs or commas, but can be written using

scientific notation. Simply suffix the number with an E (or e) followed by an

optionally signed integer. A few examples follow:

2E5 1.0E-7 3.14159e0 -1E38 -9.5e-3

E stands for "times ten to the power of." As the next example shows, the number

after E is the power of ten by which the number before E must be multiplied (the

double asterisk (**) is the exponentiation operator):

5E3 = 5 * 10**3 = 5 * 1000 = 5000

The number after E also corresponds to the number of places the decimal point

shifts. In the last example, the implicit decimal point shifted three places to the

right. In this example, it shifts three places to the left:

5E-3 = 5 * 10**-3 = 5 * 0.001 = 0.005

As the following example shows, if the value of a numeric literal falls outside the

range 1E-130 .. 10E125 , you get a compilation error:

DECLARE
 n NUMBER;
BEGIN
 n := 10E127; -- causes a ’numeric overflow or underflow’ error

Character Literals
A character literal is an individual character enclosed by single quotes

(apostrophes). Character literals include all the printable characters in the PL/SQL

character set: letters, numerals, spaces, and special symbols. Some examples follow:

’Z’ ’%’ ’7’ ’ ’ ’z’ ’(’

PL/SQL is case sensitive within character literals. For example, PL/SQL considers

the literals ’Z’ and ’z’ to be different. Also, the character literals ’0’ ..’9’ are not

equivalent to integer literals but can be used in arithmetic expressions because they

are implicitly convertible to integers.

Lexical Units

Fundamentals 2-9

String Literals
A character value can be represented by an identifier or explicitly written as a string

literal, which is a sequence of zero or more characters enclosed by single quotes.

Several examples follow:

’Hello, world!’
’XYZ Corporation’
’10-NOV-91’
’He said "Life is like licking honey from a thorn."’
’$1,000,000’

All string literals except the null string (’’) have datatype CHAR.

Given that apostrophes (single quotes) delimit string literals, how do you represent

an apostrophe within a string? As the next example shows, you write two single

quotes, which is not the same as writing a double quote:

’Don’’t leave without saving your work.’

PL/SQL is case sensitive within string literals. For example, PL/SQL considers the

following literals to be different:

’baker’
’Baker’

Boolean Literals
Boolean literals are the predefined values TRUE, FALSE, and NULL(which stands for

a missing, unknown, or inapplicable value). Remember, Boolean literals are values,

not strings. For example, TRUE is no less a value than the number 25 .

Lexical Units

2-10 PL/SQL User’s Guide and Reference

Comments
The PL/SQL compiler ignores comments, but you should not. Adding comments to

your program promotes readability and aids understanding. Generally, you use

comments to describe the purpose and use of each code segment. PL/SQL supports

two comment styles: single-line and multi-line.

Single-Line Comments
Single-line comments begin with a double hyphen (--) anywhere on a line and

extend to the end of the line. A few examples follow:

-- begin processing
SELECT sal INTO salary FROM emp -- get current salary
 WHERE empno = emp_id;
bonus := salary * 0.15; -- compute bonus amount

Notice that comments can appear within a statement at the end of a line.

While testing or debugging a program, you might want to disable a line of code.

The following example shows how you can "comment-out" the line:

-- DELETE FROM emp WHERE comm IS NULL;

Multi-line Comments
Multi-line comments begin with a slash-asterisk (/*), end with an asterisk-slash

(*/), and can span multiple lines. Some examples follow:

BEGIN
 ...
 /* Compute a 15% bonus for top-rated employees. */
 IF rating > 90 THEN
 bonus := salary * 0.15 /* bonus is based on salary */
 ELSE
 bonus := 0;
 END If;
 ...
 /* The following line computes the area of a
 circle using pi, which is the ratio between
 the circumference and diameter. */
 area := pi * radius**2;
END;

Datatypes

Fundamentals 2-11

You can use multi-line comment delimiters to comment-out whole sections of code,

as the following example shows:

/*
LOOP
 FETCH c1 INTO emp_rec;
 EXIT WHEN c1%NOTFOUND;
 ...
END LOOP;
*/

Restrictions on Comments
You cannot nest comments. Also, you cannot use single-line comments in a PL/SQL

block that will be processed dynamically by an Oracle Precompiler program

because end-of-line characters are ignored. As a result, single-line comments extend

to the end of the block, not just to the end of a line. So, use multi-line comments

instead.

Datatypes
Every constant and variable has a datatype, which specifies a storage format,

constraints, and valid range of values. PL/SQL provides a variety of predefined

datatypes. A scalar type has no internal components. A composite type has internal

components that can be manipulated individually. A reference type holds values,

called pointers, that designate other program items. A LOB type holds values, called

lob locators, that specify the location of large objects (graphic images for example)

stored out-of-line.

Figure 2–1 shows the predefined datatypes available for your use. The scalar types

fall into four families, which store number, character, Boolean, and date/time data,

respectively.

Datatypes

2-12 PL/SQL User’s Guide and Reference

Figure 2–1 Built-in Datatypes

This section discusses the scalar types and LOB types. The composite types are

discussed in Chapter 4 and Chapter 9. The reference types are discussed in

Chapter 5 and Chapter 9.

Number Types
Number types allow you to store numeric data (integers, real numbers, and

floating-point numbers), represent quantities, and do calculations.

BINARY_INTEGER
You use the BINARY_INTEGER datatype to store signed integers. Its magnitude

range is -2**31 .. 2**31. Like PLS_INTEGER values, BINARY_INTEGER values

require less storage than NUMBER values. However, most BINARY_INTEGER
operations are slower than PLS_INTEGER operations.

BINARY_INTEGER
DEC
DECIMAL
DOUBLE PRECISION
FLOAT
INT
INTEGER
NATURAL
NATURALN
NUMBER
NUMERIC
PLS_INTEGER
POSITIVE
POSITIVEN
REAL
SIGNTYPE
SMALLINT

CHAR
CHARACTER
LONG
LONG RAW
NCHAR
NVARCHAR2
RAW
ROWID
STRING
UROWID
VARCHAR
VARCHAR2

BOOLEAN

DATE

Scalar Types

RECORD
TABLE
VARRAY

Composite Types

BFILE
BLOB
CLOB
NCLOB

LOB Types

REF CURSOR
REF object_type

Reference Types

Datatypes

Fundamentals 2-13

BINARY_INTEGER Subtypes A base type is the datatype from which a subtype is

derived. A subtype associates a base type with a constraint and so defines a subset of

values. For your convenience, PL/SQL predefines the following BINARY_INTEGER
subtypes:

NATURAL
NATURALN
POSITIVE
POSITIVEN
SIGNTYPE

The subtypes NATURAL and POSITIVE let you restrict an integer variable to

non-negative or positive values, respectively. NATURALN and POSITIVEN prevent

the assigning of nulls to an integer variable. SIGNTYPE lets you restrict an integer

variable to the values -1, 0, and 1, which is useful in programming tri-state logic.

NUMBER
You use the NUMBER datatype to store fixed-point or floating-point numbers of

virtually any size. Its magnitude range is 1E-130 .. 10E125. If the value of an

expression falls outside this range, you get a numeric overflow or underflow error. You

can specify precision, which is the total number of digits, and scale, which is the

number of digits to the right of the decimal point. The syntax follows:

NUMBER[(precision,scale)]

To declare fixed-point numbers, for which you must specify scale, use the following

form:

NUMBER(precision,scale)

To declare floating-point numbers, for which you cannot specify precision or scale
because the decimal point can "float" to any position, use the following form:

NUMBER

To declare integers, which have no decimal point, use this form:

NUMBER(precision) -- same as NUMBER(precision,0)

You cannot use constants or variables to specify precision and scale; you must use

integer literals. The maximum precision of a NUMBER value is 38 decimal digits. If

you do not specify precision, it defaults to 38 or the maximum supported by your

system, whichever is less.

Datatypes

2-14 PL/SQL User’s Guide and Reference

Scale, which can range from -84 to 127, determines where rounding occurs. For

instance, a scale of 2 rounds to the nearest hundredth (3.456 becomes 3.46). A

negative scale rounds to the left of the decimal point. For example, a scale of -3

rounds to the nearest thousand (3456 becomes 3000). A scale of 0 rounds to the

nearest whole number. If you do not specify scale, it defaults to 0.

NUMBER Subtypes You can use the following NUMBER subtypes for compatibility

with ANSI/ISO and IBM types or when you want a more descriptive name:

DEC
DECIMAL
DOUBLE PRECISION
FLOAT
INTEGER
INT
NUMERIC
REAL
SMALLINT

Use the subtypes DEC, DECIMAL, and NUMERICto declare fixed-point numbers with

a maximum precision of 38 decimal digits.

Use the subtypes DOUBLE PRECISION and FLOAT to declare floating-point

numbers with a maximum precision of 126 binary digits, which is roughly

equivalent to 38 decimal digits. Or, use the subtype REAL to declare floating-point

numbers with a maximum precision of 63 binary digits, which is roughly equivalent

to 18 decimal digits.

Use the subtypes INTEGER, INT , and SMALLINT to declare integers with a

maximum precision of 38 decimal digits.

PLS_INTEGER
You use the PLS_INTEGERdatatype to store signed integers. Its magnitude range is

-2**31 .. 2**31. PLS_INTEGER values require less storage than NUMBER values. Also,

PLS_INTEGER operations use machine arithmetic, so they are faster than NUMBER
and BINARY_INTEGER operations, which use library arithmetic. For efficiency, use

PLS_INTEGER for all calculations that fall within its magnitude range.

Datatypes

Fundamentals 2-15

Although PLS_INTEGER and BINARY_INTEGER have the same magnitude range,

they are not fully compatible. When a PLS_INTEGER calculation overflows, an

exception is raised. However, when a BINARY_INTEGER calculation overflows, no

exception is raised if the result is assigned to a NUMBER variable.

Because of this small semantic difference, you might want to continue using

BINARY_INTEGER in old applications for compatibility. In new applications,

always use PLS_INTEGER for better performance.

Character Types
Character types allow you to store alphanumeric data, represent words and text,

and manipulate character strings.

CHAR
 You use the CHAR datatype to store fixed-length character data. How the data is

represented internally depends on the database character set. The CHAR datatype

takes an optional parameter that lets you specify a maximum size up to 32767 bytes.

The syntax follows:

CHAR[(maximum_size)]

You cannot use a constant or variable to specify the maximum size; you must use an

integer literal in the range 1 .. 32767.

If you do not specify a maximum size, it defaults to 1. Remember, you specify the

maximum size in bytes, not characters. So, if a CHAR(n) variable stores multi-byte

characters, its maximum size is less than n characters. The maximum width of a

CHAR database column is 2000 bytes. So, you cannot insert CHAR values longer than

2000 bytes into a CHAR column.

You can insert any CHAR(n) value into a LONG database column because the

maximum width of a LONG column is 2**31 bytes or two gigabytes. However, you

cannot retrieve a value longer than 32767 bytes from a LONG column into a

CHAR(n) variable.

Note: Semantic differences between the CHAR and VARCHAR2 base types are

discussed in Appendix B.

CHAR Subtype The CHAR subtype CHARACTER has the same range of values as its

base type. That is, CHARACTER is just another name for CHAR. You can use this

subtype for compatibility with ANSI/ISO and IBM types or when you want an

identifier more descriptive than CHAR.

Datatypes

2-16 PL/SQL User’s Guide and Reference

LONG and LONG RAW
You use the LONG datatype to store variable-length character strings. The LONG
datatype is like the VARCHAR2 datatype, except that the maximum size of a LONG
value is 32760 bytes.

You use the LONG RAW datatype to store binary data or byte strings. LONG RAW data

is like LONG data, except that LONG RAW data is not interpreted by PL/SQL. The

maximum size of a LONG RAW value is 32760 bytes.

You can insert any LONG value into a LONG database column because the maximum

width of a LONGcolumn is 2**31 bytes. However, you cannot retrieve a value longer

than 32760 bytes from a LONG column into a LONG variable.

Likewise, you can insert any LONG RAW value into a LONG RAW database column

because the maximum width of a LONG RAW column is 2**31 bytes. However, you

cannot retrieve a value longer than 32760 bytes from a LONG RAW column into a

LONG RAW variable.

LONGcolumns can store text, arrays of characters, or even short documents. You can

reference LONG columns in UPDATE, INSERT, and (most) SELECT statements, but

not in expressions, SQL function calls, or certain SQL clauses such as WHERE, GROUP
BY, and CONNECT BY. For more information, see Oracle8i SQL Reference.

RAW
You use the RAW datatype to store binary data or byte strings. For example, a RAW
variable might store a sequence of graphics characters or a digitized picture. Raw

data is like VARCHAR2 data, except that PL/SQL does not interpret raw data.

Likewise, Net8 does no character set conversions when you transmit raw data from

one system to another.

The RAW datatype takes a required parameter that lets you specify a maximum size

up to 32767 bytes. The syntax follows:

RAW(maximum_size)

You cannot use a constant or variable to specify the maximum size; you must use an

integer literal in the range 1 .. 32767.

The maximum width of a RAW database column is 2000 bytes. So, you cannot insert

RAW values longer than 2000 bytes into a RAW column. You can insert any RAW value

into a LONG RAW database column because the maximum width of a LONG RAW
column is 2**31 bytes. However, you cannot retrieve a value longer than 32767 bytes

from a LONG RAW column into a RAW variable.

Datatypes

Fundamentals 2-17

ROWID and UROWID
Internally, every database table has a ROWID pseudocolumn, which stores binary

values called rowids. Each rowid represents the storage address of a row. A physical
rowid identifies a row in an ordinary table. A logical rowid identifies a row in an

index-organized table. The ROWID datatype can store only physical rowids.

However, the UROWID (universal rowid) datatype can store physical, logical, or

foreign (non-Oracle) rowids.

Suggestion: Use the ROWID datatype only for backward compatibility with old

applications. For new applications, use the UROWID datatype.

When you select or fetch a rowid into a UROWID variable, you can use the built-in

function ROWIDTOCHAR, which converts the binary value into an 18-byte character

string. Conversely, the function CHARTOROWID converts a UROWID character string

into a rowid. If the conversion fails because the character string does not represent a

valid rowid, PL/SQL raises the predefined exception SYS_INVALID_ROWID. This

also applies to implicit conversions.

Physical Rowids Physical rowids provide fast access to particular rows. As long as

the row exists, its physical rowid does not change. Efficient and stable, physical

rowids are useful for selecting a set of rows, operating on the whole set, and then

updating a subset. For example, you can compare a UROWID variable with the

ROWID pseudocolumn in the WHERE clause of an UPDATE or DELETE statement to

identify the latest row fetched from a cursor. See "Fetching Across Commits" on

page 5-50.

A physical rowid can have either of two formats. The 10-byte extended rowid format

supports tablespace-relative block addresses and can identify rows in partitioned

and non-partitioned tables. The 6-byte restricted rowid format is provided for

backward compatibility.

Extended rowids use a base-64 encoding of the physical address for each row

selected. For example, in SQL*Plus (which implicitly converts rowids into character

strings), the query

SQL> SELECT rowid, ename FROM emp WHERE empno = 7788;

might return the following row:

ROWID ENAME
------------------ ----------
AAAAqcAABAAADFNAAH SCOTT

Datatypes

2-18 PL/SQL User’s Guide and Reference

The format, OOOOOOFFFBBBBBBRRR, has four parts:

■ OOOOOO: The data object number (AAAAqc in the example above) identifies the

database segment. Schema objects in the same segment, such as a cluster of

tables, have the same data object number.

■ FFF: The file number (AAB in the example) identifies the data file that contains

the row. File numbers are unique within a database.

■ BBBBBB: The block number (AAADFN in the example) identifies the data block

that contains the row. Block numbers are relative to their data file, not their

tablespace. So, two rows in the same tablespace but in different data files can

have the same block number.

■ RRR: The row number (AAH in the example) identifies the row in the block.

Logical Rowids Logical rowids provide the fastest access to particular rows. Oracle

uses them to construct secondary indexes on index-organized tables. Having no

permanent physical address, a logical rowid can move across data blocks when new

rows are inserted. However, if the physical location of a row changes, its logical

rowid remains valid.

A logical rowid can include a guess, which identifies the block location of a row at

the time the guess is made. Bypassing a full key search, Oracle uses the guess to

search the block directly. However, as new rows are inserted, guesses can become

stale and slow down access to rows. To obtain fresh guesses, you can rebuild the

secondary index.

You can use the ROWID pseudocolumn to select logical rowids (which are opaque

values) from an index-organized table. Also, you can insert logical rowids into a

column of type UROWID, which has a maximum size of 4000 bytes.

The ANALYZE statement helps you track the staleness of guesses. This is useful for

applications that store rowids with guesses in a UROWID column, then use the

rowids to fetch rows.

Note: To manipulate rowids, you can use the supplied package DBMS_ROWID. For

more information, see Oracle8i Supplied PL/SQL Packages Reference.

Datatypes

Fundamentals 2-19

VARCHAR2
You use the VARCHAR2 datatype to store variable-length character data. How the

data is represented internally depends on the database character set. The VARCHAR2
datatype takes a required parameter that specifies a maximum size up to 32767

bytes. The syntax follows:

VARCHAR2(maximum_size)

You cannot use a constant or variable to specify the maximum size; you must use an

integer literal in the range 1 .. 32767.

The VARCHAR2 datatype involves a trade-off between memory use and efficiency.

For a VARCHAR2(>= 2000) variable, PL/SQL dynamically allocates only enough

memory to hold the actual value. However, for a VARCHAR2(< 2000) variable,

PL/SQL preallocates enough memory to hold a maximum-size value. So, for

example, if you assign the same 500-byte value to a VARCHAR2(2000) variable and

to a VARCHAR2(1999) variable, the latter uses 1499 bytes more memory.

Remember, you specify the maximum size of a VARCHAR2(n) variable in bytes, not

characters. So, if a VARCHAR2(n) variable stores multi-byte characters, its

maximum size is less than n characters. The maximum width of a VARCHAR2
database column is 4000 bytes. Therefore, you cannot insert VARCHAR2 values

longer than 4000 bytes into a VARCHAR2 column.

You can insert any VARCHAR2(n) value into a LONG database column because the

maximum width of a LONG column is 2**31 bytes. However, you cannot retrieve a

value longer than 32767 bytes from a LONG column into a VARCHAR2(n) variable.

VARCHAR2 Subtypes The VARCHAR2 subtypes below have the same range of values

as their base type. For example, VARCHAR is just another name for VARCHAR2.

STRING
VARCHAR

You can use these subtypes for compatibility with ANSI/ISO and IBM types.

Note: Currently, VARCHAR is synonymous with VARCHAR2. However, in future

releases of PL/SQL, to accommodate emerging SQL standards, VARCHAR might

become a separate datatype with different comparison semantics. So, it is a good

idea to use VARCHAR2 rather than VARCHAR.

Datatypes

2-20 PL/SQL User’s Guide and Reference

National Character Types
The widely used one-byte ASCII and EBCDIC character sets are adequate to

represent the Roman alphabet, but some Asian languages, such as Japanese, contain

thousands of characters. These languages require two or three bytes to represent

each character. How does Oracle deal with such dissimilar languages?

Oracle provides National Language Support (NLS), which lets you process

single-byte and multi-byte character data and convert between character sets. It also

lets your applications run in different language environments.

With NLS, number and date formats adapt automatically to the language

conventions specified for a user session. Thus, NLS allows users around the world

to interact with Oracle in their native languages.

PL/SQL supports two character sets called the database character set, which is used

for identifiers and source code, and the national character set, which is used for NLS

data. The datatypes NCHARand NVARCHAR2store character strings formed from the

national character set.

Note: When converting CHAR or VARCHAR2 data between databases with different

character sets, make sure the data consists of well-formed strings. For more

information, see Oracle8i National Language Support Guide.

NCHAR
You use the NCHAR datatype to store fixed-length (blank-padded if necessary)

national character data. How the data are represented internally depends on the

character set, which might use a fixed-width encoding such as US7ASCII or a

variable-width encoding such as JA16SJIS.

The NCHAR datatype takes an optional parameter that lets you specify a maximum

size up to 32767 bytes. The syntax follows:

NCHAR[(maximum_size)]

You cannot use a constant or variable to specify the maximum size; you must use an

integer literal in the range 1 .. 32767.

If you do not specify a maximum size, it defaults to 1. How you specify the

maximum size depends on the national character set. For fixed-width character sets,

you specify the maximum size in characters. For variable-width character sets, you

specify it in bytes. In the following example, the character set is JA16EUCFIXED,

which is fixed-width, so you specify the maximum size in characters:

my_string NCHAR(100); -- maximum size is 100 characters

Datatypes

Fundamentals 2-21

The maximum width of an NCHAR database column is 2000 bytes. So, you cannot

insert NCHAR values longer than 2000 bytes into an NCHAR column. Remember, for

fixed-width, multi-byte character sets, you cannot insert NCHAR values longer than

the number of characters that fit in 2000 bytes.

If the NCHAR value is shorter than the defined width of the NCHAR column, Oracle

blank-pads the value to the defined width. You cannot insert CHAR values into an

NCHAR column. Likewise, you cannot insert NCHAR values into a CHAR column.

NVARCHAR2
You use the NVARCHAR2 datatype to store variable-length national character data.

How the data is represented internally depends on the character set, which might

use a fixed-width encoding such as WE8EBCDIC37C or a variable-width encoding

such as JA16DBCS.

The NVARCHAR2datatype takes a required parameter that specifies a maximum size

up to 32767 bytes. The syntax follows:

NVARCHAR2(maximum_size)

You cannot use a constant or variable to specify the maximum size; you must use an

integer literal in the range 1 .. 32767.

How you specify the maximum size depends on the national character set. For

fixed-width character sets, you specify the maximum size in characters. For

variable-width character sets, you specify it in bytes. In the following example, the

character set is JA16SJIS, which is variable-width, so you specify the maximum size

in bytes:

my_string NVARCHAR2(200); -- maximum size is 200 bytes

The maximum width of a NVARCHAR2 database column is 4000 bytes. Therefore,

you cannot insert NVARCHAR2 values longer than 4000 bytes into a NVARCHAR2
column. Remember, for fixed-width, multi-byte character sets, you cannot insert

NVARCHAR2 values longer than the number of characters that fit in 4000 bytes.

You cannot insert VARCHAR2 values into an NVARCHAR2 column. Likewise, you

cannot insert NVARCHAR2 values into a VARCHAR2 column.

Datatypes

2-22 PL/SQL User’s Guide and Reference

LOB Types
The LOB (large object) datatypes BFILE , BLOB, CLOB, and NCLOB let you store

blocks of unstructured data (such as text, graphic images, video clips, and sound

waveforms) up to four gigabytes in size. And, they allow efficient, random,

piece-wise access to the data.

The LOB types differ from the LONG and LONG RAW types in several ways. For

example, LOBs (except NCLOB) can be attributes of an object type, but LONGs cannot.

The maximum size of a LOB is four gigabytes, but the maximum size of a LONG is
two gigabytes. Also, LOBs support random access to data, but LONGs support only

sequential access.

LOB types store lob locators, which point to large objects stored in an external file,

in-line (inside the row) or out-of-line (outside the row). Database columns of type

BLOB, CLOB, NCLOB, or BFILE store the locators. BLOB, CLOB, and NCLOB data is

stored in the database, in or outside the row. BFILE data is stored in operating

system files outside the database.

PL/SQL operates on LOBs through the locators. For example, when you select a

BLOBcolumn value, only a locator is returned. If you got it during a transaction, the

LOB locator includes a transaction ID, so you cannot use it to update that LOB in

another transaction. Likewise, you cannot save a LOB locator during one session,

then use it in another session.

To manipulate LOBs, you use the supplied package DBMS_LOB. For more

information, see Oracle8i Application Developer’s Guide - Large Objects (LOBs).

BFILE
You use the BFILE datatype to store large binary objects in operating system files

outside the database. Every BFILE variable stores a file locator, which points to a

large binary file on the server. The locator includes a directory alias, which specifies

a full path name (logical path names are not supported).

BFILE s are read-only, so you cannot modify them. The size of a BFILE is system

dependent but cannot exceed four gigabytes (2**32 - 1 bytes). Your DBA makes sure

that a given BFILE exists and that Oracle has read permissions on it. The

underlying operating system maintains file integrity.

BFILE s do not participate in transactions, are not recoverable, and cannot be

replicated. The maximum number of open BFILE s is set by the Oracle initialization

parameter SESSION_MAX_OPEN_FILES, which is system dependent.

Datatypes

Fundamentals 2-23

BLOB
You use the BLOB datatype to store large binary objects in the database, in-line or

out-of-line. Every BLOB variable stores a locator, which points to a large binary

object. The size of a BLOB cannot exceed four gigabytes.

BLOBs participate fully in transactions, are recoverable, and can be replicated.

Changes made by package DBMS_LOB can be committed or rolled back. BLOB
locators can span transactions (for reads only), but they cannot span sessions.

CLOB
You use the CLOB datatype to store large blocks of character data in the database,

in-line or out-of-line. Both fixed-width and variable-width character sets are

supported. Every CLOB variable stores a locator, which points to a large block of

character data. The size of a CLOB cannot exceed four gigabytes.

CLOBs participate fully in transactions, are recoverable, and can be replicated.

Changes made by package DBMS_LOB can be committed or rolled back. CLOB
locators can span transactions (for reads only), but they cannot span sessions.

NCLOB
You use the NCLOB datatype to store large blocks of NCHAR data in the database,

in-line or out-of-line. Both fixed-width and variable-width character sets are

supported. Every NCLOB variable stores a locator, which points to a large block of

NCHAR data. The size of an NCLOB cannot exceed four gigabytes.

NCLOBs participate fully in transactions, are recoverable, and can be replicated.

Changes made by package DBMS_LOB can be committed or rolled back. NCLOB
locators can span transactions (for reads only), but they cannot span sessions.

Other Types
The following types allow you to store and manipulate logical values and

date/time values.

BOOLEAN
You use the BOOLEAN datatype to store the logical values TRUE, FALSE, and NULL
(which stands for a missing, unknown, or inapplicable value). Only logic operations

are allowed on BOOLEAN variables.

Datatypes

2-24 PL/SQL User’s Guide and Reference

The BOOLEAN datatype takes no parameters. Only the values TRUE, FALSE, and

NULL can be assigned to a BOOLEAN variable. You cannot insert the values TRUE
and FALSE into a database column. Also, you cannot select or fetch column values

into a BOOLEAN variable.

DATE
You use the DATE datatype to store fixed-length date/time values. DATE values

include the time of day in seconds since midnight. The date portion defaults to the

first day of the current month; the time portion defaults to midnight. The date

function SYSDATE returns the current date and time.

Valid dates range from January 1, 4712 BC to December 31, 9999 AD. A Julian date

is the number of days since January 1, 4712 BC. Julian dates allow continuous

dating from a common reference. You can use the date format model ’J’ with the

date functions TO_DATE and TO_CHAR to convert between DATE values and their

Julian equivalents.

In date expressions, PL/SQL automatically converts character values in the default

date format to DATE values. The default date format is set by the Oracle

initialization parameter NLS_DATE_FORMAT. For example, the default might be

’DD-MON-YY’ , which includes a two-digit number for the day of the month, an

abbreviation of the month name, and the last two digits of the year.

You can add and subtract dates. For example, the following statement returns the

number of days since an employee was hired:

SELECT SYSDATE - hiredate INTO days_worked FROM emp
 WHERE empno = 7499;

In arithmetic expressions, PL/SQL interprets integer literals as days. For instance,

SYSDATE + 1 is tomorrow.

For more information about date functions and format models, see Oracle8i SQL
Reference.

User-Defined Subtypes

Fundamentals 2-25

User-Defined Subtypes
Each PL/SQL base type specifies a set of values and a set of operations applicable to

items of that type. Subtypes specify the same set of operations as their base type but

only a subset of its values. Thus, a subtype does not introduce a new type; it merely

places an optional constraint on its base type.

Subtypes can increase reliability, provide compatibility with ANSI/ISO types, and

improve readability by indicating the intended use of constants and variables.

PL/SQL predefines several subtypes in package STANDARD. For example, PL/SQL

predefines the subtypes CHARACTER and INTEGER as follows:

SUBTYPE CHARACTER IS CHAR;
SUBTYPE INTEGER IS NUMBER(38,0); -- allows only whole numbers

The subtype CHARACTER specifies the same set of values as its base type CHAR, so

CHARACTER is an unconstrained subtype. But, the subtype INTEGER specifies only a

subset of the values of its base type NUMBER, so INTEGER is a constrained subtype.

Defining Subtypes
You can define your own subtypes in the declarative part of any PL/SQL block,

subprogram, or package using the syntax

SUBTYPE subtype_name IS base_type[(constraint)] [NOT NULL];

where subtype_name is a type specifier used in subsequent declarations, base_
type is any scalar or user-defined PL/SQL datatype, and constraint applies

only to base types that can specify precision and scale or a maximum size.

Some examples follow:

DECLARE
 SUBTYPE BirthDate IS DATE NOT NULL; -- based on DATE type
 SUBTYPE Counter IS NATURAL; -- based on NATURAL subtype
 TYPE NameList IS TABLE OF VARCHAR2(10);
 SUBTYPE DutyRoster IS NameList; -- based on TABLE type
 TYPE TimeRec IS RECORD (minutes INTEGER, hours INTEGER);
 SUBTYPE FinishTime IS TimeRec; -- based on RECORD type
 SUBTYPE ID_Num IS emp.empno%TYPE; -- based on column type

You can use %TYPE or %ROWTYPE to specify the base type. When %TYPE provides

the datatype of a database column, the subtype inherits the size constraint (if any)

of the column. However, the subtype does not inherit other kinds of constraints

such as NOT NULL.

User-Defined Subtypes

2-26 PL/SQL User’s Guide and Reference

Using Subtypes
Once you define a subtype, you can declare items of that type. In the example

below, you declare a variable of type Counter . Notice how the subtype name

indicates the intended use of the variable.

DECLARE
 SUBTYPE Counter IS NATURAL;
 rows Counter;

The following example shows that you can constrain a user-defined subtype when

declaring variables of that type:

DECLARE
 SUBTYPE Accumulator IS NUMBER;
 total Accumulator(7,2);

Subtypes can increase reliability by detecting out-of-range values. In the example

below, you restrict the subtype Numeral to storing integers in the range -9 .. 9. If

your program tries to store a number outside that range in a Numeral variable,

PL/SQL raises an exception.

DECLARE
 SUBTYPE Numeral IS NUMBER(1,0);
 x_axis Numeral; -- magnitude range is -9 .. 9
 y_axis Numeral;
BEGIN
 x_axis := 10; -- raises VALUE_ERROR
 ...
END;

Type Compatibility
An unconstrained subtype is interchangeable with its base type. For example, given

the following declarations, the value of amount can be assigned to total without

conversion:

DECLARE
 SUBTYPE Accumulator IS NUMBER;
 amount NUMBER(7,2);
 total Accumulator;
BEGIN
 ...
 total := amount;
 ...
END;

User-Defined Subtypes

Fundamentals 2-27

Different subtypes are interchangeable if they have the same base type. For instance,

given the following declarations, the value of finished can be assigned to

debugging :

DECLARE
 SUBTYPE Sentinel IS BOOLEAN;
 SUBTYPE Switch IS BOOLEAN;
 finished Sentinel;
 debugging Switch;
BEGIN
 ...
 debugging := finished;
 ...
END;

Different subtypes are also interchangeable if their base types are in the same

datatype family. For example, given the following declarations, the value of verb
can be assigned to sentence :

DECLARE
 SUBTYPE Word IS CHAR(15);
 SUBTYPE Text IS VARCHAR2(1500);
 verb Word;
 sentence Text(150);
BEGIN
 ...
 sentence := verb;
 ...
END;

Datatype Conversion

2-28 PL/SQL User’s Guide and Reference

Datatype Conversion
Sometimes it is necessary to convert a value from one datatype to another. For

example, if you want to examine a rowid, you must convert it to a character string.

PL/SQL supports both explicit and implicit (automatic) datatype conversion.

Explicit Conversion
To convert values from one datatype to another, you use built-in functions. For

example, to convert a CHAR value to a DATE or NUMBER value, you use the function

TO_DATE or TO_NUMBER, respectively. Conversely, to convert a DATE or NUMBER
value to a CHAR value, you use the function TO_CHAR. For more information about

these functions, see Oracle8i SQL Reference.

Implicit Conversion
When it makes sense, PL/SQL can convert the datatype of a value implicitly. This

allows you to use literals, variables, and parameters of one type where another type

is expected. In the example below, the CHAR variables start_time and finish_
time hold string values representing the number of seconds past midnight. The

difference between those values must be assigned to the NUMBER variable

elapsed_time . So, PL/SQL converts the CHAR values to NUMBER values

automatically.

DECLARE
 start_time CHAR(5);
 finish_time CHAR(5);
 elapsed_time NUMBER(5);
BEGIN
 /* Get system time as seconds past midnight. */
 SELECT TO_CHAR(SYSDATE,’SSSSS’) INTO start_time FROM sys.dual;
 -- do something
 /* Get system time again. */
 SELECT TO_CHAR(SYSDATE,’SSSSS’) INTO finish_time FROM sys.dual;
 /* Compute elapsed time in seconds. */
 elapsed_time := finish_time - start_time;
 INSERT INTO results VALUES (elapsed_time, ...);
END;

Before assigning a selected column value to a variable, PL/SQL will, if necessary,

convert the value from the datatype of the source column to the datatype of the

variable. This happens, for example, when you select a DATE column value into a

VARCHAR2 variable.

Datatype Conversion

Fundamentals 2-29

Likewise, before assigning the value of a variable to a database column, PL/SQL

will, if necessary, convert the value from the datatype of the variable to the datatype

of the target column. If PL/SQL cannot determine which implicit conversion is

needed, you get a compilation error. In such cases, you must use a datatype

conversion function. Table 2–1 shows which implicit conversions PL/SQL can do.

It is your responsibility to ensure that values are convertible. For instance, PL/SQL

can convert the CHAR value ’02-JUN-92’ to a DATE value but cannot convert the

CHAR value ’YESTERDAY’ to a DATE value. Similarly, PL/SQL cannot convert a

VARCHAR2 value containing alphabetic characters to a NUMBER value.

Implicit versus Explicit Conversion
Generally, to rely on implicit datatype conversions is a poor programming practice

because they can hamper performance and might change from one software release

to the next. Also, implicit conversions are context sensitive and therefore not always

predictable. Instead, use datatype conversion functions. That way, your applications

will be more reliable and easier to maintain.

DATE Values
When you select a DATE column value into a CHAR or VARCHAR2 variable, PL/SQL

must convert the internal binary value to a character value. So, PL/SQL calls the

function TO_CHAR, which returns a character string in the default date format. To

get other information such as the time or Julian date, you must call TO_CHARwith a

format mask.

Table 2–1 Implicit Conversions

BIN_INT CHAR DATE LONG NUMBER PLS_INT RAW UROWID VARCHAR2

BIN_INT X X X X X

CHAR X X X X X X X X

DATE X X X

LONG X X X

NUMBER X X X X X

PLS_INT X X X X X

RAW X X X

UROWID X X

VARCHAR2 X X X X X X X X

Declarations

2-30 PL/SQL User’s Guide and Reference

A conversion is also necessary when you insert a CHAR or VARCHAR2 value into a

DATE column. So, PL/SQL calls the function TO_DATE, which expects the default

date format. To insert dates in other formats, you must call TO_DATE with a format

mask.

RAW and LONG RAW Values
When you select a RAW or LONG RAW column value into a CHAR or VARCHAR2
variable, PL/SQL must convert the internal binary value to a character value. In this

case, PL/SQL returns each binary byte of RAW or LONG RAW data as a pair of

characters. Each character represents the hexadecimal equivalent of a nibble (half a

byte). For example, PL/SQL returns the binary byte 11111111 as the pair of

characters ’FF’ . The function RAWTOHEX does the same conversion.

A conversion is also necessary when you insert a CHAR or VARCHAR2 value into a

RAW or LONG RAW column. Each pair of characters in the variable must represent the

hexadecimal equivalent of a binary byte. If either character does not represent the

hexadecimal equivalent of a nibble, PL/SQL raises an exception.

Declarations
Your program stores values in variables and constants. As the program executes, the

values of variables can change, but the values of constants cannot.

You can declare variables and constants in the declarative part of any PL/SQL

block, subprogram, or package. Declarations allocate storage space for a value,

specify its datatype, and name the storage location so that you can reference it.

 A couple of examples follow:

birthday DATE;
emp_count SMALLINT := 0;

The first declaration names a variable of type DATE. The second declaration names a

variable of type SMALLINT and uses the assignment operator to assign an initial

value of zero to the variable.

The next examples show that the expression following the assignment operator can

be arbitrarily complex and can refer to previously initialized variables:

pi REAL := 3.14159;
radius REAL := 1;
area REAL := pi * radius**2;

Declarations

Fundamentals 2-31

By default, variables are initialized to NULL. So, these declarations are equivalent:

birthday DATE;
birthday DATE := NULL;

In the declaration of a constant, the keyword CONSTANT must precede the type

specifier, as the following example shows:

credit_limit CONSTANT REAL := 5000.00;

This declaration names a constant of type REAL and assigns an initial (also final)

value of 5000 to the constant. A constant must be initialized in its declaration.

Otherwise, you get a compilation error when the declaration is elaborated. (The

processing of a declaration by the PL/SQL compiler is called elaboration.)

Using DEFAULT
You can use the keyword DEFAULT instead of the assignment operator to initialize

variables. For example, the declaration

blood_type CHAR := ’O’;

can be rewritten as follows:

blood_type CHAR DEFAULT ’O’;

Use DEFAULT for variables that have a typical value. Use the assignment operator

for variables (such as counters and accumulators) that have no typical value. A

couple of examples follow:

hours_worked INTEGER DEFAULT 40;
employee_count INTEGER := 0;

You can also use DEFAULT to initialize subprogram parameters, cursor parameters,

and fields in a user-defined record.

Declarations

2-32 PL/SQL User’s Guide and Reference

Using NOT NULL
Besides assigning an initial value, declarations can impose the NOT NULLconstraint,

as the following example shows:

acct_id INTEGER(4) NOT NULL := 9999;

You cannot assign nulls to a variable defined as NOT NULL. If you try, PL/SQL raises

the predefined exception VALUE_ERROR. The NOT NULL constraint must be

followed by an initialization clause. For example, the following declaration is

illegal:

acct_id INTEGER(5) NOT NULL; -- illegal; not initialized

Recall that the subtypes NATURALN and POSITIVEN are predefined as NOT NULL.
For instance, the following declarations are equivalent:

emp_count NATURAL NOT NULL := 0;
emp_count NATURALN := 0;

In NATURALN and POSITIVEN declarations, the type specifier must be followed by

an initialization clause. Otherwise, you get a compilation error. For example, the

following declaration is illegal:

line_items POSITIVEN; -- illegal; not initialized

Using %TYPE
The %TYPE attribute provides the datatype of a variable or database column. In the

following example, %TYPE provides the datatype of a variable:

credit REAL(7,2);
debit credit%TYPE;

Variables declared using %TYPE are treated like those declared using a datatype

specifier. For example, given the previous declarations, PL/SQL treats debit like a

REAL(7,2) variable. The next example shows that a %TYPEdeclaration can include

an initialization clause:

balance NUMBER(7,2);
minimum_balance balance%TYPE := 10.00;

Declarations

Fundamentals 2-33

The %TYPE attribute is particularly useful when declaring variables that refer to

database columns. You can reference a table and column, or you can reference an

owner, table, and column, as in

my_dname scott.dept.dname%TYPE;

Using %TYPE to declare my_dname has two advantages. First, you need not know

the exact datatype of dname. Second, if the database definition of dname changes,

the datatype of my_dname changes accordingly at run time.

However, %TYPE variables do not inherit the NOT NULL column constraint. In the

next example, even though the database column empno is defined as NOT NULL,
you can assign a null to the variable my_empno:

DECLARE
 my_empno emp.empno%TYPE;
 ...
BEGIN
 my_empno := NULL; -- this works

Using %ROWTYPE
The %ROWTYPE attribute provides a record type that represents a row in a table (or

view). The record can store an entire row of data selected from the table or fetched

from a cursor or strongly typed cursor variable. In the example below, you declare

two records. The first record stores a row selected from the emp table. The second

record stores a row fetched from cursor c1 .

DECLARE
 emp_rec emp%ROWTYPE;
 CURSOR c1 IS SELECT deptno, dname, loc FROM dept;
 dept_rec c1%ROWTYPE;

Columns in a row and corresponding fields in a record have the same names and

datatypes. However, fields in a %ROWTYPE record do not inherit the NOT NULL
column constraint.

In the following example, you select column values into record emp_rec :

BEGIN
 SELECT * INTO emp_rec FROM emp WHERE ...

Declarations

2-34 PL/SQL User’s Guide and Reference

The column values returned by the SELECT statement are stored in fields. To

reference a field, you use dot notation. For example, you might reference the

deptno field as follows:

IF emp_rec.deptno = 20 THEN ...

Also, you can assign the value of an expression to a specific field, as the following

examples show:

emp_rec.ename := ’JOHNSON’;
emp_rec.sal := emp_rec.sal * 1.15;

In the final example, you use %ROWTYPE to define a packaged cursor:

CREATE PACKAGE emp_actions AS
 CURSOR c1 RETURN emp%ROWTYPE; -- declare cursor specification
 ...
END emp_actions;

CREATE PACKAGE BODY emp_actions AS
 CURSOR c1 RETURN emp%ROWTYPE IS -- define cursor body
 SELECT * FROM emp WHERE sal > 3000;
 ...
END emp_actions;

Aggregate Assignment
A %ROWTYPE declaration cannot include an initialization clause. However, there are

two ways to assign values to all fields in a record at once. First, PL/SQL allows

aggregate assignment between entire records if their declarations refer to the same

table or cursor. For example, the following assignment is legal:

DECLARE
 dept_rec1 dept%ROWTYPE;
 dept_rec2 dept%ROWTYPE;
 CURSOR c1 IS SELECT deptno, dname, loc FROM dept;
 dept_rec3 c1%ROWTYPE;
BEGIN
 ...
 dept_rec1 := dept_rec2;

However, because dept_rec2 is based on a table and dept_rec3 is based on a

cursor, the following assignment is illegal:

dept_rec2 := dept_rec3; -- illegal

Declarations

Fundamentals 2-35

Second, you can assign a list of column values to a record by using the SELECT or

FETCH statement, as the example below shows. The column names must appear in

the order in which they were defined by the CREATE TABLE or CREATE VIEW
statement.

DECLARE
 dept_rec dept%ROWTYPE;
 ...
BEGIN
 SELECT deptno, dname, loc INTO dept_rec FROM dept
 WHERE deptno = 30;

However, you cannot assign a list of column values to a record by using an

assignment statement. So, the following syntax is illegal:

record_name := (value1, value2, value3, ...); -- illegal

Although you can retrieve entire records, you cannot insert or update them. For

example, the following statement is illegal:

INSERT INTO dept VALUES (dept_rec); -- illegal

Using Aliases
Select-list items fetched from a cursor associated with %ROWTYPE must have simple

names or, if they are expressions, must have aliases. In the following example, you

use an alias called wages :

-- available online in file ’examp4’
DECLARE
 CURSOR my_cursor IS
 SELECT sal + NVL(comm, 0) wages, ename FROM emp;
 my_rec my_cursor%ROWTYPE;
BEGIN
 OPEN my_cursor;
 LOOP
 FETCH my_cursor INTO my_rec;
 EXIT WHEN my_cursor%NOTFOUND;
 IF my_rec.wages > 2000 THEN
 INSERT INTO temp VALUES (NULL, my_rec.wages, my_rec.ename);
 END IF;
 END LOOP;
 CLOSE my_cursor;
END;

Naming Conventions

2-36 PL/SQL User’s Guide and Reference

Restrictions
PL/SQL does not allow forward references. You must declare a variable or constant

before referencing it in other statements, including other declarative statements. For

example, the following declaration of maxi is illegal:

maxi INTEGER := 2 * mini; -- illegal
mini INTEGER := 15;

However, PL/SQL does allow the forward declaration of subprograms. For more

information, see "Declaring Subprograms" on page 7-10.

Some languages allow you to declare a list of variables that have the same datatype.

PL/SQL does not allow this. For example, the following declaration is illegal:

i, j, k SMALLINT; -- illegal

The legal version follows:

i SMALLINT;
j SMALLINT;
k SMALLINT;

Naming Conventions
The same naming conventions apply to all PL/SQL program items and units

including constants, variables, cursors, cursor variables, exceptions, procedures,

functions, and packages. Names can be simple, qualified, remote, or both qualified

and remote. For example, you might use the procedure name raise_salary in

any of the following ways:

raise_salary(...); -- simple
emp_actions.raise_salary(...); -- qualified
raise_salary@newyork(...); -- remote
emp_actions.raise_salary@newyork(...); -- qualified and remote

In the first case, you simply use the procedure name. In the second case, you must

qualify the name using dot notation because the procedure is stored in a package

called emp_actions . In the third case, using the remote access indicator (@), you

reference the database link newyork because the procedure is stored in a remote

database. In the fourth case, you qualify the procedure name and reference a

database link.

Naming Conventions

Fundamentals 2-37

Synonyms
You can create synonyms to provide location transparency for remote schema

objects such as tables, sequences, views, stand-alone subprograms, and packages.

However, you cannot create synonyms for items declared within subprograms or

packages. That includes constants, variables, cursors, cursor variables, exceptions,

and packaged subprograms.

Scoping
Within the same scope, all declared identifiers must be unique. So, even if their

datatypes differ, variables and parameters cannot share the same name. For

example, two of the following declarations are illegal:

DECLARE
 valid_id BOOLEAN;
 valid_id VARCHAR2(5); -- illegal duplicate identifier
 FUNCTION bonus (valid_id IN INTEGER) RETURN REAL IS ...
 -- illegal triplicate identifier

For the scoping rules that apply to identifiers, see "Scope and Visibility" on

page 2-38.

Case Sensitivity
Like all identifiers, the names of constants, variables, and parameters are not case

sensitive. For instance, PL/SQL considers the following names to be the same:

DECLARE
 zip_code INTEGER;
 Zip_Code INTEGER; -- same as zip_code

Name Resolution
In potentially ambiguous SQL statements, the names of database columns take

precedence over the names of local variables and formal parameters. For example,

the following DELETE statement removes all employees from the emp table, not just

’KING’ , because Oracle assumes that both enames in the WHERE clause refer to the

database column:

DECLARE
 ename VARCHAR2(10) := ’KING’;
BEGIN
 DELETE FROM emp WHERE ename = ename;

Scope and Visibility

2-38 PL/SQL User’s Guide and Reference

In such cases, to avoid ambiguity, prefix the names of local variables and formal

parameters with my_, as follows:

DECLARE
 my_ename VARCHAR2(10);

Or, use a block label to qualify references, as in

<<main>>
DECLARE
 ename VARCHAR2(10) := ’KING’;
BEGIN
 DELETE FROM emp WHERE ename = main.ename;

The next example shows that you can use a subprogram name to qualify references

to local variables and formal parameters:

FUNCTION bonus (deptno IN NUMBER, ...) RETURN REAL IS
 job CHAR(10);
BEGIN
 SELECT ... WHERE deptno = bonus.deptno AND job = bonus.job;

For a full discussion of name resolution, see Appendix D.

Scope and Visibility
References to an identifier are resolved according to its scope and visibility. The

scope of an identifier is that region of a program unit (block, subprogram, or

package) from which you can reference the identifier. An identifier is visible only in

the regions from which you can reference the identifier using an unqualified name.

Figure 2–2 shows the scope and visibility of a variable named x , which is declared

in an enclosing block, then redeclared in a sub-block.

Identifiers declared in a PL/SQL block are considered local to that block and global

to all its sub-blocks. If a global identifier is redeclared in a sub-block, both

identifiers remain in scope. Within the sub-block, however, only the local identifier

is visible because you must use a qualified name to reference the global identifier.

Although you cannot declare an identifier twice in the same block, you can declare

the same identifier in two different blocks. The two items represented by the

identifier are distinct, and any change in one does not affect the other. However, a

block cannot reference identifiers declared in other blocks at the same level because

those identifiers are neither local nor global to the block.

Scope and Visibility

Fundamentals 2-39

Figure 2–2 Scope and Visibility

The example below illustrates the scope rules. Notice that the identifiers declared in

one sub-block cannot be referenced in the other sub-block. That is because a block

cannot reference identifiers declared in other blocks nested at the same level.

DECLARE
 a CHAR;
 b REAL;
BEGIN
 -- identifiers available here: a (CHAR), b
 DECLARE
 a INTEGER;
 c REAL;
 BEGIN
 -- identifiers available here: a (INTEGER), b, c
 END;

Scope Visibility

Outer x

Inner x

DECLARE
 X REAL;
BEGIN
 ...
 DECLARE
 X REAL;
 BEGIN
 ...
 END;
 ...

DECLARE

 X REAL;
BEGIN
 ...
 DECLARE
 X REAL;
 BEGIN
 ...
 END;
 ...
END;END;

DECLARE

 X REAL;
BEGIN
 ...
 DECLARE
 X REAL;
 BEGIN
 ...
 END;
 ...
END;

DECLARE

 X REAL;
BEGIN
 ...
 DECLARE
 X REAL;
 BEGIN
 ...
 END;
 ...
END;

Scope and Visibility

2-40 PL/SQL User’s Guide and Reference

 DECLARE
 d REAL;
 BEGIN
 -- identifiers available here: a (CHAR), b, d
 END;
 -- identifiers available here: a (CHAR), b
END;

Recall that global identifiers can be redeclared in a sub-block, in which case the local

declaration prevails and the sub-block cannot reference the global identifier unless

you use a qualified name. The qualifier can be the label of an enclosing block, as the

following example shows:

<<outer>>
DECLARE
 birthdate DATE;
BEGIN
 DECLARE
 birthdate DATE;
 BEGIN
 ...
 IF birthdate = outer.birthdate THEN ...
 END;
 ...
END;

As the next example shows, the qualifier can also be the name of an enclosing

subprogram:

PROCEDURE check_credit (...) IS
 rating NUMBER;
 FUNCTION valid (...) RETURN BOOLEAN IS
 rating NUMBER;
 BEGIN
 ...
 IF check_credit.rating < 3 THEN ...
 END;
BEGIN
 ...
END;

However, within the same scope, a label and a subprogram cannot have the same

name.

Assignments

Fundamentals 2-41

Assignments
Variables and constants are initialized every time a block or subprogram is entered.

By default, variables are initialized to NULL. So, unless you expressly initialize a

variable, its value is undefined, as the following example shows:

DECLARE
 count INTEGER;
 ...
BEGIN
 count := count + 1; -- assigns a null to count

The expression on the right of the assignment operator yields NULL because count
is null. To avoid unexpected results, never reference a variable before you assign it a

value.

You can use assignment statements to assign values to a variable. For example, the

following statement assigns a new value to the variable bonus , overwriting its old

value:

bonus := salary * 0.15;

The expression following the assignment operator can be arbitrarily complex, but it

must yield a datatype that is the same as or convertible to the datatype of the

variable.

Boolean Values
Only the values TRUE, FALSE, and NULL can be assigned to a Boolean variable. For

example, given the declaration

DECLARE
 done BOOLEAN;

the following statements are legal:

BEGIN
 done := FALSE;
 WHILE NOT done LOOP
 ...
 END LOOP;

When applied to an expression, the relational operators return a Boolean value. So,

the following assignment is legal:

done := (count > 500);

Expressions and Comparisons

2-42 PL/SQL User’s Guide and Reference

Database Values
You can use the SELECT statement to have Oracle assign values to a variable. For

each item in the select list, there must be a corresponding, type-compatible variable

in the INTO list. An example follows:

DECLARE
 emp_id emp.empno%TYPE;
 emp_name emp.ename%TYPE;
 wages NUMBER(7,2);
BEGIN
 ...
 SELECT ename, sal + comm
 INTO emp_name, wages FROM emp
 WHERE empno = emp_id;
 ...
END;

However, you cannot select column values into a Boolean variable.

Expressions and Comparisons
Expressions are constructed using operands and operators. An operand is a variable,

constant, literal, or function call that contributes a value to an expression. An

example of a simple arithmetic expression follows:

-X / 2 + 3

Unary operators such as the negation operator (-) operate on one operand; binary

operators such as the division operator (/) operate on two operands. PL/SQL has

no ternary operators.

The simplest expressions consist of a single variable, which yields a value directly.

PL/SQL evaluates (finds the current value of) an expression by combining the values

of the operands in ways specified by the operators. This always yields a single

value and datatype. PL/SQL determines the datatype by examining the expression

and the context in which it appears.

Expressions and Comparisons

Fundamentals 2-43

Operator Precedence
The operations within an expression are done in a particular order depending on

their precedence (priority). Table 2–2 shows the default order of operations from first

to last (top to bottom).

Operators with higher precedence are applied first. In the example below, both

expressions yield 8 because division has a higher precedence than addition.

Operators with the same precedence are applied in no particular order.

5 + 12 / 4
12 / 4 + 5

You can use parentheses to control the order of evaluation. For example, the

following expression yields 7, not 11, because parentheses override the default

operator precedence:

(8 + 6) / 2

In the next example, the subtraction is done before the division because the most

deeply nested subexpression is always evaluated first:

100 + (20 / 5 + (7 - 3))

The following example shows that you can always use parentheses to improve

readability, even when they are not needed:

(salary * 0.05) + (commission * 0.25)

Table 2–2 Order of Operations

Operator Operation

** , NOT exponentiation, logical negation

+, - identity, negation

* , / multiplication, division

+, - , || addition, subtraction, concatenation

=, <, >, <=, >=, <>, != , ~=, ^= ,
IS NULL , LIKE , BETWEEN, IN

comparison

AND conjunction

OR inclusion

Expressions and Comparisons

2-44 PL/SQL User’s Guide and Reference

Logical Operators
The logical operators AND, OR, and NOTfollow the tri-state logic shown in Table 2–3.

AND and OR are binary operators; NOT is a unary operator.

As the truth table shows, AND returns TRUE only if both its operands are true. On

the other hand, OR returns TRUE if either of its operands is true. NOT returns the

opposite value (logical negation) of its operand. For example, NOT TRUE returns

FALSE.

NOT NULLreturns NULLbecause nulls are indeterminate. It follows that if you apply

the NOT operator to a null, the result is also indeterminate. Be careful. Nulls can

cause unexpected results; see "Handling Nulls" on page 2-49.

Order of Evaluation
When you do not use parentheses to specify the order of evaluation, operator

precedence determines the order. Compare the following expressions:

NOT (valid AND done) | NOT valid AND done

If the Boolean variables valid and done have the value FALSE, the first expression

yields TRUE. However, the second expression yields FALSE because NOT has a

higher precedence than AND. Therefore, the second expression is equivalent to:

(NOT valid) AND done

Table 2–3 Logic Truth Table

 x y x AND y x OR y NOT x

TRUE TRUE TRUE TRUE FALSE

TRUE FALSE FALSE TRUE FALSE

TRUE NULL NULL TRUE FALSE

FALSE TRUE FALSE TRUE TRUE

FALSE FALSE FALSE FALSE TRUE

FALSE NULL FALSE NULL TRUE

NULL TRUE NULL TRUE NULL

NULL FALSE FALSE NULL NULL

NULL NULL NULL NULL NULL

Expressions and Comparisons

Fundamentals 2-45

In the following example, notice that when valid has the value FALSE, the whole

expression yields FALSE regardless of the value of done :

valid AND done

Likewise, in the next example, when valid has the value TRUE, the whole

expression yields TRUE regardless of the value of done :

valid OR done

Short-Circuit Evaluation When evaluating a logical expression, PL/SQL uses

short-circuit evaluation. That is, PL/SQL stops evaluating the expression as soon as

the result can be determined. This allows you to write expressions that might

otherwise cause an error. Consider the following OR expression:

DECLARE
 ...
 on_hand INTEGER;
 on_order INTEGER;
BEGIN
 ..
 IF (on_hand = 0) OR ((on_order / on_hand) < 5) THEN
 ...
 END IF;
END;

When the value of on_hand is zero, the left operand yields TRUE, so PL/SQL need

not evaluate the right operand. If PL/SQL were to evaluate both operands before

applying the OR operator, the right operand would cause a division by zero error. In

any case, it is a poor programming practice to rely on short-circuit evaluation.

Comparison Operators
Comparison operators compare one expression to another. The result is always true,

false, or null. Typically, you use comparison operators in conditional control

statements and in the WHERE clause of SQL data manipulation statements. Here are

a couple of examples:

IF quantity_on_hand > 0 THEN
 UPDATE inventory SET quantity = quantity - 1
 WHERE part_number = item_number;
ELSE
 ...
END IF;

Expressions and Comparisons

2-46 PL/SQL User’s Guide and Reference

Relational Operators
The relational operators allow you to compare arbitrarily complex expressions. The

following list gives the meaning of each operator:

IS NULL Operator
The IS NULL operator returns the Boolean value TRUE if its operand is null or

FALSE if it is not null. Comparisons involving nulls always yield NULL. So, test for

nullity (the state of being null), as follows:

IF variable IS NULL THEN ...

LIKE Operator
You use the LIKE operator to compare a character value to a pattern. Case is

significant. LIKE returns the Boolean value TRUE if the character patterns match or

FALSE if they do not match.

The patterns matched by LIKE can include two special-purpose characters called

wildcards. An underscore (_) matches exactly one character; a percent sign (%)

matches zero or more characters. For example, if the value of ename is ’JOHNSON’,
the following expression is true:

ename LIKE ’J%SON’

BETWEEN Operator
The BETWEEN operator tests whether a value lies in a specified range. It means

"greater than or equal to low value and less than or equal to high value." For example,

the following expression is false:

45 BETWEEN 38 AND 44

Operator Meaning

= equal to

<>, != , ~=, ^= not equal to

< less than

> greater than

<= less than or equal to

>= greater than or equal to

Expressions and Comparisons

Fundamentals 2-47

IN Operator
The IN operator tests set membership. It means "equal to any member of." The set

can contain nulls, but they are ignored. For example, the following statement does

not delete rows in which the ename column is null:

DELETE FROM emp WHERE ename IN (NULL, ’KING’, ’FORD’);

Furthermore, expressions of the form

value NOT IN set

yield FALSE if the set contains a null. For example, instead of deleting rows in

which the ename column is not null and not ’KING’ , the following statement

deletes no rows:

DELETE FROM emp WHERE ename NOT IN (NULL, ’KING’);

Concatenation Operator
Double vertical bars (||) serve as the concatenation operator, which appends one

string to another. For example, the expression

’suit’ || ’case’

returns the following value:

’suitcase’

If both operands have datatype CHAR, the concatenation operator returns a CHAR
value. Otherwise, it returns a VARCHAR2 value.

Boolean Expressions
PL/SQL lets you compare variables and constants in both SQL and procedural

statements. These comparisons, called Boolean expressions, consist of simple or

complex expressions separated by relational operators. Often, Boolean expressions

are connected by the logical operators AND, OR, and NOT. A Boolean expression

always yields TRUE, FALSE, or NULL.

In a SQL statement, Boolean expressions let you specify the rows in a table that are

affected by the statement. In a procedural statement, Boolean expressions are the

basis for conditional control. There are three kinds of Boolean expressions:

arithmetic, character, and date.

Expressions and Comparisons

2-48 PL/SQL User’s Guide and Reference

Arithmetic Expressions
You can use the relational operators to compare numbers for equality or inequality.

Comparisons are quantitative; that is, one number is greater than another if it

represents a larger quantity. For example, given the assignments

number1 := 75;
number2 := 70;

the following expression is true:

number1 > number2

Character Expressions
You can also compare character values for equality or inequality. Comparisons are

based on the collating sequence used for the database character set. A collating
sequence is an internal ordering of the character set in which a range of numeric

codes represents the individual characters. One character value is greater than

another if its internal numeric value is larger. For example, given the assignments

string1 := ’Kathy’;
string2 := ’Kathleen’;

the following expression is true:

string1 > string2

However, there are semantic differences between the CHAR and VARCHAR2 base

types that come into play when you compare character values. For more

information, see Appendix B.

Date Expressions
You can also compare dates. Comparisons are chronological; that is, one date is

greater than another if it is more recent. For example, given the assignments

date1 := ’01-JAN-91’;
date2 := ’31-DEC-90’;

the following expression is true:

date1 > date2

Expressions and Comparisons

Fundamentals 2-49

Guidelines
In general, do not compare real numbers for exact equality or inequality. Real

numbers are stored as approximate values. So, for example, the following IF
condition might not yield TRUE:

count := 1;
IF count = 1.0 THEN ...

It is a good idea to use parentheses when doing comparisons. For example, the

following expression is illegal because 100 < tax yields a Boolean value, which

cannot be compared with the number 500:

100 < tax < 500 -- illegal

The debugged version follows:

(100 < tax) AND (tax < 500)

A Boolean variable is itself either true or false. So, comparisons with the Boolean

values TRUEand FALSEare redundant. For example, assuming the variable done is

of type BOOLEAN, the WHILE statement

WHILE NOT (done = TRUE) LOOP
 ...
END LOOP;

can be simplified as follows:

WHILE NOT done LOOP
 ...
END LOOP;

Handling Nulls
When working with nulls, you can avoid some common mistakes by keeping in

mind the following rules:

■ comparisons involving nulls always yield NULL

■ applying the logical operator NOT to a null yields NULL

■ in conditional control statements, if the condition yields NULL, its associated

sequence of statements is not executed

Expressions and Comparisons

2-50 PL/SQL User’s Guide and Reference

In the example below, you might expect the sequence of statements to execute

because x and y seem unequal. But, nulls are indeterminate. Whether or not x is

equal to y is unknown. Therefore, the IF condition yields NULLand the sequence of

statements is bypassed.

x := 5;
y := NULL;
...
IF x != y THEN -- yields NULL, not TRUE
 sequence_of_statements; -- not executed
END IF;

In the next example, you might expect the sequence of statements to execute

because a and b seem equal. But, again, that is unknown, so the IF condition yields

NULL and the sequence of statements is bypassed.

a := NULL;
b := NULL;
...
IF a = b THEN -- yields NULL, not TRUE
 sequence_of_statements; -- not executed
END IF;

NOT Operator
Recall that applying the logical operator NOT to a null yields NULL. Thus, the

following two statements are not always equivalent:

IF x > y THEN | IF NOT x > y THEN
 high := x; | high := y;
ELSE | ELSE
 high := y; | high := x;
END IF; | END IF;

The sequence of statements in the ELSE clause is executed when the IF condition

yields FALSE or NULL. If neither x nor y is null, both IF statements assign the same

value to high . However, if either x or y is null, the first IF statement assigns the

value of y to high , but the second IF statement assigns the value of x to high .

Expressions and Comparisons

Fundamentals 2-51

Zero-Length Strings
PL/SQL treats any zero-length string like a null. This includes values returned by

character functions and Boolean expressions. For example, the following statements

assign nulls to the target variables:

null_string := TO_CHAR(’’);
zip_code := SUBSTR(address, 25, 0);
valid := (name != ’’);

So, use the IS NULL operator to test for null strings, as follows:

IF my_string IS NULL THEN ...

Concatenation Operator
The concatenation operator ignores null operands. For example, the expression

’apple’ || NULL || NULL || ’sauce’

returns the following value:

’applesauce’

Functions
If a null argument is passed to a built-in function, a null is returned except in the

following cases.

The function DECODE compares its first argument to one or more search

expressions, which are paired with result expressions. Any search or result

expression can be null. If a search is successful, the corresponding result is returned.

In the following example, if the column rating is null, DECODE returns the value

1000:

SELECT DECODE(rating, NULL, 1000, ’C’, 2000, ’B’, 4000, ’A’, 5000)
 INTO credit_limit FROM accts WHERE acctno = my_acctno;

The function NVL returns the value of its second argument if its first argument is

null. In the example below, if hire_date is null, NVL returns the value of

SYSDATE. Otherwise, NVL returns the value of hire_date :

start_date := NVL(hire_date, SYSDATE);

Built-In Functions

2-52 PL/SQL User’s Guide and Reference

The function REPLACE returns the value of its first argument if its second argument

is null, whether the optional third argument is present or not. For instance, after the

assignment

new_string := REPLACE(old_string, NULL, my_string);

the values of old_string and new_string are the same.

If its third argument is null, REPLACE returns its first argument with every

occurrence of its second argument removed. For example, after the assignments

syllabified_name := ’Gold-i-locks’;
name := REPLACE(syllabified_name, ’-’, NULL);

the value of name is ’goldilocks’

If its second and third arguments are null, REPLACE simply returns its first

argument.

Built-In Functions
PL/SQL provides many powerful functions to help you manipulate data. These

built-in functions fall into the following categories:

error reporting

number

character

datatype conversion

date

object reference

miscellaneous

Table 2–4 shows the functions in each category. For descriptions of the

error-reporting functions, see Chapter 11. For descriptions of the other functions,

see Oracle8i SQL Reference.

Except for the error-reporting functions SQLCODEand SQLERRM, you can use all the

functions in SQL statements. Also, except for the object-reference functions DEREF,
REF, and VALUE and the miscellaneous functions DECODE, DUMP, and VSIZE , you

can use all the functions in procedural statements.

Although the SQL aggregate functions AVG, COUNT, GROUPING, MIN, MAX, SUM,

STDDEV, and VARIANCE are not built into PL/SQL, you can use them in SQL

statements (but not in procedural statements).

Built-In Functions

Fundamentals 2-53

Table 2–4 Built-in Functions

Error Number Character Conversion Date Obj Ref Misc

SQLCODE

SQLERRM

ABS

ACOS

ASIN

ATAN

ATAN2

CEIL

COS

COSH

EXP

FLOOR

LN

LOG

MOD

POWER

ROUND

SIGN

SIN

SINH

SQRT

TAN

TANH

TRUNC

ASCII

CHR

CONCAT

INITCAP

INSTR

INSTRB

LENGTH

LENGTHB

LOWER

LPAD

LTRIM

NLS_INITCAP

NLS_LOWER

NLS_UPPER

NLSSORT

REPLACE

RPAD

RTRIM

SOUNDEX

SUBSTR

SUBSTRB

TRANSLATE

TRIM

UPPER

CHARTOROWID

CONVERT

HEXTORAW

RAWTOHEX

ROWIDTOCHAR

TO_CHAR

TO_DATE

TO_MULTI_BYTE

TO_NUMBER

TO_SINGLE_BYTE

ADD_MONTHS

LAST_DAY

MONTHS_BETWEEN

NEW_TIME

NEXT_DAY

ROUND

SYSDATE

TRUNC

DEREF

REF

VALUE

BFILENAME

DECODE

DUMP

EMPTY_BLOB

EMPTY_CLOB

GREATEST

LEAST

NLS_CHARSET_DECL_LEN

NLS_CHARSET_ID

NLS_CHARSET_NAME

NVL

SYS_CONTEXT

SYS_GUID

UID

USER

USERENV

VSIZE

Built-In Functions

2-54 PL/SQL User’s Guide and Reference

Control Structures 3-1

3
Control Structures

One ship drives east and another drives west
With the selfsame winds that blow.
’Tis the set of the sails and not the gales
Which tells us the way to go. —Ella Wheeler Wilcox

This chapter shows you how to structure the flow of control through a PL/SQL

program. You learn how statements are connected by simple but powerful control

structures that have a single entry and exit point. Collectively, these structures can

handle any situation. Their proper use leads naturally to a well-structured program.

Major Topics
Overview

Conditional Control: IF Statements

Iterative Control: LOOP and EXIT Statements

Sequential Control: GOTO and NULL Statements

Overview

3-2 PL/SQL User’s Guide and Reference

Overview
According to the structure theorem, any computer program can be written using the

basic control structures shown in Figure 3–1. They can be combined in any way

necessary to deal with a given problem.

Figure 3–1 Control Structures

The selection structure tests a condition, then executes one sequence of statements

instead of another, depending on whether the condition is true or false. A condition
is any variable or expression that returns a Boolean value (TRUE or FALSE). The

iteration structure executes a sequence of statements repeatedly as long as a

condition holds true. The sequence structure simply executes a sequence of

statements in the order in which they occur.

Conditional Control: IF Statements
Often, it is necessary to take alternative actions depending on circumstances. The IF
statement lets you execute a sequence of statements conditionally. That is, whether

the sequence is executed or not depends on the value of a condition. There are three

forms of IF statements: IF-THEN , IF-THEN-ELSE , and IF-THEN-ELSIF .

Selection Iteration Sequence

T F F

T

Conditional Control: IF Statements

Control Structures 3-3

IF-THEN
The simplest form of IF statement associates a condition with a sequence of

statements enclosed by the keywords THEN and END IF (not ENDIF), as follows:

IF condition THEN
 sequence_of_statements
END IF;

The sequence of statements is executed only if the condition is true. If the condition

is false or null, the IF statement does nothing. In either case, control passes to the

next statement. An example follows:

IF sales > quota THEN
 compute_bonus(empid);
 UPDATE payroll SET pay = pay + bonus WHERE empno = emp_id;
END IF;

You might want to place brief IF statements on a single line, as in

IF x > y THEN high := x; END IF;

IF-THEN-ELSE
The second form of IF statement adds the keyword ELSE followed by an

alternative sequence of statements, as follows:

IF condition THEN
 sequence_of_statements1
ELSE
 sequence_of_statements2
END IF;

The sequence of statements in the ELSE clause is executed only if the condition is

false or null. Thus, the ELSE clause ensures that a sequence of statements is

executed. In the following example, the first UPDATE statement is executed when

the condition is true, but the second UPDATE statement is executed when the

condition is false or null:

IF trans_type = ’CR’ THEN
 UPDATE accounts SET balance = balance + credit WHERE ...
ELSE
 UPDATE accounts SET balance = balance - debit WHERE ...
END IF;

Conditional Control: IF Statements

3-4 PL/SQL User’s Guide and Reference

The THEN and ELSE clauses can include IF statements. That is, IF statements can

be nested, as the following example shows:

IF trans_type = ’CR’ THEN
 UPDATE accounts SET balance = balance + credit WHERE ...
ELSE
 IF new_balance >= minimum_balance THEN
 UPDATE accounts SET balance = balance - debit WHERE ...
 ELSE
 RAISE insufficient_funds;
 END IF;
END IF;

IF-THEN-ELSIF
Sometimes you want to select an action from several mutually exclusive

alternatives. The third form of IF statement uses the keyword ELSIF (not ELSEIF)

to introduce additional conditions, as follows:

IF condition1 THEN
 sequence_of_statements1
ELSIF condition2 THEN
 sequence_of_statements2
ELSE
 sequence_of_statements3
END IF;

If the first condition is false or null, the ELSIF clause tests another condition. An IF
statement can have any number of ELSIF clauses; the final ELSE clause is optional.

Conditions are evaluated one by one from top to bottom. If any condition is true, its

associated sequence of statements is executed and control passes to the next

statement. If all conditions are false or null, the sequence in the ELSE clause is

executed. Consider the following example:

BEGIN
 ...
 IF sales > 50000 THEN
 bonus := 1500;
 ELSIF sales > 35000 THEN
 bonus := 500;
 ELSE
 bonus := 100;
 END IF;
 INSERT INTO payroll VALUES (emp_id, bonus, ...);
END;

Conditional Control: IF Statements

Control Structures 3-5

If the value of sales is larger than 50000, the first and second conditions are true.

Nevertheless, bonus is assigned the proper value of 1500 because the second

condition is never tested. When the first condition is true, its associated statement is

executed and control passes to the INSERT statement.

Guidelines
Avoid clumsy IF statements like those in the following example:

DECLARE
 ...
 overdrawn BOOLEAN;
BEGIN
 ...
 IF new_balance < minimum_balance THEN
 overdrawn := TRUE;
 ELSE
 overdrawn := FALSE;
 END IF;
 ...
 IF overdrawn = TRUE THEN
 RAISE insufficient_funds;
 END IF;
END;

This code disregards two useful facts. First, the value of a Boolean expression can be

assigned directly to a Boolean variable. So, you can replace the first IF statement

with a simple assignment, as follows:

overdrawn := new_balance < minimum_balance;

Second, a Boolean variable is itself either true or false. So, you can simplify the

condition in the second IF statement, as follows:

IF overdrawn THEN ...

Iterative Control: LOOP and EXIT Statements

3-6 PL/SQL User’s Guide and Reference

When possible, use the ELSIF clause instead of nested IF statements. That way,

your code will be easier to read and understand. Compare the following IF
statements:

IF condition1 THEN | IF condition1 THEN
 statement1; | statement1;
ELSE | ELSIF condition2 THEN
 IF condition2 THEN | statement2;
 statement2; | ELSIF condition3 THEN
 ELSE | statement3;
 IF condition3 THEN | END IF;
 statement3; |
 END IF; |
 END IF; |
END IF; |

These statements are logically equivalent, but the first statement obscures the flow

of logic, whereas the second statement reveals it.

Iterative Control: LOOP and EXIT Statements
LOOP statements let you execute a sequence of statements multiple times. There are

three forms of LOOP statements: LOOP, WHILE-LOOP, and FOR-LOOP.

LOOP
The simplest form of LOOP statement is the basic (or infinite) loop, which encloses a

sequence of statements between the keywords LOOP and END LOOP, as follows:

LOOP
 sequence_of_statements
END LOOP;

With each iteration of the loop, the sequence of statements is executed, then control

resumes at the top of the loop. If further processing is undesirable or impossible,

you can use an EXIT statement to complete the loop. You can place one or more

EXIT statements anywhere inside a loop, but nowhere outside a loop. There are two

forms of EXIT statements: EXIT and EXIT-WHEN.

Iterative Control: LOOP and EXIT Statements

Control Structures 3-7

EXIT
The EXIT statement forces a loop to complete unconditionally. When an EXIT
statement is encountered, the loop completes immediately and control passes to the

next statement. An example follows:

LOOP
 ...
 IF credit_rating < 3 THEN
 ...
 EXIT; -- exit loop immediately
 END IF;
END LOOP;
-- control resumes here

The next example shows that you cannot use the EXIT statement to complete a

PL/SQL block:

BEGIN
 ...
 IF credit_rating < 3 THEN
 ...
 EXIT; -- illegal
 END IF;
END;

Remember, the EXIT statement must be placed inside a loop. To complete a

PL/SQL block before its normal end is reached, you can use the RETURN statement.

For more information, see "Using the RETURN Statement" on page 7-8.

EXIT-WHEN
The EXIT-WHEN statement allows a loop to complete conditionally. When the EXIT
statement is encountered, the condition in the WHEN clause is evaluated. If the

condition is true, the loop completes and control passes to the next statement after

the loop. An example follows:

LOOP
 FETCH c1 INTO ...
 EXIT WHEN c1%NOTFOUND; -- exit loop if condition is true
 ...
END LOOP;
CLOSE c1;

Iterative Control: LOOP and EXIT Statements

3-8 PL/SQL User’s Guide and Reference

Until the condition is true, the loop cannot complete. So, a statement inside the loop

must change the value of the condition. In the last example, if the FETCH statement

returns a row, the condition is false. When the FETCHstatement fails to return a row,

the condition is true, the loop completes, and control passes to the CLOSEstatement.

The EXIT-WHEN statement replaces a simple IF statement. For example, compare

the following statements:

IF count > 100 THEN | EXIT WHEN count > 100;
 EXIT; |
END IF; |

These statements are logically equivalent, but the EXIT-WHEN statement is easier to

read and understand.

Loop Labels
Like PL/SQL blocks, loops can be labeled. The label, an undeclared identifier

enclosed by double angle brackets, must appear at the beginning of the LOOP
statement, as follows:

<<label_name>>
LOOP
 sequence_of_statements
END LOOP;

Optionally, the label name can also appear at the end of the LOOP statement, as the

following example shows:

<<my_loop>>
LOOP
 ...
END LOOP my_loop;

When you nest labeled loops, you can use ending label names to improve

readability.

Iterative Control: LOOP and EXIT Statements

Control Structures 3-9

With either form of EXIT statement, you can complete not only the current loop,

but any enclosing loop. Simply label the enclosing loop that you want to complete.

Then, use the label in an EXIT statement, as follows:

<<outer>>
LOOP
 ...
 LOOP
 ...
 EXIT outer WHEN ... -- exit both loops
 END LOOP;
 ...
END LOOP outer;

Every enclosing loop up to and including the labeled loop is exited.

WHILE-LOOP
The WHILE-LOOP statement associates a condition with a sequence of statements

enclosed by the keywords LOOP and END LOOP, as follows:

WHILE condition LOOP
 sequence_of_statements
END LOOP;

Before each iteration of the loop, the condition is evaluated. If the condition is true,

the sequence of statements is executed, then control resumes at the top of the loop.

If the condition is false or null, the loop is bypassed and control passes to the next

statement. An example follows:

WHILE total <= 25000 LOOP
 ...
 SELECT sal INTO salary FROM emp WHERE ...
 total := total + salary;
END LOOP;

The number of iterations depends on the condition and is unknown until the loop

completes. The condition is tested at the top of the loop, so the sequence might

execute zero times. In the last example, if the initial value of total is larger than

25000, the condition is false and the loop is bypassed.

Iterative Control: LOOP and EXIT Statements

3-10 PL/SQL User’s Guide and Reference

Some languages have a LOOP UNTIL or REPEAT UNTIL structure, which tests the

condition at the bottom of the loop instead of at the top. Therefore, the sequence of

statements is executed at least once. PL/SQL has no such structure, but you can

easily build one, as follows:

LOOP
 sequence_of_statements
 EXIT WHEN boolean_expression;
END LOOP;

To ensure that a WHILE loop executes at least once, use an initialized Boolean

variable in the condition, as follows:

done := FALSE;
WHILE NOT done LOOP
 sequence_of_statements
 done := boolean_expression;
END LOOP;

A statement inside the loop must assign a new value to the Boolean variable.

Otherwise, you have an infinite loop. For example, the following LOOP statements

are logically equivalent:

WHILE TRUE LOOP | LOOP
 ... | ...
END LOOP; | END LOOP;

FOR-LOOP
Whereas the number of iterations through a WHILE loop is unknown until the loop

completes, the number of iterations through a FOR loop is known before the loop is

entered. FOR loops iterate over a specified range of integers. (Cursor FOR loops,

which iterate over the result set of a cursor, are discussed in Chapter 5.) The range is

part of an iteration scheme, which is enclosed by the keywords FOR and LOOP. A
double dot (..) serves as the range operator. The syntax follows:

FOR counter IN [REVERSE] lower_bound..higher_bound LOOP
 sequence_of_statements
END LOOP;

The range is evaluated when the FOR loop is first entered and is never re-evaluated.

Iterative Control: LOOP and EXIT Statements

Control Structures 3-11

As the next example shows, the sequence of statements is executed once for each

integer in the range. After each iteration, the loop counter is incremented.

FOR i IN 1..3 LOOP -- assign the values 1,2,3 to i
 sequence_of_statements -- executes three times
END LOOP;

The following example shows that if the lower bound equals the higher bound, the

sequence of statements is executed once:

FOR i IN 3..3 LOOP -- assign the value 3 to i
 sequence_of_statements -- executes one time
END LOOP;

By default, iteration proceeds upward from the lower bound to the higher bound.

However, as the example below shows, if you use the keyword REVERSE, iteration

proceeds downward from the higher bound to the lower bound. After each

iteration, the loop counter is decremented. Nevertheless, you write the range

bounds in ascending (not descending) order.

FOR i IN REVERSE 1..3 LOOP -- assign the values 3,2,1 to i
 sequence_of_statements -- executes three times
END LOOP;

Inside a FOR loop, the loop counter can be referenced like a constant but cannot be

assigned values, as the following example shows:

FOR ctr IN 1..10 LOOP
 IF NOT finished THEN
 INSERT INTO ... VALUES (ctr, ...); -- legal
 factor := ctr * 2; -- legal
 ELSE
 ctr := 10; -- illegal
 END IF;
END LOOP;

Iteration Schemes
The bounds of a loop range can be literals, variables, or expressions but must

evaluate to numbers. Otherwise, PL/SQL raises the predefined exception VALUE_
ERROR. The lower bound need not be 1, as the examples below show. However, the

loop counter increment (or decrement) must be 1.

j IN -5..5
k IN REVERSE first..last
step IN 0..TRUNC(high/low) * 2

Iterative Control: LOOP and EXIT Statements

3-12 PL/SQL User’s Guide and Reference

Internally, PL/SQL assigns the values of the bounds to temporary PLS_INTEGER
variables, and, if necessary, rounds the values to the nearest integer. The magnitude

range of a PLS_INTEGER is -2**31 .. 2**31. So, if a bound evaluates to a number

outside that range, you get a numeric overflow error when PL/SQL attempts the

assignment, as the following example shows:

DECLARE
 hi NUMBER := 2**32;
BEGIN
 FOR j IN 1..hi LOOP -- causes a ’numeric overflow’ error
 ...
 END LOOP;
END;

Some languages provide a STEPclause, which lets you specify a different increment

(5 instead of 1 for example). PL/SQL has no such structure, but you can easily build

one. Inside the FOR loop, simply multiply each reference to the loop counter by the

new increment. In the following example, you assign today’s date to elements 5, 10,

and 15 of an index-by table:

DECLARE
 TYPE DateList IS TABLE OF DATE INDEX BY BINARY_INTEGER;
 dates DateList;
 k CONSTANT INTEGER := 5; -- set new increment
BEGIN
 FOR j IN 1..3 LOOP
 dates(j*k) := SYSDATE; -- multiply loop counter by increment
 END LOOP;
 ...
END;

Dynamic Ranges
PL/SQL lets you determine the loop range dynamically at run time, as the

following example shows:

SELECT COUNT(empno) INTO emp_count FROM emp;
FOR i IN 1..emp_count LOOP
 ...
END LOOP;

The value of emp_count is unknown at compile time; the SELECT statement

returns the value at run time.

Iterative Control: LOOP and EXIT Statements

Control Structures 3-13

What happens if the lower bound of a loop range evaluates to a larger integer than

the upper bound? As the next example shows, the sequence of statements within

the loop is not executed and control passes to the next statement:

-- limit becomes 1
FOR i IN 2..limit LOOP
 sequence_of_statements -- executes zero times
END LOOP;
-- control passes here

Scope Rules
The loop counter is defined only within the loop. You cannot reference it outside the

loop. After the loop is exited, the loop counter is undefined, as the following

example shows:

FOR ctr IN 1..10 LOOP
 ...
END LOOP;
sum := ctr - 1; -- illegal

You need not explicitly declare the loop counter because it is implicitly declared as a

local variable of type INTEGER. The next example shows that the local declaration

hides any global declaration:

DECLARE
 ctr INTEGER;
BEGIN
 ...
 FOR ctr IN 1..25 LOOP
 ...
 IF ctr > 10 THEN ... -- refers to loop counter
 END LOOP;
END;

To reference the global variable in this example, you must use a label and dot

notation, as follows:

<<main>>
DECLARE
 ctr INTEGER;
 ...
BEGIN
 ...
 FOR ctr IN 1..25 LOOP
 ...

Iterative Control: LOOP and EXIT Statements

3-14 PL/SQL User’s Guide and Reference

 IF main.ctr > 10 THEN -- refers to global variable
 ...
 END IF;
 END LOOP;
END main;

The same scope rules apply to nested FOR loops. Consider the example below. Both

loop counters have the same name. So, to reference the outer loop counter from the

inner loop, you must use a label and dot notation, as follows:

<<outer>>
FOR step IN 1..25 LOOP
 FOR step IN 1..10 LOOP
 ...
 IF outer.step > 15 THEN ...
 END LOOP;
END LOOP outer;

Using the EXIT Statement
The EXIT statement allows a FOR loop to complete prematurely. For example, the

following loop normally executes ten times, but as soon as the FETCH statement

fails to return a row, the loop completes no matter how many times it has executed:

FOR j IN 1..10 LOOP
 FETCH c1 INTO emp_rec;
 EXIT WHEN c1%NOTFOUND;
 ...
END LOOP;

Suppose you must exit from a nested FOR loop prematurely. You can complete not

only the current loop, but any enclosing loop. Simply label the enclosing loop that

you want to complete. Then, use the label in an EXIT statement to specify which

FOR loop to exit, as follows:

<<outer>>
FOR i IN 1..5 LOOP
 ...
 FOR j IN 1..10 LOOP
 FETCH c1 INTO emp_rec;
 EXIT outer WHEN c1%NOTFOUND; -- exit both FOR loops
 ...
 END LOOP;
END LOOP outer;
-- control passes here

Sequential Control: GOTO and NULL Statements

Control Structures 3-15

Sequential Control: GOTO and NULL Statements
Unlike the IF and LOOP statements, the GOTO and NULL statements are not crucial

to PL/SQL programming. The structure of PL/SQL is such that the GOTO statement

is seldom needed. Occasionally, it can simplify logic enough to warrant its use. The

NULL statement can improve readability by making the meaning and action of

conditional statements clear.

Overuse of GOTO statements can result in complex, unstructured code (sometimes

called spaghetti code) that is hard to understand and maintain. So, use GOTO
statements sparingly. For example, to branch from a deeply nested structure to an

error-handling routine, raise an exception rather than use a GOTO statement.

GOTO Statement
The GOTO statement branches to a label unconditionally. The label must be unique

within its scope and must precede an executable statement or a PL/SQL block.

When executed, the GOTO statement transfers control to the labeled statement or

block. In the following example, you go to an executable statement farther down in

a sequence of statements:

BEGIN
 ...
 GOTO insert_row;
 ...
 <<insert_row>>
 INSERT INTO emp VALUES ...
END;

In the next example, you go to a PL/SQL block farther up in a sequence of

statements:

BEGIN
 ...
 <<update_row>>
 BEGIN
 UPDATE emp SET ...
 ...
 END;
 ...
 GOTO update_row;
 ...
END;

Sequential Control: GOTO and NULL Statements

3-16 PL/SQL User’s Guide and Reference

The label end_loop in the following example is illegal because it does not precede

an executable statement:

DECLARE
 done BOOLEAN;
BEGIN
 ...
 FOR i IN 1..50 LOOP
 IF done THEN
 GOTO end_loop;
 END IF;
 ...
 <<end_loop>> -- illegal
 END LOOP; -- not an executable statement
END;

To debug the last example, just add the NULL statement, as follows:

FOR i IN 1..50 LOOP
 IF done THEN
 GOTO end_loop;
 END IF;
 ...
<<end_loop>>
NULL; -- an executable statement
END LOOP;

As the following example shows, a GOTO statement can branch to an enclosing

block from the current block:

DECLARE
 my_ename CHAR(10);
BEGIN
 <<get_name>>
 SELECT ename INTO my_ename FROM emp WHERE ...
 BEGIN
 ...
 GOTO get_name; -- branch to enclosing block
 END;
END;

The GOTO statement branches to the first enclosing block in which the referenced

label appears.

Sequential Control: GOTO and NULL Statements

Control Structures 3-17

Restrictions
Some possible destinations of a GOTO statement are illegal. Specifically, a GOTO
statement cannot branch into an IF statement, LOOP statement, or sub-block. For

example, the following GOTO statement is illegal:

BEGIN
 ...
 GOTO update_row; -- illegal branch into IF statement
 ...
 IF valid THEN
 ...
 <<update_row>>
 UPDATE emp SET ...
 END IF;
END;

Also, a GOTO statement cannot branch from one IF statement clause to another, as

the following example shows:

BEGIN
 ...
 IF valid THEN
 ...
 GOTO update_row; -- illegal branch into ELSE clause
 ELSE
 ...
 <<update_row>>
 UPDATE emp SET ...
 END IF;
END;

The next example shows that a GOTO statement cannot branch from an enclosing

block into a sub-block:

BEGIN
 ...
 IF status = ’OBSOLETE’ THEN
 GOTO delete_part; -- illegal branch into sub-block
 END IF;
 ...

Sequential Control: GOTO and NULL Statements

3-18 PL/SQL User’s Guide and Reference

 BEGIN
 ...
 <<delete_part>>
 DELETE FROM parts WHERE ...
 END;
END;

Also, a GOTO statement cannot branch out of a subprogram, as the following

example shows:

DECLARE
 ...
 PROCEDURE compute_bonus (emp_id NUMBER) IS
 BEGIN
 ...
 GOTO update_row; -- illegal branch out of subprogram
 END;
BEGIN
 ...
 <<update_row>>
 UPDATE emp SET ...
END;

Finally, a GOTO statement cannot branch from an exception handler into the current

block. For example, the following GOTO statement is illegal:

DECLARE
 ...
 pe_ratio REAL;
BEGIN
 ...
 SELECT price / NVL(earnings, 0) INTO pe_ratio FROM ...
 <<insert_row>>
 INSERT INTO stats VALUES (pe_ratio, ...);
EXCEPTION
 WHEN ZERO_DIVIDE THEN
 pe_ratio := 0;
 GOTO insert_row; -- illegal branch into current block
END;

However, a GOTOstatement can branch from an exception handler into an enclosing

block.

Sequential Control: GOTO and NULL Statements

Control Structures 3-19

NULL Statement
The NULL statement explicitly specifies inaction; it does nothing other than pass

control to the next statement. It can, however, improve readability. In a construct

allowing alternative actions, the NULL statement serves as a placeholder. It tells

readers that the associated alternative has not been overlooked, but that indeed no

action is necessary. In the following example, the NULL statement shows that no

action is taken for unnamed exceptions:

EXCEPTION
 WHEN ZERO_DIVIDE THEN
 ROLLBACK;
 WHEN VALUE_ERROR THEN
 INSERT INTO errors VALUES ...
 COMMIT;
 WHEN OTHERS THEN
 NULL;
END;

Each clause in an IF statement must contain at least one executable statement. The

NULL statement is executable, so you can use it in clauses that correspond to

circumstances in which no action is taken. In the following example, the NULL
statement emphasizes that only top-rated employees get bonuses:

IF rating > 90 THEN
 compute_bonus(emp_id);
ELSE
 NULL;
END IF;

Also, the NULL statement is a handy way to create stubs when designing

applications from the top down. A stub is dummy subprogram that allows you to

defer the definition of a procedure or function until you test and debug the main

program. In the following example, the NULL statement meets the requirement that

at least one statement must appear in the executable part of a subprogram:

PROCEDURE debit_account (acct_id INTEGER, amount REAL) IS
BEGIN
 NULL;
END debit_account;

Sequential Control: GOTO and NULL Statements

3-20 PL/SQL User’s Guide and Reference

Collections and Records 4-1

4
Collections and Records

Knowledge is that area of ignorance that we arrange and classify. —Ambrose Bierce

Increasingly, programmers are using collection types such as arrays, bags, lists,

nested tables, sets, and trees in traditional database applications. To meet the

growing demand, PL/SQL provides the datatypes TABLEand VARRAY, which allow

you to declare index-by tables, nested tables and variable-size arrays. In this

chapter, you learn how those types let you reference and manipulate collections of

data as whole objects. You also learn how the datatype RECORD lets you treat

related but dissimilar data as a logical unit.

Major Topics
What Is a Collection?

Defining and Declaring Collections

Initializing and Referencing Collections

Assigning and Comparing Collections

Manipulating Collections

Using Collection Methods

Avoiding Collection Exceptions

Taking Advantage of Bulk Binds

What Is a Record?

Defining and Declaring Records

Initializing and Referencing Records

Assigning and Comparing Records

Manipulating Records

What Is a Collection?

4-2 PL/SQL User’s Guide and Reference

What Is a Collection?
A collection is an ordered group of elements, all of the same type (for example, the

grades for a class of students). Each element has a unique subscript that determines

its position in the collection. PL/SQL offers two collection types. Items of type

TABLE are either index-by tables (Version 2 PL/SQL tables) or nested tables (which

extend the functionality of index-by tables). Items of type VARRAY are varrays (short

for variable-size arrays).

Collections work like the arrays found in most third-generation programming

languages. However, collections can have only one dimension and must be indexed

by integers. (In some languages such as Ada and Pascal, arrays can have multiple

dimensions and can be indexed by enumeration types.)

You can define collection types in a package, then use them programmatically in

your applications. Also, you can pass collections as parameters. So, you can use

them to move columns of data into and out of database tables or between client-side

applications and stored subprograms. In addition, collections can store instances of

an object type and (except for index-by tables) can be attributes of an object type.

Understanding Nested Tables
Within the database, nested tables can be considered one-column database tables.

Oracle stores the rows of a nested table in no particular order. But, when you

retrieve the nested table into a PL/SQL variable, the rows are given consecutive

subscripts starting at 1. That gives you array-like access to individual rows.

Within PL/SQL, nested tables are like one-dimensional arrays. However, nested

tables differ from arrays in two important ways. First, arrays have a fixed upper

bound, but nested tables are unbounded (see Figure 4–1). So, the size of a nested

table can increase dynamically.

Figure 4–1 Array versus Nested Table

Array of Integers

321

x(1)

17

x(2)

99

x(3)

407

x(4)

83

x(5)

622

x(6)

105

x(7)

19

x(8)

67

x(9)

278

x(10)

Fixed
Upper
Bound

Nested Table after Deletions

321

x(1)

17 99

x(3)

407

x(4)

83 622

x(6)

105

x(7)

19

x(8)

67 278

x(10)

Unbounded

What Is a Collection?

Collections and Records 4-3

Second, arrays must be dense (have consecutive subscripts). So, you cannot delete

individual elements from an array. Initially, nested tables are dense, but they can be

sparse (have nonconsecutive subscripts). So, you can delete elements from a nested

table using the built-in procedure DELETE. That might leave gaps in the index, but

the built-in function NEXT lets you iterate over any series of subscripts.

Nested Tables versus Index-by Tables
Index-by tables and nested tables are similar. For example, they have the same

structure, and their individual elements are accessed in the same way (using

subscript notation). The main difference is that nested tables can be stored in a

database column (hence the term "nested table") but index-by tables cannot.

Nested tables extend the functionality of index-by tables by letting you SELECT,
INSERT, UPDATE, and DELETE nested tables stored in the database. (Remember,

index-by tables cannot be stored in the database.) Also, some collection methods

operate only on nested tables and varrays. For example, the built-in procedure

TRIM cannot be applied to index-by tables.

Another advantage of nested tables is that an uninitialized nested table is

atomically null (that is, the table itself is null, not its elements), but an uninitialized

index-by table is merely empty. So, you can apply the IS NULL comparison operator

to nested tables but not to index-by tables.

However, index-by tables also have some advantages. For example, PL/SQL

supports implicit (automatic) datatype conversion between host arrays and

index-by tables (but not nested tables). So, the most efficient way to pass collections

to and from the database server is to use anonymous PL/SQL blocks to bulk-bind

input and output host arrays to index-by tables.

Also, index-by tables are initially sparse. So, they are convenient for storing

reference data using a numeric primary key (account numbers or employee

numbers for example) as the index.

In some (relatively minor) ways, index-by tables are more flexible than nested

tables. For example, subscripts for a nested table are unconstrained. In fact,

index-by tables can have negative subscripts (nested tables cannot). Also, some

element types are allowed for index-by tables but not for nested tables (see

"Referencing Collection Elements" on page 4-10). Finally, to extend a nested table,

you must use the built-in procedure EXTEND, but to extend an index-by table, you

just specify larger subscripts.

What Is a Collection?

4-4 PL/SQL User’s Guide and Reference

Understanding Varrays
Items of type VARRAY are called varrays. They allow you to associate a single

identifier with an entire collection. This association lets you manipulate the

collection as a whole and reference individual elements easily. To reference an

element, you use standard subscripting syntax (see Figure 4–2). For example,

Grade(3) references the third element in varray Grades .

Figure 4–2 Varray of Size 10

A varray has a maximum size, which you must specify in its type definition. Its

index has a fixed lower bound of 1 and an extensible upper bound. For example, the

current upper bound for varray Grades is 7, but you can extend it to 8, 9, or 10.

Thus, a varray can contain a varying number of elements, from zero (when empty)

to the maximum specified in its type definition.

Varrays versus Nested Tables
Nested tables differ from varrays in the following ways:

■ Varrays have a maximum size, but nested tables do not.

■ Varrays are always dense, but nested tables can be sparse. So, you can delete

individual elements from a nested table but not from a varray.

■ Oracle stores varray data in-line (in the same table) unless it exceeds 4K, in

which case the data is stored out-of-line (but in the same tablespace). But,

Oracle stores nested table data out-of-line in a store table, which is a

system-generated database table associated with the nested table.

■ When stored in the database, varrays retain their ordering and subscripts, but

nested tables do not.

Which collection type should you use? That depends on your wants and the size of

the collection. A varray is stored as an opaque object, whereas a nested table is

stored in a storage table with every element mapped to a row in the table. So, if you

want efficient queries, use nested tables. If you want to retrieve entire collections as

a whole, use varrays. However, when collections get very large, it becomes

impractical to retrieve more than subsets. So, varrays are better suited for small

collections.

Varray Grades

B

(1)

C

(2)

A

(3)

A

(4)

C

(5)

D

(6)

B

(7)

Maximum
Size = 10

Defining and Declaring Collections

Collections and Records 4-5

Defining and Declaring Collections
To create collections, you define a collection type, then declare collections of that

type. You can define TABLE and VARRAY types in the declarative part of any

PL/SQL block, subprogram, or package. For nested tables, use the syntax

TYPE type_name IS TABLE OF element_type [NOT NULL];

and for varrays, use the following syntax:

TYPE type_name IS {VARRAY | VARYING ARRAY} (size_limit)
 OF element_type [NOT NULL];

where type_name is a type specifier used later to declare collections, size_limit
is a positive integer literal, and element_type is any PL/SQL datatype except

BINARY_INTEGER, PLS_INTEGER
BOOLEAN
BLOB, CLOB (restriction applies only to varrays)

LONG, LONG RAW
NATURAL, NATURALN
NCHAR, NCLOB, NVARCHAR2
object types with BLOB or CLOB attributes (restriction applies only to varrays)

object types with TABLE or VARRAY attributes

POSITIVE , POSITIVEN
REF CURSOR
SIGNTYPE
STRING
TABLE
VARRAY

If element_type is a record type, every field in the record must be a scalar type or

an object type.

For index-by tables, use the syntax

TYPE type_name IS TABLE OF element_type [NOT NULL]
 INDEX BY BINARY_INTEGER;

Unlike nested tables and varrays, index-by tables can have the following element

types: BINARY_INTEGER, BOOLEAN, LONG, LONG RAW, NATURAL, NATURALN, PLS_
INTEGER, POSITIVE , POSITIVEN, SIGNTYPE, and STRING.

Defining and Declaring Collections

4-6 PL/SQL User’s Guide and Reference

Index-by tables are initially sparse. That enables you, for example, to store reference

data in a temporary index-by table using a numeric primary key as the index. In the

example below, you declare an index-by table of records. Each element of the table

stores a row from the emp database table.

DECLARE
 TYPE EmpTabTyp IS TABLE OF emp%ROWTYPE
 INDEX BY BINARY_INTEGER;
 emp_tab EmpTabTyp;
BEGIN
 /* Retrieve employee record. */
 SELECT * INTO emp_tab(7468) FROM emp WHERE empno = 7468;
 ...
END;

When defining a VARRAYtype, you must specify its maximum size. In the following

example, you define a type that stores up to 366 dates:

DECLARE
 TYPE Calendar IS VARRAY(366) OF DATE;

To specify the element type, you can use %TYPE, which provides the datatype of a

variable or database column. Also, you can use %ROWTYPE, which provides the

rowtype of a cursor or database table. Two examples follow:

DECLARE
 TYPE EmpList IS TABLE OF emp.ename%TYPE; -- based on column
 CURSOR c1 IS SELECT * FROM dept;
 TYPE DeptFile IS VARRAY(20) OF c1%ROWTYPE; -- based on cursor

In the next example, you use a RECORD type to specify the element type:

DECLARE
 TYPE AnEntry IS RECORD (
 term VARCHAR2(20),
 meaning VARCHAR2(200));
 TYPE Glossary IS VARRAY(250) OF AnEntry;

In the final example, you impose a NOT NULL constraint on the element type:

DECLARE
 TYPE EmpList IS TABLE OF emp.empno%TYPE NOT NULL;

An initialization clause is not required (or allowed).

Defining and Declaring Collections

Collections and Records 4-7

Declaring Collections
Once you define a collection type, you can declare collections of that type, as the

following SQL*Plus script shows:

CREATE TYPE CourseList AS TABLE OF VARCHAR2(10) -- define type
/
CREATE TYPE Student AS OBJECT (-- create object
 id_num INTEGER(4),
 name VARCHAR2(25),
 address VARCHAR2(35),
 status CHAR(2),
 courses CourseList) -- declare nested table as attribute
/

The identifier courses represents an entire nested table. Each element of courses
will store the code name of a college course such as ’Math 1020’ .

The script below creates a database column that stores varrays. Each element of the

varrays will store a Project object.

CREATE TYPE Project AS OBJECT(--create object
 project_no NUMBER(2),
 title VARCHAR2(35),
 cost NUMBER(7,2))
/
CREATE TYPE ProjectList AS VARRAY(50) OF Project -- define VARRAY
type
/
CREATE TABLE department (-- create database table
 dept_id NUMBER(2),
 name VARCHAR2(15),
 budget NUMBER(11,2),
 projects ProjectList) -- declare varray as column
/

The following example shows that you can use %TYPE to provide the datatype of a

previously declared collection:

DECLARE
 TYPE Platoon IS VARRAY(20) OF Soldier;
 p1 Platoon;
 p2 p1%TYPE;

Initializing and Referencing Collections

4-8 PL/SQL User’s Guide and Reference

You can declare collections as the formal parameters of functions and procedures.

That way, you can pass collections to stored subprograms and from one

subprogram to another. In the following example, you declare a nested table as the

formal parameter of a packaged procedure:

CREATE PACKAGE personnel AS
 TYPE Staff IS TABLE OF Employee;
 ...
 PROCEDURE award_bonuses (members IN Staff);
END personnel;

Also, you can specify a collection type in the RETURN clause of a function

specification, as the following example shows:

DECLARE
 TYPE SalesForce IS VARRAY(25) OF Salesperson;
 FUNCTION top_performers (n INTEGER) RETURN SalesForce IS ...

Collections follow the usual scoping and instantiation rules. In a block or

subprogram, collections are instantiated when you enter the block or subprogram

and cease to exist when you exit. In a package, collections are instantiated when you

first reference the package and cease to exist when you end the database session.

Initializing and Referencing Collections
Until you initialize it, a nested table or varray is atomically null (that is, the

collection itself is null, not its elements). To initialize a nested table or varray, you

use a constructor, which is a system-defined function with the same name as the

collection type. This function "constructs" collections from the elements passed to it.

In the following example, you pass six elements to constructor CourseList() ,

which returns a nested table containing those elements:

DECLARE
 my_courses CourseList;
BEGIN
 my_courses := CourseList(’Econ 2010’, ’Acct 3401’, ’Mgmt 3100’,
 ’PoSc 3141’, ’Mktg 3312’, ’Engl 2005’);
 ...
END;

Initializing and Referencing Collections

Collections and Records 4-9

In the next example, you pass three objects to constructor ProjectList() , which

returns a varray containing those objects:

DECLARE
 accounting_projects ProjectList;
BEGIN
 accounting_projects :=
 ProjectList(Project(1, ’Design New Expense Report’, 3250),
 Project(2, ’Outsource Payroll’, 12350),
 Project(3, ’Audit Accounts Payable’, 1425));
 ...
END;

You need not initialize the whole varray. For example, if a varray has a maximum

size of 50, you can pass fewer than 50 elements to its constructor.

Unless you impose the NOT NULL constraint or specify a record type for elements,

you can pass null elements to a constructor. An example follows:

BEGIN
 my_courses := CourseList(’Math 3010’, NULL, ’Stat 3202’, ...);

The next example shows that you can initialize a collection in its declaration, which

is a good programming practice:

DECLARE
 my_courses CourseList :=
 CourseList(’Art 1111’, ’Hist 3100’, ’Engl 2005’, ...);

If you call a constructor without arguments, you get an empty but non-null

collection, as the following example shows:

DECLARE
 TYPE Clientele IS VARRAY(100) OF Customer;
 vips Clientele := Clientele(); -- initialize empty varray
BEGIN
 IF vips IS NOT NULL THEN -- condition yields TRUE
 ...
 END IF;
END;

PL/SQL never calls a constructor implicitly, so you must call it explicitly. (That does

not apply to index-by tables, which do not have constructors.) Constructor calls are

allowed wherever function calls are allowed.

Initializing and Referencing Collections

4-10 PL/SQL User’s Guide and Reference

In the example below, you insert a Student object into object table sophomores .

The table constructor CourseList() provides a value for attribute courses .

BEGIN
 INSERT INTO sophomores
 VALUES (Student(5035, ’Janet Alvarez’, ’122 Broad St’, ’FT’,
 CourseList(’Econ 2010’, ’Acct 3401’, ’Mgmt 3100’, ...)));
 ...

In the final example, you insert a row into database table department . The varray

constructor ProjectList() provides a value for column projects .

BEGIN
 INSERT INTO department
 VALUES(60, ’Security’, 750400,
 ProjectList(Project(1, ’Issue New Employee Badges’, 9500),
 Project(2, ’Find Missing IC Chips’, 2750),
 Project(3, ’Inspect Emergency Exits’, 1900)));
 ...

Referencing Collection Elements
Every reference to an element includes a collection name and a subscript enclosed

in parentheses. The subscript determines which element is processed. To reference

an element, you specify its subscript using the syntax

collection_name(subscript)

where subscript is an expression that yields an integer. For index-by tables, the

legal subscript range is -2**31 .. 2**31. For nested tables, the legal range is 1 .. 2**31.

And, for varrays, the legal range is 1 .. size_limit .

You can reference a collection in all expression contexts. In the following example,

you reference an element in nested table names:

DECLARE
 TYPE Roster IS TABLE OF VARCHAR2(15);
 names Roster := Roster(’J Hamil’, ’D Caruso’, ’R Singh’, ...);
 i BINARY_INTEGER;
BEGIN
 ...
 IF names(i) = ’J Hamil’ THEN
 ...
 END IF;
END;

Assigning and Comparing Collections

Collections and Records 4-11

The next example shows that you can reference the elements of a collection in

subprogram calls:

DECLARE
 TYPE Roster IS TABLE OF VARCHAR2(15);
 names Roster := Roster(’J Hamil’, ’D Piro’, ’R Singh’, ...);
 i BINARY_INTEGER;
BEGIN
 ...
 verify_name(names(i)); -- call procedure
END;

When calling a function that returns a collection, use the following syntax to

reference elements in the collection:

function_name(parameter_list)(subscript)

For example, the following call references the third element in the varray returned

by function new_hires :

DECLARE
 TYPE Staff IS VARRAY(20) OF Employee;
 staffer Employee;
 FUNCTION new_hires (hiredate DATE) RETURN Staff IS ...
BEGIN
 staffer := new_hires(’16-OCT-96’)(3); -- call function
 ...
END;

Assigning and Comparing Collections
One collection can be assigned to another by an INSERT, UPDATE, FETCH, or

SELECT statement, an assignment statement, or a subprogram call. As the example

below shows, the collections must have the same datatype. Having the same

element type is not enough.

DECLARE
 TYPE Clientele IS VARRAY(100) OF Customer;
 TYPE Vips IS VARRAY(100) OF Customer;
 group1 Clientele := Clientele(...);
 group2 Clientele := Clientele(...);
 group3 Vips := Vips(...);
BEGIN
 group2 := group1;
 group3 := group2; -- illegal; different datatypes

Assigning and Comparing Collections

4-12 PL/SQL User’s Guide and Reference

If you assign an atomically null collection to another collection, the other collection

becomes atomically null (and must be reinitialized). Consider the following

example:

DECLARE
 TYPE Clientele IS TABLE OF Customer;
 group1 Clientele := Clientele(...); -- initialized
 group2 Clientele; -- atomically null
BEGIN
 IF group1 IS NULL THEN ... -- condition yields FALSE
 group1 := group2;
 IF group1 IS NULL THEN ... -- condition yields TRUE
 ...
END;

Likewise, if you assign the non-value NULL to a collection, the collection becomes

atomically null.

Assigning Collection Elements
You can assign the value of an expression to a specific element in a collection using

the syntax

collection_name(subscript) := expression;

where expression yields a value of the type specified for elements in the

collection type definition. If subscript is null or not convertible to an integer,

PL/SQL raises the predefined exception VALUE_ERROR. If the subscript refers to an

uninitialized elementt, PL/SQL raises SUBSCRIPT_BEYOND_COUNT. If the

collection is atomically null, PL/SQL raises COLLECTION_IS_NULL. Some

examples follow:

DECLARE
 TYPE NumList IS TABLE OF INTEGER;
 nums NumList;
BEGIN
 /* Assume execution continues despite the raised exceptions. */
 nums(1) := 10; -- raises COLLECTION_IS_NULL
 nums := NumList(10,20,30);
 nums(1) := ASCII(’A’);
 nums(2) := 10 * nums(1);
 nums(’B’) := 15; -- raises VALUE_ERROR
 nums(4) := 40; -- raises SUBSCRIPT_BEYOND_COUNT
END;

Manipulating Collections

Collections and Records 4-13

Comparing Whole Collections
Nested tables and varrays can be atomically null, so they can be tested for nullity, as

the following example shows:

DECLARE
 TYPE Staff IS TABLE OF Employee;
 members Staff;
BEGIN
 ...
 IF members IS NULL THEN ... -- condition yields TRUE;
END;

However, collections cannot be compared for equality or inequality. For instance,

the following IF condition is illegal:

DECLARE
 TYPE Clientele IS TABLE OF Customer;
 group1 Clientele := Clientele(...);
 group2 Clientele := Clientele(...);
BEGIN
 ...
 IF group1 = group2 THEN -- causes compilation error
 ...
 END IF;
END;

This restriction also applies to implicit comparisons. For example, collections cannot

appear in a DISTINCT , GROUP BY, or ORDER BY list.

Manipulating Collections
Within PL/SQL, collections add flexibility and procedural power. A big advantage

is that your program can compute subscripts to process specific elements. A bigger

advantage is that the program can use SQL to manipulate in-memory collections.

Some Nested Table Examples
In SQL*Plus, suppose you define object type Course , as follows:

SQL> CREATE TYPE Course AS OBJECT (
 2 course_no NUMBER(4),
 3 title VARCHAR2(35),
 4 credits NUMBER(1));

Manipulating Collections

4-14 PL/SQL User’s Guide and Reference

Next, you define TABLE type CourseList , which stores Course objects:

SQL> CREATE TYPE CourseList AS TABLE OF Course;

Finally, you create database table department , which has a column of type

CourseList , as follows:

SQL> CREATE TABLE department (
 2 name VARCHAR2(20),
 3 director VARCHAR2(20),
 4 office VARCHAR2(20),
 5 courses CourseList)
 6 NESTED TABLE courses STORE AS courses_tab;

Each item in column courses is a nested table that will store the courses offered by

a given department. The NESTED TABLE clause is required because department
has a nested table column. The clause identifies the nested table and names a

system-generated store table, in which Oracle stores data out-of-line.

Now, you can populate database table department . In the following example,

notice how table constructor CourseList() provides values for column courses :

BEGIN
 INSERT INTO department
 VALUES(’Psychology’, ’Irene Friedman’, ’Fulton Hall 133’,
 CourseList(Course(1000, ’General Psychology’, 5),
 Course(2100, ’Experimental Psychology’, 4),
 Course(2200, ’Psychological Tests’, 3),
 Course(2250, ’Behavior Modification’, 4),
 Course(3540, ’Groups and Organizations’, 3),
 Course(3552, ’Human Factors in Busines’, 4),
 Course(4210, ’Theories of Learning’, 4),
 Course(4320, ’Cognitive Processes’, 4),
 Course(4410, ’Abnormal Psychology’, 4)));
 INSERT INTO department
 VALUES(’History’, ’John Whalen’, ’Applegate Hall 142’,
 CourseList(Course(1011, ’History of Europe I’, 4),
 Course(1012, ’History of Europe II’, 4),
 Course(1202, ’American History’, 5),
 Course(2130, ’The Renaissance’, 3),
 Course(2132, ’The Reformation’, 3),
 Course(3105, ’History of Ancient Greece’, 4),
 Course(3321, ’Early Japan’, 4),
 Course(3601, ’Latin America Since 1825’, 4),
 Course(3702, ’Medieval Islamic History’, 4)));

Manipulating Collections

Collections and Records 4-15

 INSERT INTO department
 VALUES(’English’, ’Lynn Saunders’, ’Breakstone Hall 205’,
 CourseList(Course(1002, ’Expository Writing’, 3),
 Course(2020, ’Film and Literature’, 4),
 Course(2418, ’Modern Science Fiction’, 3),
 Course(2810, ’Discursive Writing’, 4),
 Course(3010, ’Modern English Grammar’, 3),
 Course(3720, ’Introduction to Shakespeare’, 4),
 Course(3760, ’Modern Drama’, 4),
 Course(3822, ’The Short Story’, 4),
 Course(3870, ’The American Novel’, 5)));
END;

In the following example, you revise the list of courses offered by the English

Department:

DECLARE
 new_courses CourseList :=
 CourseList(Course(1002, ’Expository Writing’, 3),
 Course(2020, ’Film and Literature’, 4),
 Course(2810, ’Discursive Writing’, 4),
 Course(3010, ’Modern English Grammar’, 3),
 Course(3550, ’Realism and Naturalism’, 4),
 Course(3720, ’Introduction to Shakespeare’, 4),
 Course(3760, ’Modern Drama’, 4),
 Course(3822, ’The Short Story’, 4),
 Course(3870, ’The American Novel’, 4),
 Course(4210, ’20th-Century Poetry’, 4),
 Course(4725, ’Advanced Workshop in Poetry’, 5));
BEGIN
 UPDATE department
 SET courses = new_courses WHERE name = ’English’;
END;

In the next example, you retrieve all the courses offered by the Psychology

Department into a local nested table:

DECLARE
 psyc_courses CourseList;
BEGIN
 SELECT courses INTO psyc_courses FROM department
 WHERE name = ’Psychology’;
 ...
END;

Manipulating Collections

4-16 PL/SQL User’s Guide and Reference

Some Varray Examples
In SQL*Plus, suppose you define object type Project , as follows:

SQL> CREATE TYPE Project AS OBJECT (
 2 project_no NUMBER(2),
 3 title VARCHAR2(35),
 4 cost NUMBER(7,2));

Next, you define VARRAY type ProjectList , which stores Project objects:

SQL> CREATE TYPE ProjectList AS VARRAY(50) OF Project;

Finally, you create relational table department , which has a column of type

ProjectList , as follows:

SQL> CREATE TABLE department (
 2 dept_id NUMBER(2),
 3 name VARCHAR2(15),
 4 budget NUMBER(11,2),
 5 projects ProjectList);

Each item in column projects is a varray that will store the projects scheduled for

a given department.

Now, you are ready to populate relational table department . In the following

example, notice how varray constructor ProjectList() provides values for

column projects :

BEGIN
 INSERT INTO department
 VALUES(30, ’Accounting’, 1205700,
 ProjectList(Project(1, ’Design New Expense Report’, 3250),
 Project(2, ’Outsource Payroll’, 12350),
 Project(3, ’Evaluate Merger Proposal’, 2750),
 Project(4, ’Audit Accounts Payable’, 1425)));
 INSERT INTO department
 VALUES(50, ’Maintenance’, 925300,
 ProjectList(Project(1, ’Repair Leak in Roof’, 2850),
 Project(2, ’Install New Door Locks’, 1700),
 Project(3, ’Wash Front Windows’, 975),
 Project(4, ’Repair Faulty Wiring’, 1350),
 Project(5, ’Winterize Cooling System’, 1125)));

Manipulating Collections

Collections and Records 4-17

 INSERT INTO department
 VALUES(60, ’Security’, 750400,
 ProjectList(Project(1, ’Issue New Employee Badges’, 13500),
 Project(2, ’Find Missing IC Chips’, 2750),
 Project(3, ’Upgrade Alarm System’, 3350),
 Project(4, ’Inspect Emergency Exits’, 1900)));
END;

In the following example, you update the list of projects assigned to the Security

Department:

DECLARE
 new_projects ProjectList :=
 ProjectList(Project(1, ’Issue New Employee Badges’, 13500),
 Project(2, ’Develop New Patrol Plan’, 1250),
 Project(3, ’Inspect Emergency Exits’, 1900),
 Project(4, ’Upgrade Alarm System’, 3350),
 Project(5, ’Analyze Local Crime Stats’, 825));
BEGIN
 UPDATE department
 SET projects = new_projects WHERE dept_id = 60;
END;

In the next example, you retrieve all the projects for the Accounting Department

into a local varray:

DECLARE
 my_projects ProjectList;
BEGIN
 SELECT projects INTO my_projects FROM department
 WHERE dept_id = 30;
 ...
END;

In the final example, you delete the Accounting Department and its project list from

table department :

BEGIN
 DELETE FROM department WHERE dept_id = 30;
END;

Manipulating Collections

4-18 PL/SQL User’s Guide and Reference

Manipulating Individual Elements
So far, you have manipulated whole collections. Within SQL, to manipulate the

individual elements of a collection, use the operator TABLE. The operand of TABLE
is a subquery that returns a single column value for you to manipulate. That value

is a nested table or varray.

In the following example, you add a row to the History Department nested table

stored in column courses :

BEGIN
 INSERT INTO
 TABLE(SELECT courses FROM department WHERE name = ’History’)
 VALUES(3340, ’Modern China’, 4);
END;

In the next example, you revise the number of credits for two courses offered by the

Psychology Department:

DECLARE
 adjustment INTEGER DEFAULT 1;
BEGIN
 UPDATE TABLE(SELECT courses FROM department
 WHERE name = ’Psychology’)
 SET credits = credits + adjustment
 WHERE course_no IN (2200, 3540);
END;

In the following example, you retrieve the number and title of a specific course

offered by the History Department:

DECLARE
 my_course_no NUMBER(4);
 my_title VARCHAR2(35);
BEGIN
 SELECT course_no, title INTO my_course_no, my_title
 FROM TABLE(SELECT courses FROM department
 WHERE name = ’History’)
 WHERE course_no = 3105;
 ...
END;

Manipulating Collections

Collections and Records 4-19

In the next example, you delete all 5-credit courses offered by the English

Department:

BEGIN
 DELETE TABLE(SELECT courses FROM department
 WHERE name = ’English’)
 WHERE credits = 5;
END;

In the following example, you retrieve the title and cost of the Maintenance

Department’s fourth project from the varray column projects :

DECLARE
 my_cost NUMBER(7,2);
 my_title VARCHAR2(35);
BEGIN
 SELECT cost, title INTO my_cost, my_title
 FROM TABLE(SELECT projects FROM department
 WHERE dept_id = 50)
 WHERE project_no = 4;
 ...
END;

Currently, you cannot reference the individual elements of a varray in an INSERT,

UPDATE, or DELETEstatement. So, you must use PL/SQL procedural statements. In

the following example, stored procedure add_project inserts a new project into a

department’s project list at a given position:

CREATE PROCEDURE add_project (
 dept_no IN NUMBER,
 new_project IN Project,
 position IN NUMBER) AS
 my_projects ProjectList;
BEGIN
 SELECT projects INTO my_projects FROM department
 WHERE dept_no = dept_id FOR UPDATE OF projects;
 my_projects.EXTEND; -- make room for new project
 /* Move varray elements forward. */
 FOR i IN REVERSE position..my_projects.LAST - 1 LOOP
 my_projects(i + 1) := my_projects(i);
 END LOOP;
 my_projects(position) := new_project; -- add new project
 UPDATE department SET projects = my_projects
 WHERE dept_no = dept_id;
END add_project;

Manipulating Collections

4-20 PL/SQL User’s Guide and Reference

The following stored procedure updates a given project:

CREATE PROCEDURE update_project (
 dept_no IN NUMBER,
 proj_no IN NUMBER,
 new_title IN VARCHAR2 DEFAULT NULL,
 new_cost IN NUMBER DEFAULT NULL) AS
 my_projects ProjectList;
BEGIN
 SELECT projects INTO my_projects FROM department
 WHERE dept_no = dept_id FOR UPDATE OF projects;
 /* Find project, update it, then exit loop immediately. */
 FOR i IN my_projects.FIRST..my_projects.LAST LOOP
 IF my_projects(i).project_no = proj_no THEN
 IF new_title IS NOT NULL THEN
 my_projects(i).title := new_title;
 END IF;
 IF new_cost IS NOT NULL THEN
 my_projects(i).cost := new_cost;
 END IF;
 EXIT;
 END IF;
 END LOOP;
 UPDATE department SET projects = my_projects
 WHERE dept_no = dept_id;
END update_project;

Manipulating Local Collections
Within PL/SQL, to manipulate a local collection, use the operators TABLE and

CAST. The operands of CAST are a collection declared locally (in a PL/SQL

anonymous block for example) and a SQL collection type. CAST converts the local

collection to the specified type. That way, you can manipulate the collection as if it

were a SQL database table. In the following example, you count the number of

differences between a revised course list and the original (notice that the number of

credits for course 3720 changed from 4 to 3):

DECLARE
 revised CourseList :=
 CourseList(Course(1002, ’Expository Writing’, 3),
 Course(2020, ’Film and Literature’, 4),
 Course(2810, ’Discursive Writing’, 4),
 Course(3010, ’Modern English Grammar ’, 3),
 Course(3550, ’Realism and Naturalism’, 4),

Using Collection Methods

Collections and Records 4-21

 Course(3720, ’Introduction to Shakespeare’, 3),
 Course(3760, ’Modern Drama’, 4),
 Course(3822, ’The Short Story’, 4),
 Course(3870, ’The American Novel’, 5),
 Course(4210, ’20th-Century Poetry’, 4),
 Course(4725, ’Advanced Workshop in Poetry’, 5));
 num_changed INTEGER;
BEGIN
 SELECT COUNT(*) INTO num_changed
 FROM TABLE(CAST(revised AS CourseList)) AS new,
 TABLE(SELECT courses FROM department
 WHERE name = ’English’) AS old
 WHERE new.course_no = old.course_no AND
 (new.title != old.title OR new.credits != old.credits);
 DBMS_OUTPUT.PUT_LINE(num_changed);
END;

Using Collection Methods
The following collection methods help generalize code, make collections easier to

use, and make your applications easier to maintain:

EXISTS

COUNT

LIMIT

FIRST and LAST

PRIOR and NEXT

EXTEND

TRIM

DELETE

A collection method is a built-in function or procedure that operates on collections

and is called using dot notation. The syntax follows:

collection_name.method_name[(parameters)]

Collection methods cannot be called from SQL statements. Also, EXTEND and TRIM
cannot be used with index-by tables. EXISTS, COUNT, LIMIT , FIRST, LAST, PRIOR,

and NEXT are functions; EXTEND, TRIM, and DELETE are procedures. EXISTS,

PRIOR, NEXT, TRIM, EXTEND, and DELETE take integer parameters.

Only EXISTS can be applied to atomically null collections. If you apply another

method to such collections, PL/SQL raises COLLECTION_IS_NULL.

Using Collection Methods

4-22 PL/SQL User’s Guide and Reference

Using EXISTS
EXISTS(n) returns TRUE if the nth element in a collection exists. Otherwise,

EXISTS(n) returns FALSE. Mainly, you use EXISTS with DELETE to maintain

sparse nested tables. You can also use EXISTS to avoid raising an exception when

you reference a nonexistent element. In the following example, PL/SQL executes

the assignment statement only if element i exists:

IF courses.EXISTS(i) THEN courses(i) := new_course; END IF;

When passed an out-of-range subscript, EXISTS returns FALSE instead of raising

SUBSCRIPT_OUTSIDE_LIMIT.

Using COUNT
COUNT returns the number of elements that a collection currently contains. For

instance, if varray projects contains 15 elements, the following IF condition is

true:

IF projects.COUNT = 25 THEN ...

COUNT is useful because the current size of a collection is not always known. For

example, if you fetch a column of Oracle data into a nested table, how many

elements does the table contain? COUNT gives you the answer.

You can use COUNT wherever an integer expression is allowed. In the next example,

you use COUNT to specify the upper bound of a loop range:

FOR i IN 1..courses.COUNT LOOP ...

For varrays, COUNT always equals LAST. For nested tables, COUNT normally equals

LAST. But, if you delete elements from the middle of a nested table, COUNTbecomes

smaller than LAST.

When tallying elements, COUNT ignores deleted elements.

Using LIMIT
For nested tables, which have no maximum size, LIMIT returns NULL. For varrays,

LIMIT returns the maximum number of elements that a varray can contain (which

you must specify in its type definition). For instance, if the maximum size of varray

projects is 25 elements, the following IF condition is true:

IF projects.LIMIT = 25 THEN ...

Using Collection Methods

Collections and Records 4-23

You can use LIMIT wherever an integer expression is allowed. In the following

example, you use LIMIT to determine if you can add 15 more elements to varray

projects :

IF (projects.COUNT + 15) < projects.LIMIT THEN ...

Using FIRST and LAST
FIRST and LAST return the first and last (smallest and largest) index numbers in a

collection. If the collection is empty, FIRST and LAST return NULL. If the collection

contains only one element, FIRST and LAST return the same index number, as the

following example shows:

IF courses.FIRST = courses.LAST THEN ... -- only one element

The next example shows that you can use FIRST and LAST to specify the lower and

upper bounds of a loop range provided each element in that range exists:

FOR i IN courses.FIRST..courses.LAST LOOP ...

In fact, you can use FIRST or LAST wherever an integer expression is allowed. In

the following example, you use FIRST to initialize a loop counter:

i := courses.FIRST;
WHILE i IS NOT NULL LOOP ...

For varrays, FIRST always returns 1 and LAST always equals COUNT. For nested

tables, FIRST normally returns 1. But, if you delete elements from the beginning of

a nested table, FIRST returns a number larger than 1. Also for nested tables, LAST
normally equals COUNT. But, if you delete elements from the middle of a nested

table, LAST becomes larger than COUNT.

When scanning elements, FIRST and LAST ignore deleted elements.

Using PRIOR and NEXT
PRIOR(n) returns the index number that precedes index n in a collection. NEXT(n)
returns the index number that succeeds index n. If n has no predecessor, PRIOR(n)
returns NULL. Likewise, if n has no successor, NEXT(n) returns NULL.

PRIOR and NEXT do not wrap from one end of a collection to the other. For

example, the following statement assigns NULL to n because the first element in a

collection has no predecessor:

n := courses.PRIOR(courses.FIRST); -- assigns NULL to n

Using Collection Methods

4-24 PL/SQL User’s Guide and Reference

PRIOR is the inverse of NEXT. For instance, if element i exists, the following

statement assigns element i to itself:

projects(i) := projects.PRIOR(projects.NEXT(i));

You can use PRIOR or NEXT to traverse collections indexed by any series of

subscripts. In the following example, you use NEXT to traverse a nested table from

which some elements have been deleted:

i := courses.FIRST; -- get subscript of first element
WHILE i IS NOT NULL LOOP
 -- do something with courses(i)
 i := courses.NEXT(i); -- get subscript of next element
END LOOP;

When traversing elements, PRIOR and NEXT ignore deleted elements.

Using EXTEND
To increase the size of a collection, use EXTEND. (You cannot use EXTEND with

index-by tables.) This procedure has three forms. EXTENDappends one null element

to a collection. EXTEND(n) appends n null elements to a collection. EXTEND(n,i)
appends n copies of the i th element to a collection. For example, the following

statement appends 5 copies of element 1 to nested table courses :

courses.EXTEND(5,1);

You cannot use EXTEND to initialize an atomically null collection. Also, if you

impose the NOT NULL constraint on a TABLE or VARRAY type, you cannot apply the

first two forms of EXTEND to collections of that type.

EXTEND operates on the internal size of a collection, which includes any deleted

elements. So, if EXTEND encounters deleted elements, it includes them in its tally.

PL/SQL keeps placeholders for deleted elements so that you can replace them if

you wish. Consider the following example:

DECLARE
 TYPE CourseList IS TABLE OF VARCHAR2(10);
 courses CourseList;
BEGIN
 courses := CourseList(’Biol 4412’, ’Psyc 3112’, ’Anth 3001’);
 courses.DELETE(3); -- delete element 3
 /* PL/SQL keeps a placeholder for element 3. So, the
 next statement appends element 4, not element 3. */

Using Collection Methods

Collections and Records 4-25

 courses.EXTEND; -- append one null element
 /* Now element 4 exists, so the next statement does
 not raise SUBSCRIPT_BEYOND_COUNT. */
 courses(4) := ’Engl 2005’;

When it includes deleted elements, the internal size of a nested table differs from

the values returned by COUNTand LAST. For instance, if you initialize a nested table

with five elements, then delete elements 2 and 5, the internal size is 5, COUNT
returns 3, and LAST returns 4. All deleted elements (whether leading, in the middle,

or trailing) are treated alike.

Using TRIM
This procedure has two forms. TRIM removes one element from the end of a

collection. TRIM(n) removes n elements from the end of a collection. For example,

this statement removes the last three elements from nested table courses :

courses.TRIM(3);

If n is greater than COUNT, TRIM(n) raises SUBSCRIPT_BEYOND_COUNT.

TRIM operates on the internal size of a collection. So, if TRIM encounters deleted

elements, it includes them in its tally. Consider the following example:

DECLARE
 TYPE CourseList IS TABLE OF VARCHAR2(10);
 courses CourseList;
BEGIN
 courses := CourseList(’Biol 4412’, ’Psyc 3112’, ’Anth 3001’);
 courses.DELETE(courses.LAST); -- delete element 3
 /* At this point, COUNT equals 2, the number of valid
 elements remaining. So, you might expect the next
 statement to empty the nested table by trimming
 elements 1 and 2. Instead, it trims valid element 2
 and deleted element 3 because TRIM includes deleted
 elements in its tally. */
 courses.TRIM(courses.COUNT);
 DBMS_OUTPUT.PUT_LINE(courses(1)); -- prints ’Biol 4412’

In general, do not depend on the interaction between TRIM and DELETE. It is better

to treat nested tables like fixed-size arrays and use only DELETE, or to treat them

like stacks and use only TRIM and EXTEND.

PL/SQL does not keep placeholders for trimmed elements. So, you cannot replace a

trimmed element simply by assigning it a new value.

Using Collection Methods

4-26 PL/SQL User’s Guide and Reference

Using DELETE
This procedure has three forms. DELETE removes all elements from a collection.

DELETE(n) removes the nth element from an index-by table or nested table. If n is

null, DELETE(n) does nothing. DELETE(m,n) removes all elements in the range

m..n from an index-by table or nested table. If m is larger than n or if m or n is null,

DELETE(m,n) does nothing. Some examples follow:

BEGIN
 ...
 courses.DELETE(2); -- deletes element 2
 courses.DELETE(7,7); -- deletes element 7
 courses.DELETE(6,3); -- does nothing
 courses.DELETE(3,6); -- deletes elements 3 through 6
 projects.DELETE; -- deletes all elements
END;

Varrays are dense, so you cannot delete their individual elements.

If an element to be deleted does not exist, DELETE simply skips it; no exception is

raised. PL/SQL keeps placeholders for deleted elements. So, you can replace a

deleted element simply by assigning it a new value.

DELETE allows you to maintain sparse nested tables. In the following example, you

retrieve nested table prospects into a temporary table, prune it, then store it back

in the database:

DECLARE
 my_prospects ProspectList;
 revenue NUMBER;
BEGIN
 SELECT prospects INTO my_prospects FROM customers WHERE ...
 FOR i IN my_prospects.FIRST..my_prospects.LAST LOOP
 estimate_revenue(my_prospects(i), revenue); -- call procedure
 IF revenue < 25000 THEN
 my_prospects.DELETE(i);
 END IF;
 END LOOP;
 UPDATE customers SET prospects = my_prospects WHERE ...

The amount of memory allocated to a nested table can increase or decrease

dynamically. As you delete elements, memory is freed page by page. If you delete

the entire table, all the memory is freed.

Avoiding Collection Exceptions

Collections and Records 4-27

Applying Methods to Collection Parameters
Within a subprogram, a collection parameter assumes the properties of the

argument bound to it. So, you can apply the built-in collection methods (FIRST,

LAST, COUNT, and so on) to such parameters. In the following example, a nested

table is declared as the formal parameter of a packaged procedure:

CREATE PACKAGE personnel AS
 TYPE Staff IS TABLE OF Employee;
 ...
 PROCEDURE award_bonuses (members IN Staff);
END personnel;
CREATE PACKAGE BODY personnel AS
 ...
 PROCEDURE award_bonuses (members IN Staff) IS
 BEGIN
 ...
 IF members.COUNT > 10 THEN -- apply method
 ...
 END IF;
 END;
END personnel;

Note: For varray parameters, the value of LIMIT is always derived from the

parameter type definition, regardless of the parameter mode.

Avoiding Collection Exceptions
In most cases, if you reference a nonexistent collection element, PL/SQL raises a

predefined exception. Consider the following example:

DECLARE
 TYPE NumList IS TABLE OF NUMBER;
 nums NumList; -- atomically null
BEGIN
 /* Assume execution continues despite the raised exceptions. */
 nums(1) := 1; -- raises COLLECTION_IS_NULL (1)
 nums := NumList(1,2); -- initialize table
 nums(NULL) := 3 -- raises VALUE_ERROR (2)
 nums(0) := 3; -- raises SUBSCRIPT_OUTSIDE_LIMIT (3)
 nums(3) := 3; -- raises SUBSCRIPT_BEYOND_COUNT (4)
 nums.DELETE(1); -- delete element 1
 IF nums(1) = 1 THEN ... -- raises NO_DATA_FOUND (5)

Avoiding Collection Exceptions

4-28 PL/SQL User’s Guide and Reference

In the first case, the nested table is atomically null. In the second case, the subscript

is null. In the third case, the subscript is outside the legal range. In the fourth case,

the subscript exceeds the number of elements in the table. In the fifth case, the

subscript designates a deleted element.

The following list shows when a given exception is raised:

In some cases, you can pass "invalid" subscripts to a method without raising an

exception. For instance, when you pass a null subscript to procedure DELETE, it
does nothing. Also, you can replace deleted elements without raising NO_DATA_
FOUND, as the following example shows:

DECLARE
 TYPE NumList IS TABLE OF NUMBER;
 nums NumList := NumList(10,20,30); -- initialize table
BEGIN
 ...
 nums.DELETE(-1); -- does not raise SUBSCRIPT_OUTSIDE_LIMIT
 nums.DELETE(3); -- delete 3rd element
 DBMS_OUTPUT.PUT_LINE(nums.COUNT); -- prints 2
 nums(3) := 30; -- legal; does not raise NO_DATA_FOUND
 DBMS_OUTPUT.PUT_LINE(nums.COUNT); -- prints 3
END;

Packaged collection types and local collection types are never compatible. For

example, suppose you want to call the following packaged procedure:

CREATE PACKAGE pkg1 AS
 TYPE NumList IS VARRAY(25) OF NUMBER(4);
 PROCEDURE delete_emps (emp_list NumList);
 ...
END pkg1;

Exception Raised when ...

COLLECTION_IS_NULL you try to operate on an atomically null collection

NO_DATA_FOUND a subscript designates an element that was deleted

SUBSCRIPT_BEYOND_COUNTa subscript exceeds the number of elements in a collection

SUBSCRIPT_OUTSIDE_LIMIT a subscript is outside the legal range

VALUE_ERROR a subscript is null or not convertible to an integer

Taking Advantage of Bulk Binds

Collections and Records 4-29

CREATE PACKAGE BODY pkg1 AS
 PROCEDURE delete_emps (emp_list NumList) IS ...
 ...
END pkg1;

When you run the PL/SQL block below, the second procedure call fails with a

wrong number or types of arguments error. That is because the packaged and local

VARRAY types are incompatible even though their definitions are identical.

DECLARE
 TYPE NumList IS VARRAY(25) OF NUMBER(4);
 emps pkg1.NumList := pkg1.NumList(7369, 7499);
 emps2 NumList := NumList(7521, 7566);
BEGIN
 pkg1.delete_emps(emps);
 pkg1.delete_emps(emps2); -- causes a compilation error
END;

Taking Advantage of Bulk Binds
Embedded in the Oracle RDBMS, the PL/SQL engine accepts any valid PL/SQL

block or subprogram. As Figure 4–3 shows, the PL/SQL engine executes procedural

statements but sends SQL statements to the SQL engine, which executes the SQL

statements and, in some cases, returns data to the PL/SQL engine.

Figure 4–3 Context Switching

PL/SQL Engine

Procedural
Statement
ExecutorPL/SQL

Block
SQL

procedural

d
a
t
a

SQL Statement Executor

SQL Engine

Taking Advantage of Bulk Binds

4-30 PL/SQL User’s Guide and Reference

Each context switch between the PL/SQL and SQL engines adds to overhead. So, if

many switches are required, performance suffers. That can happen when SQL

statements execute inside a loop using collection (index-by table, nested table,

varray, or host array) elements as bind variables. For example, the following

DELETE statement is sent to the SQL engine with each iteration of the FOR loop:

DECLARE
 TYPE NumList IS VARRAY(20) OF NUMBER;
 depts NumList := NumList(10, 30, 70); -- department numbers
BEGIN
 ...
 FOR i IN depts.FIRST..depts.LAST LOOP
 DELETE FROM emp WHERE deptno = depts(i);
 END LOOP;
END;

In such cases, if the SQL statement affects four or more database rows, the use of

bulk binds can improve performance considerably.

How Do Bulk Binds Improve Performance?
The assigning of values to PL/SQL variables in SQL statements is called binding.

The binding of an entire collection at once is called bulk binding. Bulk binds improve

performance by minimizing the number of context switches between the PL/SQL

and SQL engines. With bulk binds, entire collections, not just individual elements,

are passed back and forth. For example, the following DELETE statement is sent to

the SQL engine just once, with an entire nested table:

DECLARE
 TYPE NumList IS VARRAY(20) OF NUMBER;
 depts NumList := NumList(10, 30, 70); -- department numbers
BEGIN
 ...
 FORALL i IN depts.FIRST..depts.LAST
 DELETE FROM emp WHERE deptno = depts(i);
END;

In the example below, 5000 part numbers and names are loaded into index-by

tables. Then, all table elements are inserted into a database table twice. First, they

are inserted using a FOR loop, which completes in 32 seconds. Then, they are

bulk-inserted using a FORALL statement, which completes in only 3 seconds.

Taking Advantage of Bulk Binds

Collections and Records 4-31

SQL> SET SERVEROUTPUT ON
SQL> CREATE TABLE parts (pnum NUMBER(4), pname CHAR(15));

Table created.

SQL> GET test.sql
 1 DECLARE
 2 TYPE NumTab IS TABLE OF NUMBER(4) INDEX BY BINARY_INTEGER;
 3 TYPE NameTab IS TABLE OF CHAR(15) INDEX BY BINARY_INTEGER;
 4 pnums NumTab;
 5 pnames NameTab;
 6 t1 NUMBER(5);
 7 t2 NUMBER(5);
 8 t3 NUMBER(5);
 9 PROCEDURE get_time (t OUT NUMBER) IS
10 BEGIN SELECT TO_CHAR(SYSDATE,’SSSSS’) INTO t FROM dual; END;
11 BEGIN
12 FOR j IN 1..5000 LOOP -- load index-by tables
13 pnums(j) := j;
14 pnames(j) := ’Part No. ’ || TO_CHAR(j);
15 END LOOP;
16 get_time(t1);
17 FOR i IN 1..5000 LOOP -- use FOR loop
18 INSERT INTO parts VALUES (pnums(i), pnames(i));
19 END LOOP;
20 get_time(t2);
21 FORALL i IN 1..5000 -- use FORALL statement
22 INSERT INTO parts VALUES (pnums(i), pnames(i));
23 get_time(t3);
24 DBMS_OUTPUT.PUT_LINE(’Execution Time (secs)’);
25 DBMS_OUTPUT.PUT_LINE(’---------------------’);
26 DBMS_OUTPUT.PUT_LINE(’FOR loop: ’ || TO_CHAR(t2 - t1));
27 DBMS_OUTPUT.PUT_LINE(’FORALL: ’ || TO_CHAR(t3 - t2));
28* END;
SQL> /
Execution Time (secs)

FOR loop: 32
FORALL: 3

PL/SQL procedure successfully completed.

To bulk-bind input collections, you use the FORALL statement. To bulk-bind output

collections, you use the BULK COLLECT clause.

Using the FORALL Statement

4-32 PL/SQL User’s Guide and Reference

Using the FORALL Statement
The keyword FORALL instructs the PL/SQL engine to bulk-bind input collections

before sending them to the SQL engine. Although the FORALL statement contains

an iteration scheme, it is not a FOR loop. Its syntax follows:

FORALL index IN lower_bound..upper_bound
 sql_statement;

The index can be referenced only within the FORALL statement and only as a

collection subscript. The SQL statement must be an INSERT, UPDATE, or DELETE
statement that references collection elements. And, the bounds must specify a valid

range of consecutive index numbers. The SQL engine executes the SQL statement

once for each index number in the range. As the following example shows, you can

use the bounds to bulk-bind arbitrary slices of a collection:

DECLARE
 TYPE NumList IS VARRAY(15) OF NUMBER;
 depts NumList := NumList();
BEGIN
 -- fill varray here
 ...
 FORALL j IN 6..10 -- bulk-bind middle third of varray
 UPDATE emp SET sal = sal * 1.10 WHERE deptno = depts(j);
END;

The SQL statement can reference more than one collection. However, the PL/SQL

engine bulk-binds only subscripted collections. So, in the following example, it does

not bulk-bind the collection sals , which is passed to the function median :

FORALL i IN 1..20
 INSERT INTO emp2 VALUES (enums(i), names(i), median(sals), ...);

In addition to relational tables, the FORALL statement can manipulate object tables,

as the following example shows:

CREATE TYPE PNum AS OBJECT (n NUMBER);
CREATE TABLE partno OF PNum;

DECLARE
 TYPE NumTab IS TABLE OF NUMBER;
 nums NumTab := NumTab(1, 2, 3, 4);
 TYPE PNumTab IS TABLE OF PNum;
 pnums PNumTab := PNumTab(PNum(1), PNum(2), PNum(3), PNum(4));

Using the FORALL Statement

Collections and Records 4-33

BEGIN
 FORALL i IN pnums.FIRST..pnums.LAST
 INSERT INTO partno VALUES(pnums(i));
 FORALL i IN nums.FIRST..nums.LAST
 DELETE FROM partno WHERE n = 2 * nums(i);
 FORALL i IN nums.FIRST..nums.LAST
 INSERT INTO partno VALUES(100 + nums(i));
END;

Rollback Behavior of FORALL
In a FORALL statement, if any execution of the SQL statement raises an unhandled

exception, all database changes made during previous executions are rolled back.

However, if a raised exception is caught and handled, changes are rolled back to an

implicit savepoint marked before each execution of the SQL statement. Changes

made during previous executions are not rolled back. For example, suppose you

create a database table that stores department numbers and job titles, as follows:

CREATE TABLE emp2 (deptno NUMBER(2), job VARCHAR2(15));

Next, you insert some rows into the table, as follows:

INSERT INTO emp2 VALUES(10, ’Clerk’);
INSERT INTO emp2 VALUES(10, ’Clerk’);
INSERT INTO emp2 VALUES(20, ’Bookkeeper’); -- 10-char job title
INSERT INTO emp2 VALUES(30, ’Analyst’);
INSERT INTO emp2 VALUES(30, ’Analyst’);

Then, you try to append the 7-character string ’ (temp)’ to certain job titles using

the following UPDATE statement:

DECLARE
 TYPE NumList IS TABLE OF NUMBER;
 depts NumList := NumList(10, 20, 30);
BEGIN
 FORALL j IN depts.FIRST..depts.LAST
 UPDATE emp2 SET job = job || ’ (temp)’
 WHERE deptno = depts(j);
 -- raises a "value too large" exception
EXCEPTION
 WHEN OTHERS THEN
 COMMIT;
END;

Using the FORALL Statement

4-34 PL/SQL User’s Guide and Reference

The SQL engine executes the UPDATE statement three times, once for each index

number in the specified range, that is, once for depts(10) , once for depts(20) ,

and once for depts(30) . The first execution succeeds, but the second execution

fails because the string value ’Bookkeeper (temp)’ is too large for the job
column. In this case, only the second execution is rolled back.

When any execution of the SQL statement raises an exception, the FORALL
statement halts. In our example, the second execution of the UPDATE statement

raises an exception, so the third execution is never done.

Using %BULK_ROWCOUNT
To process SQL data manipulation statements, the SQL engine opens an implicit

cursor named SQL. This cursor’s scalar attributes, %FOUND, %ISOPEN, %NOTFOUND,

and %ROWCOUNT, return useful information about the most recently executed SQL

data manipulation statement.

The SQL cursor has one composite attribute, %BULK_ROWCOUNT, designed for use

with the FORALLstatement. This attribute has the semantics of an index-by table. Its

ith element stores the number of rows processed by the ith execution of an UPDATE
or DELETE statement. If the ith execution affects no rows, %BULK_ROWCOUNT(i)
returns zero. An example follows:

DECLARE
 TYPE NumList IS TABLE OF NUMBER;
 depts NumList := NumList(10, 20, 50);
BEGIN
 FORALL j IN depts.FIRST..depts.LAST
 UPDATE emp SET sal = sal * 1.10 WHERE deptno = depts(j);
 IF SQL%BULK_ROWCOUNT(3) = 0 THEN ...
END;

The FORALL statement and %BULK_ROWCOUNT attribute use the same subscripts.

For example, if FORALL uses the range 5 .. 10, so does %BULK_ROWCOUNT.

%BULK_ROWCOUNT is not maintained for bulk inserts because that would be

redundant. For example, the FORALL statement below inserts one row per

execution. So, after each execution, %BULK_ROWCOUNT would return 1:

FORALL i IN 1..15
 INSERT INTO emp (sal) VALUES (sals(i));

For that reason, referencing %BULK_ROWCOUNT after an insert raises an uninitialized
collection exception.

Using the FORALL Statement

Collections and Records 4-35

You can also use the scalar attributes %FOUND, %NOTFOUND, and %ROWCOUNT with

bulk binds. For example, %ROWCOUNT returns the total number of rows processed

by all executions of the SQL statement.

%FOUND and %NOTFOUND refer only to the last execution of the SQL statement.

However, you can use %BULK_ROWCOUNT to infer their values for individual

executions. For example, when %BULK_ROWCOUNT(i) is zero, %FOUND and

%NOTFOUND are FALSE and TRUE, respectively.

Restrictions on FORALL
The following restrictions apply to the FORALL statement:

■ You can use the FORALL statement only in server-side programs (not in

client-side programs). Otherwise, you get the error this feature is not supported in
client-side programs.

■ The INSERT, UPDATE, or DELETE statement must reference at least one

collection. Consider the following example:

CREATE TABLE pairs (n NUMBER, m NUMBER);

DECLARE
 TYPE NumTab IS TABLE OF NUMBER;
 nums NumTab := NumTab(1, 2, 3);
BEGIN
 FORALL j IN nums.FIRST..nums.LAST
 INSERT INTO pairs VALUES(nums(i), 10); -- works
 FORALL j IN 1..3
 INSERT INTO pairs VALUES(5, 10); -- raises an exception
END;

■ All collection elements in the specified range must exist. If an element is

missing or was deleted, you get an error. An example follows:

DECLARE
 TYPE NumList IS TABLE OF NUMBER;
 depts NumList := NumList(10, 20, 30, 40);
BEGIN
 depts.DELETE(3); -- delete third element
 FORALL i IN depts.FIRST..depts.LAST
 DELETE FROM emp WHERE deptno = depts(i); -- causes an error
END;

Using the FORALL Statement

4-36 PL/SQL User’s Guide and Reference

■ As the following example shows, input collections of composite values cannot

be decomposed and bound to database columns:

CREATE TABLE coords (x NUMBER, y NUMBER);
CREATE TYPE Pair AS OBJECT (m NUMBER, n NUMBER);

DECLARE
 TYPE PairTab IS TABLE OF Pair;
 pairs PairTab := PairTab(Pair(1,2), Pair(3,4), Pair(5,6));
 TYPE NumTab IS TABLE OF NUMBER;
 nums NumTab := NumTab(1, 2, 3);
BEGIN
 /* The following statement fails. */
 FORALL i IN 1..3
 UPDATE coords SET (x, y) = pairs(i)
 WHERE x = nums(i);
END;

The workaround is to decompose the composite values manually:

DECLARE
 TYPE PairTab IS TABLE OF Pair;
 pairs PairTab := PairTab(Pair(1,2), Pair(3,4), Pair(5,6));
 TYPE NumTab IS TABLE OF NUMBER;
 nums NumTab := NumTab(1, 2, 3);
BEGIN
 /* The following statement succeeds. */
 FORALL i in 1..3
 UPDATE coords SET (x, y) = (pairs(i).m, pairs(i).n)
 WHERE x = nums(i);
END;

■ Collection subscripts cannot be expressions, as the following example shows:

FORALL j IN mgrs.FIRST..mgrs.LAST
 DELETE FROM emp WHERE mgr = mgrs(j+1); -- illegal subscript

■ The cursor attribute %BULK_ROWCOUNT cannot be assigned to other collections.

Also, it cannot be passed as a parameter to subprograms.

Using the BULK COLLECT Clause

Collections and Records 4-37

Using the BULK COLLECT Clause
The keywords BULK COLLECT tell the SQL engine to bulk-bind output collections

before returning them to the PL/SQL engine. You can use these keywords in the

SELECT INTO, FETCH INTO, and RETURNING INTO clauses. Here is the syntax:

... BULK COLLECT INTO collection_name[, collection_name] ...

The SQL engine bulk-binds all collections referenced in the INTO list. The

corresponding columns can store scalar or composite values including objects. In

the following example, the SQL engine loads the entire empno and ename database

columns into nested tables before returning the tables to the PL/SQL engine:

DECLARE
 TYPE NumTab IS TABLE OF emp.empno%TYPE;
 TYPE NameTab IS TABLE OF emp.ename%TYPE;
 enums NumTab; -- no need to initialize
 names NameTab;
BEGIN
 SELECT empno, ename BULK COLLECT INTO enums, names FROM emp;
 ...
END;

In the next example, the SQL engine loads all the values in an object column into a

nested table before returning the table to the PL/SQL engine:

CREATE TYPE Coords AS OBJECT (x NUMBER, y NUMBER);
CREATE TABLE grid (num NUMBER, loc Coords);
INSERT INTO grid VALUES(10, Coords(1,2));
INSERT INTO grid VALUES(20, Coords(3,4));

DECLARE
 TYPE CoordsTab IS TABLE OF Coords;
 pairs CoordsTab;
BEGIN
 SELECT loc BULK COLLECT INTO pairs FROM grid;
 -- now pairs contains (1,2) and (3,4)
END;

Using the BULK COLLECT Clause

4-38 PL/SQL User’s Guide and Reference

The SQL engine initializes and extends collections for you. (However, it cannot

extend varrays beyond their maximum size.) Then, starting at index 1, it inserts

elements consecutively and overwrites any pre-existent elements.

The SQL engine bulk-binds entire database columns. So, if a table has 50,000 rows,

the engine loads 50,000 column values into the target collection. However, you can

use the pseudocolumn ROWNUM to limit the number of rows processed. In the

following example, you limit the number of rows to 100:

DECLARE
 TYPE SalList IS TABLE OF emp.sal%TYPE;
 sals SalList;
 ...
BEGIN
 SELECT sal BULK COLLECT INTO sals FROM emp
 WHERE ROWNUM <= 100;
 ...
END;

Bulk Fetches
The following example shows that you can bulk-fetch from a cursor into one or

more collections:

DECLARE
 TYPE NameList IS TABLE OF emp.ename%TYPE;
 TYPE SalList IS TABLE OF emp.sal%TYPE;
 CURSOR c1 IS SELECT ename, sal FROM emp WHERE sal > 1000;
 names NameList;
 sals SalList;
 ...
BEGIN
 OPEN c1;
 FETCH c1 BULK COLLECT INTO names, sals;
 ...
END;

Using the BULK COLLECT Clause

Collections and Records 4-39

Using the LIMIT Clause
The optional LIMIT clause, allowed only in bulk (not scalar) FETCH statements, lets

you limit the number of rows fetched from the database. The syntax is

FETCH ... BULK COLLECT INTO ... [LIMIT rows];

where rows can be a literal, variable, or expression but must evaluate to a number.

Otherwise, PL/SQL raises the predefined exception VALUE_ERROR. If the number is

not positive, PL/SQL raises INVALID_NUMBER. If necessary, PL/SQL rounds the

number to the nearest integer.

In the example below, with each iteration of the loop, the FETCH statement fetches

ten rows (or less) into index-by table empnos. The previous values are overwritten.

DECLARE
 TYPE NumTab IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;
 CURSOR c1 IS SELECT empno FROM emp;
 empnos NumTab;
 rows NATURAL := 10;
BEGIN
 OPEN c1;
 LOOP
 /* The following statement fetches 10 rows (or less). */
 FETCH c1 BULK COLLECT INTO empnos LIMIT rows;
 EXIT WHEN c1%NOTFOUND;
 ...
 END LOOP;
 CLOSE c1;
END;

Bulk Returns
You can use the BULK COLLECT clause in the RETURNING INTO clause of an

INSERT, UPDATE, or DELETE statement, as the following example shows:

DECLARE
 TYPE NumList IS TABLE OF emp.empno%TYPE;
 enums NumList;
BEGIN
 DELETE FROM emp WHERE deptno = 20
 RETURNING empno BULK COLLECT INTO enums;
 -- if there were five employees in department 20,
 -- then enums contains five employee numbers
END;

Using the BULK COLLECT Clause

4-40 PL/SQL User’s Guide and Reference

Restrictions on BULK COLLECT
The following restrictions apply to the BULK COLLECT clause:

■ You can use the BULK COLLECT clause only in server-side programs (not in

client-side programs). Otherwise, you get the error this feature is not supported in
client-side programs.

■ All targets in a BULK COLLECT INTO clause must be collections, as the

following example shows:

DECLARE
 TYPE NameList IS TABLE OF emp.ename%TYPE;
 names NameList;
 salary emp.sal%TYPE;
BEGIN
 SELECT ename, sal BULK COLLECT INTO names, salary -- illegal target
 FROM emp WHERE ROWNUM < 50;
 ...
END;

■ You cannot bulk-fetch from a cursor into a collection of records, as the following

example shows:

DECLARE
 TYPE DeptRecTab IS TABLE OF dept%ROWTYPE;
 dept_recs DeptRecTab;
 CURSOR c1 IS
 SELECT deptno, dname, loc FROM dept WHERE deptno > 10;
BEGIN
 OPEN c1;
 FETCH c1 BULK COLLECT INTO dept_recs; -- illegal
 ...
END;

■ Composite targets (such as objects) cannot be used in the RETURNING INTO
clause. Otherwise, you get the error unsupported feature with RETURNING clause.

■ When implicit datatype conversions are needed, multiple composite targets

cannot be used in the BULK COLLECT INTO clause.

■ When an implicit datatype conversion is needed, a collection of a composite

target (such as a collection of objects) cannot be used in the BULK COLLECT
INTO clause.

Using Host Arrays

Collections and Records 4-41

Using FORALL and BULK COLLECT Together
You can combine the BULK COLLECT clause with a FORALL statement, in which

case, the SQL engine bulk-binds column values incrementally. In the following

example, if collection depts has 3 elements, each of which causes 5 rows to be

deleted, then collection enums has 15 elements when the statement completes:

FORALL j IN depts.FIRST..depts.LAST
 DELETE FROM emp WHERE empno = depts(j)
 RETURNING empno BULK COLLECT INTO enums;

The column values returned by each execution are added to the values returned

previously. (With a FOR loop, the previous values are overwritten.)

You cannot use the SELECT ... BULK COLLECT statement in a FORALL statement.

Otherwise, you get the error implementation restriction: cannot use FORALL and BULK
COLLECT INTO together in SELECT statements.

Using Host Arrays
Client-side programs can use anonymous PL/SQL blocks to bulk-bind input and

output host arrays. In fact, that is the most efficient way to pass collections to and

from the database server.

Host arrays are declared in a host environment such as an OCI or Pro*C program

and must be prefixed with a colon to distinguish them from PL/SQL collections. In

the example below, an input host array is used in a DELETE statement. At run time,

the anonymous PL/SQL block is sent to the database server for execution.

DECLARE
 ...
BEGIN
 -- assume that values were assigned to the host array
 -- and host variables in the host environment
 FORALL i IN :lower..:upper
 DELETE FROM emp WHERE deptno = :depts(i);
 ...
END;

What Is a Record?

4-42 PL/SQL User’s Guide and Reference

What Is a Record?
A record is a group of related data items stored in fields, each with its own name and

datatype. Suppose you have various data about an employee such as name, salary,

and hire date. These items are logically related but dissimilar in type. A record

containing a field for each item lets you treat the data as a logical unit. Thus, records

make it easier to organize and represent information.

The attribute %ROWTYPE lets you declare a record that represents a row in a

database table. However, you cannot specify the datatypes of fields in the record or

declare fields of your own. The datatype RECORDlifts those restrictions and lets you

define your own records.

Defining and Declaring Records
To create records, you define a RECORD type, then declare records of that type. You

can define RECORD types in the declarative part of any PL/SQL block, subprogram,

or package using the syntax

TYPE type_name IS RECORD (field_declaration[,field_declaration]...);

where field_declaration stands for

field_name field_type [[NOT NULL] {:= | DEFAULT} expression]

and where type_name is a type specifier used later to declare records, field_
type is any PL/SQL datatype except REF CURSOR, and expression yields a value

of the same type as field_type .

Note: Unlike VARRAY and (nested) TABLE types, RECORD types cannot be CREATEd
and stored in the database.

You can use %TYPE and %ROWTYPE to specify field types. In the following example,

you define a RECORD type named DeptRec :

DECLARE
 TYPE DeptRec IS RECORD (
 dept_id dept.deptno%TYPE,
 dept_name VARCHAR2(14),
 dept_loc VARCHAR2(13));

Notice that field declarations are like variable declarations. Each field has a unique

name and specific datatype. So, the value of a record is actually a collection of

values, each of some simpler type.

Defining and Declaring Records

Collections and Records 4-43

As the example below shows, PL/SQL lets you define records that contain objects,

collections, and other records (called nested records). However, object types cannot

have attributes of type RECORD.

DECLARE
 TYPE TimeRec IS RECORD (
 seconds SMALLINT,
 minutes SMALLINT,
 hours SMALLINT);
 TYPE FlightRec IS RECORD (
 flight_no INTEGER,
 plane_id VARCHAR2(10),
 captain Employee, -- declare object
 passengers PassengerList, -- declare varray
 depart_time TimeRec, -- declare nested record
 airport_code VARCHAR2(10));

The next example shows that you can specify a RECORD type in the RETURN clause

of a function specification. That allows the function to return a user-defined record

of the same type.

DECLARE
 TYPE EmpRec IS RECORD (
 emp_id NUMBER(4)
 last_name VARCHAR2(10),
 dept_num NUMBER(2),
 job_title VARCHAR2(9),
 salary NUMBER(7,2));
 ...
 FUNCTION nth_highest_salary (n INTEGER) RETURN EmpRec IS ...

Declaring Records
Once you define a RECORD type, you can declare records of that type, as the

following example shows:

DECLARE
 TYPE StockItem IS RECORD (
 item_no INTEGER(3),
 description VARCHAR2(50),
 quantity INTEGER,
 price REAL(7,2));
 item_info StockItem; -- declare record

The identifier item_info represents an entire record.

Initializing and Referencing Records

4-44 PL/SQL User’s Guide and Reference

Like scalar variables, user-defined records can be declared as the formal parameters

of procedures and functions. An example follows:

DECLARE
 TYPE EmpRec IS RECORD (
 emp_id emp.empno%TYPE,
 last_name VARCHAR2(10),
 job_title VARCHAR2(9),
 salary NUMBER(7,2));
 ...
 PROCEDURE raise_salary (emp_info EmpRec);
BEGIN
 ...
END;

Initializing and Referencing Records
The example below shows that you can initialize a record in its type definition.

When you declare a record of type TimeRec , its three fields assume an initial value

of zero.

DECLARE
 TYPE TimeRec IS RECORD (
 secs SMALLINT := 0,
 mins SMALLINT := 0,
 hrs SMALLINT := 0);

The next example shows that you can impose the NOT NULL constraint on any field,

and so prevent the assigning of nulls to that field. Fields declared as NOT NULLmust

be initialized.

DECLARE
 TYPE StockItem IS RECORD (
 item_no INTEGER(3) NOT NULL := 999,
 description VARCHAR2(50),
 quantity INTEGER,
 price REAL(7,2));
 ...
BEGIN
 ...
END;

Initializing and Referencing Records

Collections and Records 4-45

Referencing Records
Unlike elements in a collection, which are accessed using subscripts, fields in a

record are accessed by name. To reference an individual field, use dot notation and

the following syntax:

record_name.field_name

For example, you reference field hire_date in record emp_info as follows:

emp_info.hire_date ...

When calling a function that returns a user-defined record, use the following syntax

to reference fields in the record:

function_name(parameter_list).field_name

For example, the following call to function nth_highest_sal references the field

salary in record emp_info :

DECLARE
 TYPE EmpRec IS RECORD (
 emp_id NUMBER(4),
 job_title VARCHAR2(9),
 salary NUMBER(7,2));
 middle_sal NUMBER(7,2);
 FUNCTION nth_highest_sal (n INTEGER) RETURN EmpRec IS
 emp_info EmpRec;
 BEGIN
 ...
 RETURN emp_info; -- return record
 END;
BEGIN
 middle_sal := nth_highest_sal(10).salary; -- call function

When calling a parameterless function, use the following syntax:

function_name().field_name -- note empty parameter list

To reference nested fields in a record returned by a function, use extended dot

notation. The syntax follows:

function_name(parameter_list).field_name.nested_field_name

Initializing and Referencing Records

4-46 PL/SQL User’s Guide and Reference

For instance, the following call to function item references the nested field

minutes in record item_info :

DECLARE
 TYPE TimeRec IS RECORD (minutes SMALLINT, hours SMALLINT);
 TYPE AgendaItem IS RECORD (
 priority INTEGER,
 subject VARCHAR2(100),
 duration TimeRec);
 FUNCTION item (n INTEGER) RETURN AgendaItem IS
 item_info AgendaItem;
 BEGIN
 ...
 RETURN item_info; -- return record
 END;
BEGIN
 ...
 IF item(3).duration.minutes > 30 THEN ... -- call function
END;

Also, use extended dot notation to reference the attributes of an object stored in a

field, as the following example shows:

DECLARE
 TYPE FlightRec IS RECORD (
 flight_no INTEGER,
 plane_id VARCHAR2(10),
 captain Employee, -- declare object
 passengers PassengerList, -- declare varray
 depart_time TimeRec, -- declare nested record
 airport_code VARCHAR2(10));
 flight FlightRec;
 ...
BEGIN
 ...
 IF flight.captain.name = ’H Rawlins’ THEN ...
END;

Assigning and Comparing Records

Collections and Records 4-47

Assigning and Comparing Records
You can assign the value of an expression to a specific field in a record using the

following syntax:

record_name.field_name := expression;

In the following example, you convert an employee name to upper case:

emp_info.ename := UPPER(emp_info.ename);

Instead of assigning values separately to each field in a record, you can assign

values to all fields at once. This can be done in two ways. First, you can assign one

user-defined record to another if they have the same datatype. Having fields that

match exactly is not enough. Consider the following example:

DECLARE
 TYPE DeptRec IS RECORD (
 dept_num NUMBER(2),
 dept_name VARCHAR2(14),
 location VARCHAR2(13));
 TYPE DeptItem IS RECORD (
 dept_num NUMBER(2),
 dept_name VARCHAR2(14),
 location VARCHAR2(13));
 dept1_info DeptRec;
 dept2_info DeptItem;
BEGIN
 ...
 dept1_info := dept2_info; -- illegal; different datatypes
END;

As the next example shows, you can assign a %ROWTYPE record to a user-defined

record if their fields match in number and order, and corresponding fields have

compatible datatypes:

DECLARE
 TYPE DeptRec IS RECORD (
 dept_num NUMBER(2),
 dept_name VARCHAR2(14),
 location VARCHAR2(13));
 dept1_info DeptRec;
 dept2_info dept%ROWTYPE;

Assigning and Comparing Records

4-48 PL/SQL User’s Guide and Reference

BEGIN
 SELECT * INTO dept2_info FROM dept WHERE deptno = 10;
 dept1_info := dept2_info;
 ...
END;

Second, you can use the SELECT or FETCH statement to fetch column values into a

record, as the example below shows. The columns in the select-list must appear in

the same order as the fields in your record.

DECLARE
 TYPE DeptRec IS RECORD (
 dept_num NUMBER(2),
 dept_name VARCHAR2(14),
 location VARCHAR2(13));
 dept_info DeptRec;
BEGIN
 SELECT deptno, dname, loc INTO dept_info FROM dept
 WHERE deptno = 20;
 ...
END;

However, you cannot use the INSERT statement to insert user-defined records into

a database table. So, the following statement is illegal:

INSERT INTO dept VALUES (dept_info); -- illegal

Also, you cannot assign a list of values to a record using an assignment statement.

Therefore, the following syntax is illegal:

record_name := (value1, value2, value3, ...); -- illegal

The example below shows that you can assign one nested record to another if they

have the same datatype. Such assignments are allowed even if the enclosing records

have different datatypes.

DECLARE
 TYPE TimeRec IS RECORD (mins SMALLINT, hrs SMALLINT);
 TYPE MeetingRec IS RECORD (
 day DATE,
 time_of TimeRec, -- nested record
 room_no INTEGER(4));
 TYPE PartyRec IS RECORD (
 day DATE,
 time_of TimeRec, -- nested record
 place VARCHAR2(25));

Manipulating Records

Collections and Records 4-49

 seminar MeetingRec;
 party PartyRec;
BEGIN
 ...
 party.time_of := seminar.time_of;
END;

Comparing Records
Records cannot be tested for nullity, equality, or inequality. For instance, the

following IF conditions are illegal:

BEGIN
 ...
 IF emp_info IS NULL THEN ... -- illegal
 IF dept2_info > dept1_info THEN ... -- illegal
END;

Manipulating Records
The datatype RECORDlets you collect information about the attributes of something.

The information is easy to manipulate because you can refer to the collection as a

whole. In the following example, you collect accounting figures from database

tables assets and liabilities , then use ratio analysis to compare the

performance of two subsidiary companies:

DECLARE
 TYPE FiguresRec IS RECORD (cash REAL, notes REAL, ...);
 sub1_figs FiguresRec;
 sub2_figs FiguresRec;
 FUNCTION acid_test (figs FiguresRec) RETURN REAL IS ...
BEGIN
 SELECT cash, notes, ... INTO sub1_figs FROM assets, liabilities
 WHERE assets.sub = 1 AND liabilities.sub = 1;
 SELECT cash, notes, ... INTO sub2_figs FROM assets, liabilities
 WHERE assets.sub = 2 AND liabilities.sub = 2;
 IF acid_test(sub1_figs) > acid_test(sub2_figs) THEN ...
 ...
END;

Notice how easy it is to pass the collected figures to the function acid_test , which

computes a financial ratio.

Manipulating Records

4-50 PL/SQL User’s Guide and Reference

In SQL*Plus, suppose you define object type Passenger , as follows:

SQL> CREATE TYPE Passenger AS OBJECT(
 2 flight_no NUMBER(3),
 3 name VARCHAR2(20),
 4 seat CHAR(5));

Next, you define VARRAY type PassengertList , which stores Passenger
objects:

SQL> CREATE TYPE PassengerList AS VARRAY(300) OF Passenger;

Finally, you create relational table flights , which has a column of type

PassengerList , as follows:

SQL> CREATE TABLE flights (
 2 flight_no NUMBER(3),
 3 gate CHAR(5),
 4 departure CHAR(15),
 5 arrival CHAR(15),
 6 passengers PassengerList);

Each item in column passengers is a varray that will store the passenger list for a

given flight. Now, you can populate database table flights , as follows:

BEGIN
 INSERT INTO flights
 VALUES(109, ’80’, ’DFW 6:35PM’, ’HOU 7:40PM’,
 PassengerList(Passenger(109, ’Paula Trusdale’, ’13C’),
 Passenger(109, ’Louis Jemenez’, ’22F’),
 Passenger(109, ’Joseph Braun’, ’11B’), ...));
 INSERT INTO flights
 VALUES(114, ’12B’, ’SFO 9:45AM’, ’LAX 12:10PM’,
 PassengerList(Passenger(114, ’Earl Benton’, ’23A’),
 Passenger(114, ’Alma Breckenridge’, ’10E’),
 Passenger(114, ’Mary Rizutto’, ’11C’), ...));
 INSERT INTO flights
 VALUES(27, ’34’, ’JFK 7:05AM’, ’MIA 9:55AM’,
 PassengerList(Passenger(27, ’Raymond Kiley’, ’34D’),
 Passenger(27, ’Beth Steinberg’, ’3A’),
 Passenger(27, ’Jean Lafevre’, ’19C’), ...));
END;

Manipulating Records

Collections and Records 4-51

In the example below, you fetch rows from database table flights into record

flight_info . That way, you can treat all the information about a flight, including

its passenger list, as a logical unit.

DECLARE
 TYPE FlightRec IS RECORD (
 flight_no NUMBER(3),
 gate CHAR(5),
 departure CHAR(15),
 arrival CHAR(15),
 passengers PassengerList);
 flight_info FlightRec;
 CURSOR c1 IS SELECT * FROM flights;
BEGIN
 OPEN c1;
 LOOP
 FETCH c1 INTO flight_info;
 EXIT WHEN c1%NOTFOUND;
 FOR i IN 1..flight_info.passengers.LAST LOOP
 IF flight_info.passengers(i).seat = ’NA’ THEN
 DBMS_OUTPUT.PUT_LINE(flight_info.passengers(i).name);
 RAISE seat_not_available;
 END IF;
 ...
 END LOOP;
 END LOOP;
 CLOSE c1;
EXCEPTION
 WHEN seat_not_available THEN
 ...
END;

Manipulating Records

4-52 PL/SQL User’s Guide and Reference

Interaction with Oracle 5-1

5
Interaction with Oracle

Knowledge is of two kinds. We know a subject ourselves, or we know where we can find
information upon it. —Samuel Johnson

This chapter helps you harness the power of Oracle. You learn how PL/SQL

supports the SQL commands, functions, and operators that let you manipulate

Oracle data. You also learn how to manage cursors, use cursor variables, and

process transactions.

Major Topics
SQL Support

Managing Cursors

Packaging Cursors

Using Cursor FOR Loops

Using Cursor Variables

Using Cursor Attributes

Processing Transactions

Using Autonomous Transactions

Improving Performance

Ensuring Backward Compatibility

SQL Support

5-2 PL/SQL User’s Guide and Reference

SQL Support
By extending SQL, PL/SQL offers a unique combination of power and ease of use.

You can manipulate Oracle data flexibly and safely because PL/SQL fully supports

all SQL data manipulation statements (except EXPLAIN PLAN), transaction control

statements, functions, pseudocolumns, and operators. PL/SQL also supports

dynamic SQL, which enables you to execute SQL data definition, data control, and

session control statements dynamically (for more information, see Chapter 10,

"Native Dynamic SQL"). In addition, PL/SQL conforms to the current ANSI/ISO

SQL standard.

Data Manipulation
To manipulate Oracle data, you use the INSERT, UPDATE, DELETE, SELECT, and

LOCK TABLE commands. INSERT adds new rows of data to database tables;

UPDATE modifies rows; DELETE removes unwanted rows; SELECT retrieves rows

that meet your search criteria; and LOCK TABLE temporarily limits access to a table.

Transaction Control
Oracle is transaction oriented; that is, Oracle uses transactions to ensure data

integrity. A transaction is a series of SQL data manipulation statements that does a

logical unit of work. For example, two UPDATE statements might credit one bank

account and debit another.

Simultaneously, Oracle makes permanent or undoes all database changes made by a

transaction. If your program fails in the middle of a transaction, Oracle detects the

error and rolls back the transaction. Thus, the database is restored to its former state

automatically.

You use the COMMIT, ROLLBACK, SAVEPOINT, and SET TRANSACTION commands

to control transactions. COMMIT makes permanent any database changes made

during the current transaction. ROLLBACK ends the current transaction and undoes

any changes made since the transaction began. SAVEPOINTmarks the current point

in the processing of a transaction. Used with ROLLBACK, SAVEPOINT undoes part

of a transaction. SET TRANSACTION sets transaction properties such as read/write

access and isolation level.

SQL Support

Interaction with Oracle 5-3

SQL Functions
PL/SQL lets you use all the SQL functions including the following aggregate

functions, which summarize entire columns of Oracle data: AVG, COUNT, GROUPING,
MAX, MIN, STDDEV, SUM, and VARIANCE. Except for COUNT(*) , all aggregate

functions ignore nulls.

You can use the aggregate functions in SQL statements, but not in procedural

statements. Aggregate functions operate on entire columns unless you use the

SELECT GROUP BY statement to sort returned rows into subgroups. If you omit the

GROUP BY clause, the aggregate function treats all returned rows as a single group.

You call an aggregate function using the syntax

function_name([ALL | DISTINCT] expression)

where expression refers to one or more database columns. If you specify ALL (the

default), the aggregate function considers all column values including duplicates. If

you specify DISTINCT , the aggregate function considers only distinct values. For

example, the following statement returns the number of different job titles in the

database table emp:

SELECT COUNT(DISTINCT job) INTO job_count FROM emp;

The function COUNT lets you use the asterisk (*) row operator, which returns the

number of rows in a table. For example, the following statement returns the number

of rows in table emp:

SELECT COUNT(*) INTO emp_count FROM emp;

SQL Pseudocolumns
PL/SQL recognizes the following SQL pseudocolumns, which return specific data

items: CURRVAL, LEVEL, NEXTVAL, ROWID, and ROWNUM. Pseudocolumns are not

actual columns in a table but they behave like columns. For example, you can select

values from a pseudocolumn. However, you cannot insert into, update, or delete

from a pseudocolumn. Also, pseudocolumns are allowed in SQL statements, but not
in procedural statements.

CURRVAL and NEXTVAL
A sequence is a schema object that generates sequential numbers. When you create a

sequence, you can specify its initial value and an increment. CURRVAL returns the

current value in a specified sequence.

SQL Support

5-4 PL/SQL User’s Guide and Reference

Before you can reference CURRVAL in a session, you must use NEXTVAL to generate

a number. A reference to NEXTVALstores the current sequence number in CURRVAL.
NEXTVAL increments the sequence and returns the next value. To obtain the current

or next value in a sequence, you must use dot notation, as follows:

sequence_name.CURRVAL
sequence_name.NEXTVAL

After creating a sequence, you can use it to generate unique sequence numbers for

transaction processing. However, you can use CURRVAL and NEXTVAL only in a

SELECT list, the VALUES clause, and the SET clause. In the following example, you

use a sequence to insert the same employee number into two tables:

INSERT INTO emp VALUES (empno_seq.NEXTVAL, my_ename, ...);
INSERT INTO sals VALUES (empno_seq.CURRVAL, my_sal, ...);

If a transaction generates a sequence number, the sequence is incremented

immediately whether you commit or roll back the transaction.

LEVEL
You use LEVEL with the SELECT CONNECT BY statement to organize rows from a

database table into a tree structure. LEVEL returns the level number of a node in a

tree structure. The root is level 1, children of the root are level 2, grandchildren are

level 3, and so on.

 In the START WITH clause, you specify a condition that identifies the root of the

tree. You specify the direction in which the query walks the tree (down from the

root or up from the branches) with the PRIOR operator.

ROWID
ROWID returns the rowid (binary address) of a row in a database table. You can use

variables of type UROWID to store rowids in a readable format. In the following

example, you declare a variable named row_id for that purpose:

DECLARE
 row_id UROWID;

When you select or fetch a physical rowid into a UROWID variable, you can use the

function ROWIDTOCHAR, which converts the binary value to an 18-byte character

string. Then, you can compare the UROWID variable to the ROWID pseudocolumn in

the WHERE clause of an UPDATE or DELETE statement to identify the latest row

fetched from a cursor. For an example, see "Fetching Across Commits" on page 5-50.

SQL Support

Interaction with Oracle 5-5

ROWNUM
ROWNUM returns a number indicating the order in which a row was selected from a

table. The first row selected has a ROWNUM of 1, the second row has a ROWNUM of 2,

and so on. If a SELECT statement includes an ORDER BY clause, ROWNUMs are

assigned to the retrieved rows before the sort is done.

You can use ROWNUMin an UPDATEstatement to assign unique values to each row in

a table. Also, you can use ROWNUM in the WHERE clause of a SELECT statement to

limit the number of rows retrieved, as follows:

DECLARE
 CURSOR c1 IS SELECT empno, sal FROM emp
 WHERE sal > 2000 AND ROWNUM < 10; -- returns 10 rows

The value of ROWNUMincreases only when a row is retrieved, so the only meaningful

uses of ROWNUM in a WHERE clause are

... WHERE ROWNUM < constant;

... WHERE ROWNUM <= constant;

SQL Operators
PL/SQL lets you use all the SQL comparison, set, and row operators in SQL

statements. This section briefly describes some of these operators. For more

information, see Oracle8i SQL Reference.

Comparison Operators
Typically, you use comparison operators in the WHEREclause of a data manipulation

statement to form predicates, which compare one expression to another and always

yield TRUE, FALSE, or NULL. You can use all the comparison operators listed below

to form predicates. Moreover, you can combine predicates using the logical

operators AND, OR, and NOT.

Operator Description

ALL Compares a value to each value in a list or returned
by a subquery and yields TRUE if all of the
individual comparisons yield TRUE.

ANY, SOME Compares a value to each value in a list or returned
by a subquery and yields TRUE if any of the
individual comparisons yields TRUE.

BETWEEN Tests whether a value lies in a specified range.

EXISTS Returns TRUE if a subquery returns at least one row.

Managing Cursors

5-6 PL/SQL User’s Guide and Reference

Set Operators
Set operators combine the results of two queries into one result. INTERSECTreturns

all distinct rows selected by both queries. MINUS returns all distinct rows selected

by the first query but not by the second. UNION returns all distinct rows selected by

either query. UNION ALL returns all rows selected by either query, including all

duplicates.

Row Operators
Row operators return or reference particular rows. ALL retains duplicate rows in the

result of a query or in an aggregate expression. DISTINCT eliminates duplicate

rows from the result of a query or from an aggregate expression. PRIORrefers to the

parent row of the current row returned by a tree-structured query.

Managing Cursors
PL/SQL uses two types of cursors: implicit and explicit. PL/SQL declares a cursor

implicitly for all SQL data manipulation statements, including queries that return

only one row. However, for queries that return more than one row, you must

declare an explicit cursor, use a cursor FOR loop, or use the BULK COLLECT clause.

Explicit Cursors
The set of rows returned by a query can consist of zero, one, or multiple rows,

depending on how many rows meet your search criteria. When a query returns

multiple rows, you can explicitly declare a cursor to process the rows. Moreover,

you can declare a cursor in the declarative part of any PL/SQL block, subprogram,

or package.

You use three commands to control a cursor: OPEN, FETCH, and CLOSE. First, you

initialize the cursor with the OPEN statement, which identifies the result set. Then,

you can execute FETCH repeatedly until all rows have been retrieved, or you can

use the BULK COLLECT clause to fetch all rows at once. When the last row has been

processed, you release the cursor with the CLOSE statement. You can process

several queries in parallel by declaring and opening multiple cursors.

IN Tests for set membership.

IS NULL Tests for nulls.

LIKE Tests whether a character string matches a specified
pattern, which can include wildcards.

Operator Description

Managing Cursors

Interaction with Oracle 5-7

Declaring a Cursor
Forward references are not allowed in PL/SQL. So, you must declare a cursor

before referencing it in other statements. When you declare a cursor, you name it

and associate it with a specific query using the syntax

CURSOR cursor_name [(parameter[, parameter]...)]
 [RETURN return_type] IS select_statement;

where return_type must represent a record or a row in a database table, and

parameter stands for the following syntax:

cursor_parameter_name [IN] datatype [{:= | DEFAULT} expression]

For example, you might declare cursors named c1 and c2 , as follows:

DECLARE
 CURSOR c1 IS SELECT empno, ename, job, sal FROM emp
 WHERE sal > 2000;
 CURSOR c2 RETURN dept%ROWTYPE IS
 SELECT * FROM dept WHERE deptno = 10;

The cursor name is an undeclared identifier, not the name of a PL/SQL variable.

You cannot assign values to a cursor name or use it in an expression. However,

cursors and variables follow the same scoping rules. Naming cursors after database

tables is allowed but not recommended.

A cursor can take parameters, which can appear in the associated query wherever

constants can appear. The formal parameters of a cursor must be IN parameters.

Therefore, they cannot return values to actual parameters. Also, you cannot impose

the constraint NOT NULL on a cursor parameter.

As the example below shows, you can initialize cursor parameters to default values.

That way, you can pass different numbers of actual parameters to a cursor,

accepting or overriding the default values as you please. Also, you can add new

formal parameters without having to change every reference to the cursor.

DECLARE
 CURSOR c1 (low INTEGER DEFAULT 0,
 high INTEGER DEFAULT 99) IS SELECT ...

The scope of cursor parameters is local to the cursor, meaning that they can be

referenced only within the query specified in the cursor declaration. The values of

cursor parameters are used by the associated query when the cursor is opened.

Managing Cursors

5-8 PL/SQL User’s Guide and Reference

Opening a Cursor
Opening the cursor executes the query and identifies the result set, which consists

of all rows that meet the query search criteria. For cursors declared using the FOR
UPDATE clause, the OPEN statement also locks those rows. An example of the OPEN
statement follows:

DECLARE
 CURSOR c1 IS SELECT ename, job FROM emp WHERE sal < 3000;
 ...
BEGIN
 OPEN c1;
 ...
END;

Rows in the result set are not retrieved when the OPEN statement is executed.

Rather, the FETCH statement retrieves the rows.

Passing Cursor Parameters
You use the OPEN statement to pass parameters to a cursor. Unless you want to

accept default values, each formal parameter in the cursor declaration must have a

corresponding actual parameter in the OPEN statement. For example, given the

cursor declaration

DECLARE
 emp_name emp.ename%TYPE;
 salary emp.sal%TYPE;
 CURSOR c1 (name VARCHAR2, salary NUMBER) IS SELECT ...

any of the following statements opens the cursor:

OPEN c1(emp_name, 3000);
OPEN c1(’ATTLEY’, 1500);
OPEN c1(emp_name, salary);

In the last example, when the identifier salary is used in the cursor declaration, it

refers to the formal parameter. But, when it is used in the OPEN statement, it refers

to the PL/SQL variable. To avoid confusion, use unique identifiers.

Formal parameters declared with a default value need not have a corresponding

actual parameter. They can simply assume their default values when the OPEN
statement is executed.

Managing Cursors

Interaction with Oracle 5-9

You can associate the actual parameters in an OPEN statement with the formal

parameters in a cursor declaration using positional or named notation. (See

"Positional versus Named Notation" on page 7-13.) The datatypes of each actual

parameter and its corresponding formal parameter must be compatible.

Fetching with a Cursor
Unless you use the BULK COLLECTclause (discussed in the next section), the FETCH
statement retrieves the rows in the result set one at a time. After each fetch, the

cursor advances to the next row in the result set. An example follows:

FETCH c1 INTO my_empno, my_ename, my_deptno;

For each column value returned by the query associated with the cursor, there must

be a corresponding, type-compatible variable in the INTO list. Typically, you use the

FETCH statement in the following way:

LOOP
 FETCH c1 INTO my_record;
 EXIT WHEN c1%NOTFOUND;
 -- process data record
END LOOP;

The query can reference PL/SQL variables within its scope. However, any variables

in the query are evaluated only when the cursor is opened. In the following

example, each retrieved salary is multiplied by 2, even though factor is

incremented after every fetch:

DECLARE
 my_sal emp.sal%TYPE;
 my_job emp.job%TYPE;
 factor INTEGER := 2;
 CURSOR c1 IS SELECT factor*sal FROM emp WHERE job = my_job;
BEGIN
 ...
 OPEN c1; -- here factor equals 2
 LOOP
 FETCH c1 INTO my_sal;
 EXIT WHEN c1%NOTFOUND;
 factor := factor + 1; -- does not affect FETCH
 END LOOP;
END;

To change the result set or the values of variables in the query, you must close and

reopen the cursor with the input variables set to their new values.

Managing Cursors

5-10 PL/SQL User’s Guide and Reference

However, you can use a different INTO list on separate fetches with the same cursor.

Each fetch retrieves another row and assigns values to the target variables, as the

following example shows:

DECLARE
 CURSOR c1 IS SELECT ename FROM emp;
 name1 emp.ename%TYPE;
 name2 emp.ename%TYPE;
 name3 emp.ename%TYPE;
BEGIN
 OPEN c1;
 FETCH c1 INTO name1; -- this fetches first row
 FETCH c1 INTO name2; -- this fetches second row
 FETCH c1 INTO name3; -- this fetches third row
 ...
 CLOSE c1;
END;

If you fetch past the last row in the result set, the values of the target variables are

indeterminate.

Note: Eventually, the FETCH statement must fail to return a row, so when that

happens, no exception is raised. To detect the failure, you must use the cursor

attribute %FOUND or %NOTFOUND. For more information, see "Using Cursor

Attributes" on page 5-35

Bulk Fetching with a Cursor
The BULK COLLECT clause lets you bulk-bind entire columns of Oracle data (see

"Using the BULK COLLECT Clause" on page 4-37). That way, you can fetch all rows

from the result set at once. In the following example, you bulk-fetch from a cursor

into two collections:

DECLARE
 TYPE NumTab IS TABLE OF emp.empno%TYPE;
 TYPE NameTab IS TABLE OF emp.ename%TYPE;
 nums NumTab;
 names NameTab;
 CURSOR c1 IS SELECT empno, ename FROM emp WHERE job = ’CLERK’;
BEGIN
 OPEN c1;
 FETCH c1 BULK COLLECT INTO nums, names;
 ...
 CLOSE c1;
END;

Managing Cursors

Interaction with Oracle 5-11

Closing a Cursor
The CLOSE statement disables the cursor, and the result set becomes undefined.

Once a cursor is closed, you can reopen it. Any other operation on a closed cursor

raises the predefined exception INVALID_CURSOR.

Using Subqueries
A subquery is a query (usually enclosed by parentheses) that appears within another

SQL data manipulation statement. When evaluated, the subquery provides a value

or set of values to the statement. Often, subqueries are used in the WHERE clause.

For example, the following query returns employees not located in Chicago:

DECLARE
 CURSOR c1 IS SELECT empno, ename FROM emp
 WHERE deptno IN (SELECT deptno FROM dept
 WHERE loc <> ’CHICAGO’);

Using a subquery in the FROM clause, the following query returns the number and

name of each department with five or more employees:

DECLARE
 CURSOR c1 IS SELECT t1.deptno, dname, "STAFF"
 FROM dept t1, (SELECT deptno, COUNT(*) "STAFF"
 FROM emp GROUP BY deptno) t2
 WHERE t1.deptno = t2.deptno AND "STAFF" >= 5;

Whereas a subquery is evaluated only once per table, a correlated subquery is

evaluated once per row. Consider the query below, which returns the name and

salary of each employee whose salary exceeds the departmental average. For each

row in the emp table, the correlated subquery computes the average salary for that

row’s department. The row is returned if that row’s salary exceeds the average.

DECLARE
 CURSOR c1 IS SELECT deptno, ename, sal FROM emp t
 WHERE sal > (SELECT AVG(sal) FROM emp WHERE t.deptno = deptno)
 ORDER BY deptno;

Implicit Cursors
Oracle implicitly opens a cursor to process each SQL statement not associated with

an explicitly declared cursor. You can refer to the most recent implicit cursor as the

SQL cursor. Although you cannot use the OPEN, FETCH, and CLOSE statements to

control the SQL cursor, you can use cursor attributes to get information about the

most recently executed SQL statement. See "Using Cursor Attributes" on page 5-35.

Packaging Cursors

5-12 PL/SQL User’s Guide and Reference

Packaging Cursors
You can separate a cursor specification (spec for short) from its body for placement

in a package. That way, you can change the cursor body without having to change

the cursor spec. You code the cursor spec in the package spec using this syntax:

CURSOR cursor_name [(parameter[, parameter]...)] RETURN return_type;

In the following example, you use the %ROWTYPE attribute to provide a record type

that represents a row in the database table emp:

CREATE PACKAGE emp_stuff AS
 CURSOR c1 RETURN emp%ROWTYPE; -- declare cursor spec
 ...
END emp_stuff;

CREATE PACKAGE BODY emp_stuff AS
 CURSOR c1 RETURN emp%ROWTYPE IS
 SELECT * FROM emp WHERE sal > 2500; -- define cursor body
 ...
END emp_stuff;

The cursor spec has no SELECT statement because the RETURN clause specifies the

datatype of the return value. However, the cursor body must have a SELECT
statement and the same RETURN clause as the cursor spec. Also, the number and

datatypes of items in the SELECT list and the RETURN clause must match.

Packaged cursors increase flexibility. For instance, you can change the cursor body

in the last example, as follows, without having to change the cursor spec:

CREATE PACKAGE BODY emp_stuff AS
 CURSOR c1 RETURN emp%ROWTYPE IS
 SELECT * FROM emp WHERE deptno = 20; -- new WHERE clause
 ...
END emp_stuff;

From a PL/SQL block or subprogram, you use dot notation to reference a packaged

cursor, as the following example shows:

DECLARE
 emp_rec emp%ROWTYPE;
 ...
BEGIN
 ...
 OPEN emp_stuff.c1;

Using Cursor FOR Loops

Interaction with Oracle 5-13

 LOOP
 FETCH emp_stuff.c1 INTO emp_rec;
 EXIT WHEN emp_suff.c1%NOTFOUND;
 ...
 END LOOP;
 CLOSE emp_stuff.c1;
END;

The scope of a packaged cursor is not limited to a particular PL/SQL block. So,

when you open a packaged cursor, it remains open until you close it or you

disconnect your Oracle session.

Using Cursor FOR Loops
In most situations that require an explicit cursor, you can simplify coding by using a

cursor FOR loop instead of the OPEN, FETCH, and CLOSE statements. A cursor FOR
loop implicitly declares its loop index as a %ROWTYPE record, opens a cursor,

repeatedly fetches rows of values from the result set into fields in the record, and

closes the cursor when all rows have been processed.

Consider the PL/SQL block below, which computes results from an experiment,

then stores the results in a temporary table. The FOR loop index c1_rec is

implicitly declared as a record. Its fields store all the column values fetched from the

cursor c1 . Dot notation is used to reference individual fields.

-- available online in file ’examp7’
DECLARE
 result temp.col1%TYPE;
 CURSOR c1 IS
 SELECT n1, n2, n3 FROM data_table WHERE exper_num = 1;
BEGIN
 FOR c1_rec IN c1 LOOP
 /* calculate and store the results */
 result := c1_rec.n2 / (c1_rec.n1 + c1_rec.n3);
 INSERT INTO temp VALUES (result, NULL, NULL);
 END LOOP;
 COMMIT;
END;

When the cursor FOR loop is entered, the cursor name cannot belong to a cursor

already opened by an OPEN statement or enclosing cursor FOR loop. Before each

iteration of the FOR loop, PL/SQL fetches into the implicitly declared record. The

record is defined only inside the loop. You cannot refer to its fields outside the loop.

Using Cursor FOR Loops

5-14 PL/SQL User’s Guide and Reference

The sequence of statements inside the loop is executed once for each row that

satisfies the query associated with the cursor. When you leave the loop, the cursor is

closed automatically—even if you use an EXIT or GOTO statement to leave the loop

prematurely or an exception is raised inside the loop.

Using Subqueries
You need not declare a cursor because PL/SQL lets you substitute a subquery. The

following cursor FOR loop calculates a bonus, then inserts the result into a database

table:

DECLARE
 bonus REAL;
BEGIN
 FOR emp_rec IN (SELECT empno, sal, comm FROM emp) LOOP
 bonus := (emp_rec.sal * 0.05) + (emp_rec.comm * 0.25);
 INSERT INTO bonuses VALUES (emp_rec.empno, bonus);
 END LOOP;
 COMMIT;
END;

Using Aliases
Fields in the implicitly declared record hold column values from the most recently

fetched row. The fields have the same names as corresponding columns in the

SELECT list. But, what happens if a select item is an expression? Consider the

following example:

CURSOR c1 IS
 SELECT empno, sal+NVL(comm,0), job FROM ...

In such cases, you must include an alias for the select item. In the following

example, wages is an alias for the select item sal+NVL(comm,0) :

CURSOR c1 IS
 SELECT empno, sal+NVL(comm,0) wages, job FROM ...

To reference the corresponding field, use the alias instead of a column name, as

follows:

IF emp_rec.wages < 1000 THEN ...

Using Cursor Variables

Interaction with Oracle 5-15

Passing Parameters
You can pass parameters to the cursor in a cursor FOR loop. In the following

example, you pass a department number. Then, you compute the total wages paid

to employees in that department. Also, you determine how many employees have

salaries higher than $2000 and/or commissions larger than their salaries.

-- available online in file ’examp8’
DECLARE
 CURSOR emp_cursor(dnum NUMBER) IS
 SELECT sal, comm FROM emp WHERE deptno = dnum;
 total_wages NUMBER(11,2) := 0;
 high_paid NUMBER(4) := 0;
 higher_comm NUMBER(4) := 0;
BEGIN
 /* The number of iterations will equal the number of rows
 returned by emp_cursor. */
 FOR emp_record IN emp_cursor(20) LOOP
 emp_record.comm := NVL(emp_record.comm, 0);
 total_wages := total_wages + emp_record.sal +
 emp_record.comm;
 IF emp_record.sal > 2000.00 THEN
 high_paid := high_paid + 1;
 END IF;
 IF emp_record.comm > emp_record.sal THEN
 higher_comm := higher_comm + 1;
 END IF;
 END LOOP;
 INSERT INTO temp VALUES (high_paid, higher_comm,
 ’Total Wages: ’ || TO_CHAR(total_wages));
 COMMIT;
END;

Using Cursor Variables
Like a cursor, a cursor variable points to the current row in the result set of a

multi-row query. But, cursors differ from cursor variables the way constants differ

from variables. Whereas a cursor is static, a cursor variable is dynamic because it is

not tied to a specific query. You can open a cursor variable for any type-compatible

query. This gives you more flexibility.

Also, you can assign new values to a cursor variable and pass it as a parameter to

local and stored subprograms. This gives you an easy way to centralize data

retrieval.

Using Cursor Variables

5-16 PL/SQL User’s Guide and Reference

Cursor variables are available to every PL/SQL client. For example, you can declare

a cursor variable in a PL/SQL host environment such as an OCI or Pro*C program,

then pass it as an input host variable (bind variable) to PL/SQL. Moreover,

application development tools such as Oracle Forms and Oracle Reports, which

have a PL/SQL engine, can use cursor variables entirely on the client side.

The Oracle server also has a PL/SQL engine. So, you can pass cursor variables back

and forth between an application and server via remote procedure calls (RPCs).

What Are Cursor Variables?
Cursor variables are like C or Pascal pointers, which hold the memory location

(address) of some item instead of the item itself. So, declaring a cursor variable

creates a pointer, not an item. In PL/SQL, a pointer has datatype REF X, where REF
is short for REFERENCE and X stands for a class of objects. Therefore, a cursor

variable has datatype REF CURSOR.

To execute a multi-row query, Oracle opens an unnamed work area that stores

processing information. To access the information, you can use an explicit cursor,

which names the work area. Or, you can use a cursor variable, which points to the

work area. Whereas a cursor always refers to the same query work area, a cursor

variable can refer to different work areas. So, cursors and cursor variables are not
interoperable; that is, you cannot use one where the other is expected.

Why Use Cursor Variables?
Mainly, you use cursor variables to pass query result sets between PL/SQL stored

subprograms and various clients. Neither PL/SQL nor any of its clients owns a

result set; they simply share a pointer to the query work area in which the result set

is stored. For example, an OCI client, Oracle Forms application, and Oracle server

can all refer to the same work area.

A query work area remains accessible as long as any cursor variable points to it.

Therefore, you can pass the value of a cursor variable freely from one scope to

another. For example, if you pass a host cursor variable to a PL/SQL block

embedded in a Pro*C program, the work area to which the cursor variable points

remains accessible after the block completes.

If you have a PL/SQL engine on the client side, calls from client to server impose no

restrictions. For example, you can declare a cursor variable on the client side, open

and fetch from it on the server side, then continue to fetch from it back on the client

side. Also, you can reduce network traffic by having a PL/SQL block open (or close)

several host cursor variables in a single round trip.

Using Cursor Variables

Interaction with Oracle 5-17

Defining REF CURSOR Types
To create cursor variables, you take two steps. First, you define a REF CURSOR type,

then declare cursor variables of that type. You can define REF CURSOR types in any

PL/SQL block, subprogram, or package using the syntax

TYPE ref_type_name IS REF CURSOR [RETURN return_type];

where ref_type_name is a type specifier used in subsequent declarations of

cursor variables and return_type must represent a record or a row in a database

table. In the following example, you specify a return type that represents a row in

the database table dept :

DECLARE
 TYPE DeptCurTyp IS REF CURSOR RETURN dept%ROWTYPE;

REF CURSOR types can be strong (restrictive) or weak (nonrestrictive). As the next

example shows, a strong REF CURSOR type definition specifies a return type, but a

weak definition does not:

DECLARE
 TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE; -- strong
 TYPE GenericCurTyp IS REF CURSOR; -- weak

Strong REF CURSOR types are less error prone because the PL/SQL compiler lets

you associate a strongly typed cursor variable only with type-compatible queries.

However, weak REF CURSOR types are more flexible because the compiler lets you

associate a weakly typed cursor variable with any query.

Declaring Cursor Variables
Once you define a REF CURSOR type, you can declare cursor variables of that type

in any PL/SQL block or subprogram. In the following example, you declare the

cursor variable dept_cv :

DECLARE
 TYPE DeptCurTyp IS REF CURSOR RETURN dept%ROWTYPE;
 dept_cv DeptCurTyp; -- declare cursor variable

Note: You cannot declare cursor variables in a package. Unlike packaged variables,

cursor variables do not have persistent state. Remember, declaring a cursor variable

creates a pointer, not an item. So, cursor variables cannot be saved in the database.

Using Cursor Variables

5-18 PL/SQL User’s Guide and Reference

Cursor variables follow the usual scoping and instantiation rules. Local PL/SQL

cursor variables are instantiated when you enter a block or subprogram and cease

to exist when you exit.

In the RETURN clause of a REF CURSOR type definition, you can use %ROWTYPE to

specify a record type that represents a row returned by a strongly (not weakly)

typed cursor variable, as follows:

DECLARE
 TYPE TmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;
 tmp_cv TmpCurTyp; -- declare cursor variable
 TYPE EmpCurTyp IS REF CURSOR RETURN tmp_cv%ROWTYPE;
 emp_cv EmpCurTyp; -- declare cursor variable

Likewise, you can use %TYPE to provide the datatype of a record variable, as the

following example shows:

DECLARE
 dept_rec dept%ROWTYPE; -- declare record variable
 TYPE DeptCurTyp IS REF CURSOR RETURN dept_rec%TYPE;
 dept_cv DeptCurTyp; -- declare cursor variable

In the final example, you specify a user-defined RECORD type in the RETURN clause:

DECLARE
 TYPE EmpRecTyp IS RECORD (
 empno NUMBER(4),
 ename VARCHAR2(1O),
 sal NUMBER(7,2));
 TYPE EmpCurTyp IS REF CURSOR RETURN EmpRecTyp;
 emp_cv EmpCurTyp; -- declare cursor variable

Cursor Variables As Parameters
You can declare cursor variables as the formal parameters of functions and

procedures. In the following example, you define the REF CURSOR type

EmpCurTyp, then declare a cursor variable of that type as the formal parameter of a

procedure:

DECLARE
 TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;
 PROCEDURE open_emp_cv (emp_cv IN OUT EmpCurTyp) IS ...

Caution: Like all pointers, cursor variables increase the possibility of parameter

aliasing. For an example, see "Understanding Parameter Aliasing" on page 7-22.

Using Cursor Variables

Interaction with Oracle 5-19

Controlling Cursor Variables
You use three statements to control a cursor variable: OPEN-FOR, FETCH, and

CLOSE. First, you OPEN a cursor variable FOR a multi-row query. Then, you FETCH
rows from the result set. When all the rows are processed, you CLOSE the cursor

variable.

Opening a Cursor Variable
The OPEN-FOR statement associates a cursor variable with a multi-row query,

executes the query, and identifies the result set. Here is the syntax:

OPEN {cursor_variable | :host_cursor_variable} FOR
{ select_statement
 | dynamic_string [USING bind_argument[, bind_argument]...] };

where host_cursor_variable is a cursor variable declared in a PL/SQL host

environment such as an OCI program, and dynamic_string is a string expression

that represents a multi-row query.

Note: This section discusses the static SQL case, in which select_statement is

used. For the dynamic SQL case, in which dynamic_string is used, see "Opening

the Cursor Variable" on page 10-7.

Unlike cursors, cursor variables take no parameters. However, no flexibility is lost

because you can pass whole queries (not just parameters) to a cursor variable. The

query can reference host variables and PL/SQL variables, parameters, and

functions.

In the example below, you open the cursor variable emp_cv. Notice that you can

apply cursor attributes (%FOUND, %NOTFOUND, %ISOPEN, and %ROWCOUNT) to a

cursor variable.

IF NOT emp_cv%ISOPEN THEN
 /* Open cursor variable. */
 OPEN emp_cv FOR SELECT * FROM emp;
END IF;

Other OPEN-FORstatements can open the same cursor variable for different queries.

You need not close a cursor variable before reopening it. (Recall that consecutive

OPENs of a static cursor raise the predefined exception CURSOR_ALREADY_OPEN.)

When you reopen a cursor variable for a different query, the previous query is lost.

Using Cursor Variables

5-20 PL/SQL User’s Guide and Reference

Typically, you open a cursor variable by passing it to a stored procedure that

declares a cursor variable as one of its formal parameters. For example, the

following packaged procedure opens the cursor variable emp_cv :

CREATE PACKAGE emp_data AS
 ...
 TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;
 PROCEDURE open_emp_cv (emp_cv IN OUT EmpCurTyp);
END emp_data;

CREATE PACKAGE BODY emp_data AS
 ...
 PROCEDURE open_emp_cv (emp_cv IN OUT EmpCurTyp) IS
 BEGIN
 OPEN emp_cv FOR SELECT * FROM emp;
 END open_emp_cv;
END emp_data;

When you declare a cursor variable as the formal parameter of a subprogram that

opens the cursor variable, you must specify the IN OUT mode. That way, the

subprogram can pass an open cursor back to the caller.

Alternatively, you can use a stand-alone procedure to open the cursor variable.

Simply define the REF CURSOR type in a separate package, then reference that type

in the stand-alone procedure. For instance, if you create the following bodiless

package, you can create stand-alone procedures that reference the types it defines:

CREATE PACKAGE cv_types AS
 TYPE GenericCurTyp IS REF CURSOR;
 TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;
 TYPE DeptCurTyp IS REF CURSOR RETURN dept%ROWTYPE;
 ...
END cv_types;

In the next example, you create a stand-alone procedure that references the REF
CURSOR type EmpCurTyp, which is defined in the package cv_types :

CREATE PROCEDURE open_emp_cv (emp_cv IN OUT cv_types.EmpCurTyp) AS
BEGIN
 OPEN emp_cv FOR SELECT * FROM emp;
END open_emp_cv;

Using Cursor Variables

Interaction with Oracle 5-21

To centralize data retrieval, you can group type-compatible queries in a stored

procedure. In the example below, the packaged procedure declares a selector as one

of its formal parameters. (In this context, a selector is a variable used to select one of

several alternatives in a conditional control statement.) When called, the procedure

opens the cursor variable emp_cv for the chosen query.

CREATE PACKAGE emp_data AS
 TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;
 PROCEDURE open_emp_cv (emp_cv IN OUT EmpCurTyp, choice INT);
END emp_data;

CREATE PACKAGE BODY emp_data AS
 PROCEDURE open_emp_cv (emp_cv IN OUT EmpCurTyp, choice INT) IS
 BEGIN
 IF choice = 1 THEN
 OPEN emp_cv FOR SELECT * FROM emp WHERE comm IS NOT NULL;
 ELSIF choice = 2 THEN
 OPEN emp_cv FOR SELECT * FROM emp WHERE sal > 2500;
 ELSIF choice = 3 THEN
 OPEN emp_cv FOR SELECT * FROM emp WHERE deptno = 20;
 END IF;
 END;
END emp_data;

For more flexibility, you can pass a cursor variable and a selector to a stored

procedure that executes queries with different return types. Here is an example:

CREATE PACKAGE admin_data AS
 TYPE GenCurTyp IS REF CURSOR;
 PROCEDURE open_cv (generic_cv IN OUT GenCurTyp, choice INT);
END admin_data;

CREATE PACKAGE BODY admin_data AS
 PROCEDURE open_cv (generic_cv IN OUT GenCurTyp, choice INT) IS
 BEGIN
 IF choice = 1 THEN
 OPEN generic_cv FOR SELECT * FROM emp;
 ELSIF choice = 2 THEN
 OPEN generic_cv FOR SELECT * FROM dept;
 ELSIF choice = 3 THEN
 OPEN generic_cv FOR SELECT * FROM salgrade;
 END IF;
 END;
END admin_data;

Using Cursor Variables

5-22 PL/SQL User’s Guide and Reference

Using a Host Variable
You can declare a cursor variable in a PL/SQL host environment such as an OCI or

Pro*C program. To use the cursor variable, you must pass it as a host variable to

PL/SQL. In the following Pro*C example, you pass a host cursor variable and

selector to a PL/SQL block, which opens the cursor variable for the chosen query:

EXEC SQL BEGIN DECLARE SECTION;
 ...
 /* Declare host cursor variable. */
 SQL_CURSOR generic_cv;
 int choice;
EXEC SQL END DECLARE SECTION;
...
/* Initialize host cursor variable. */
EXEC SQL ALLOCATE :generic_cv;
...
/* Pass host cursor variable and selector to PL/SQL block. */
EXEC SQL EXECUTE
BEGIN
 IF :choice = 1 THEN
 OPEN :generic_cv FOR SELECT * FROM emp;
 ELSIF :choice = 2 THEN
 OPEN :generic_cv FOR SELECT * FROM dept;
 ELSIF :choice = 3 THEN
 OPEN :generic_cv FOR SELECT * FROM salgrade;
 END IF;
END;
END-EXEC;

Host cursor variables are compatible with any query return type. They behave just

like weakly typed PL/SQL cursor variables.

Using Cursor Variables

Interaction with Oracle 5-23

Fetching from a Cursor Variable
The FETCH statement retrieves rows from the result set of a multi-row query. Here

is the syntax:

FETCH {cursor_variable_name | :host_cursor_variable_name}
[BULK COLLECT]
INTO {variable_name[, variable_name]... | record_name};

In the following example, you fetch rows one at a time from the cursor variable

emp_cv into the user-defined record emp_rec :

LOOP
 /* Fetch from cursor variable. */
 FETCH emp_cv INTO emp_rec;
 EXIT WHEN emp_cv%NOTFOUND; -- exit when last row is fetched
 -- process data record
END LOOP;

Using the BULK COLLECT clause (discussed in Chapter 4), you can bulk fetch rows

from a cursor variable into one or more collections. An example follows:

DECLARE
 TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;
 TYPE NameList IS TABLE OF emp.ename%TYPE;
 TYPE SalList IS TABLE OF emp.sal%TYPE;
 emp_cv EmpCurTyp;
 names NameList;
 sals SalList;
BEGIN
 OPEN emp_cv FOR SELECT ename, sal FROM emp;
 FETCH emp_cv BULK COLLECT INTO names, sals;
 ...
END;

Any variables in the associated query are evaluated only when the cursor variable

is opened. To change the result set or the values of variables in the query, you must

reopen the cursor variable with the variables set to their new values. However, you

can use a different INTO clause on separate fetches with the same cursor variable.

Each fetch retrieves another row from the same result set.

Using Cursor Variables

5-24 PL/SQL User’s Guide and Reference

PL/SQL makes sure the return type of the cursor variable is compatible with the

INTO clause of the FETCH statement. For each column value returned by the query

associated with the cursor variable, there must be a corresponding, type-compatible

field or variable in the INTO clause. Also, the number of fields or variables must

equal the number of column values. Otherwise, you get an error. The error occurs at

compile time if the cursor variable is strongly typed or at run time if it is weakly

typed. At run time, PL/SQL raises the predefined exception ROWTYPE_MISMATCH
before the first fetch. So, if you trap the error and execute the FETCH statement using

a different INTO clause, no rows are lost.

When you declare a cursor variable as the formal parameter of a subprogram that

fetches from the cursor variable, you must specify the IN or IN OUT mode.

However, if the subprogram also opens the cursor variable, you must specify the IN
OUT mode.

If you try to fetch from a closed or never-opened cursor variable, PL/SQL raises the

predefined exception INVALID_CURSOR.

Closing a Cursor Variable
The CLOSE statement disables a cursor variable. After that, the associated result set

is undefined. Here is the syntax:

CLOSE {cursor_variable_name | :host_cursor_variable_name);

In the following example, when the last row is processed, you close the cursor

variable emp_cv :

LOOP
 FETCH emp_cv INTO emp_rec;
 EXIT WHEN emp_cv%NOTFOUND;
 -- process data record
END LOOP;
/* Close cursor variable. */
CLOSE emp_cv;

When declaring a cursor variable as the formal parameter of a subprogram that

closes the cursor variable, you must specify the IN or IN OUT mode.

If you try to close an already-closed or never-opened cursor variable, PL/SQL raises

the predefined exception INVALID_CURSOR.

Using Cursor Variables

Interaction with Oracle 5-25

Example 1
Consider the stored procedure below, which searches the database of a main library

for books, periodicals, and tapes. A master table stores the title and category code

(where 1 = book, 2 = periodical, 3 = tape) of each item. Three detail tables store

category-specific information. When called, the procedure searches the master table

by title, uses the associated category code to pick an OPEN-FOR statement, then

opens a cursor variable for a query of the proper detail table.

CREATE PACKAGE cv_types AS
 TYPE LibCurTyp IS REF CURSOR;
 ...
END cv_types;

CREATE PROCEDURE find_item (
 title VARCHAR2(100),
 lib_cv IN OUT
 cv_types.LibCurTyp)
AS
 code BINARY_INTEGER;
BEGIN
 SELECT item_code FROM titles INTO code
 WHERE item_title = title;
 IF code = 1 THEN
 OPEN lib_cv FOR SELECT * FROM books
 WHERE book_title = title;
 ELSIF code = 2 THEN
 OPEN lib_cv FOR SELECT * FROM periodicals
 WHERE periodical_title = title;
 ELSIF code = 3 THEN
 OPEN lib_cv FOR SELECT * FROM tapes
 WHERE tape_title = title;
 END IF;
END find_item;

Using Cursor Variables

5-26 PL/SQL User’s Guide and Reference

Example 2
A client-side application in a branch library might use the following PL/SQL block

to display the retrieved information:

DECLARE
 lib_cv cv_types.LibCurTyp;
 book_rec books%ROWTYPE;
 periodical_rec periodicals%ROWTYPE;
 tape_rec tapes%ROWTYPE;
BEGIN
 get_title(:title); -- title is a host variable
 find_item(:title, lib_cv);
 FETCH lib_cv INTO book_rec;
 display_book(book_rec);
EXCEPTION
 WHEN ROWTYPE_MISMATCH THEN
 BEGIN
 FETCH lib_cv INTO periodical_rec;
 display_periodical(periodical_rec);
 EXCEPTION
 WHEN ROWTYPE_MISMATCH THEN
 FETCH lib_cv INTO tape_rec;
 display_tape(tape_rec);
 END;
END;

Example 3
The following Pro*C program prompts the user to select a database table, opens a

cursor variable for a query of that table, then fetches rows returned by the query:

#include <stdio.h>
#include <sqlca.h>
void sql_error();
main()
{
 char temp[32];

 EXEC SQL BEGIN DECLARE SECTION;

 char * uid = "scott/tiger";
 SQL_CURSOR generic_cv; /* cursor variable */
 int table_num; /* selector */
 struct /* EMP record */

Using Cursor Variables

Interaction with Oracle 5-27

 {
 int emp_num;
 char emp_name[11];
 char job_title[10];
 int manager;
 char hire_date[10];
 float salary;
 float commission;
 int dept_num;
 } emp_rec;
 struct /* DEPT record */
 {
 int dept_num;
 char dept_name[15];
 char location[14];
 } dept_rec;
 struct /* BONUS record */
 {
 char emp_name[11];
 char job_title[10];
 float salary;
 } bonus_rec;

 EXEC SQL END DECLARE SECTION;

 /* Handle Oracle errors. */
 EXEC SQL WHENEVER SQLERROR DO sql_error();

 /* Connect to Oracle. */
 EXEC SQL CONNECT :uid;

 /* Initialize cursor variable. */
 EXEC SQL ALLOCATE :generic_cv;

 /* Exit loop when done fetching. */
 EXEC SQL WHENEVER NOT FOUND DO break;

Using Cursor Variables

5-28 PL/SQL User’s Guide and Reference

 for (;;)
 {
 printf("\n1 = EMP, 2 = DEPT, 3 = BONUS");
 printf("\nEnter table number (0 to quit): ");
 gets(temp);
 table_num = atoi(temp);
 if (table_num <= 0) break;

 /* Open cursor variable. */
 EXEC SQL EXECUTE
 BEGIN
 IF :table_num = 1 THEN
 OPEN :generic_cv FOR SELECT * FROM emp;
 ELSIF :table_num = 2 THEN
 OPEN :generic_cv FOR SELECT * FROM dept;
 ELSIF :table_num = 3 THEN
 OPEN :generic_cv FOR SELECT * FROM bonus;
 END IF;
 END;
 END-EXEC;
 for (;;)
 {
 switch (table_num)
 {
 case 1: /* Fetch row into EMP record. */
 EXEC SQL FETCH :generic_cv INTO :emp_rec;
 break;
 case 2: /* Fetch row into DEPT record. */
 EXEC SQL FETCH :generic_cv INTO :dept_rec;
 break;
 case 3: /* Fetch row into BONUS record. */
 EXEC SQL FETCH :generic_cv INTO :bonus_rec;
 break;
 }
 /* Process data record here. */
 }
 /* Close cursor variable. */
 EXEC SQL CLOSE :generic_cv;
 }
 exit(0);
}
void sql_error()
{
 /* Handle SQL error here. */
}

Using Cursor Variables

Interaction with Oracle 5-29

Example 4
A host variable is a variable you declare in a host environment, then pass to one or

more PL/SQL programs, which can use it like any other variable. In the SQL*Plus

environment, to declare a host variable, use the command VARIABLE. For example,

you declare a variable of type NUMBER as follows:

VARIABLE return_code NUMBER

Both SQL*Plus and PL/SQL can reference the host variable, and SQL*Plus can

display its value. However, to reference a host variable in PL/SQL, you must prefix

its name with a colon (:), as the following example shows:

DECLARE
 ...
BEGIN
 :return_code := 0;
 IF credit_check_ok(acct_no) THEN
 :return_code := 1;
 END IF;
 ...
END;
/

To display the value of a host variable in SQL*Plus, use the PRINT command, as

follows:

SQL> PRINT return_code

RETURN_CODE

 1

Using Cursor Variables

5-30 PL/SQL User’s Guide and Reference

The SQL*Plus datatype REFCURSOR lets you declare cursor variables, which you

can use to return query results from stored subprograms. In the script below, you

declare a host variable of type REFCURSOR. You use the SQL*Plus command SET
AUTOPRINT ON to display the query results automatically.

CREATE PACKAGE emp_data AS
 TYPE EmpRecTyp IS RECORD (
 emp_id NUMBER(4),
 emp_name VARCHAR2(10),
 job_title VARCHAR2(9),
 dept_name VARCHAR2(14),
 dept_loc VARCHAR2(13));
 TYPE EmpCurTyp IS REF CURSOR RETURN EmpRecTyp;
 PROCEDURE get_staff (
 dept_no IN NUMBER,
 emp_cv IN OUT EmpCurTyp);
END;
/

CREATE PACKAGE BODY emp_data AS
 PROCEDURE get_staff (
 dept_no IN NUMBER,
 emp_cv IN OUT EmpCurTyp) IS
 BEGIN
 OPEN emp_cv FOR
 SELECT empno, ename, job, dname, loc FROM emp, dept
 WHERE emp.deptno = dept_no AND emp.deptno = dept.deptno
 ORDER BY empno;
 END;
END;
/

COLUMN EMPNO HEADING Number
COLUMN ENAME HEADING Name
COLUMN JOB HEADING JobTitle
COLUMN DNAME HEADING Department
COLUMN LOC HEADING Location
SET AUTOPRINT ON

VARIABLE cv REFCURSOR
EXECUTE emp_data.get_staff(20, :cv)

Using Cursor Variables

Interaction with Oracle 5-31

Reducing Network Traffic
When passing host cursor variables to PL/SQL, you can reduce network traffic by

grouping OPEN-FOR statements. For example, the following PL/SQL block opens

five cursor variables in a single round trip:

/* anonymous PL/SQL block in host environment */
BEGIN
 OPEN :emp_cv FOR SELECT * FROM emp;
 OPEN :dept_cv FOR SELECT * FROM dept;
 OPEN :grade_cv FOR SELECT * FROM salgrade;
 OPEN :pay_cv FOR SELECT * FROM payroll;
 OPEN :ins_cv FOR SELECT * FROM insurance;
END;

This might be useful in Oracle Forms, for instance, when you want to populate a

multi-block form.

When you pass host cursor variables to a PL/SQL block for opening, the query

work areas to which they point remain accessible after the block completes. That

allows your OCI or Pro*C program to use these work areas for ordinary cursor

operations. In the following example, you open several such work areas in a single

round trip:

BEGIN
 OPEN :c1 FOR SELECT 1 FROM dual;
 OPEN :c2 FOR SELECT 1 FROM dual;
 OPEN :c3 FOR SELECT 1 FROM dual;
 OPEN :c4 FOR SELECT 1 FROM dual;
 OPEN :c5 FOR SELECT 1 FROM dual;
 ...
END;

The cursors assigned to c1 , c2 , c3 , c4 , and c5 behave normally, and you can use

them for any purpose. When finished, simply release the cursors, as follows:

BEGIN
 CLOSE :c1;
 CLOSE :c2;
 CLOSE :c3;
 CLOSE :c4;
 CLOSE :c5;
 ...
END;

Using Cursor Variables

5-32 PL/SQL User’s Guide and Reference

Avoiding Errors
If both cursor variables involved in an assignment are strongly typed, they must

have the same datatype. In the example below, even though the cursor variables

have the same return type, the assignment raises an exception because they have

different datatypes. However, if one or both cursor variables are weakly typed, they

need not have the same datatype.

DECLARE
 TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;
 TYPE TmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;
 PROCEDURE open_emp_cv (
 emp_cv IN OUT EmpCurTyp,
 tmp_cv IN OUT TmpCurTyp) IS
 BEGIN
 ...
 emp_cv := tmp_cv; -- causes ’wrong type’ error
 END;

If you try to fetch from, close, or apply cursor attributes to a cursor variable that

does not point to a query work area, PL/SQL raises INVALID_CURSOR. You can

make a cursor variable (or parameter) point to a query work area in two ways:

■ OPEN the cursor variable FOR the query.

■ Assign to the cursor variable the value of an already OPENed host cursor

variable or PL/SQL cursor variable.

The following example shows how these ways interact:

DECLARE
 TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;
 emp_cv1 EmpCurTyp;
 emp_cv2 EmpCurTyp;
 emp_rec emp%ROWTYPE;
BEGIN
 /* The following assignment is useless because emp_cv1
 does not point to a query work area yet. */
 emp_cv2 := emp_cv1; -- useless
 /* Make emp_cv1 point to a query work area. */
 OPEN emp_cv1 FOR SELECT * FROM emp;
 /* Use emp_cv1 to fetch first row from emp table. */
 FETCH emp_cv1 INTO emp_rec;
 /* The following fetch raises an exception because emp_cv2
 does not point to a query work area yet. */
 FETCH emp_cv2 INTO emp_rec; -- raises INVALID_CURSOR

Using Cursor Variables

Interaction with Oracle 5-33

EXCEPTION
 WHEN INVALID_CURSOR THEN
 /* Make emp_cv1 and emp_cv2 point to same work area. */
 emp_cv2 := emp_cv1;
 /* Use emp_cv2 to fetch second row from emp table. */
 FETCH emp_cv2 INTO emp_rec;
 /* Reuse work area for another query. */
 OPEN emp_cv2 FOR SELECT * FROM old_emp;
 /* Use emp_cv1 to fetch first row from old_emp table.
 The following fetch succeeds because emp_cv1 and
 emp_cv2 point to the same query work area. */
 FETCH emp_cv1 INTO emp_rec; -- succeeds
END;

Be careful when passing cursor variables as parameters. At run time, PL/SQL raises

ROWTYPE_MISMATCH if the return types of the actual and formal parameters are

incompatible.

In the Pro*C example below, you define a packaged REF CURSOR type, specifying

the return type emp%ROWTYPE. Next, you create a stand-alone procedure that

references the new type. Then, inside a PL/SQL block, you open a host cursor

variable for a query of the dept table. Later, when you pass the open host cursor

variable to the stored procedure, PL/SQL raises ROWTYPE_MISMATCH because the

return types of the actual and formal parameters are incompatible.

CREATE PACKAGE cv_types AS
 TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;
 ...
END cv_types;
/
CREATE PROCEDURE open_emp_cv (emp_cv IN OUT cv_types.EmpCurTyp) AS
BEGIN
 OPEN emp_cv FOR SELECT * FROM emp;
END open_emp_cv;
/
-- anonymous PL/SQL block in Pro*C program
EXEC SQL EXECUTE
 BEGIN
 OPEN :cv FOR SELECT * FROM dept;
 ...
 open_emp_cv(:cv); -- raises ROWTYPE_MISMATCH
 END;
END-EXEC;

Using Cursor Variables

5-34 PL/SQL User’s Guide and Reference

Restrictions on Cursor Variables
Currently, cursor variables are subject to the following restrictions:

■ You cannot declare cursor variables in a package. For example, the following

declaration is illegal:

CREATE PACKAGE emp_stuff AS
 TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;
 emp_cv EmpCurTyp; -- illegal
END emp_stuff;

■ Remote subprograms on another server cannot accept the values of cursor

variables. Therefore, you cannot use RPCs to pass cursor variables from one

server to another.

■ If you pass a host cursor variable to PL/SQL, you cannot fetch from it on the

server side unless you also open it there on the same server call.

■ You cannot use comparison operators to test cursor variables for equality,

inequality, or nullity.

■ You cannot assign nulls to a cursor variable.

■ You cannot use REF CURSOR types to specify column types in a CREATE TABLE
or CREATE VIEW statement. So, database columns cannot store the values of

cursor variables.

■ You cannot use a REF CURSOR type to specify the element type of a collection,

which means that elements in a index-by table, nested table, or varray cannot

store the values of cursor variables.

■ Cursors and cursor variables are not interoperable; that is, you cannot use one

where the other is expected. For example, the following cursor FOR loop is

illegal because it attempts to fetch from a cursor variable:

DECLARE
 TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;
 emp_cv EmpCurTyp;
 ...
BEGIN
 ...
 FOR emp_rec IN emp_cv LOOP ... -- illegal
END;

Using Cursor Attributes

Interaction with Oracle 5-35

Using Cursor Attributes
Every explicit cursor and cursor variable has four attributes: %FOUND, %ISOPEN
%NOTFOUND, and %ROWCOUNT. When appended to the cursor or cursor variable,

these attributes return useful information about the execution of a data

manipulation statement. You can use cursor attributes in procedural statements but

not in SQL statements.

Explicit Cursor Attributes
Explicit cursor attributes return information about the execution of a multi-row

query. When an explicit cursor or a cursor variable is opened, the rows that satisfy

the associated query are identified and form the result set. Rows are fetched from

the result set.

%FOUND
After a cursor or cursor variable is opened but before the first fetch, %FOUND yields

NULL. Thereafter, it yields TRUE if the last fetch returned a row, or FALSE if the last

fetch failed to return a row. In the following example, you use %FOUND to select an

action:

LOOP
 FETCH c1 INTO my_ename, my_sal, my_hiredate;
 IF c1%FOUND THEN -- fetch succeeded
 ...
 ELSE -- fetch failed, so exit loop
 EXIT;
 END IF;
END LOOP;

If a cursor or cursor variable is not open, referencing it with %FOUND raises the

predefined exception INVALID_CURSOR.

%ISOPEN
%ISOPEN yields TRUE if its cursor or cursor variable is open; otherwise, %ISOPEN
yields FALSE. In the following example, you use %ISOPEN to select an action:

IF c1%ISOPEN THEN -- cursor is open
 ...
ELSE -- cursor is closed, so open it
 OPEN c1;
END IF;

Using Cursor Attributes

5-36 PL/SQL User’s Guide and Reference

%NOTFOUND
%NOTFOUND is the logical opposite of %FOUND. %NOTFOUND yields FALSE if the last

fetch returned a row, or TRUE if the last fetch failed to return a row. In the following

example, you use %NOTFOUND to exit a loop when FETCH fails to return a row:

LOOP
 FETCH c1 INTO my_ename, my_sal, my_hiredate;
 EXIT WHEN c1%NOTFOUND;
 ...
END LOOP;

Before the first fetch, %NOTFOUND evaluates to NULL. So, if FETCH never executes

successfully, the loop is never exited. That is because the EXIT WHEN statement

executes only if its WHEN condition is true. To be safe, you might want to use the

following EXIT statement instead:

EXIT WHEN c1%NOTFOUND OR c1%NOTFOUND IS NULL;

If a cursor or cursor variable is not open, referencing it with %NOTFOUND raises

INVALID_CURSOR.

%ROWCOUNT
When its cursor or cursor variable is opened, %ROWCOUNT is zeroed. Before the first

fetch, %ROWCOUNT yields 0. Thereafter, it yields the number of rows fetched so far.

The number is incremented if the last fetch returned a row. In the next example, you

use %ROWCOUNT to take action if more than ten rows have been fetched:

LOOP
 FETCH c1 INTO my_ename, my_deptno;
 IF c1%ROWCOUNT > 10 THEN
 ...
 END IF;
 ...
END LOOP;

If a cursor or cursor variable is not open, referencing it with %ROWCOUNT raises

INVALID_CURSOR.

Using Cursor Attributes

Interaction with Oracle 5-37

Table 5–1 shows what each cursor attribute yields before and after you execute an

OPEN, FETCH, or CLOSE statement.

Some Examples
Suppose you have a table named data_table that holds data collected from

laboratory experiments, and you want to analyze the data from experiment 1. In the

following example, you compute the results and store them in a database table

named temp :

-- available online in file ’examp5’
DECLARE
 num1 data_table.n1%TYPE; -- Declare variables
 num2 data_table.n2%TYPE; -- having same types as
 num3 data_table.n3%TYPE; -- database columns
 result temp.col1%TYPE;
 CURSOR c1 IS
 SELECT n1, n2, n3 FROM data_table WHERE exper_num = 1;

Table 5–1 Cursor Attribute Values

%FOUND %ISOPEN %NOTFOUND %ROWCOUNT

OPEN before exception FALSE exception exception

after NULL TRUE NULL 0

First FETCH before NULL TRUE NULL 0

after TRUE TRUE FALSE 1

Next FETCH(es) before TRUE TRUE FALSE 1

after TRUE TRUE FALSE data dependent

Last FETCH before TRUE TRUE FALSE data dependent

after FALSE TRUE TRUE data dependent

CLOSE before FALSE TRUE TRUE data dependent

after exception FALSE exception exception

Notes:

1. Referencing %FOUND, %NOTFOUND, or %ROWCOUNT before a cursor is opened or after
it is closed raises INVALID_CURSOR.

2. After the first FETCH, if the result set was empty, %FOUND yields FALSE, %NOTFOUND
yields TRUE, and %ROWCOUNT yields 0.

Using Cursor Attributes

5-38 PL/SQL User’s Guide and Reference

BEGIN
 OPEN c1;
 LOOP
 FETCH c1 INTO num1, num2, num3;
 EXIT WHEN c1%NOTFOUND; -- TRUE when FETCH finds no more rows
 result := num2/(num1 + num3);
 INSERT INTO temp VALUES (result, NULL, NULL);
 END LOOP;
 CLOSE c1;
 COMMIT;
END;

In the next example, you check all storage bins that contain part number 5469 ,

withdrawing their contents until you accumulate 1000 units:

-- available online in file ’examp6’
DECLARE
 CURSOR bin_cur(part_number NUMBER) IS
 SELECT amt_in_bin FROM bins
 WHERE part_num = part_number AND amt_in_bin > 0
 ORDER BY bin_num
 FOR UPDATE OF amt_in_bin;
 bin_amt bins.amt_in_bin%TYPE;
 total_so_far NUMBER(5) := 0;
 amount_needed CONSTANT NUMBER(5) := 1000;
 bins_looked_at NUMBER(3) := 0;
BEGIN
 OPEN bin_cur(5469);
 WHILE total_so_far < amount_needed LOOP
 FETCH bin_cur INTO bin_amt;
 EXIT WHEN bin_cur%NOTFOUND;
 -- if we exit, there’s not enough to fill the order
 bins_looked_at := bins_looked_at + 1;
 IF total_so_far + bin_amt < amount_needed THEN
 UPDATE bins SET amt_in_bin = 0
 WHERE CURRENT OF bin_cur;
 -- take everything in the bin
 total_so_far := total_so_far + bin_amt;
 ELSE -- we finally have enough
 UPDATE bins SET amt_in_bin = amt_in_bin
 - (amount_needed - total_so_far)
 WHERE CURRENT OF bin_cur;
 total_so_far := amount_needed;
 END IF;
 END LOOP;

Using Cursor Attributes

Interaction with Oracle 5-39

 CLOSE bin_cur;
 INSERT INTO temp
 VALUES (NULL, bins_looked_at, ’<- bins looked at’);
 COMMIT;
END;

Implicit Cursor Attributes
Implicit cursor attributes return information about the execution of an INSERT,

UPDATE, DELETE, or SELECT INTO statement. The values of the cursor attributes

always refer to the most recently executed SQL statement. Before Oracle opens the

SQL cursor, the implicit cursor attributes yield NULL.

Note: The SQL cursor has another attribute, %BULK_ROWCOUNT, designed for use

with the FORALL statement. For more information, see "Using %BULK_

ROWCOUNT" on page 4-34.

%FOUND
Until a SQL data manipulation statement is executed, %FOUND yields NULL.

Thereafter, %FOUND yields TRUE if an INSERT, UPDATE, or DELETE statement

affected one or more rows, or a SELECT INTOstatement returned one or more rows.

Otherwise, %FOUND yields FALSE. In the following example, you use %FOUND to
insert a row if a delete succeeds:

DELETE FROM emp WHERE empno = my_empno;
IF SQL%FOUND THEN -- delete succeeded
 INSERT INTO new_emp VALUES (my_empno, my_ename, ...);

%ISOPEN
Oracle closes the SQL cursor automatically after executing its associated SQL

statement. As a result, %ISOPEN always yields FALSE.

%NOTFOUND
%NOTFOUND is the logical opposite of %FOUND. %NOTFOUND yields TRUE if an

INSERT, UPDATE, or DELETE statement affected no rows, or a SELECT INTO
statement returned no rows. Otherwise, %NOTFOUND yields FALSE.

Using Cursor Attributes

5-40 PL/SQL User’s Guide and Reference

%ROWCOUNT
%ROWCOUNT yields the number of rows affected by an INSERT, UPDATE, or DELETE
statement, or returned by a SELECT INTO statement. %ROWCOUNT yields 0 if an

INSERT, UPDATE, or DELETE statement affected no rows, or a SELECT INTO
statement returned no rows. In the following example, you use %ROWCOUNT to take

action if more than ten rows have been deleted:

DELETE FROM emp WHERE ...
IF SQL%ROWCOUNT > 10 THEN -- more than 10 rows were deleted
 ...
END IF;

If a SELECT INTO statement returns more than one row, PL/SQL raises the

predefined exception TOO_MANY_ROWS and %ROWCOUNT yields 1, not the actual

number of rows that satisfy the query.

Guidelines
The values of the cursor attributes always refer to the most recently executed SQL

statement, wherever that statement is. It might be in a different scope (for example,

in a sub-block). So, if you want to save an attribute value for later use, assign it to a

Boolean variable immediately. In the following example, relying on the IF
condition is dangerous because the procedure check_status might have changed

the value of %NOTFOUND:

BEGIN
 ...
 UPDATE parts SET quantity = quantity - 1 WHERE partno = part_id;
 check_status(part_id); -- procedure call
 IF SQL%NOTFOUND THEN -- dangerous!
 ...
 END;
END;

You can improve the code as follows:

BEGIN
 ...
 UPDATE parts SET quantity = quantity - 1 WHERE partno = part_id;
 sql_notfound := SQL%NOTFOUND; -- assign value to Boolean variable
 check_status(part_id);
 IF sql_notfound THEN ...
END;

Processing Transactions

Interaction with Oracle 5-41

If a SELECT INTO statement fails to return a row, PL/SQL raises the predefined

exception NO_DATA_FOUND whether you check %NOTFOUND on the next line or not.

Consider the following example:

BEGIN
 ...
 SELECT sal INTO my_sal FROM emp WHERE empno = my_empno;
 -- might raise NO_DATA_FOUND
 IF SQL%NOTFOUND THEN -- condition tested only when false
 ... -- this action is never taken
 END IF;

The check is useless because the IF condition is tested only when %NOTFOUND is

false. When PL/SQL raises NO_DATA_FOUND, normal execution stops and control

transfers to the exception-handling part of the block.

However, a SELECT INTO statement that calls a SQL aggregate function never

raises NO_DATA_FOUND because aggregate functions always return a value or a

null. In such cases, %NOTFOUND yields FALSE, as the following example shows:

BEGIN
 ...
 SELECT MAX(sal) INTO my_sal FROM emp WHERE deptno = my_deptno;
 -- never raises NO_DATA_FOUND
 IF SQL%NOTFOUND THEN -- always tested but never true
 ... -- this action is never taken
 END IF;
EXCEPTION
 WHEN NO_DATA_FOUND THEN ... -- never invoked

Processing Transactions
This section explains how to do transaction processing. You learn the basic

techniques that safeguard the consistency of your database, including how to

control whether changes to Oracle data are made permanent or undone.

The jobs or tasks that Oracle manages are called sessions. A user session is started

when you run an application program or an Oracle tool and connect to Oracle. To

allow user sessions to work "simultaneously" and share computer resources, Oracle

must control concurrency, the accessing of the same data by many users. Without

adequate concurrency controls, there might be a loss of data integrity. That is,

changes to data might be made in the wrong order.

Processing Transactions

5-42 PL/SQL User’s Guide and Reference

Oracle uses locks to control concurrent access to data. A lock gives you temporary

ownership of a database resource such as a table or row of data. Thus, data cannot

be changed by other users until you finish with it. You need never explicitly lock a

resource because default locking mechanisms protect Oracle data and structures.

However, you can request data locks on tables or rows when it is to your advantage

to override default locking. You can choose from several modes of locking such as

row share and exclusive.

A deadlock can occur when two or more users try to access the same schema object.

For example, two users updating the same table might wait if each tries to update a

row currently locked by the other. Because each user is waiting for resources held

by another user, neither can continue until Oracle breaks the deadlock by signaling

an error to the last participating transaction.

When a table is being queried by one user and updated by another at the same time,

Oracle generates a read-consistent view of the data for the query. That is, once a

query begins and as it proceeds, the data read by the query does not change. As

update activity continues, Oracle takes snapshots of the table’s data and records

changes in a rollback segment. Oracle uses rollback segments to build read-consistent

query results and to undo changes if necessary.

How Transactions Guard Your Database
A transaction is a series of SQL data manipulation statements that does a logical

unit of work. Oracle treats the series of SQL statements as a unit so that all the

changes brought about by the statements are either committed (made permanent) or

rolled back (undone) at the same time. If your program fails in the middle of a

transaction, the database is automatically restored to its former state.

The first SQL statement in your program begins a transaction. When one

transaction ends, the next SQL statement automatically begins another transaction.

Thus, every SQL statement is part of a transaction. A distributed transaction includes

at least one SQL statement that updates data at multiple nodes in a distributed

database.

The COMMIT and ROLLBACK statements ensure that all database changes brought

about by SQL operations are either made permanent or undone at the same time.

All the SQL statements executed since the last commit or rollback make up the

current transaction. The SAVEPOINT statement names and marks the current point

in the processing of a transaction.

Processing Transactions

Interaction with Oracle 5-43

Using COMMIT
The COMMIT statement ends the current transaction and makes permanent any

changes made during that transaction. Until you commit the changes, other users

cannot access the changed data; they see the data as it was before you made the

changes.

Consider a simple transaction that transfers money from one bank account to

another. The transaction requires two updates because it debits the first account,

then credits the second. In the example below, after crediting the second account,

you issue a commit, which makes the changes permanent. Only then do other users

see the changes.

BEGIN
 ...
 UPDATE accts SET bal = my_bal - debit
 WHERE acctno = 7715;
 ...
 UPDATE accts SET bal = my_bal + credit
 WHERE acctno = 7720;
 COMMIT WORK;
END;

The COMMITstatement releases all row and table locks. It also erases any savepoints

(discussed later) marked since the last commit or rollback. The optional keyword

WORK has no effect other than to improve readability. The keyword END signals the

end of a PL/SQL block, not the end of a transaction. Just as a block can span

multiple transactions, a transaction can span multiple blocks.

The optional COMMENT clause lets you specify a comment to be associated with a

distributed transaction. When you issue a commit, changes to each database

affected by a distributed transaction are made permanent. However, if a network or

machine fails during the commit, the state of the distributed transaction might be

unknown or in doubt. In that case, Oracle stores the text specified by COMMENTin the

data dictionary along with the transaction ID. The text must be a quoted literal up

to 50 characters long. An example follows:

COMMIT COMMENT ’In-doubt order transaction; notify Order Entry’;

PL/SQL does not support the FORCE clause, which, in SQL, manually commits an

in-doubt distributed transaction. For example, the following COMMIT statement is

illegal:

COMMIT FORCE ’23.51.54’; -- illegal

Processing Transactions

5-44 PL/SQL User’s Guide and Reference

Using ROLLBACK
The ROLLBACK statement ends the current transaction and undoes any changes

made during that transaction. Rolling back is useful for two reasons. First, if you

make a mistake like deleting the wrong row from a table, a rollback restores the

original data. Second, if you start a transaction that you cannot finish because an

exception is raised or a SQL statement fails, a rollback lets you return to the starting

point to take corrective action and perhaps try again.

Consider the example below, in which you insert information about an employee

into three different database tables. All three tables have a column that holds

employee numbers and is constrained by a unique index. If an INSERT statement

tries to store a duplicate employee number, the predefined exception DUP_VAL_ON_
INDEX is raised. In that case, you want to undo all changes, so you issue a rollback

in the exception handler.

DECLARE
 emp_id INTEGER;
 ...
BEGIN
 SELECT empno, ... INTO emp_id, ... FROM new_emp WHERE ...
 ...
 INSERT INTO emp VALUES (emp_id, ...);
 INSERT INTO tax VALUES (emp_id, ...);
 INSERT INTO pay VALUES (emp_id, ...);
 ...
EXCEPTION
 WHEN DUP_VAL_ON_INDEX THEN
 ROLLBACK;
 ...
END;

Statement-Level Rollbacks
Before executing a SQL statement, Oracle marks an implicit savepoint. Then, if the

statement fails, Oracle rolls it back automatically. For example, if an INSERT
statement raises an exception by trying to insert a duplicate value in a unique index,

the statement is rolled back. Only work started by the failed SQL statement is lost.

Work done before that statement in the current transaction is kept.

Oracle can also roll back single SQL statements to break deadlocks. Oracle signals

an error to one of the participating transactions and rolls back the current statement

in that transaction.

Processing Transactions

Interaction with Oracle 5-45

Before executing a SQL statement, Oracle must parse it, that is, examine it to make

sure it follows syntax rules and refers to valid schema objects. Errors detected while

executing a SQL statement cause a rollback, but errors detected while parsing the

statement do not.

Using SAVEPOINT
SAVEPOINT names and marks the current point in the processing of a transaction.

Used with the ROLLBACK TO statement, savepoints let you undo parts of a

transaction instead of the whole transaction. In the example below, you mark a

savepoint before doing an insert. If the INSERT statement tries to store a duplicate

value in the empno column, the predefined exception DUP_VAL_ON_INDEX is
raised. In that case, you roll back to the savepoint, undoing just the insert.

DECLARE
 emp_id emp.empno%TYPE;
BEGIN
 UPDATE emp SET ... WHERE empno = emp_id;
 DELETE FROM emp WHERE ...
 ...
 SAVEPOINT do_insert;
 INSERT INTO emp VALUES (emp_id, ...);
EXCEPTION
 WHEN DUP_VAL_ON_INDEX THEN
 ROLLBACK TO do_insert;
END;

When you roll back to a savepoint, any savepoints marked after that savepoint are

erased. However, the savepoint to which you roll back is not erased. For example, if

you mark five savepoints, then roll back to the third, only the fourth and fifth are

erased. A simple rollback or commit erases all savepoints.

If you mark a savepoint within a recursive subprogram, new instances of the

SAVEPOINT statement are executed at each level in the recursive descent. However,

you can only roll back to the most recently marked savepoint.

Savepoint names are undeclared identifiers and can be reused within a transaction.

This moves the savepoint from its old position to the current point in the

transaction. Thus, a rollback to the savepoint affects only the current part of your

transaction. An example follows:

BEGIN
 SAVEPOINT my_point;
 UPDATE emp SET ... WHERE empno = emp_id;

Processing Transactions

5-46 PL/SQL User’s Guide and Reference

 ...
 SAVEPOINT my_point; -- move my_point to current point
 INSERT INTO emp VALUES (emp_id, ...);
EXCEPTION
 WHEN OTHERS THEN
 ROLLBACK TO my_point;
END;

The number of active savepoints per session is unlimited. An active savepoint is one

marked since the last commit or rollback.

Implicit Rollbacks
Before executing an INSERT, UPDATE, or DELETE statement, Oracle marks an

implicit savepoint (unavailable to you). If the statement fails, Oracle rolls back to

the savepoint. Normally, just the failed SQL statement is rolled back, not the whole

transaction. However, if the statement raises an unhandled exception, the host

environment determines what is rolled back.

If you exit a stored subprogram with an unhandled exception, PL/SQL does not

assign values to OUT parameters. Also, PL/SQL does not roll back database work

done by the subprogram.

Ending Transactions
A good programming practice is to commit or roll back every transaction explicitly.

Whether you issue the commit or rollback in your PL/SQL program or in the host

environment depends on the flow of application logic. If you neglect to commit or

roll back a transaction explicitly, the host environment determines its final state.

For example, in the SQL*Plus environment, if your PL/SQL block does not include

a COMMIT or ROLLBACK statement, the final state of your transaction depends on

what you do after running the block. If you execute a data definition, data control,

or COMMIT statement or if you issue the EXIT , DISCONNECT, or QUIT command,

Oracle commits the transaction. If you execute a ROLLBACK statement or abort the

SQL*Plus session, Oracle rolls back the transaction.

In the Oracle Precompiler environment, if your program does not terminate

normally, Oracle rolls back your transaction. A program terminates normally when

it explicitly commits or rolls back work and disconnects from Oracle using the

RELEASE parameter, as follows:

EXEC SQL COMMIT WORK RELEASE;

Processing Transactions

Interaction with Oracle 5-47

Using SET TRANSACTION
You use the SET TRANSACTION statement to begin a read-only or read-write

transaction, establish an isolation level, or assign your current transaction to a

specified rollback segment. Read-only transactions are useful for running multiple

queries against one or more tables while other users update the same tables.

During a read-only transaction, all queries refer to the same snapshot of the

database, providing a multi-table, multi-query, read-consistent view. Other users

can continue to query or update data as usual. A commit or rollback ends the

transaction. In the example below, as a store manager, you use a read-only

transaction to gather sales figures for the day, the past week, and the past month.

The figures are unaffected by other users updating the database during the

transaction.

DECLARE
 daily_sales REAL;
 weekly_sales REAL;
 monthly_sales REAL;
BEGIN
 ...
 COMMIT; -- ends previous transaction
 SET TRANSACTION READ ONLY;
 SELECT SUM(amt) INTO daily_sales FROM sales
 WHERE dte = SYSDATE;
 SELECT SUM(amt) INTO weekly_sales FROM sales
 WHERE dte > SYSDATE - 7;
 SELECT SUM(amt) INTO monthly_sales FROM sales
 WHERE dte > SYSDATE - 30;
 COMMIT; -- ends read-only transaction
 ...
END;

The SET TRANSACTION statement must be the first SQL statement in a read-only

transaction and can only appear once in a transaction. If you set a transaction to

READ ONLY, subsequent queries see only changes committed before the transaction

began. The use of READ ONLY does not affect other users or transactions.

Restrictions on SET TRANSACTION
Only the SELECT INTO, OPEN, FETCH, CLOSE, LOCK TABLE, COMMIT, and

ROLLBACK statements are allowed in a read-only transaction. Also, queries cannot

be FOR UPDATE.

Processing Transactions

5-48 PL/SQL User’s Guide and Reference

Overriding Default Locking
By default, Oracle locks data structures for you automatically. However, you can

request specific data locks on rows or tables when it is to your advantage to

override default locking. Explicit locking lets you share or deny access to a table for

the duration of a transaction.

With the LOCK TABLE statement, you can explicitly lock entire tables. With the

SELECT FOR UPDATE statement, you can explicitly lock specific rows of a table to

make sure they do not change before an update or delete is executed. However,

Oracle automatically obtains row-level locks at update or delete time. So, use the

FOR UPDATE clause only if you want to lock the rows before the update or delete.

Using FOR UPDATE
When you declare a cursor that will be referenced in the CURRENT OF clause of an

UPDATE or DELETE statement, you must use the FOR UPDATE clause to acquire

exclusive row locks. An example follows:

DECLARE
 CURSOR c1 IS SELECT empno, sal FROM emp
 WHERE job = ’SALESMAN’ AND comm > sal
 FOR UPDATE NOWAIT;

The SELECT ... FOR UPDATE statement identifies the rows that will be updated or

deleted, then locks each row in the result set. This is useful when you want to base

an update on the existing values in a row. In that case, you must make sure the row

is not changed by another user before the update.

The optional keyword NOWAIT tells Oracle not to wait if requested rows have been

locked by another user. Control is immediately returned to your program so that it

can do other work before trying again to acquire the lock. If you omit the keyword

NOWAIT, Oracle waits until the rows are available.

All rows are locked when you open the cursor, not as they are fetched. The rows are

unlocked when you commit or roll back the transaction. So, you cannot fetch from a

FOR UPDATE cursor after a commit. (For a workaround, see "Fetching Across

Commits" on page 5-50.)

Processing Transactions

Interaction with Oracle 5-49

When querying multiple tables, you can use the FOR UPDATE clause to confine row

locking to particular tables. Rows in a table are locked only if the FOR UPDATE OF
clause refers to a column in that table. For example, the following query locks rows

in the emp table but not in the dept table:

DECLARE
 CURSOR c1 IS SELECT ename, dname FROM emp, dept
 WHERE emp.deptno = dept.deptno AND job = ’MANAGER’
 FOR UPDATE OF sal;

As the next example shows, you use the CURRENT OF clause in an UPDATE or

DELETE statement to refer to the latest row fetched from a cursor:

DECLARE
 CURSOR c1 IS SELECT empno, job, sal FROM emp FOR UPDATE;
 ...
BEGIN
 OPEN c1;
 LOOP
 FETCH c1 INTO ...
 ...
 UPDATE emp SET sal = new_sal WHERE CURRENT OF c1;
 END LOOP;

Using LOCK TABLE
You use the LOCK TABLE statement to lock entire database tables in a specified lock

mode so that you can share or deny access to them. For example, the statement

below locks the emp table in row share mode. Row share locks allow concurrent

access to a table; they prevent other users from locking the entire table for exclusive

use. Table locks are released when your transaction issues a commit or rollback.

LOCK TABLE emp IN ROW SHARE MODE NOWAIT;

The lock mode determines what other locks can be placed on the table. For example,

many users can acquire row share locks on a table at the same time, but only one

user at a time can acquire an exclusive lock. While one user has an exclusive lock on

a table, no other users can insert, delete, or update rows in that table. For more

information about lock modes, see Oracle8i Application Developer’s Guide -
Fundamentals.

A table lock never keeps other users from querying a table, and a query never

acquires a table lock. Only if two different transactions try to modify the same row

will one transaction wait for the other to complete.

Processing Transactions

5-50 PL/SQL User’s Guide and Reference

Fetching Across Commits
The FOR UPDATEclause acquires exclusive row locks. All rows are locked when you

open the cursor, and they are unlocked when you commit your transaction. So, you

cannot fetch from a FOR UPDATEcursor after a commit. If you do, PL/SQL raises an

exception. In the following example, the cursor FOR loop fails after the tenth insert:

DECLARE
 CURSOR c1 IS SELECT ename FROM emp FOR UPDATE OF sal;
 ctr NUMBER := 0;
BEGIN
 FOR emp_rec IN c1 LOOP -- FETCHes implicitly
 ...
 ctr := ctr + 1;
 INSERT INTO temp VALUES (ctr, ’still going’);
 IF ctr >= 10 THEN
 COMMIT; -- releases locks
 END IF;
 END LOOP;
END;

If you want to fetch across commits, do not use the FOR UPDATE and CURRENT OF
clauses. Instead, use the ROWID pseudocolumn to mimic the CURRENT OF clause.

Simply select the rowid of each row into a UROWID variable. Then, use the rowid to

identify the current row during subsequent updates and deletes. An example

follows:

DECLARE
 CURSOR c1 IS SELECT ename, job, rowid FROM emp;
 my_ename emp.ename%TYPE;
 my_job emp.job%TYPE;
 my_rowid UROWID;
BEGIN
 OPEN c1;
 LOOP
 FETCH c1 INTO my_ename, my_job, my_rowid;
 EXIT WHEN c1%NOTFOUND;
 UPDATE emp SET sal = sal * 1.05 WHERE rowid = my_rowid;
 -- this mimics WHERE CURRENT OF c1
 COMMIT;
 END LOOP;
 CLOSE c1;
END;

Processing Transactions

Interaction with Oracle 5-51

Be careful. In the last example, the fetched rows are not locked because no FOR
UPDATE clause is used. So, other users might unintentionally overwrite your

changes. Also, the cursor must have a read-consistent view of the data, so rollback

segments used in the update are not released until the cursor is closed. This can

slow down processing when many rows are updated.

The next example shows that you can use the %ROWTYPE attribute with cursors that

reference the ROWID pseudocolumn:

DECLARE
 CURSOR c1 IS SELECT ename, sal, rowid FROM emp;
 emp_rec c1%ROWTYPE;
BEGIN
 OPEN c1;
 LOOP
 FETCH c1 INTO emp_rec;
 EXIT WHEN c1%NOTFOUND;
 ...
 IF ... THEN
 DELETE FROM emp WHERE rowid = emp_rec.rowid;
 END IF;
 END LOOP;
 CLOSE c1;
END;

Using Autonomous Transactions

5-52 PL/SQL User’s Guide and Reference

Using Autonomous Transactions
A transaction is a series of SQL statements that does a logical unit of work. Often,

one transaction starts another. In some applications, a transaction must operate

outside the scope of the transaction that started it. This can happen, for example,

when a transaction calls out to a data cartridge.

An autonomous transaction is an independent transaction started by another

transaction, the main transaction. Autonomous transactions let you suspend the

main transaction, do SQL operations, commit or roll back those operations, then

resume the main transaction. Figure 5–1 shows how control flows from the main

transaction (MT) to an autonomous transaction (AT) and back again.

Figure 5–1 Transaction Control Flow

Advantages of Autonomous Transactions
Once started, an autonomous transaction is fully independent. It shares no locks,

resources, or commit-dependencies with the main transaction. So, you can log

events, increment retry counters, and so on, even if the main transaction rolls back.

More important, autonomous transactions help you build modular, reusable

software components. For example, stored procedures can start and finish

autonomous transactions on their own. A calling application need not know about a

procedure’s autonomous operations, and the procedure need not know about the

application’s transaction context. That makes autonomous transactions less

error-prone than regular transactions and easier to use.

Furthermore, autonomous transactions have all the functionality of regular

transactions. They allow parallel queries, distributed processing, and all the

transaction control statements including SET TRANSACTION.

PROCEDURE proc1 IS
 emp_id NUMBER;
BEGIN
 emp_id := 7788;
 INSERT ... MT begins
 SELECT ...
 proc2;
 DELETE ...
 COMMIT; MT ends
END;

PROCEDURE proc2 IS
 PRAGMA AUTON...
 dept_id NUMBER;
BEGIN MT suspends
 dept_id := 20;
 UPDATE ... AT begins
 INSERT ...
 UPDATE ...
 COMMIT; AT ends
END; MT resumes

Main Transaction Autonomous Transaction

Using Autonomous Transactions

Interaction with Oracle 5-53

Defining Autonomous Transactions
To define autonomous transactions, you use the pragma (compiler directive)

AUTONOMOUS_TRANSACTION. The pragma instructs the PL/SQL compiler to mark

a routine as autonomous (independent). In this context, the term routine includes

■ top-level (not nested) anonymous PL/SQL blocks

■ local, stand-alone, and packaged functions and procedures

■ methods of a SQL object type

■ database triggers

You can code the pragma anywhere in the declarative section of a routine. But, for

readability, code the pragma at the top of the section. The syntax follows:

PRAGMA AUTONOMOUS_TRANSACTION;

In the following example, you mark a packaged function as autonomous:

CREATE PACKAGE banking AS
 ...
 FUNCTION balance (acct_id INTEGER) RETURN REAL;
END banking;

CREATE PACKAGE BODY banking AS
 ...
 FUNCTION balance (acct_id INTEGER) RETURN REAL IS
 PRAGMA AUTONOMOUS_TRANSACTION;
 my_bal REAL;
 BEGIN
 ...
 END;
END banking;

In the next example, you mark a stand-alone procedure as autonomous:

CREATE PROCEDURE close_account (acct_id INTEGER, OUT balance) AS
 PRAGMA AUTONOMOUS_TRANSACTION;
 my_bal REAL;
BEGIN
 ...
END;

Using Autonomous Transactions

5-54 PL/SQL User’s Guide and Reference

In the following example, you mark a PL/SQL block as autonomous:

DECLARE
 PRAGMA AUTONOMOUS_TRANSACTION;
 my_empno NUMBER(4);

In the example below, you mark a database trigger as autonomous. Unlike regular

triggers, autonomous triggers can contain transaction control statements such as

COMMIT and ROLLBACK.

CREATE TRIGGER parts_trigger
BEFORE INSERT ON parts FOR EACH ROW
DECLARE
 PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN
 INSERT INTO parts_log VALUES(:new.pnum, :new.pname);
 COMMIT; -- allowed only in autonomous triggers
END;

Restrictions on Pragma AUTONOMOUS_TRANSACTION
You cannot use the pragma to mark all subprograms in a package (or all methods in

an object type) as autonomous. Only individual routines can be marked

autonomous. For example, the following pragma is illegal:

CREATE PACKAGE banking AS
 PRAGMA AUTONOMOUS_TRANSACTION; -- illegal

Also, you cannot mark a nested PL/SQL block as autonomous.

Autonomous versus Nested Transactions
Although an autonomous transaction is started by another transaction, it is not a
nested transaction for the following reasons:

■ It does not share transactional resources (such as locks) with the main

transaction.

■ It does not depend on the main transaction. For example, if the main transaction

rolls back, nested transactions roll back, but autonomous transactions do not.

■ Its committed changes are visible to other transactions immediately. (A nested

transaction’s committed changes are not visible to other transactions until the

main transaction commits.)

■ Exceptions raised in an autonomous transaction cause a transaction-level

rollback, not a statement-level rollback.

Using Autonomous Transactions

Interaction with Oracle 5-55

Transaction context
As Figure 5–2 shows, the main transaction shares its context with nested routines,

but not with autonomous transactions. Likewise, when one autonomous routine

calls another (or itself recursively), the routines share no transaction context.

However, when an autonomous routine calls a non-autonomous routine, the

routines share the same transaction context.

Figure 5–2 Transaction Context

Transaction Visibility
As Figure 5–3 on page 5-56 shows, changes made by an autonomous transaction

become visible to other transactions when the autonomous transaction commits.

The changes also become visible to the main transaction when it resumes, but only

if its isolation level is set to READ COMMITTED (the default).

If you set the isolation level of the main transaction to SERIALIZABLE , as follows,

changes made by its autonomous transactions are not visible to the main transaction

when it resumes:

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

Transaction Context Different Transaction Context

PROCEDURE proc3 IS
 PRAGMA AUTON...
 dept_id NUMBER;
BEGIN
 dept_id := 20;
 UPDATE ...
 INSERT ...
 UPDATE ...
 COMMIT;
END;

Autonomous Transaction

PROCEDURE proc1 IS
 emp_id NUMBER;
BEGIN
 emp_id := 7788;
 proc2;
 SELECT ...
 INSERT ...
 INSERT ...
 emp_id := 7566;
 UPDATE ...
 DELETE ...
 proc3;
 COMMIT;
END;

Main Transaction

PROCEDURE proc2 IS
 bonus NUMBER;
BEGIN
 bonus := 500;
 SELECT ...
 INSERT ...
 DELETE ...
 COMMIT;
END;

Nested Routine

Using Autonomous Transactions

5-56 PL/SQL User’s Guide and Reference

Figure 5–3 Transaction Visibility

Controlling Autonomous Transactions
The first SQL statement in an autonomous routine begins a transaction. When one

transaction ends, the next SQL statement begins another transaction. All SQL

statements executed since the last commit or rollback make up the current

transaction. To control autonomous transactions, use the following statements,

which apply only to the current (active) transaction:

■ COMMIT

■ ROLLBACK [TO savepoint_name]

■ SAVEPOINT savepoint_name

■ SET TRANSACTION

COMMIT ends the current transaction and makes permanent changes made during

that transaction. ROLLBACK ends the current transaction and undoes changes made

during that transaction. ROLLBACK TO undoes part of a transaction. SAVEPOINT
names and marks the current point in a transaction. SET TRANSACTION sets

transaction properties such as read/write access and isolation level.

Note: Transaction properties set in the main transaction apply only to that

transaction, not to its autonomous transactions, and vice versa.

At this point, all changes made
by the autonomous transaction
are visible to other transactions

At this point, all changes made
by the autonomous transaction
are visible to the main transaction
unless the isolation level of the
latter is set to SERIALIZABLE

No changes made by the main
transaction are visible to the
autonomous transaction

PROCEDURE proc2 IS
 PRAGMA AUTON...
 dept_id NUMBER;
BEGIN
 dept_id := 20;
 SELECT ...
 UPDATE ...
 INSERT ...
 UPDATE ...
 DELETE ...
 COMMIT;
END;

Autonomous Transaction

PROCEDURE proc1 IS
 emp_id NUMNER;
BEGIN
 emp_id := 7788;
 INSERT ...
 SELECT ...
 proc2;
 DELETE ...
 INSERT ...
 INSERT ...
 COMMIT;
END;

Main Transaction

PROCEDURE proc3 IS
 bonus NUMBER;
BEGIN
 bonus := 500;
 SELECT ...
 INSERT ...
 DELETE ...
 COMMIT;
END;

Other Transaction

Using Autonomous Transactions

Interaction with Oracle 5-57

Entering and Exiting
When you enter the executable section of an autonomous routine, the main

transaction suspends. When you exit the routine, the main transaction resumes.

To exit normally, you must explicitly commit or roll back all autonomous

transactions. If the routine (or any routine called by it) has pending transactions, an

exception is raised, and the pending transactions are rolled back.

Committing and Rolling Back
COMMIT and ROLLBACK end the active autonomous transaction but do not exit the

autonomous routine. As Figure 5–4 shows, when one transaction ends, the next SQL

statement begins another transaction.

Figure 5–4 Multiple Autonomous Transactions

Using Savepoints
The scope of a savepoint is the transaction in which it is defined. Savepoints defined

in the main transaction are unrelated to savepoints defined in its autonomous

transactions. In fact, the main transaction and an autonomous transaction can use

the same savepoint names.

You can roll back only to savepoints marked in the current transaction. So, when in

an autonomous transaction, you cannot roll back to a savepoint marked in the main

transaction. To do so, you must resume the main transaction by exiting the

autonomous routine.

PROCEDURE proc1 IS
 emp_id NUMBER;
BEGIN
 emp_id := 7788;
 INSERT ... MT begins
 SELECT ...
 proc2;
 DELETE ...
 COMMIT; MT ends
END;

PROCEDURE proc2 IS
 PRAGMA AUTON...
 dept_id NUMBER;
BEGIN MT suspends
 dept_id := 20;
 UPDATE ... AT1 begins
 INSERT ...
 UPDATE ...
 COMMIT; AT1 ends
 INSERT ... AT2 begins
 INSERT ...
 COMMIT; AT2 ends
END; MT resumes

Main Routine Autonomous Routine

Using Autonomous Transactions

5-58 PL/SQL User’s Guide and Reference

When in the main transaction, rolling back to a savepoint marked before you started

an autonomous transaction does not roll back the autonomous transaction.

Remember, autonomous transactions are fully independent of the main transaction.

Avoiding Errors
To avoid some common errors, keep the following points in mind when designing

autonomous transactions:

■ If an autonomous transaction attempts to access a resource held by the main

transaction (which cannot resume until the autonomous routine exits), a

deadlock can occur. In that case, Oracle raises an exception in the autonomous

transaction, which is rolled back if the exception goes unhandled.

■ The Oracle initialization parameter TRANSACTIONS specifies the maximum

number of concurrent transactions. That number might be exceeded if

autonomous transactions (which run concurrently with the main transaction)

are not taken into account.

■ If you try to exit an active autonomous transaction without committing or

rolling back, Oracle raises an exception. If the exception goes unhandled, the

transaction is rolled back.

Using Autonomous Triggers
Among other things, you can use database triggers to log events transparently.

Suppose you want to track all inserts into a table, even those that roll back. In the

example below, you use a trigger to insert duplicate rows into a shadow table.

Because it is autonomous, the trigger can commit inserts into the shadow table

whether or not you commit inserts into the main table.

-- create a main table and its shadow table
CREATE TABLE parts (pnum NUMBER(4), pname VARCHAR2(15));
CREATE TABLE parts_log (pnum NUMBER(4), pname VARCHAR2(15));

-- create an autonomous trigger that inserts into the
-- shadow table before each insert into the main table
CREATE TRIGGER parts_trig
BEFORE INSERT ON parts FOR EACH ROW
DECLARE
 PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN
 INSERT INTO parts_log VALUES(:new.pnum, :new.pname);
 COMMIT;
END;

Using Autonomous Transactions

Interaction with Oracle 5-59

-- insert a row into the main table, and then commit the insert
INSERT INTO parts VALUES (1040, ’Head Gasket’);
COMMIT;

-- insert another row, but then roll back the insert
INSERT INTO parts VALUES (2075, ’Oil Pan’);
ROLLBACK;

-- show that only committed inserts add rows to the main table
SELECT * FROM parts ORDER BY pnum;
 PNUM PNAME
------- ---------------
 1040 Head Gasket

-- show that both committed and rolled-back inserts add rows
-- to the shadow table
SELECT * FROM parts_log ORDER BY pnum;
 PNUM PNAME
------- ---------------
 1040 Head Gasket
 2075 Oil Pan

Unlike regular triggers, autonomous triggers can execute DDL statements using

native dynamic SQL (discussed in Chapter 10). In the following example, trigger

bonus_trig drops a temporay database table after table bonus is updated:

CREATE TRIGGER bonus_trig
AFTER UPDATE ON bonus
DECLARE
 PRAGMA AUTONOMOUS_TRANSACTION; -- enables trigger to perform DDL
BEGIN
 EXECUTE IMMEDIATE ’DROP TABLE temp_bonus’;
END;

For more information about database triggers, see Oracle8i Application Developer’s
Guide - Fundamentals.

Using Autonomous Transactions

5-60 PL/SQL User’s Guide and Reference

Calling Autonomous Functions from SQL
A function called from SQL statements must obey certain rules meant to control

side effects. (See "Controlling Sides Effects" on page 7-9.) To check for violations of

the rules, you can use the pragma RESTRICT_REFERENCES. The pragma asserts

that a function does not read and/or write database tables and/or package

variables. (For more information, See Oracle8i Application Developer’s Guide -
Fundamentals.)

However, by definition, autonomous routines never violate the rules "read no

database state" (RNDS) and "write no database state" (WNDS) no matter what they do.

This can be useful, as the example below shows. When you call the packaged

function log_msg from a query, it inserts a message into database table debug_

output without violating the rule "write no database state."

-- create the debug table
CREATE TABLE debug_output (msg VARCHAR2(200));

-- create the package spec
CREATE PACKAGE debugging AS
 FUNCTION log_msg (msg VARCHAR2) RETURN VARCHAR2;
 PRAGMA RESTRICT_REFERENCES(log_msg, WNDS, RNDS);
END debugging;

-- create the package body
CREATE PACKAGE BODY debugging AS
 FUNCTION log_msg (msg VARCHAR2) RETURN VARCHAR2 IS
 PRAGMA AUTONOMOUS_TRANSACTION;
 BEGIN
 -- the following insert does not violate the constraint
 -- WNDS because this is an autonomous routine
 INSERT INTO debug_output VALUES (msg);
 COMMIT;
 RETURN msg;
 END;
END debugging;

Improving Performance

Interaction with Oracle 5-61

-- call the packaged function from a query
DECLARE
 my_empno NUMBER(4);
 my_ename VARCHAR2(15);
BEGIN
 ...
 SELECT debugging.log_msg(ename) INTO my_ename FROM emp
 WHERE empno = my_empno;
 -- even if you roll back in this scope, the insert
 -- into ’debug_output’ remains committed because
 -- it is part of an autonomous transaction
 IF ... THEN
 ROLLBACK;
 END IF;
END;

Improving Performance
This section gives several techniques for improving performance and explains how

your applications can use them.

Use Object Types and Collections
Collection types (see Chapter 4) and object types (see Chapter 9) increase your

productivity by allowing for realistic data modeling. Complex real-world entities

and relationships map directly into object types. And, a well-constructed object

model can improve application performance by eliminating table joins, reducing

round trips, and the like.

Client programs, including PL/SQL programs, can declare objects and collections,

pass them as parameters, store them in the database, retrieve them, and so on. Also,

by encapsulating operations with data, object types let you move data-maintenance

code out of SQL scripts and PL/SQL blocks into methods.

Objects and collections are more efficient to store and retrieve because they can be

manipulated as a whole. Also, object support is integrated architecturally with the

database, so it can take advantage of the many scalability and performance

improvements built into Oracle8i.

Improving Performance

5-62 PL/SQL User’s Guide and Reference

Use Bulk Binds
When SQL statements execute inside a loop using collection elements as bind

variables, context switching between the PL/SQL and SQL engines can slow down

execution. For example, the following UPDATE statement is sent to the SQL engine

with each iteration of the FOR loop:

DECLARE
 TYPE NumList IS VARRAY(20) OF NUMBER;
 depts NumList := NumList(10, 30, 70, ...); -- department numbers
BEGIN
 ...
 FOR i IN depts.FIRST..depts.LAST LOOP
 ...
 UPDATE emp SET sal = sal * 1.10 WHERE deptno = depts(i);
 END LOOP;
END;

In such cases, if the SQL statement affects five or more database rows, the use of

bulk binds can improve performance considerably. For example, the following

UPDATE statement is sent to the SQL engine just once, with the entire nested table:

FORALL i IN depts.FIRST..depts.LAST
 UPDATE emp SET sal = sal * 1.10 WHERE deptno = depts(i);

To maximize performance, rewrite your programs as follows:

■ If an INSERT, UPDATE, or DELETE statement executes inside a loop and

references collection elements, move it into a FORALL statement.

■ If a SELECT INTO, FETCH INTO, or RETURNING INTO clause references a

collection, incorporate the BULK COLLECT clause.

■ If possible, use host arrays to pass collections back and forth between your

programs and the database server.

Note: These are not a trivial tasks. They require careful analysis of program

control-flows and dependencies. For more information about bulk binding, see

"Taking Advantage of Bulk Binds" on page 4-29.

Improving Performance

Interaction with Oracle 5-63

Use Native Dynamic SQL
Some programs (a general-purpose report writer for example) must build and

process a variety of SQL statements at run time. So, their full text is unknown until

then. Such statements can, and probably will, change from execution to execution.

So, they are called dynamic SQL statements.

Formerly, to execute dynamic SQL statements, you had to use the supplied package

DBMS_SQL. Now, within PL/SQL, you can execute any kind of dynamic SQL

statement using an interface called native dynamic SQL.

Native dynamic SQL is easier to use and much faster than package DBMS_SQL. In
the following example, you declare a cursor variable, then associate it with a

dynamic SELECT statement that returns rows from database table emp:

DECLARE
 TYPE EmpCurTyp IS REF CURSOR;
 emp_cv EmpCurTyp;
 my_ename VARCHAR2(15);
 my_sal NUMBER := 1000;
BEGIN
 OPEN emp_cv FOR
 ’SELECT ename, sal FROM emp
 WHERE sal > :s’ USING my_sal;
 ...
END;

For more information, see Chapter 10, "Native Dynamic SQL".

Use External Routines
PL/SQL is specialized for SQL transaction processing. So, some tasks are more

quickly done in a lower-level language such as C, which is very efficient at

machine-precision calculations.

PL/SQL extends the functionality of the Oracle server by providing an interface for

calling routines written in other languages. Standard libraries already written and

available in other languages can be called from PL/SQL programs. This promotes

reusability, efficiency, and modularity.

To speed up execution, you can rewrite computation-bound programs in C. In

addition, you can move such programs from client to server, where they will

execute faster thanks to more computing power and less across-network

communication.

Improving Performance

5-64 PL/SQL User’s Guide and Reference

For example, you can write methods for an image object type in C, store them in a

dynamic link library (DLL), register the library with PL/SQL, then call it from your

applications. At run time, the library loads dynamically and, for safety, runs in a

separate address space (implemented as a separate process).

For more information, see Oracle8i Application Developer’s Guide - Fundamentals.

Use the NOCOPY Compiler Hint
By default, OUTand IN OUT parameters are passed by value. That is, the value of an

IN OUT actual parameter is copied into the corresponding formal parameter. Then,

if the subprogram exits normally, the values assigned to OUT and IN OUT formal

parameters are copied into the corresponding actual parameters.

When the parameters hold large data structures such as collections, records, and

instances of object types, all this copying slows down execution and uses up

memory. To prevent that, you can specify the NOCOPY hint, which allows the

PL/SQL compiler to pass OUTand IN OUTparameters by reference. In the following

example, you ask the compiler to pass IN OUT parameter my_unit by reference

instead of by value:

DECLARE
 TYPE Platoon IS VARRAY(200) OF Soldier;
 PROCEDURE reorganize (my_unit IN OUT NOCOPY Platoon) IS ...
BEGIN
 ...
END;

For more information, see "Using the NOCOPY Compiler Hint" on page 7-17.

Use the RETURNING Clause
Often, applications need information about the row affected by a SQL operation, for

example, to generate a report or take a subsequent action. The INSERT, UPDATE,
and DELETE statements can include a RETURNING clause, which returns column

values from the affected row into PL/SQL variables or host variables. This

eliminates the need to SELECT the row after an insert or update, or before a delete.

As a result, fewer network round trips, less server CPU time, fewer cursors, and less

server memory are required.

Improving Performance

Interaction with Oracle 5-65

In the following example, you update the salary of an employee and at the same

time retrieve the employee's name and new salary into PL/SQL variables.

PROCEDURE update_salary (emp_id NUMBER) IS
 name VARCHAR2(15);
 new_sal NUMBER;
BEGIN
 UPDATE emp SET sal = sal * 1.1
 WHERE empno = emp_id
 RETURNING ename, sal INTO name, new_sal;

Use Serially Reusable Packages
To help you manage the use of memory, PL/SQL provides the pragma SERIALLY_
REUSABLE, which lets you mark some packages as serially reusable. You can so mark

a package if its state is needed only for the duration of one call to the server (for

example, an OCI call to the server or a server-to-server RPC).

The global memory for such packages is pooled in the System Global Area (SGA),

not allocated to individual users in the User Global Area (UGA). That way, the

package work area can be reused. When the call to the server ends, the memory is

returned to the pool. Each time the package is reused, its public variables are

initialized to their default values or to NULL.

The maximum number of work areas needed for a package is the number of

concurrent users of that package, which is usually much smaller than the number of

logged-on users. The increased use of SGA memory is more than offset by the

decreased use of UGA memory. Also, Oracle ages-out work areas not in use if it

needs to reclaim SGA memory.

For bodiless packages, you code the pragma in the package spec using the

following syntax:

PRAGMA SERIALLY_REUSABLE;

For packages with a body, you must code the pragma in the spec and body. You

cannot code the pragma only in the body. The following example shows how a

public variable in a serially reusable package behaves across call boundaries:

CREATE PACKAGE pkg1 IS
 PRAGMA SERIALLY_REUSABLE;
 num NUMBER := 0;
 PROCEDURE init_pkg_state(n NUMBER);
 PROCEDURE print_pkg_state;
END pkg1;

Improving Performance

5-66 PL/SQL User’s Guide and Reference

/
CREATE PACKAGE BODY pkg1 IS
 PRAGMA SERIALLY_REUSABLE;
 PROCEDURE init_pkg_state (n NUMBER) IS
 BEGIN
 pkg1.num := n;
 END;
 PROCEDURE print_pkg_state IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE(’Num: ’ || pkg1.num);
 END;
END pkg1;
/
BEGIN
 /* Initialize package state. */
 pkg1.init_pkg_state(4);
 /* On same server call, print package state. */
 pkg1.print_pkg_state; -- prints 4
END;
/
-- subsequent server call
BEGIN
 -- the package’s public variable is initialized
 -- to the default value automatically
 pkg1.print_pkg_state; -- prints 0
END;

For more information, see Oracle8i Application Developer’s Guide - Fundamentals.

Use the PLS_INTEGER Datatype
When you need to declare an integer variable, use the datatype PLS_INTEGER,

which is the most efficient numeric type. That is because PLS_INTEGER values

require less storage than INTEGER or NUMBER values, which are represented

internally as 22-byte Oracle numbers. Also, PLS_INTEGER operations use machine

arithmetic, so they are faster than BINARY_INTEGER, INTEGER, or NUMBER
operations, which use library arithmetic.

Furthermore, INTEGER, NATURAL, NATURALN, POSITIVE , POSITIVEN, and

SIGNTYPE are constrained subtypes. So, their variables require precision checking

at run time, which can affect performance.

Improving Performance

Interaction with Oracle 5-67

Avoid the NOT NULL Constraint
In PL/SQL, using the NOT NULL constraint incurs a performance cost. Consider the

following example:

PROCEDURE calc_m IS
 m NUMBER NOT NULL;
 a NUMBER;
 b NUMBER;
BEGIN
 ...
 m := a + b;

Because m is constrained by NOT NULL, the value of the expression a + b is

assigned to a temporary variable, which is then tested for nullity. If the variable is

not null, its value is assigned to m. Otherwise, an exception is raised. However, if m
were not constrained, the value would be assigned to m directly.

A more efficient way to write the last example follows:

PROCEDURE calc_m IS
 m NUMBER; -- no constraint
 a NUMBER;
 b NUMBER;
BEGIN
 ...
 m := a + b;
 IF m IS NULL THEN ... -- enforce constraint programmatically
END;

Note that the subtypes NATURALN and POSTIVEN are defined as NOT NULL. So,

using them incurs the same performance cost.

Rephrase Conditional Control Statements
When evaluating a logical expression, PL/SQL uses short-circuit evaluation. That is,

PL/SQL stops evaluating the expression as soon as the result can be determined.

For example, in the following OR expression, when the value of sal is less than

1500 , the left operand yields TRUE, so PL/SQL need not evaluate the right operand

(because OR returns TRUE if either of its operands is true):

IF (sal < 1500) OR (comm IS NULL) THEN
 ...
END IF;

Improving Performance

5-68 PL/SQL User’s Guide and Reference

Now, consider the following AND expression:

IF credit_ok(cust_id) AND (loan < 5000) THEN
 ...
END IF;

The Boolean function credit_ok is always called. However, if you switch the

operands of AND as follows

IF (loan < 5000) AND credit_ok(cust_id) THEN
 ...
END IF;

the function is called only when the expression loan < 5000 is true (because AND
returns TRUE only if both its operands are true).

The same idea applies to EXIT -WHEN statements.

Avoid Implicit Datatype Conversions
At run time, PL/SQL converts between structurally different datatypes implicitly.

For instance, assigning a PLS_INTEGER variable to a NUMBER variable results in a

conversion because their internal representations are different.

Avoiding implicit conversions can improve performance. Look at the example

below. The integer literal 15 is represented internally as a signed 4-byte quantity, so

PL/SQL must convert it to an Oracle number before the addition. However, the

floating-point literal 15.0 is represented as a 22-byte Oracle number, so no

conversion is necessary.

DECLARE
 n NUMBER;
 c CHAR(5);
BEGIN
 n := n + 15; -- converted
 n := n + 15.0; -- not converted

Here is another example:

DECLARE
 c CHAR(5);
BEGIN
 c := 25; -- converted
 c := ’25’; -- not converted

Ensuring Backward Compatibility

Interaction with Oracle 5-69

Ensuring Backward Compatibility
PL/SQL Version 2 allows some abnormal behavior that Version 8 disallows.

Specifically, Version 2 allows you to

■ make forward references to RECORD and TABLE types when declaring variables

■ specify the name of a variable (not a datatype) in the RETURN clause of a

function spec

■ assign values to the elements of an index-by table IN parameter

■ pass the fields of a record IN parameter to another subprogram as OUT
parameters

■ use the fields of a record OUT parameter on the right-hand side of an

assignment statement

■ use OUT parameters in the FROM list of a SELECT statement

For backward compatibility, you might want to keep this particular Version 2

behavior. You can do that by setting the PLSQL_V2_COMPATIBILITY flag. On the

server side, you can set the flag in two ways:

■ Add the following line to the Oracle initialization file:

PLSQL_V2_COMPATIBILITY=TRUE

■ Execute one of the following SQL statements:

ALTER SESSION SET PLSQL_V2_COMPATIBILITY = TRUE;
ALTER SYSTEM SET PLSQL_V2_COMPATIBILITY = TRUE;

If you specify FALSE (the default), only Version 8 behavior is allowed.

On the client side, a command-line option sets the flag. For example, with the

Oracle Precompilers, you specify the run-time option DBMS on the command line.

Ensuring Backward Compatibility

5-70 PL/SQL User’s Guide and Reference

Error Handling 6-1

6
Error Handling

There is nothing more exhilarating than to be shot at without result. —Winston Churchill

Run-time errors arise from design faults, coding mistakes, hardware failures, and

many other sources. Although you cannot anticipate all possible errors, you can

plan to handle certain kinds of errors meaningful to your PL/SQL program.

With many programming languages, unless you disable error checking, a run-time

error such as stack overflow or division by zero stops normal processing and returns

control to the operating system. With PL/SQL, a mechanism called exception
handling lets you "bulletproof" your program so that it can continue operating in the

presence of errors.

Major Topics
Overview

Advantages of Exceptions

Predefined Exceptions

User-Defined Exceptions

How Exceptions Are Raised

How Exceptions Propagate

Reraising an Exception

Handling Raised Exceptions

Useful Techniques

Overview

6-2 PL/SQL User’s Guide and Reference

Overview
In PL/SQL, a warning or error condition is called an exception. Exceptions can be

internally defined (by the run-time system) or user defined. Examples of internally

defined exceptions include division by zero and out of memory. Some common internal

exceptions have predefined names, such as ZERO_DIVIDE and STORAGE_ERROR.

The other internal exceptions can be given names.

You can define exceptions of your own in the declarative part of any PL/SQL block,

subprogram, or package. For example, you might define an exception named

insufficient_funds to flag overdrawn bank accounts. Unlike internal

exceptions, user-defined exceptions must be given names.

When an error occurs, an exception is raised. That is, normal execution stops and

control transfers to the exception-handling part of your PL/SQL block or

subprogram. Internal exceptions are raised implicitly (automatically) by the

run-time system. User-defined exceptions must be raised explicitly by RAISE
statements, which can also raise predefined exceptions.

To handle raised exceptions, you write separate routines called exception handlers.

After an exception handler runs, the current block stops executing and the enclosing

block resumes with the next statement. If there is no enclosing block, control returns

to the host environment.

In the example below, you calculate and store a price-to-earnings ratio for a

company with ticker symbol XYZ. If the company has zero earnings, the predefined

exception ZERO_DIVIDE is raised. This stops normal execution of the block and

transfers control to the exception handlers. The optional OTHERShandler catches all

exceptions that the block does not name specifically.

DECLARE
 pe_ratio NUMBER(3,1);
BEGIN
 SELECT price / earnings INTO pe_ratio FROM stocks
 WHERE symbol = ’XYZ’; -- might cause division-by-zero error
 INSERT INTO stats (symbol, ratio) VALUES (’XYZ’, pe_ratio);
 COMMIT;
EXCEPTION -- exception handlers begin
 WHEN ZERO_DIVIDE THEN -- handles ’division by zero’ error
 INSERT INTO stats (symbol, ratio) VALUES (’XYZ’, NULL);
 COMMIT;
 ...
 WHEN OTHERS THEN -- handles all other errors
 ROLLBACK;
END; -- exception handlers and block end here

Advantages of Exceptions

Error Handling 6-3

The last example illustrates exception handling, not the effective use of INSERT
statements. For example, a better way to do the insert follows:

INSERT INTO stats (symbol, ratio)
 SELECT symbol, DECODE(earnings, 0, NULL, price / earnings)
 FROM stocks WHERE symbol = ’XYZ’;

In this example, a subquery supplies values to the INSERT statement. If earnings

are zero, the function DECODE returns a null. Otherwise, DECODE returns the

price-to-earnings ratio.

Advantages of Exceptions
Using exceptions for error handling has several advantages. Without exception

handling, every time you issue a command, you must check for execution errors:

BEGIN
 SELECT ...
 -- check for ’no data found’ error
 SELECT ...
 -- check for ’no data found’ error
 SELECT ...
 -- check for ’no data found’ error

Error processing is not clearly separated from normal processing; nor is it robust. If

you neglect to code a check, the error goes undetected and is likely to cause other,

seemingly unrelated errors.

With exceptions, you can handle errors conveniently without the need to code

multiple checks, as follows:

BEGIN
 SELECT ...
 SELECT ...
 SELECT ...
 ...
EXCEPTION
 WHEN NO_DATA_FOUND THEN -- catches all ’no data found’ errors

Exceptions improve readability by letting you isolate error-handling routines. The

primary algorithm is not obscured by error recovery algorithms. Exceptions also

improve reliability. You need not worry about checking for an error at every point it

might occur. Just add an exception handler to your PL/SQL block. If the exception

is ever raised in that block (or any sub-block), you can be sure it will be handled.

Predefined Exceptions

6-4 PL/SQL User’s Guide and Reference

Predefined Exceptions
An internal exception is raised implicitly whenever your PL/SQL program violates

an Oracle rule or exceeds a system-dependent limit. Every Oracle error has a

number, but exceptions must be handled by name. So, PL/SQL predefines some

common Oracle errors as exceptions. For example, PL/SQL raises the predefined

exception NO_DATA_FOUND if a SELECT INTO statement returns no rows.

To handle other Oracle errors, you can use the OTHERS handler. The functions

SQLCODE and SQLERRM are especially useful in the OTHERS handler because they

return the Oracle error code and message text. Alternatively, you can use the

pragma EXCEPTION_INIT to associate exception names with Oracle error codes.

PL/SQL declares predefined exceptions globally in package STANDARD, which

defines the PL/SQL environment. So, you need not declare them yourself. You can

write handlers for predefined exceptions using the names shown in the list below.

Also shown are the corresponding Oracle error codes and SQLCODE return values.

Exception Oracle Error SQLCODE Value

ACCESS_INTO_NULL ORA-06530 -6530

COLLECTION_IS_NULL ORA-06531 -6531

CURSOR_ALREADY_OPEN ORA-06511 -6511

DUP_VAL_ON_INDEX ORA-00001 -1

INVALID_CURSOR ORA-01001 -1001

INVALID_NUMBER ORA-01722 -1722

LOGIN_DENIED ORA-01017 -1017

NO_DATA_FOUND ORA-01403 +100

NOT_LOGGED_ON ORA-01012 -1012

PROGRAM_ERROR ORA-06501 -6501

ROWTYPE_MISMATCH ORA-06504 -6504

SELF_IS_NULL ORA-30625 -30625

STORAGE_ERROR ORA-06500 -6500

SUBSCRIPT_BEYOND_COUNT ORA-06533 -6533

SUBSCRIPT_OUTSIDE_LIMIT ORA-06532 -6532

SYS_INVALID_ROWID ORA-01410 -1410

TIMEOUT_ON_RESOURCE ORA-00051 -51

TOO_MANY_ROWS ORA-01422 -1422

VALUE_ERROR ORA-06502 -6502

ZERO_DIVIDE ORA-01476 -1476

Predefined Exceptions

Error Handling 6-5

Brief descriptions of the predefined exceptions follow:

Exception Raised when ...

ACCESS_INTO_NULL Your program attempts to assign values to the
attributes of an uninitialized (atomically null) object.

COLLECTION_IS_NULL Your program attempts to apply collection methods
other than EXISTS to an uninitialized (atomically null)
nested table or varray, or the program attempts to
assign values to the elements of an uninitialized nested
table or varray.

CURSOR_ALREADY_OPEN Your program attempts to open an already open cursor.
A cursor must be closed before it can be reopened. A
cursor FOR loop automatically opens the cursor to
which it refers. So, your program cannot open that
cursor inside the loop.

DUP_VAL_ON_INDEX Your program attempts to store duplicate values in a
database column that is constrained by a unique index.

INVALID_CURSOR Your program attempts an illegal cursor operation such
as closing an unopened cursor.

INVALID_NUMBER In a SQL statement, the conversion of a character string
into a number fails because the string does not
represent a valid number. (In procedural statements,
VALUE_ERROR is raised.) This exception is also raised
when the LIMIT -clause expression in a bulk FETCH
statement does not evaluate to a positive number.

LOGIN_DENIED Your program attempts to log on to Oracle with an
invalid username and/or password.

NO_DATA_FOUND A SELECT INTO statement returns no rows, or your
program references a deleted element in a nested table
or an uninitialized element in an index-by table. SQL
aggregate functions such as AVGand SUMalways return
a value or a null. So, a SELECT INTO statement that
calls an aggregate function never raises NO_DATA_
FOUND. The FETCH statement is expected to return no
rows eventually, so when that happens, no exception is
raised.

NOT_LOGGED_ON Your program issues a database call without being
connected to Oracle.

PROGRAM_ERROR PL/SQL has an internal problem.

Predefined Exceptions

6-6 PL/SQL User’s Guide and Reference

ROWTYPE_MISMATCH The host cursor variable and PL/SQL cursor variable
involved in an assignment have incompatible return
types. For example, when an open host cursor variable
is passed to a stored subprogram, the return types of
the actual and formal parameters must be compatible.

SELF_IS_NULL Your program attempts to call a MEMBER method on a
null instance. That is, the built-in parameter SELF
(which is always the first parameter passed to a
MEMBER method) is null.

STORAGE_ERROR PL/SQL runs out of memory or memory has been
corrupted.

SUBSCRIPT_BEYOND_COUNTYour program references a nested table or varray
element using an index number larger than the number
of elements in the collection.

SUBSCRIPT_OUTSIDE_LIMIT Your program references a nested table or varray
element using an index number (-1 for example) that is
outside the legal range.

SYS_INVALID_ROWID The conversion of a character string into a universal
rowid fails because the character string does not
represent a valid rowid.

TIMEOUT_ON_RESOURCE A time-out occurs while Oracle is waiting for a
resource.

TOO_MANY_ROWS A SELECT INTO statement returns more than one row.

VALUE_ERROR An arithmetic, conversion, truncation, or
size-constraint error occurs. For example, when your
program selects a column value into a character
variable, if the value is longer than the declared length
of the variable, PL/SQL aborts the assignment and
raises VALUE_ERROR. In procedural statements,
VALUE_ERROR is raised if the conversion of a character
string into a number fails. (In SQL statements,
INVALID_NUMBER is raised.)

ZERO_DIVIDE Your program attempts to divide a number by zero.

Exception Raised when ...

User-Defined Exceptions

Error Handling 6-7

User-Defined Exceptions
PL/SQL lets you define exceptions of your own. Unlike predefined exceptions,

user-defined exceptions must be declared and must be raised explicitly by RAISE
statements.

Declaring Exceptions
Exceptions can be declared only in the declarative part of a PL/SQL block,

subprogram, or package. You declare an exception by introducing its name,

followed by the keyword EXCEPTION. In the following example, you declare an

exception named past_due :

DECLARE
 past_due EXCEPTION;

Exception and variable declarations are similar. But remember, an exception is an

error condition, not a data item. Unlike variables, exceptions cannot appear in

assignment statements or SQL statements. However, the same scope rules apply to

variables and exceptions.

Scope Rules
You cannot declare an exception twice in the same block. You can, however, declare

the same exception in two different blocks.

Exceptions declared in a block are considered local to that block and global to all its

sub-blocks. Because a block can reference only local or global exceptions, enclosing

blocks cannot reference exceptions declared in a sub-block.

If you redeclare a global exception in a sub-block, the local declaration prevails. So,

the sub-block cannot reference the global exception unless it was declared in a

labeled block, in which case the following syntax is valid:

block_label.exception_name

The following example illustrates the scope rules:

DECLARE
 past_due EXCEPTION;
 acct_num NUMBER;
BEGIN
 DECLARE ---------- sub-block begins
 past_due EXCEPTION; -- this declaration prevails
 acct_num NUMBER;

User-Defined Exceptions

6-8 PL/SQL User’s Guide and Reference

 BEGIN
 ...
 IF ... THEN
 RAISE past_due; -- this is not handled
 END IF;
 END; ------------- sub-block ends
EXCEPTION
 WHEN past_due THEN -- does not handle RAISEd exception
 ...
END;

The enclosing block does not handle the raised exception because the declaration of

past_due in the sub-block prevails. Though they share the same name, the two

past_due exceptions are different, just as the two acct_num variables share the

same name but are different variables. Therefore, the RAISE statement and the

WHEN clause refer to different exceptions. To have the enclosing block handle the

raised exception, you must remove its declaration from the sub-block or define an

OTHERS handler.

Using EXCEPTION_INIT
To handle unnamed internal exceptions, you must use the OTHERS handler or the

pragma EXCEPTION_INIT . A pragma is a compiler directive, which can be thought

of as a parenthetical remark to the compiler. Pragmas (also called pseudoinstructions)

are processed at compile time, not at run time. For example, in the language Ada,

the following pragma tells the compiler to optimize the use of storage space:

pragma OPTIMIZE(SPACE);

In PL/SQL, the pragma EXCEPTION_INIT tells the compiler to associate an

exception name with an Oracle error number. That allows you to refer to any

internal exception by name and to write a specific handler for it.

You code the pragma EXCEPTION_INIT in the declarative part of a PL/SQL block,

subprogram, or package using the syntax

PRAGMA EXCEPTION_INIT(exception_name, Oracle_error_number);

where exception_name is the name of a previously declared exception. The

pragma must appear somewhere after the exception declaration in the same

declarative section, as shown in the following example:

DECLARE
 deadlock_detected EXCEPTION;
 PRAGMA EXCEPTION_INIT(deadlock_detected, -60);

User-Defined Exceptions

Error Handling 6-9

BEGIN
 ...
EXCEPTION
 WHEN deadlock_detected THEN
 -- handle the error
END;

Using raise_application_error
Package DBMS_STANDARD, which is supplied with Oracle, provides language

facilities that help your application interact with Oracle. For example, the procedure

raise_application_error lets you issue user-defined error messages from

stored subprograms. That way, you can report errors to your application and avoid

returning unhandled exceptions.

To call raise_application_error , use the syntax

raise_application_error(error_number, message[, {TRUE | FALSE}]);

where error_number is a negative integer in the range -20000 .. -20999 and

message is a character string up to 2048 bytes long. If the optional third parameter

is TRUE, the error is placed on the stack of previous errors. If the parameter is

FALSE (the default), the error replaces all previous errors. Package DBMS_
STANDARD is an extension of package STANDARD, so you need not qualify

references to its contents.

An application can call raise_application_error only from an executing

stored subprogram (or method). When called, raise_application_error ends

the subprogram and returns a user-defined error number and message to the

application. The error number and message can be trapped like any Oracle error.

In the following example, you call raise_application_error if an employee’s

salary is missing:

CREATE PROCEDURE raise_salary (emp_id NUMBER, amount NUMBER) AS
 curr_sal NUMBER;
BEGIN
 SELECT sal INTO curr_sal FROM emp WHERE empno = emp_id;
 IF curr_sal IS NULL THEN
 /* Issue user-defined error message. */
 raise_application_error(-20101, ’Salary is missing’);
 ELSE
 UPDATE emp SET sal = curr_sal + amount WHERE empno = emp_id;
 END IF;
END raise_salary;

User-Defined Exceptions

6-10 PL/SQL User’s Guide and Reference

The calling application gets a PL/SQL exception, which it can process using the

error-reporting functions SQLCODE and SQLERRM in an OTHERS handler. Also, it

can use the pragma EXCEPTION_INIT to map specific error numbers returned by

raise_application_error to exceptions of its own, as the following Pro*C

example shows:

EXEC SQL EXECUTE
 /* Execute embedded PL/SQL block using host
 variables my_emp_id and my_amount, which were
 assigned values in the host environment. */
 DECLARE
 ...
 null_salary EXCEPTION;
 /* Map error number returned by raise_application_error
 to user-defined exception. */
 PRAGMA EXCEPTION_INIT(null_salary, -20101);
 BEGIN
 ...
 raise_salary(:my_emp_id, :my_amount);
 EXCEPTION
 WHEN null_salary THEN
 INSERT INTO emp_audit VALUES (:my_emp_id, ...);
 ...
 END;
END-EXEC;

This technique allows the calling application to handle error conditions in specific

exception handlers.

Redeclaring Predefined Exceptions
Remember, PL/SQL declares predefined exceptions globally in package STANDARD,
so you need not declare them yourself. Redeclaring predefined exceptions is error

prone because your local declaration overrides the global declaration. For example,

if you declare an exception named invalid_number and then PL/SQL raises the

predefined exception INVALID_NUMBER internally, a handler written for INVALID_
NUMBER will not catch the internal exception. In such cases, you must use dot

notation to specify the predefined exception, as follows:

EXCEPTION
 WHEN invalid_number OR STANDARD.INVALID_NUMBER THEN
 -- handle the error
END;

How Exceptions Are Raised

Error Handling 6-11

How Exceptions Are Raised
Internal exceptions are raised implicitly by the run-time system, as are user-defined

exceptions that you have associated with an Oracle error number using

EXCEPTION_INIT . However, other user-defined exceptions must be raised

explicitly by RAISE statements.

Using the RAISE Statement
PL/SQL blocks and subprograms should raise an exception only when an error

makes it undesirable or impossible to finish processing. You can place RAISE
statements for a given exception anywhere within the scope of that exception. In the

following example, you alert your PL/SQL block to a user-defined exception

named out_of_stock :

DECLARE
 out_of_stock EXCEPTION;
 number_on_hand NUMBER(4);
BEGIN
 ...
 IF number_on_hand < 1 THEN
 RAISE out_of_stock;
 END IF;
EXCEPTION
 WHEN out_of_stock THEN
 -- handle the error
END;

You can also raise a predefined exception explicitly. That way, an exception handler

written for the predefined exception can process other errors, as the following

example shows:

DECLARE
 acct_type INTEGER;
BEGIN
 ...
 IF acct_type NOT IN (1, 2, 3) THEN
 RAISE INVALID_NUMBER; -- raise predefined exception
 END IF;
EXCEPTION
 WHEN INVALID_NUMBER THEN
 ROLLBACK;
 ...
END;

How Exceptions Propagate

6-12 PL/SQL User’s Guide and Reference

How Exceptions Propagate
When an exception is raised, if PL/SQL cannot find a handler for it in the current

block or subprogram, the exception propagates. That is, the exception reproduces

itself in successive enclosing blocks until a handler is found or there are no more

blocks to search. In the latter case, PL/SQL returns an unhandled exception error to

the host environment.

However, exceptions cannot propagate across remote procedure calls (RPCs).

Therefore, a PL/SQL block cannot catch an exception raised by a remote

subprogram. For a workaround, see "Using raise_application_error" on page 6-9.

Figure 6–1, Figure 6–2, and Figure 6–3 illustrate the basic propagation rules.

Figure 6–1 Propagation Rules: Example 1

BEGIN
 IF X = 1 THEN
 RAISE A;
 ELSIF X = 2 THEN
 RAISE B;
 ELSE
 RAISE C;
 END IF;
 ...

EXCEPTION
 WHEN A THEN
 ...
END;

BEGIN

EXCEPTION
 WHEN B THEN
 ...
END;

Exception A is handled
locally, then execution resumes
in the enclosing block

How Exceptions Propagate

Error Handling 6-13

Figure 6–2 Propagation Rules: Example 2

Figure 6–3 Propagation Rules: Example 3

BEGIN
 IF X = 1 THEN
 RAISE A;
 ELSIF X = 2 THEN
 RAISE B;
 ELSE
 RAISE C;
 END IF;
 ...

EXCEPTION
 WHEN A THEN
 ...
END;

BEGIN

EXCEPTION
 WHEN B THEN
 ...
END;

Exception B is handled,
then control passes to the
host environment

Exception B propagates to
the first enclosing block with
an appropriate handler

BEGIN
 IF X = 1 THEN
 RAISE A;
 ELSIF X = 2 THEN
 RAISE B;
 ELSE
 RAISE C;
 END IF;
 ...

EXCEPTION
 WHEN A THEN
 ...
END;

BEGIN

EXCEPTION
 WHEN B THEN
 ...
END;

Exception C has no
handler, so an unhandled
exception is returned to the
host environment

Reraising an Exception

6-14 PL/SQL User’s Guide and Reference

An exception can propagate beyond its scope, that is, beyond the block in which it

was declared. Consider the following example:

BEGIN
 ...
 DECLARE ---------- sub-block begins
 past_due EXCEPTION;
 BEGIN
 ...
 IF ... THEN
 RAISE past_due;
 END IF;
 END; ------------- sub-block ends
EXCEPTION
 ...
 WHEN OTHERS THEN
 ROLLBACK;
END;

Because the block in which exception past_due was declared has no handler for it,

the exception propagates to the enclosing block. But, according to the scope rules,

enclosing blocks cannot reference exceptions declared in a sub-block. So, only an

OTHERS handler can catch the exception. If there is no handler for a user-defined

exception, the calling application gets the following error:

ORA-06510: PL/SQL: unhandled user-defined exception

Reraising an Exception
Sometimes, you want to reraise an exception, that is, handle it locally, then pass it to

an enclosing block. For example, you might want to roll back a transaction in the

current block, then log the error in an enclosing block.

To reraise an exception, simply place a RAISE statement in the local handler, as

shown in the following example:

DECLARE
 out_of_balance EXCEPTION;
BEGIN
 ...
 BEGIN ---------- sub-block begins
 ...
 IF ... THEN
 RAISE out_of_balance; -- raise the exception
 END IF;

Handling Raised Exceptions

Error Handling 6-15

 EXCEPTION
 WHEN out_of_balance THEN
 -- handle the error
 RAISE; -- reraise the current exception
 END; ------------ sub-block ends
EXCEPTION
 WHEN out_of_balance THEN
 -- handle the error differently
 ...
END;

Omitting the exception name in a RAISE statement—allowed only in an exception

handler—reraises the current exception.

Handling Raised Exceptions
When an exception is raised, normal execution of your PL/SQL block or

subprogram stops and control transfers to its exception-handling part, which is

formatted as follows:

EXCEPTION
 WHEN exception_name1 THEN -- handler
 sequence_of_statements1
 WHEN exception_name2 THEN -- another handler
 sequence_of_statements2
 ...
 WHEN OTHERS THEN -- optional handler
 sequence_of_statements3
END;

To catch raised exceptions, you write exception handlers. Each handler consists of a

WHEN clause, which specifies an exception, followed by a sequence of statements to

be executed when that exception is raised. These statements complete execution of

the block or subprogram; control does not return to where the exception was raised.

In other words, you cannot resume processing where you left off.

The optional OTHERS exception handler, which is always the last handler in a block

or subprogram, acts as the handler for all exceptions not named specifically. Thus, a

block or subprogram can have only one OTHERS handler.

Handling Raised Exceptions

6-16 PL/SQL User’s Guide and Reference

As the following example shows, use of the OTHERS handler guarantees that no
exception will go unhandled:

EXCEPTION
 WHEN ... THEN
 -- handle the error
 WHEN ... THEN
 -- handle the error
 WHEN OTHERS THEN
 -- handle all other errors
END;

If you want two or more exceptions to execute the same sequence of statements, list

the exception names in the WHEN clause, separating them by the keyword OR, as

follows:

EXCEPTION
 WHEN over_limit OR under_limit OR VALUE_ERROR THEN
 -- handle the error

If any of the exceptions in the list is raised, the associated sequence of statements is

executed. The keyword OTHERS cannot appear in the list of exception names; it

must appear by itself. You can have any number of exception handlers, and each

handler can associate a list of exceptions with a sequence of statements. However,

an exception name can appear only once in the exception-handling part of a

PL/SQL block or subprogram.

The usual scoping rules for PL/SQL variables apply, so you can reference local and

global variables in an exception handler. However, when an exception is raised

inside a cursor FOR loop, the cursor is closed implicitly before the handler is

invoked. Therefore, the values of explicit cursor attributes are not available in the

handler.

Exceptions Raised in Declarations
Exceptions can be raised in declarations by faulty initialization expressions. For

example, the following declaration raises an exception because the constant

credit_limit cannot store numbers larger than 999:

DECLARE
 credit_limit CONSTANT NUMBER(3) := 5000; -- raises an exception
BEGIN
 ...

Handling Raised Exceptions

Error Handling 6-17

EXCEPTION
 WHEN OTHERS THEN -- cannot catch the exception
 ...
END;

Handlers in the current block cannot catch the raised exception because an

exception raised in a declaration propagates immediately to the enclosing block.

Exceptions Raised in Handlers
Only one exception at a time can be active in the exception-handling part of a block

or subprogram. So, an exception raised inside a handler propagates immediately to

the enclosing block, which is searched to find a handler for the newly raised

exception. From there on, the exception propagates normally. Consider the

following example:

EXCEPTION
 WHEN INVALID_NUMBER THEN
 INSERT INTO ... -- might raise DUP_VAL_ON_INDEX
 WHEN DUP_VAL_ON_INDEX THEN ... -- cannot catch the exception
END;

Branching to or from an Exception Handler
A GOTO statement cannot branch into an exception handler. Also, a GOTO statement

cannot branch from an exception handler into the current block. For example, the

following GOTO statement is illegal:

DECLARE
 pe_ratio NUMBER(3,1);
BEGIN
 DELETE FROM stats WHERE symbol = ’XYZ’;
 SELECT price / NVL(earnings, 0) INTO pe_ratio FROM stocks
 WHERE symbol = ’XYZ’;
 <<my_label>>
 INSERT INTO stats (symbol, ratio) VALUES (’XYZ’, pe_ratio);
EXCEPTION
 WHEN ZERO_DIVIDE THEN
 pe_ratio := 0;
 GOTO my_label; -- illegal branch into current block
END;

However, a GOTOstatement can branch from an exception handler into an enclosing

block.

Handling Raised Exceptions

6-18 PL/SQL User’s Guide and Reference

Using SQLCODE and SQLERRM
In an exception handler, you can use the built-in functions SQLCODE and SQLERRM
to find out which error occurred and to get the associated error message. For

internal exceptions, SQLCODE returns the number of the Oracle error. The number

that SQLCODE returns is negative unless the Oracle error is no data found, in which

case SQLCODEreturns +100. SQLERRMreturns the corresponding error message. The

message begins with the Oracle error code.

For user-defined exceptions, SQLCODE returns +1 and SQLERRM returns the

message

User-Defined Exception

unless you used the pragma EXCEPTION_INIT to associate the exception name

with an Oracle error number, in which case SQLCODEreturns that error number and

SQLERRM returns the corresponding error message. The maximum length of an

Oracle error message is 512 characters including the error code, nested messages,

and message inserts such as table and column names.

If no exception has been raised, SQLCODE returns zero and SQLERRM returns the

message

ORA-0000: normal, successful completion

You can pass an error number to SQLERRM, in which case SQLERRM returns the

message associated with that error number. Make sure you pass negative error

numbers to SQLERRM. In the following example, you pass positive numbers and so

get unwanted results:

DECLARE
 ...
 err_msg VARCHAR2(100);
BEGIN
 /* Get all Oracle error messages. */
 FOR err_num IN 1..9999 LOOP
 err_msg := SQLERRM(err_num); -- wrong; should be -err_num
 INSERT INTO errors VALUES (err_msg);
 END LOOP;
END;

Passing a positive number to SQLERRM always returns the message user-defined
exception unless you pass +100 , in which case SQLERRM returns the message no data
found. Passing a zero to SQLERRM always returns the message normal, successful
completion.

Handling Raised Exceptions

Error Handling 6-19

You cannot use SQLCODE or SQLERRM directly in a SQL statement. Instead, you

must assign their values to local variables, then use the variables in the SQL

statement, as shown in the following example:

DECLARE
 err_num NUMBER;
 err_msg VARCHAR2(100);
BEGIN
 ...
EXCEPTION
 ...
 WHEN OTHERS THEN
 err_num := SQLCODE;
 err_msg := SUBSTR(SQLERRM, 1, 100);
 INSERT INTO errors VALUES (err_num, err_msg);
END;

The string function SUBSTRensures that a VALUE_ERRORexception (for truncation)

is not raised when you assign the value of SQLERRM to err_msg . The functions

SQLCODE and SQLERRM are especially useful in the OTHERS exception handler

because they tell you which internal exception was raised.

Note: When using pragma RESTRICT_REFERENCESto assert the purity of a stored

function, you cannot specify the constraints WNPS and RNPS if the function calls

SQLCODE or SQLERRM.

Unhandled Exceptions
Remember, if it cannot find a handler for a raised exception, PL/SQL returns an

unhandled exception error to the host environment, which determines the outcome.

For example, in the Oracle Precompilers environment, any database changes made

by a failed SQL statement or PL/SQL block are rolled back.

Unhandled exceptions can also affect subprograms. If you exit a subprogram

successfully, PL/SQL assigns values to OUT parameters. However, if you exit with

an unhandled exception, PL/SQL does not assign values to OUT parameters (unless

they are NOCOPY parameters). Also, if a stored subprogram fails with an unhandled

exception, PL/SQL does not roll back database work done by the subprogram.

You can avoid unhandled exceptions by coding an OTHERS handler at the topmost

level of every PL/SQL program.

Useful Techniques

6-20 PL/SQL User’s Guide and Reference

Useful Techniques
In this section, you learn three techniques that increase flexibility.

Continuing after an Exception Is Raised
An exception handler lets you recover from an otherwise "fatal" error before exiting

a block. But, when the handler completes, the block terminates. You cannot return

to the current block from an exception handler. In the following example, if the

SELECT INTOstatement raises ZERO_DIVIDE, you cannot resume with the INSERT
statement:

DECLARE
 pe_ratio NUMBER(3,1);
BEGIN
 DELETE FROM stats WHERE symbol = ’XYZ’;
 SELECT price / NVL(earnings, 0) INTO pe_ratio FROM stocks
 WHERE symbol = ’XYZ’;
 INSERT INTO stats (symbol, ratio) VALUES (’XYZ’, pe_ratio);
EXCEPTION
 WHEN ZERO_DIVIDE THEN
 ...
END;

Though PL/SQL does not support continuable exceptions, you can still handle an

exception for a statement, then continue with the next statement. Simply place the

statement in its own sub-block with its own exception handlers. If an error occurs in

the sub-block, a local handler can catch the exception. When the sub-block

terminates, the enclosing block continues to execute at the point where the

sub-block ends. Consider the following example:

DECLARE
 pe_ratio NUMBER(3,1);
BEGIN
 DELETE FROM stats WHERE symbol = ’XYZ’;
 BEGIN ---------- sub-block begins
 SELECT price / NVL(earnings, 0) INTO pe_ratio FROM stocks
 WHERE symbol = ’XYZ’;
 EXCEPTION
 WHEN ZERO_DIVIDE THEN
 pe_ratio := 0;
 END; ---------- sub-block ends
 INSERT INTO stats (symbol, ratio) VALUES (’XYZ’, pe_ratio);

Useful Techniques

Error Handling 6-21

EXCEPTION
 WHEN OTHERS THEN
 ...
END;

In this example, if the SELECT INTO statement raises a ZERO_DIVIDE exception,

the local handler catches it and sets pe_ratio to zero. Execution of the handler is

complete, so the sub-block terminates, and execution continues with the INSERT
statement.

Retrying a Transaction
After an exception is raised, rather than abandon your transaction, you might want

to retry it. The technique you use is simple. First, encase the transaction in a

sub-block. Then, place the sub-block inside a loop that repeats the transaction.

Before starting the transaction, you mark a savepoint. If the transaction succeeds,

you commit, then exit from the loop. If the transaction fails, control transfers to the

exception handler, where you roll back to the savepoint undoing any changes, then

try to fix the problem.

Consider the example below. When the exception handler completes, the sub-block

terminates, control transfers to the LOOP statement in the enclosing block, the

sub-block starts executing again, and the transaction is retried. You might want to

use a FOR or WHILE loop to limit the number of tries.

DECLARE
 name VARCHAR2(20);
 ans1 VARCHAR2(3);
 ans2 VARCHAR2(3);
 ans3 VARCHAR2(3);
 suffix NUMBER := 1;
BEGIN
 ...
 LOOP -- could be FOR i IN 1..10 LOOP to allow ten tries
 BEGIN -- sub-block begins
 SAVEPOINT start_transaction; -- mark a savepoint
 /* Remove rows from a table of survey results. */
 DELETE FROM results WHERE answer1 = ’NO’;
 /* Add a survey respondent’s name and answers. */
 INSERT INTO results VALUES (name, ans1, ans2, ans3);
 -- raises DUP_VAL_ON_INDEX if two respondents
 -- have the same name
 COMMIT;
 EXIT;

Useful Techniques

6-22 PL/SQL User’s Guide and Reference

 EXCEPTION
 WHEN DUP_VAL_ON_INDEX THEN
 ROLLBACK TO start_transaction; -- undo changes
 suffix := suffix + 1; -- try to fix problem
 name := name || TO_CHAR(suffix);
 END; -- sub-block ends
 END LOOP;
END;

Using Locator Variables
Exceptions can mask the statement that caused an error, as the following example

shows:

BEGIN
 SELECT ...
 SELECT ...
 SELECT ...
 ...
EXCEPTION
 WHEN NO_DATA_FOUND THEN ...
 -- Which SELECT statement caused the error?
END;

Normally, this is not a problem. But, if the need arises, you can use a locator variable
to track statement execution, as follows:

DECLARE
 stmt INTEGER := 1; -- designates 1st SELECT statement
BEGIN
 SELECT ...
 stmt := 2; -- designates 2nd SELECT statement
 SELECT ...
 stmt := 3; -- designates 3rd SELECT statement
 SELECT ...
 ...
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 INSERT INTO errors VALUES (’Error in statement ’ || stmt);
END;

Subprograms 7-1

7
Subprograms

Civilization advances by extending the number of important operations that we can perform
without thinking about them. —Alfred North Whitehead

This chapter shows you how to use subprograms, which let you name and

encapsulate a sequence of statements. Subprograms aid application development by

isolating operations. They are like building blocks, which you can use to construct

modular, maintainable applications.

Major Topics
What Are Subprograms?

Advantages of Subprograms

Understanding Procedures

Understanding Functions

Declaring Subprograms

Packaging Subprograms

Actual versus Formal Parameters

Positional versus Named Notation

Specifying Parameter Modes

Using the NOCOPY Compiler Hint

Using Parameter Defaults

Understanding Parameter Aliasing

Using Overloading

How Calls Are Resolved

Invoker Rights versus Definer Rights

Understanding and Using Recursion

Calling External Routines

What Are Subprograms?

7-2 PL/SQL User’s Guide and Reference

What Are Subprograms?
Subprograms are named PL/SQL blocks that can take parameters and be invoked.

PL/SQL has two types of subprograms called procedures and functions. Generally,

you use a procedure to perform an action and a function to compute a value.

Like unnamed or anonymous PL/SQL blocks, subprograms have a declarative part,

an executable part, and an optional exception-handling part. The declarative part

contains declarations of types, cursors, constants, variables, exceptions, and nested

subprograms. These items are local and cease to exist when you exit the

subprogram. The executable part contains statements that assign values, control

execution, and manipulate Oracle data. The exception-handling part contains

exception handlers, which deal with exceptions raised during execution.

Consider the following procedure named debit_account , which debits a bank

account:

PROCEDURE debit_account (acct_id INTEGER, amount REAL) IS
 old_balance REAL;
 new_balance REAL;
 overdrawn EXCEPTION;
BEGIN
 SELECT bal INTO old_balance FROM accts
 WHERE acct_no = acct_id;
 new_balance := old_balance - amount;
 IF new_balance < 0 THEN
 RAISE overdrawn;
 ELSE
 UPDATE accts SET bal = new_balance
 WHERE acct_no = acct_id;
 END IF;
EXCEPTION
 WHEN overdrawn THEN
 ...
END debit_account;

When invoked or called, this procedure accepts an account number and a debit

amount. It uses the account number to select the account balance from the accts
database table. Then, it uses the debit amount to compute a new balance. If the new

balance is less than zero, an exception is raised; otherwise, the bank account is

updated.

Understanding Procedures

Subprograms 7-3

Advantages of Subprograms
Subprograms provide extensibility; that is, they let you tailor the PL/SQL language

to suit your needs. For example, if you need a procedure that creates new

departments, you can easily write one, as follows:

PROCEDURE create_dept (new_dname VARCHAR2, new_loc VARCHAR2) IS
BEGIN
 INSERT INTO dept VALUES (deptno_seq.NEXTVAL, new_dname, new_loc);
END create_dept;

Subprograms also provide modularity; that is, they let you break a program down

into manageable, well-defined modules. This supports top-down design and the

stepwise refinement approach to problem solving.

In addition, subprograms promote reusability and maintainability. Once validated, a

subprogram can be used with confidence in any number of applications. If its

definition changes, only the subprogram is affected. This simplifies maintenance.

Finally, subprograms aid abstraction, the mental process of deriving a universal from

particulars. To use subprograms, you must know what they do, not how they work.

Therefore, you can design applications from the top down without worrying about

implementation details. Dummy subprograms (stubs) allow you to defer the

definition of procedures and functions until you test and debug the main program.

Understanding Procedures
A procedure is a subprogram that performs a specific action. You write procedures

using the syntax

[CREATE [OR REPLACE]]
PROCEDURE procedure_name[(parameter[, parameter]...)]
 [AUTHID {DEFINER | CURRENT_USER}] {IS | AS}
 [PRAGMA AUTONOMOUS_TRANSACTION;]
 [local declarations]
BEGIN
 executable statements
[EXCEPTION
 exception handlers]
END [name];

where parameter stands for the following syntax:

parameter_name [IN | OUT [NOCOPY] | IN OUT [NOCOPY]] datatype
 [{:= | DEFAULT} expression]

Understanding Procedures

7-4 PL/SQL User’s Guide and Reference

The optional CREATE clause lets you create stand-alone procedures, which are

stored in the Oracle database. You can execute the CREATE statement interactively

from SQL*Plus or from a program using native dynamic SQL (see Chapter 10).

The AUTHID clause determines whether a stored procedure executes with the

privileges of its owner (the default) or current user and whether its unqualified

references to schema objects are resolved in the schema of the owner or current user.

You can override the default behavior by specifying CURRENT_USER. For more

information, see "Invoker Rights versus Definer Rights" on page 7-29.

The pragma AUTONOMOUS_TRANSACTIONinstructs the PL/SQL compiler to mark a

procedure as autonomous (independent). Autonomous transactions let you suspend

the main transaction, do SQL operations, commit or roll back those operations, then

resume the main transaction. For more information, see "Using Autonomous

Transactions" on page 5-52.

You cannot constrain the datatype of a parameter. For example, the following

declaration of acct_id is illegal because the datatype CHAR is size-constrained:

PROCEDURE reconcile (acct_id CHAR(5)) IS ... -- illegal

However, you can use the following workaround to size-constrain parameter types

indirectly:

DECLARE
 SUBTYPE Char5 IS CHAR(5);
 PROCEDURE reconcile (acct_id Char5) IS ...

A procedure has two parts: the specification (spec for short) and the body. The

procedure spec begins with the keyword PROCEDURE and ends with the procedure

name or a parameter list. Parameter declarations are optional. Procedures that take

no parameters are written without parentheses.

The procedure body begins with the keyword IS (or AS) and ends with the

keyword END followed by an optional procedure name. The procedure body has

three parts: a declarative part, an executable part, and an optional

exception-handling part.

The declarative part contains local declarations, which are placed between the

keywords IS and BEGIN. The keyword DECLARE, which introduces declarations in

an anonymous PL/SQL block, is not used. The executable part contains statements,

which are placed between the keywords BEGIN and EXCEPTION (or END). At least

one statement must appear in the executable part of a procedure. The NULL

Understanding Procedures

Subprograms 7-5

statement meets this requirement. The exception-handling part contains exception

handlers, which are placed between the keywords EXCEPTION and END.

Consider the procedure raise_salary , which increases the salary of an employee

by a given amount:

PROCEDURE raise_salary (emp_id INTEGER, amount REAL) IS
 current_salary REAL;
 salary_missing EXCEPTION;
BEGIN
 SELECT sal INTO current_salary FROM emp
 WHERE empno = emp_id;
 IF current_salary IS NULL THEN
 RAISE salary_missing;
 ELSE
 UPDATE emp SET sal = sal + amount
 WHERE empno = emp_id;
 END IF;
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 INSERT INTO emp_audit VALUES (emp_id, ’No such number’);
 WHEN salary_missing THEN
 INSERT INTO emp_audit VALUES (emp_id, ’Salary is null’);
END raise_salary;

When called, this procedure accepts an employee number and a salary increase

amount. It uses the employee number to select the current salary from the emp
database table. If the employee number is not found or if the current salary is null,

an exception is raised. Otherwise, the salary is updated.

A procedure is called as a PL/SQL statement. For example, you might call the

procedure raise_salary as follows:

raise_salary(emp_id, amount);

Understanding Functions

7-6 PL/SQL User’s Guide and Reference

Understanding Functions
A function is a subprogram that computes a value. Functions and procedures are

structured alike, except that functions have a RETURN clause. You write (local)

functions using the syntax

[CREATE [OR REPLACE]]
FUNCTION function_name[(parameter[, parameter]...)] RETURN datatype}
 [AUTHID {DEFINER | CURRENT_USER}]
 [PARALLEL_ENABLE]
 [DETERMINISTIC] {IS | AS}
 [PRAGMA AUTONOMOUS_TRANSACTION;]
 [local declarations]
BEGIN
 executable statements
[EXCEPTION
 exception handlers]
END [name];

The optional CREATE clause lets you create stand-alone functions, which are stored

in the Oracle database. You can execute the CREATE statement interactively from

SQL*Plus or from a program using native dynamic SQL.

The AUTHID clause determines whether a stored function executes with the

privileges of its owner (the default) or current user and whether its unqualified

references to schema objects are resolved in the schema of the owner or current user.

You can override the default behavior by specifying CURRENT_USER.

The PARALLEL_ENABLEoption declares that a stored function can be used safely in

the slave sessions of parallel DML evaluations. The state of a main (logon) session is

never shared with slave sessions. Each slave session has its own state, which is

initialized when the session begins. The function result should not depend on the

state of session (static) variables. Otherwise, results might vary across sessions.

The hint DETERMINISTIC helps the optimizer avoid redundant function calls. If a

stored function was called previously with the same arguments, the optimizer can

elect to use the previous result. The function result should not depend on the state

of session variables or schema objects. Otherwise, results might vary across calls.

Only DETERMINISTIC functions can be called from a function-based index or a

materialized view that has query-rewrite enabled. For more information, see

Oracle8i SQL Reference.

Understanding Functions

Subprograms 7-7

The pragma AUTONOMOUS_TRANSACTIONinstructs the PL/SQL compiler to mark a

function as autonomous (independent). Autonomous transactions let you suspend

the main transaction, do SQL operations, commit or roll back those operations, then

resume the main transaction.

You cannot constrain (with NOT NULL for example) the datatype of a parameter or a

function return value. However, you can use a workaround to size-constrain them

indirectly. See "Understanding Procedures" on page 7-3.

Like a procedure, a function has two parts: the spec and the body. The function spec

begins with the keyword FUNCTION and ends with the RETURN clause, which

specifies the datatype of the return value. Parameter declarations are optional.

Functions that take no parameters are written without parentheses.

The function body begins with the keyword IS (or AS) and ends with the keyword

END followed by an optional function name. The function body has three parts: a

declarative part, an executable part, and an optional exception-handling part.

The declarative part contains local declarations, which are placed between the

keywords IS and BEGIN. The keyword DECLARE is not used. The executable part

contains statements, which are placed between the keywords BEGIN and

EXCEPTION (or END). One or more RETURN statements must appear in the

executable part of a function. The exception-handling part contains exception

handlers, which are placed between the keywords EXCEPTION and END.

Consider the function sal_ok , which determines if a salary is out of range:

FUNCTION sal_ok (salary REAL, title VARCHAR2) RETURN BOOLEAN IS
 min_sal REAL;
 max_sal REAL;
BEGIN
 SELECT losal, hisal INTO min_sal, max_sal FROM sals
 WHERE job = title;
 RETURN (salary >= min_sal) AND (salary <= max_sal);
END sal_ok;

When called, this function accepts an employee salary and job title. It uses the job

title to select range limits from the sals database table. The function identifier,

sal_ok , is set to a Boolean value by the RETURN statement. If the salary is out of

range, sal_ok is set to FALSE; otherwise, sal_ok is set to TRUE.

A function is called as part of an expression, as the example below shows. The

function identifier sal_ok acts like a variable whose value depends on the

parameters passed to it.

IF sal_ok(new_sal, new_title) THEN ...

Understanding Functions

7-8 PL/SQL User’s Guide and Reference

Using the RETURN Statement
The RETURN statement immediately completes the execution of a subprogram and

returns control to the caller. Execution then resumes with the statement following

the subprogram call. (Do not confuse the RETURNstatement with the RETURNclause

in a function spec, which specifies the datatype of the return value.)

A subprogram can contain several RETURN statements, none of which need be the

last lexical statement. Executing any of them completes the subprogram

immediately. However, to have multiple exit points in a subprogram is a poor

programming practice.

In procedures, a RETURN statement cannot contain an expression. The statement

simply returns control to the caller before the normal end of the procedure is

reached.

However, in functions, a RETURN statement must contain an expression, which is

evaluated when the RETURN statement is executed. The resulting value is assigned

to the function identifier, which acts like a variable of the type specified in the

RETURN clause. Observe how the function balance returns the balance of a

specified bank account:

FUNCTION balance (acct_id INTEGER) RETURN REAL IS
 acct_bal REAL;
BEGIN
 SELECT bal INTO acct_bal FROM accts
 WHERE acct_no = acct_id;
 RETURN acct_bal;
END balance;

The following example shows that the expression in a function RETURN statement

can be arbitrarily complex:

FUNCTION compound (
 years NUMBER,
 amount NUMBER,
 rate NUMBER) RETURN NUMBER IS
BEGIN
 RETURN amount * POWER((rate / 100) + 1, years);
END compound;

In a function, there must be at least one execution path that leads to a RETURN
statement. Otherwise, you get a function returned without value error at run time.

Understanding Functions

Subprograms 7-9

Controlling Sides Effects
To be callable from SQL statements, a stored function must obey the following

"purity" rules, which are meant to control side effects:

■ When called from a SELECT statement or a parallelized INSERT, UPDATE, or

DELETE statement, the function cannot modify any database tables.

■ When called from an INSERT, UPDATE, or DELETE statement, the function

cannot query or modify any database tables modified by that statement.

■ When called from a SELECT, INSERT, UPDATE, or DELETE statement, the

function cannot execute SQL transaction control statements (such as COMMIT),
session control statements (such as SET ROLE), or system control statements

(such as ALTER SYSTEM). Also, it cannot execute DDL statements (such as

CREATE) because they are followed by an automatic commit.

If any SQL statement inside the function body violates a rule, you get an error at

run time (when the statement is parsed).

To check for violations of the rules, you can use the pragma (compiler directive)

RESTRICT_REFERENCES. The pragma asserts that a function does not read and/or

write database tables and/or package variables. For example, the following pragma

asserts that packaged function credit_ok writes no database state (WNDS) and

reads no package state (RNPS):

CREATE PACKAGE loans AS
 ...
 FUNCTION credit_ok RETURN BOOLEAN;
 PRAGMA RESTRICT_REFERENCES (credit_ok, WNDS, RNPS);
END loans;

Note: A static INSERT, UPDATE, or DELETE statement always violates WNDS. It also

violates RNDS (reads no database state) if it reads any columns. A dynamic INSERT,

UPDATE, or DELETE statement always violates WNDS and RNDS.

For more information about the purity rules and pragma RESTRICT_REFERENCES,
see Oracle8i Application Developer’s Guide - Fundamentals.

Declaring Subprograms

7-10 PL/SQL User’s Guide and Reference

Declaring Subprograms
You can declare subprograms in any PL/SQL block, subprogram, or package. But,

you must declare subprograms at the end of a declarative section after all other

program items.

PL/SQL requires that you declare an identifier before using it. Therefore, you must

declare a subprogram before calling it. For example, the following declaration of

procedure award_bonus is illegal because award_bonus calls procedure calc_
rating , which is not yet declared when the call is made:

DECLARE
 ...
 PROCEDURE award_bonus IS
 BEGIN
 calc_rating(...); -- undeclared identifier
 ...
 END;

 PROCEDURE calc_rating (...) IS
 BEGIN
 ...
 END;

In this case, you can solve the problem easily by placing procedure calc_rating
before procedure award_bonus . However, the easy solution does not always work.

For example, suppose the procedures are mutually recursive (call each other) or you

want to define them in logical or alphabetical order.

You can solve the problem by using a special subprogram declaration called a

forward declaration, which consists of a subprogram spec terminated by a semicolon.

In the following example, the forward declaration advises PL/SQL that the body of

procedure calc_rating can be found later in the block.

DECLARE
 PROCEDURE calc_rating (...); -- forward declaration
 ...

Although the formal parameter list appears in the forward declaration, it must also

appear in the subprogram body. You can place the subprogram body anywhere

after the forward declaration, but they must appear in the same program unit.

Packaging Subprograms

Subprograms 7-11

Packaging Subprograms
You can group logically related subprograms in a packages, which is stored in the

database. That way, the subprograms can be shared by many applications. The

subprogram specs go in the package spec, and the subprogram bodies go in the

package body, where they are invisible to applications. Thus, packages allow you to

hide implementation details. An example follows:

CREATE PACKAGE emp_actions AS -- package spec
 PROCEDURE hire_employee (emp_id INTEGER, name VARCHAR2, ...);
 PROCEDURE fire_employee (emp_id INTEGER);
 PROCEDURE raise_salary (emp_id INTEGER, amount REAL);
 ...
END emp_actions;

CREATE PACKAGE BODY emp_actions AS -- package body
 PROCEDURE hire_employee (emp_id INTEGER, name VARCHAR2, ...) IS
 BEGIN
 ...
 INSERT INTO emp VALUES (emp_id, name, ...);
 END hire_employee;

 PROCEDURE fire_employee (emp_id INTEGER) IS
 BEGIN
 DELETE FROM emp WHERE empno = emp_id;
 END fire_employee;

 PROCEDURE raise_salary (emp_id INTEGER, amount REAL) IS
 BEGIN
 UPDATE emp SET sal = sal + amount WHERE empno = emp_id;
 END raise_salary;
 ...
END emp_actions;

You can define subprograms in a package body without declaring their specs in the

package spec. However, such subprograms can be called only from inside the

package. For more information about packages, see Chapter 8.

Actual versus Formal Parameters

7-12 PL/SQL User’s Guide and Reference

Actual versus Formal Parameters
Subprograms pass information using parameters. The variables or expressions

referenced in the parameter list of a subprogram call are actual parameters. For

example, the following procedure call lists two actual parameters named emp_num
and amount :

raise_salary(emp_num, amount);

The next procedure call shows that expressions can be used as actual parameters:

raise_salary(emp_num, merit + cola);

The variables declared in a subprogram spec and referenced in the subprogram

body are formal parameters. For example, the following procedure declares two

formal parameters named emp_id and amount :

PROCEDURE raise_salary (emp_id INTEGER, amount REAL) IS
BEGIN
 UPDATE emp SET sal = sal + amount WHERE empno = emp_id;
END raise_salary;

A good programming practice is to use different names for actual and formal

parameters.

When you call procedure raise_salary , the actual parameters are evaluated and

the results are assigned to the corresponding formal parameters. If necessary, before

assigning the value of an actual parameter to a formal parameter, PL/SQL converts

the datatype of the value. For example, the following call to raise_salary is

valid:

raise_salary(emp_num, ’2500’);

The actual parameter and its corresponding formal parameter must have

compatible datatypes. For instance, PL/SQL cannot convert between the DATE and

REAL datatypes. Also, the result must be convertible to the new datatype. The

following procedure call raises the predefined exception VALUE_ERROR because

PL/SQL cannot convert the second actual parameter to a number:

raise_salary(emp_num, ’$2500’); -- note the dollar sign

For more information, see "Datatype Conversion" on page 2-28.

Positional versus Named Notation

Subprograms 7-13

Positional versus Named Notation
When calling a subprogram, you can write the actual parameters using either

positional or named notation. That is, you can indicate the association between an

actual and formal parameter by position or name. So, given the declarations

DECLARE
 acct INTEGER;
 amt REAL;
 PROCEDURE credit_acct (acct_no INTEGER, amount REAL) IS ...

you can call the procedure credit_acct in four logically equivalent ways:

BEGIN
 credit_acct(acct, amt); -- positional notation
 credit_acct(amount => amt, acct_no => acct); -- named notation
 credit_acct(acct_no => acct, amount => amt); -- named notation
 credit_acct(acct, amount => amt); -- mixed notation

Using Positional Notation
The first procedure call uses positional notation. The PL/SQL compiler associates

the first actual parameter, acct , with the first formal parameter, acct_no . And, the

compiler associates the second actual parameter, amt , with the second formal

parameter, amount .

Using Named Notation
The second procedure call uses named notation. An arrow (=>) serves as the

association operator, which associates the formal parameter to the left of the arrow

with the actual parameter to the right of the arrow.

The third procedure call also uses named notation and shows that you can list the

parameter pairs in any order. So, you need not know the order in which the formal

parameters are listed.

Using Mixed Notation
The fourth procedure call shows that you can mix positional and named notation.

In this case, the first parameter uses positional notation, and the second parameter

uses named notation. Positional notation must precede named notation. The reverse

is not allowed. For example, the following procedure call is illegal:

credit_acct(acct_no => acct, amt); -- illegal

Specifying Parameter Modes

7-14 PL/SQL User’s Guide and Reference

Specifying Parameter Modes
You use parameter modes to define the behavior of formal parameters. The three

parameter modes, IN (the default), OUT, and IN OUT, can be used with any

subprogram. However, avoid using the OUT and IN OUT modes with functions. The

purpose of a function is to take zero or more arguments (actual parameters) and

return a single value. To have a function return multiple values is a poor

programming practice. Also, functions should be free from side effects, which change

the values of variables not local to the subprogram.

Using the IN Mode
An IN parameter lets you pass values to the subprogram being called. Inside the

subprogram, an IN parameter acts like a constant. Therefore, it cannot be assigned a

value. For example, the following assignment statement causes a compilation error:

PROCEDURE debit_account (acct_id IN INTEGER, amount IN REAL) IS
 minimum_purchase CONSTANT REAL DEFAULT 10.0;
 service_charge CONSTANT REAL DEFAULT 0.50;
BEGIN
 IF amount < minimum_purchase THEN
 amount := amount + service_charge; -- causes compilation error
 END IF;
 ...
END debit_account;

The actual parameter that corresponds to an IN formal parameter can be a constant,

literal, initialized variable, or expression. Unlike OUT and IN OUT parameters, IN
parameters can be initialized to default values. For more information, see "Using

Parameter Defaults" on page 7-20.

Using the OUT Mode
An OUT parameter lets you return values to the caller of a subprogram. Inside the

subprogram, an OUT parameter acts like a variable. That means you can use an OUT
formal parameter as if it were a local variable. You can change its value or reference

the value in any way, as the following example shows:

PROCEDURE calc_bonus (emp_id IN INTEGER, bonus OUT REAL) IS
 hire_date DATE;
 bonus_missing EXCEPTION;
BEGIN
 SELECT sal * 0.10, hiredate INTO bonus, hire_date FROM emp
 WHERE empno = emp_id;

Specifying Parameter Modes

Subprograms 7-15

 IF bonus IS NULL THEN
 RAISE bonus_missing;
 END IF;
 IF MONTHS_BETWEEN(SYSDATE, hire_date) > 60 THEN
 bonus := bonus + 500;
 END IF;
 ...
EXCEPTION
 WHEN bonus_missing THEN
 ...
END calc_bonus;

The actual parameter that corresponds to an OUT formal parameter must be a

variable; it cannot be a constant or an expression. For example, the following

procedure call is illegal:

calc_bonus(7499, salary + commission); -- causes compilation error

An OUT actual parameter can have a value before the subprogram is called.

However, when you call the subprogram, the value is lost unless you specify the

compiler hint NOCOPY (see "Using the NOCOPY Compiler Hint" on page 7-17) or

the subprogram exits with an unhandled exception.

Like variables, OUTformal parameters are initialized to NULL. So, the datatype of an

OUT formal parameter cannot be a subtype defined as NOT NULL (that includes the

built-in subtypes NATURALN and POSITIVEN). Otherwise, when you call the

subprogram, PL/SQL raises VALUE_ERROR. An example follows:

DECLARE
 SUBTYPE Counter IS INTEGER NOT NULL;
 rows Counter := 0;
 PROCEDURE count_emps (n OUT Counter) IS
 BEGIN
 SELECT COUNT(*) INTO n FROM emp;
 END;
BEGIN
 count_emps(rows); -- raises VALUE_ERROR

Before exiting a subprogram, explicitly assign values to all OUT formal parameters.

Otherwise, the corresponding actual parameters will be null. If you exit

successfully, PL/SQL assigns values to the actual parameters. However, if you exit

with an unhandled exception, PL/SQL does not assign values to the actual

parameters.

Specifying Parameter Modes

7-16 PL/SQL User’s Guide and Reference

Using the IN OUT Mode
An IN OUT parameter lets you pass initial values to the subprogram being called

and return updated values to the caller. Inside the subprogram, an IN OUT
parameter acts like an initialized variable. Therefore, it can be assigned a value and

its value can be assigned to another variable.

The actual parameter that corresponds to an IN OUT formal parameter must be a

variable; it cannot be a constant or an expression.

If you exit a subprogram successfully, PL/SQL assigns values to the actual

parameters. However, if you exit with an unhandled exception, PL/SQL does not
assign values to the actual parameters.

Summary of Parameter Modes
Table 7–1 summarizes all you need to know about the parameter modes.

Table 7–1 Parameter Modes

IN OUT IN OUT

the default must be specified must be specified

passes values to a
subprogram

returns values to the caller passes initial values to a
subprogram and returns
updated values to the caller

formal parameter acts like a
constant

formal parameter acts like a
variable

formal parameter acts like
an initialized variable

formal parameter cannot be
assigned a value

formal parameter must be
assigned a value

formal parameter should be
assigned a value

actual parameter can be a
constant, initialized variable,
literal, or expression

actual parameter must be a
variable

actual parameter must be a
variable

actual parameter is passed
by reference (a pointer to the
value is passed in)

actual parameter is passed
by value (a copy of the
value is passed out) unless
NOCOPY is specified

actual parameter is passed
by value (a copy of the
value is passed in and out)
unless NOCOPY is specified

Using the NOCOPY Compiler Hint

Subprograms 7-17

Using the NOCOPY Compiler Hint
Suppose a subprogram declares an IN parameter, an OUTparameter, and an IN OUT
parameter. When you call the subprogram, the IN parameter is passed by reference.

That is, a pointer to the IN actual parameter is passed to the corresponding formal

parameter. So, both parameters reference the same memory location, which holds

the value of the actual parameter.

By default, the OUT and IN OUT parameters are passed by value. That is, the value

of the IN OUT actual parameter is copied into the corresponding formal parameter.

Then, if the subprogram exits normally, the values assigned to the OUT and IN OUT
formal parameters are copied into the corresponding actual parameters.

When the parameters hold large data structures such as collections, records, and

instances of object types, all this copying slows down execution and uses up

memory. To prevent that, you can specify the NOCOPY hint, which allows the

PL/SQL compiler to pass OUT and IN OUT parameters by reference.

In the following example, you ask the compiler to pass IN OUT parameter my_
staff by reference instead of by value:

DECLARE
 TYPE Staff IS VARRAY(200) OF Employee;
 PROCEDURE reorganize (my_staff IN OUT NOCOPY Staff) IS ...

Remember, NOCOPYis a hint, not a directive. So, the compiler might pass my_staff
by value despite your request. Usually, however, NOCOPY succeeds. So, it can

benefit any PL/SQL application that passes around large data structures.

In the example below, 25000 records are loaded into a local nested table, which is

passed to two local procedures that do nothing but execute NULL statements.

However, a call to one procedure takes 21 seconds because of all the copying. With

NOCOPY, a call to the other procedure takes much less than 1 second.

SQL> SET SERVEROUTPUT ON
SQL> GET test.sql
 1 DECLARE
 2 TYPE EmpTabTyp IS TABLE OF emp%ROWTYPE;
 3 emp_tab EmpTabTyp := EmpTabTyp(NULL); -- initialize
 4 t1 NUMBER(5);
 5 t2 NUMBER(5);
 6 t3 NUMBER(5);
 7 PROCEDURE get_time (t OUT NUMBER) IS
 8 BEGIN SELECT TO_CHAR(SYSDATE,’SSSSS’) INTO t FROM dual; END;
 9 PROCEDURE do_nothing1 (tab IN OUT EmpTabTyp) IS
 10 BEGIN NULL; END;

Using the NOCOPY Compiler Hint

7-18 PL/SQL User’s Guide and Reference

 11 PROCEDURE do_nothing2 (tab IN OUT NOCOPY EmpTabTyp) IS
 12 BEGIN NULL; END;
 13 BEGIN
 14 SELECT * INTO emp_tab(1) FROM emp WHERE empno = 7788;
 15 emp_tab.EXTEND(24999, 1); -- copy element 1 into 2..25000
 16 get_time(t1);
 17 do_nothing1(emp_tab); -- pass IN OUT parameter
 18 get_time(t2);
 19 do_nothing2(emp_tab); -- pass IN OUT NOCOPY parameter
 20 get_time(t3);
 21 DBMS_OUTPUT.PUT_LINE(’Call Duration (secs)’);
 22 DBMS_OUTPUT.PUT_LINE(’--------------------’);
 23 DBMS_OUTPUT.PUT_LINE(’Just IN OUT: ’ || TO_CHAR(t2 - t1));
 24 DBMS_OUTPUT.PUT_LINE(’With NOCOPY: ’ || TO_CHAR(t3 - t2));
 25* END;
SQL> /
Call Duration (secs)

Just IN OUT: 21
With NOCOPY: 0

The Trade-Off for Better Performance
NOCOPY lets you trade well-defined exception semantics for better performance. Its

use affects exception handling in the following ways:

■ Because NOCOPY is a hint, not a directive, the compiler can pass NOCOPY
parameters to a subprogram by value or by reference. So, if the subprogram

exits with an unhandled exception, you cannot rely on the values of the NOCOPY
actual parameters.

■ By default, if a subprogram exits with an unhandled exception, the values

assigned to its OUT and IN OUT formal parameters are not copied into the

corresponding actual parameters, and changes appear to roll back. However,

when you specify NOCOPY, assignments to the formal parameters immediately

affect the actual parameters as well. So, if the subprogram exits with an

unhandled exception, the (possibly unfinished) changes are not "rolled back."

■ Currently, RPC protocol lets you pass parameters only by value. So, exception

semantics can change silently when you partition applications. For example, if

you move a local procedure with NOCOPY parameters to a remote site, those

parameters will no longer be passed by reference.

Also, the use of NOCOPY increases the likelihood of parameter aliasing. For more

information, see "Understanding Parameter Aliasing" on page 7-22.

Using the NOCOPY Compiler Hint

Subprograms 7-19

Restrictions on NOCOPY
In the following cases, the PL/SQL compiler ignores the NOCOPY hint and uses the

by-value parameter-passing method (no error is generated):

■ The actual parameter is an element of an index-by table. This restriction does

not apply to entire index-by tables.

■ The actual parameter is constrained (by scale or NOT NULL for example). This

restriction does not extend to constrained elements or attributes. Also, it does

not apply to size-constrained character strings.

■ The actual and formal parameters are records, one or both records were

declared using %ROWTYPE or %TYPE, and constraints on corresponding fields in

the records differ.

■ The actual and formal parameters are records, the actual parameter was

declared (implicitly) as the index of a cursor FOR loop, and constraints on

corresponding fields in the records differ.

■ Passing the actual parameter requires an implicit datatype conversion.

■ The subprogram is involved in an external or remote procedure call.

Using Parameter Defaults

7-20 PL/SQL User’s Guide and Reference

Using Parameter Defaults
As the example below shows, you can initialize IN parameters to default values.

That way, you can pass different numbers of actual parameters to a subprogram,

accepting or overriding the default values as you please. Moreover, you can add

new formal parameters without having to change every call to the subprogram.

PROCEDURE create_dept (
 new_dname VARCHAR2 DEFAULT ’TEMP’,
 new_loc VARCHAR2 DEFAULT ’TEMP’) IS
BEGIN
 INSERT INTO dept
 VALUES (deptno_seq.NEXTVAL, new_dname, new_loc);
 ...
END;

If an actual parameter is not passed, the default value of its corresponding formal

parameter is used. Consider the following calls to create_dept :

create_dept;
create_dept(’MARKETING’);
create_dept(’MARKETING’, ’NEW YORK’);

The first call passes no actual parameters, so both default values are used. The

second call passes one actual parameter, so the default value for new_loc is used.

The third call passes two actual parameters, so neither default value is used.

Usually, you can use positional notation to override the default values of formal

parameters. However, you cannot skip a formal parameter by leaving out its actual

parameter. For example, the following call incorrectly associates the actual

parameter ’NEW YORK’ with the formal parameter new_dname:

create_dept(’NEW YORK’); -- incorrect

You cannot solve the problem by leaving a placeholder for the actual parameter. For

example, the following call is illegal:

create_dept(, ’NEW YORK’); -- illegal

In such cases, you must use named notation, as follows:

create_dept(new_loc => ’NEW YORK’);

Using Parameter Defaults

Subprograms 7-21

Also, you cannot assign a null to an uninitialized formal parameter by leaving out

its actual parameter. For example, given the declaration

DECLARE
 FUNCTION gross_pay (
 emp_id IN NUMBER,
 st_hours IN NUMBER DEFAULT 40,
 ot_hours IN NUMBER) RETURN REAL IS
 BEGIN
 ...
 END;

the following function call does not assign a null to ot_hours :

IF gross_pay(emp_num) > max_pay THEN ... -- illegal

Instead, you must pass the null explicitly, as in

IF gross_pay(emp_num, ot_hour => NULL) > max_pay THEN ...

or you can initialize ot_hours to NULL, as follows:

ot_hours IN NUMBER DEFAULT NULL;

Finally, when creating a stored subprogram, you cannot use host variables (bind

variables) in the DEFAULT clause. The following SQL*Plus example causes a bad
bind variable error because at the time of creation, num is just a placeholder whose

value might change:

SQL> VARIABLE num NUMBER
SQL> CREATE FUNCTION gross_pay (emp_id IN NUMBER DEFAULT :num, ...

Understanding Parameter Aliasing

7-22 PL/SQL User’s Guide and Reference

Understanding Parameter Aliasing
To optimize a subprogram call, the PL/SQL compiler can choose between two

methods of parameter passing. With the by-value method, the value of an actual

parameter is passed to the subprogram. With the by-reference method, only a pointer

to the value is passed, in which case the actual and formal parameters reference the

same item.

The NOCOPY compiler hint increases the possibility of aliasing (that is, having two

different names refer to the same memory location). This can occur when a global

variable appears as an actual parameter in a subprogram call and then is referenced

within the subprogram. The result is indeterminate because it depends on the

method of parameter passing chosen by the compiler.

In the example below, procedure add_entry refers to varray lexicon in two

different ways: as a parameter and as a global variable. So, when add_entry is

called, the identifiers word_list and lexicon name the same varray.

DECLARE
 TYPE Definition IS RECORD (
 word VARCHAR2(20),
 meaning VARCHAR2(200));
 TYPE Dictionary IS VARRAY(2000) OF Definition;
 lexicon Dictionary := Dictionary();
 PROCEDURE add_entry (word_list IN OUT NOCOPY Dictionary) IS
 BEGIN
 word_list(1).word := ’aardvark’;
 lexicon(1).word := ’aardwolf’;
 END;
BEGIN
 lexicon.EXTEND;
 add_entry(lexicon);
 DBMS_OUTPUT.PUT_LINE(lexicon(1).word);
 -- prints ’aardvark’ if parameter was passed by value
 -- prints ’aardwolf’ if parameter was passed by reference
END;

The result depends on the method of parameter passing chosen by the compiler. If

the compiler chooses the by-value method, word_list and lexicon are separate

copies of the same varray. So, changing one does not affect the other. But, if the

compiler chooses the by-reference method, word_list and lexicon are just

different names for the same varray. (Hence, the term "aliasing.") So, changing the

value of lexicon(1) also changes the value of word_list(1) .

Understanding Parameter Aliasing

Subprograms 7-23

Aliasing can also occur when the same actual parameter appears more than once in

a subprogram call. In the example below, n2 is an IN OUT parameter, so the value of

the actual parameter is not updated until the procedure exits. That is why the first

PUT_LINE prints 10 (the initial value of n) and the third PUT_LINE prints 20.

However, n3 is a NOCOPY parameter, so the value of the actual parameter is

updated immediately. That is why the second PUT_LINE prints 30.

DECLARE
 n NUMBER := 10;
 PROCEDURE do_something (
 n1 IN NUMBER,
 n2 IN OUT NUMBER,
 n3 IN OUT NOCOPY NUMBER) IS
 BEGIN
 n2 := 20;
 DBMS_OUTPUT.PUT_LINE(n1); -- prints 10
 n3 := 30;
 DBMS_OUTPUT.PUT_LINE(n1); -- prints 30
 END;
BEGIN
 do_something(n, n, n);
 DBMS_OUTPUT.PUT_LINE(n); -- prints 20
END;

Because they are pointers, cursor variables also increase the possibility of aliasing.

Consider the example below. After the assignment, emp_cv2 is an alias of emp_cv1
because both point to the same query work area. So, both can alter its state. That is

why the first fetch from emp_cv2 fetches the third row (not the first) and why the

second fetch from emp_cv2 fails after you close emp_cv1 .

PROCEDURE get_emp_data (
 emp_cv1 IN OUT EmpCurTyp,
 emp_cv2 IN OUT EmpCurTyp) IS
 emp_rec emp%ROWTYPE;
BEGIN
 OPEN emp_cv1 FOR SELECT * FROM emp;
 emp_cv2 := emp_cv1;
 FETCH emp_cv1 INTO emp_rec; -- fetches first row
 FETCH emp_cv1 INTO emp_rec; -- fetches second row
 FETCH emp_cv2 INTO emp_rec; -- fetches third row
 CLOSE emp_cv1;
 FETCH emp_cv2 INTO emp_rec; -- raises INVALID_CURSOR
 ...
END;

Using Overloading

7-24 PL/SQL User’s Guide and Reference

Using Overloading
PL/SQL lets you overload subprogram names. That is, you can use the same name

for several different subprograms as long as their formal parameters differ in

number, order, or datatype family.

Suppose you want to initialize the first n rows in two index-by tables that were

declared as follows:

DECLARE
 TYPE DateTabTyp IS TABLE OF DATE INDEX BY BINARY_INTEGER;
 TYPE RealTabTyp IS TABLE OF REAL INDEX BY BINARY_INTEGER;
 hiredate_tab DateTabTyp;
 sal_tab RealTabTyp;
BEGIN
 ...
END;

You might write the following procedure to initialize the index-by table named

hiredate_tab :

PROCEDURE initialize (tab OUT DateTabTyp, n INTEGER) IS
BEGIN
 FOR i IN 1..n LOOP
 tab(i) := SYSDATE;
 END LOOP;
END initialize;

And, you might write the next procedure to initialize the index-by table named

sal_tab :

PROCEDURE initialize (tab OUT RealTabTyp, n INTEGER) IS
BEGIN
 FOR i IN 1..n LOOP
 tab(i) := 0.0;
 END LOOP;
END initialize;

Because the processing in these two procedures is the same, it is logical to give them

the same name.

Using Overloading

Subprograms 7-25

You can place the two overloaded initialize procedures in the same block,

subprogram, or package. PL/SQL determines which of the two procedures is being

called by checking their formal parameters. In the following example, the version of

initialize that PL/SQL uses depends on whether you call the procedure with a

DateTabTyp or RealTabTyp parameter:

DECLARE
 TYPE DateTabTyp IS TABLE OF DATE INDEX BY BINARY_INTEGER;
 TYPE RealTabTyp IS TABLE OF REAL INDEX BY BINARY_INTEGER;
 hiredate_tab DateTabTyp;
 comm_tab RealTabTyp;
 indx BINARY_INTEGER;
 PROCEDURE initialize (tab OUT DateTabTyp, n INTEGER) IS
 BEGIN
 ...
 END;
 PROCEDURE initialize (tab OUT RealTabTyp, n INTEGER) IS
 BEGIN
 ...
 END;
BEGIN
 indx := 50;
 initialize(hiredate_tab, indx); -- calls first version
 initialize(comm_tab, indx); -- calls second version
 ...
END;

Restrictions on Overloading
Only local or packaged subprograms can be overloaded. Therefore, you cannot

overload stand-alone subprograms. Also, you cannot overload two subprograms if

their formal parameters differ only in name or parameter mode. For example, you

cannot overload the following two procedures:

DECLARE
 ...
 PROCEDURE reconcile (acct_no IN INTEGER) IS
 BEGIN ... END;
 PROCEDURE reconcile (acct_no OUT INTEGER) IS
 BEGIN ... END;

Using Overloading

7-26 PL/SQL User’s Guide and Reference

You cannot overload two subprograms if their formal parameters differ only in

datatype and the different datatypes are in the same family. For instance, you

cannot overload the following procedures because the datatypes INTEGER and

REAL are in the same family:

DECLARE
 ...
 PROCEDURE charge_back (amount INTEGER) IS
 BEGIN ... END;
 PROCEDURE charge_back (amount REAL) IS
 BEGIN ... END;

Likewise, you cannot overload two subprograms if their formal parameters differ

only in subtype and the different subtypes are based on types in the same family.

For example, you cannot overload the following procedures because the base types

CHAR and LONG are in the same family:

DECLARE
 SUBTYPE Delimiter IS CHAR;
 SUBTYPE Text IS LONG;
 ...
 PROCEDURE scan (x Delimiter) IS
 BEGIN ... END;
 PROCEDURE scan (x Text) IS
 BEGIN ... END;

Finally, you cannot overload two functions that differ only in return type (the

datatype of the return value) even if the types are in different families. For example,

you cannot overload the following functions:

DECLARE
 ...
 FUNCTION acct_ok (acct_id INTEGER) RETURN BOOLEAN IS
 BEGIN ... END;
 FUNCTION acct_ok (acct_id INTEGER) RETURN INTEGER IS
 BEGIN ... END;

How Calls Are Resolved

Subprograms 7-27

How Calls Are Resolved
Figure 7–1 shows how the PL/SQL compiler resolves subprogram calls. When the

compiler encounters a procedure or function call, it tries to find a declaration that

matches the call. The compiler searches first in the current scope and then, if

necessary, in successive enclosing scopes. The compiler stops searching if it finds

one or more subprogram declarations in which the subprogram name matches the

name of the called subprogram.

To resolve a call among possibly like-named subprograms at the same level of

scope, the compiler must find an exact match between the actual and formal

parameters. That is, they must match in number, order, and datatype (unless some

formal parameters were assigned default values). If no match is found or if multiple

matches are found, the compiler generates a syntax error.

In the following example, you call the enclosing procedure swap from within the

function reconcile . However, the compiler generates an error because neither

declaration of swap within the current scope matches the procedure call:

PROCEDURE swap (n1 NUMBER, n2 NUMBER) IS
 num1 NUMBER;
 num2 NUMBER;
 FUNCTION balance (...) RETURN REAL IS
 PROCEDURE swap (d1 DATE, d2 DATE) IS
 BEGIN
 ...
 END;
 PROCEDURE swap (b1 BOOLEAN, b2 BOOLEAN) IS
 BEGIN
 ...
 END;
 BEGIN
 ...
 swap(num1, num2);
 RETURN ...
 END balance;
BEGIN
 ...
END;

How Calls Are Resolved

7-28 PL/SQL User’s Guide and Reference

Figure 7–1 How the Compiler Resolves Calls

generate syntax error resolve call

multiple matches?

match(es) found?

match(es) found? enclosing scope?

go to enclosing scope

encounter
subprogram call

compare name of
called subprogram with
names of any
subprograms declared
in current scope

Yes

Yes

Yes

Yes

No

No

No

No

compare actual
parameter list in
subprogram call with
formal parameter list in
subprogram declaration(s)

Invoker Rights versus Definer Rights

Subprograms 7-29

Invoker Rights versus Definer Rights
By default, stored procedures and SQL methods execute with the privileges of their

owner, not their current user. Such definer-rights routines are bound to the schema in

which they reside. For example, assume that dept tables reside in schemas scott
and blake , and that the following stand-alone procedure resides in schema scott :

CREATE PROCEDURE create_dept (
 my_deptno NUMBER,
 my_dname VARCHAR2,
 my_loc VARCHAR2) AS
BEGIN
 INSERT INTO dept VALUES (my_deptno, my_dname, my_loc);
END;

Also assume that user scott has granted the EXECUTE privilege on this procedure

to user blake . When user blake calls the procedure, the INSERT statement

executes with the privileges of user scott . Also, the unqualified references to table

dept is resolved in schema scott . So, even though user blake called the

procedure, it updates the dept table in schema scott .

How can routines in one schema manipulate objects in another schema? One way is

to fully qualify references to the objects, as in

INSERT INTO blake.dept ...

However, that hampers portability. Another way is to copy the routines into the

other schema. However, that hampers maintenance. A better way is to use the

AUTHID clause, which enables stored procedures and SQL methods to execute with

the privileges and schema context of their current user.

Such invoker-rights routines are not bound to a particular schema. They can be run

by a variety of users. The following version of procedure create_dept executes

with the privileges of its current user and inserts rows into the dept table in that

user’s schema:

CREATE PROCEDURE create_dept (
 my_deptno NUMBER,
 my_dname VARCHAR2,
 my_loc VARCHAR2) AUTHID CURRENT_USER AS
BEGIN
 INSERT INTO dept VALUES (my_deptno, my_dname, my_loc);
END;

Invoker Rights versus Definer Rights

7-30 PL/SQL User’s Guide and Reference

Advantages of Invoker Rights
Invoker-rights routines let you reuse code and centralize application logic. They are

especially useful in applications that store data in different schemas. In such cases,

multiple users can manage their own data using a single code base.

Consider a company that uses a definer-rights (DR) procedure to analyze sales. To

provide local sales statistics, procedure analyze must access sales tables that

reside at each regional site. So, as Figure 7–2 shows, the procedure must also reside

at each regional site. This causes a maintenance problem.

Figure 7–2 Definer-Rights Problem

To solve the problem, the company installs an invoker-rights (IR) version of

procedure analyze at headquarters. Now, as Figure 7–3 shows, all regional sites

can use the same procedure to query their own sales tables.

Figure 7–3 Invoker-Rights Solution

Schema HQSchema WEST

sales

Schema EAST

sales

analyze
(DR)

analyze
(DR)

Schema HQSchema WEST

sales

Schema EAST

sales

analyze
(IR)

Invoker Rights versus Definer Rights

Subprograms 7-31

To restrict access to sensitive data, you can have an invoker-rights routine call a

definer-rights routine. Suppose headquarters would like procedure analyze to

calculate sales commissions and update a central payroll table.

That presents a problem because current users of analyze should not have direct

access to the payroll table, which stores employee salaries and other sensitive

data. As Figure 7–4 shows, the solution is to have procedure analyze call

definer-rights procedure calc_comm , which in turn updates the payroll table.

Figure 7–4 Controlled Access

Using the AUTHID Clause
To implement invoker rights, use the AUTHID clause, which specifies whether a

routine executes with the privileges of its owner or its current user. It also specifies

whether external references (that is, references to objects outside the routine) are

resolved in the schema of the owner or the current user.

The AUTHID clause is allowed only in the header of a stand-alone subprogram, a

package spec, or an object type spec. The header syntax is

-- stand-alone function
CREATE [OR REPLACE] FUNCTION [schema_name.]function_name
[(parameter_list)] RETURN datatype
[AUTHID {CURRENT_USER | DEFINER}] {IS | AS}

Schema HQSchema WEST

analyze

sales

Schema EAST

sales

payroll

calc_comm
(DR)

(IR)

Invoker Rights versus Definer Rights

7-32 PL/SQL User’s Guide and Reference

-- stand-alone procedure
CREATE [OR REPLACE] PROCEDURE [schema_name.]procedure_name
[(parameter_list)]
[AUTHID {CURRENT_USER | DEFINER}] {IS | AS}

-- package spec
CREATE [OR REPLACE] PACKAGE [schema_name.]package_name
[AUTHID {CURRENT_USER | DEFINER}] {IS | AS}

-- object type spec
CREATE [OR REPLACE] TYPE [schema_name.]object_type_name
[AUTHID {CURRENT_USER | DEFINER}] {IS | AS} OBJECT

where DEFINER is the default option. In a package or object type, the AUTHID
clause applies to all routines.

Note: Most supplied PL/SQL packages (such as DBMS_LOB, DBMS_PIPE, DBMS_
ROWID, DBMS_SQL, and UTL_REF) are invoker-rights packages.

Who Is the Current User?
In a sequence of calls, if an invoker-rights routine is the first routine called, the

current user is the session user. That remains true until a definer-rights routine is

called, in which case the owner of that routine becomes the current user. If the

definer-rights routine calls any invoker-rights routines, they execute with the

privileges of the owner. When the definer-rights routine exits, control reverts to the

previous current user.

How External References Are Resolved
If you specify AUTHID CURRENT_USER, the privileges of the current user are

checked at run time, and external references are resolved in the schema of the

current user. However, this applies only to external references in

■ SELECT, INSERT, UPDATE, and DELETE data manipulation statements

■ the LOCK TABLE transaction control statement

■ OPEN and OPEN-FOR cursor control statements

■ EXECUTE IMMEDIATE and OPEN-FOR-USING dynamic SQL statements

■ SQL statements parsed using DBMS_SQL.PARSE()

Invoker Rights versus Definer Rights

Subprograms 7-33

For all other statements, the privileges of the owner are checked at compile time,

and external references are resolved in the schema of the owner. For example, the

assignment statement below refers to the packaged function balance . This external

reference is resolved in the schema of the owner of procedure reconcile .

CREATE PROCEDURE reconcile (acc_id IN INTEGER)
 AUTHID CURRENT_USER AS
 bal NUMBER;
BEGIN
 bal := bank_ops.balance(acct_id);
 ...
END;

The Need for Template Objects
External references in an invoker-rights routine are resolved in the schema of the

current user at run time. However, the PL/SQL compiler must resolve all references

at compile time. So, the owner must create template objects in his or her schema

beforehand. At run time, the template objects and the actual objects must match.

Otherwise, you get an error or unexpected results.

For example, suppose user scott creates the following database table and

stand-alone procedure:

CREATE TABLE emp (
 empno NUMBER(4),
 ename VARCHAR2(15));
/
CREATE PROCEDURE evaluate (my_empno NUMBER)
 AUTHID CURRENT_USER AS
 my_ename VARCHAR2(15);
BEGIN
 SELECT ename INTO my_ename FROM emp WHERE empno = my_empno;
 ...
END;
/

Now, suppose user blake creates a similar database table, then calls procedure

evaluate , as follows:

CREATE TABLE emp (
 empno NUMBER(4),
 ename VARCHAR2(15),
 my_empno NUMBER(4)); -- note extra column
/

Invoker Rights versus Definer Rights

7-34 PL/SQL User’s Guide and Reference

DECLARE
 ...
BEGIN
 ...
 scott.evaluate(7788);
END;
/

The procedure call executes without error but ignores column my_empno in the

table created by user blake . That is because the actual table in the schema of the

current user does not match the template table used at compile time.

Overriding Default Name Resolution
Occasionally, you might want to override the default invoker-rights behavior.

Suppose user scott defines the stand-alone procedure below. Notice that the

SELECT statement calls an external function. Normally, this external reference

would be resolved in the schema of the current user.

CREATE PROCEDURE calc_bonus (emp_id INTEGER)
 AUTHID CURRENT_USER AS
 mid_sal REAL;
BEGIN
 SELECT median(sal) INTO mid_sal FROM emp;
 ...
END;

To have the reference resolved in the schema of the owner, create a public synonym

for the function using the CREATE SYNONYM statement, as follows:

CREATE PUBLIC SYNONYM median FOR scott.median;

This works unless the current user has defined a function or private synonym

named median . Alternatively, you can fully qualify the reference, as follows:

BEGIN
 SELECT scott.median(sal) INTO mid_sal FROM emp;
 ...
END;

This works unless the current user has defined a package named scott that

contains a function named median .

Invoker Rights versus Definer Rights

Subprograms 7-35

Granting Privileges
To call a routine directly, users must have the EXECUTEprivilege on that routine. By

granting the privilege, you allow a user to

■ call the routine directly

■ compile functions and procedures that call the routine

For external references resolved in the current user’s schema (such as those in DML

statements), the current user must have the privileges needed to access schema

objects referenced by the routine. For all other external references (such as function

calls), the owner’s privileges are checked at compile time, and no run-time check is

done.

A definer-rights routine operates under the security domain of its owner, no matter

who is executing it. So, the owner must have the privileges needed to access schema

objects referenced by the routine.

You can write a program consisting of multiple routines, some with definer rights

and others with invoker rights. Then, you can use the EXECUTE privilege to restrict

program entry points (controlled step-in). That way, users of an entry-point routine

can execute the other routines indirectly but not directly.

An Example
Suppose user util grants the EXECUTE privilege on routine fft to user app , as

follows:

GRANT EXECUTE ON util.fft TO app;

Now, user app can compile functions and procedures that call routine fft . At run

time, no privilege checks on the calls are done. So, as Figure 7–5 on page 7-36

shows, user util need not grant the EXECUTE privilege to every user who might

call fft indirectly.

Notice that routine util.fft is called directly only from invoker-rights routine

app.entry . So, user util must grant the EXECUTE privilege only to user app .

When util.fft is executed, its current user could be app , scott , or blake even

though scott and blake were not granted the EXECUTE privilege.

Invoker Rights versus Definer Rights

7-36 PL/SQL User’s Guide and Reference

Figure 7–5 Indirect Calls

Using Roles
The use of roles in a routine depends on whether it executes with definer rights or

invoker rights. Within a definer-rights routine, all roles are disabled. Roles are not

used for privilege checking, and you cannot set roles.

Within an invoker-rights routine, roles are enabled (unless the routine was called

directly or indirectly by a definer-rights routine). Roles are used for privilege

checking, and you can use native dynamic SQL to set roles for the session.

However, you cannot use roles to grant privileges on template objects because roles

apply at run time, not at compile time.

Using Views and Database Triggers
For invoker-rights routines executed within a view expression, the view owner, not

the view user, is considered to be the current user. For example, suppose user

scott creates a view as shown below. The invoker-rights function layout always

executes with the privileges of user scott , who is the view owner.

CREATE VIEW payroll AS SELECT layout(3) FROM dual;

This rule also applies to database triggers.

Schema SCOTT

Schema BLAKE

Schema APP

fft

Schema UTIL
proc1

proc2

entry
(IR)

Invoker Rights versus Definer Rights

Subprograms 7-37

Using Database Links
Invoker rights affect only one kind of database link—current-user links, which are

created as follows:

CREATE DATABASE LINK link_name CONNECT TO CURRENT_USER
 USING connect_string;

A current-user link lets you connect to a remote database as another user, with that

user’s privileges. To connect, Oracle uses the username of the current user (who

must be a global user). Suppose an invoker-rights routine owned by user blake
references the database link below. If global user scott calls the routine, it connects

to the Dallas database as user scott , who is the current user.

CREATE DATABASE LINK dallas CONNECT TO CURRENT_USER USING ...

If it were a definer-rights routine, the current user would be blake . So, the routine

would connect to the Dallas database as global user blake .

Using Object Types
To define object types for use in any schema, specify the AUTHID CURRENT_USER
clause. (For more information about object types, see Chapter 9.) Suppose user

blake creates the following object type:

CREATE TYPE Num AUTHID CURRENT_USER AS OBJECT (
 x NUMBER,
 STATIC PROCEDURE new_num (
 n NUMBER, schema_name VARCHAR2, table_name VARCHAR2)
);

CREATE TYPE BODY Num AS
 STATIC PROCEDURE new_num (
 n NUMBER, schema_name VARCHAR2, table_name VARCHAR2) IS
 sql_stmt VARCHAR2(200);
 BEGIN
 sql_stmt := ’INSERT INTO ’ || schema_name || ’.’
 || table_name || ’ VALUES (blake.Num(:1))’;
 EXECUTE IMMEDIATE sql_stmt USING n;
 END;
END;

Then, user blake grants the EXECUTE privilege on object type Num to user scott :

GRANT EXECUTE ON Num TO scott;

Invoker Rights versus Definer Rights

7-38 PL/SQL User’s Guide and Reference

Finally, user scott creates an object table to store objects of type Num, then calls

procedure new_num to populate the table:

CONNECT scott/tiger;
CREATE TABLE num_tab OF blake.Num;
/
BEGIN
 blake.Num.new_num(1001, ’scott’, ’num_tab’);
 blake.Num.new_num(1002, ’scott’, ’num_tab’);
 blake.Num.new_num(1003, ’scott’, ’num_tab’);
END;
/

The calls succeed because the procedure executes with the privileges of its current

user (scott), not its owner (blake):

Calling Instance Methods
An invoker-rights instance method executes with the privileges of the invoker, not

the creator of the instance. Suppose that Person is an invoker-rights object type,

and that user scott creates p1 , an object of type Person . If user blake calls

instance method change_job to operate on object p1 , the current user of the

method is blake , not scott . Consider the following example:

-- user blake creates a definer-rights procedure
CREATE PROCEDURE reassign (p Person, new_job VARCHAR2) AS
BEGIN
 -- user blake calls method change_job, so the
 -- method executes with the privileges of blake
 p.change_job(new_job);
 ...
END;

-- user scott passes a Person object to the procedure
DECLARE
 p1 Person;
BEGIN
 p1 := Person(...);
 blake.reassign(p1, ’CLERK’);
 ...
END;

Understanding and Using Recursion

Subprograms 7-39

Understanding and Using Recursion
Recursion is a powerful technique for simplifying the design of algorithms.

Basically, recursion means self-reference. In a recursive mathematical sequence, each

term is derived by applying a formula to preceding terms. The Fibonacci sequence

(0, 1, 1, 2, 3, 5, 8, 13, 21, ...), which was first used to model the growth of a rabbit

colony, is an example. Each term in the sequence (after the second) is the sum of the

two terms that immediately precede it.

In a recursive definition, something is defined as simpler versions of itself. Consider

the definition of n factorial (n!), the product of all integers from 1 to n:

n! = n * (n - 1)!

What Is a Recursive Subprogram?
A recursive subprogram is one that calls itself. Think of a recursive call as a call to

some other subprogram that does the same task as your subprogram. Each

recursive call creates a new instance of any items declared in the subprogram,

including parameters, variables, cursors, and exceptions. Likewise, new instances of

SQL statements are created at each level in the recursive descent.

Be careful where you place a recursive call. If you place it inside a cursor FOR loop

or between OPEN and CLOSE statements, another cursor is opened at each call. As a

result, your program might exceed the limit set by the Oracle initialization

parameter OPEN_CURSORS.

There must be at least two paths through a recursive subprogram: one that leads to

the recursive call and one that does not. At least one path must lead to a terminating
condition. Otherwise, the recursion would (theoretically) go on forever. In practice, if

a recursive subprogram strays into infinite regress, PL/SQL eventually runs out of

memory and raises the predefined exception STORAGE_ERROR.

Example 1
To solve some programming problems, you must repeat a sequence of statements

until a condition is met. You can use iteration or recursion to solve such problems.

Use recursion when the problem can be broken down into simpler versions of itself.

For example, you can evaluate 3! as follows:

0! = 1 -- by definition
1! = 1 * 0! = 1
2! = 2 * 1! = 2
3! = 3 * 2! = 6

Understanding and Using Recursion

7-40 PL/SQL User’s Guide and Reference

To implement this algorithm, you might write the following recursive function,

which returns the factorial of a positive integer:

FUNCTION fac (n POSITIVE) RETURN INTEGER IS -- returns n!
BEGIN
 IF n = 1 THEN -- terminating condition
 RETURN 1;
 ELSE
 RETURN n * fac(n - 1); -- recursive call
 END IF;
END fac;

At each recursive call, n is decremented. Eventually, n becomes 1 and the recursion

stops.

Example 2
Consider the procedure below, which finds the staff of a given manager. The

procedure declares two formal parameters, mgr_no and tier , which represent the

manager’s employee number and a tier in his or her departmental organization.

Staff members reporting directly to the manager occupy the first tier.

PROCEDURE find_staff (mgr_no NUMBER, tier NUMBER := 1) IS
 boss_name VARCHAR2(10);
 CURSOR c1 (boss_no NUMBER) IS
 SELECT empno, ename FROM emp WHERE mgr = boss_no;
BEGIN
 /* Get manager’s name. */
 SELECT ename INTO boss_name FROM emp WHERE empno = mgr_no;
 IF tier = 1 THEN
 INSERT INTO staff -- single-column output table
 VALUES (boss_name || ’ manages the staff’);
 END IF;
 /* Find staff members who report directly to manager. */
 FOR ee IN c1 (mgr_no) LOOP
 INSERT INTO staff
 VALUES (boss_name || ’ manages ’ || ee.ename
 || ’ on tier ’ || TO_CHAR(tier));
 /* Drop to next tier in organization. */
 find_staff(ee.empno, tier + 1); -- recursive call
 END LOOP;
 COMMIT;
END;

Understanding and Using Recursion

Subprograms 7-41

When called, the procedure accepts a value for mgr_no but uses the default value of

tier . For example, you might call the procedure as follows:

find_staff(7839);

The procedure passes mgr_no to a cursor in a cursor FOR loop, which finds staff

members at successively lower tiers in the organization. At each recursive call, a

new instance of the FOR loop is created and another cursor is opened, but prior

cursors stay positioned on the next row in their result sets.

When a fetch fails to return a row, the cursor is closed automatically and the FOR
loop is exited. Since the recursive call is inside the FOR loop, the recursion stops.

Unlike the initial call, each recursive call passes a second actual parameter (the next

tier) to the procedure.

The last example illustrates recursion, not the efficient use of set-oriented SQL

statements. You might want to compare the performance of the recursive procedure

to that of the following SQL statement, which does the same task:

INSERT INTO staff
 SELECT PRIOR ename || ’ manages ’ || ename
 || ’ on tier ’ || TO_CHAR(LEVEL - 1)
 FROM emp
 START WITH empno = 7839
 CONNECT BY PRIOR empno = mgr;

The SQL statement is appreciably faster. However, the procedure is more flexible.

For example, a multi-table query cannot contain the CONNECT BY clause. So, unlike

the procedure, the SQL statement cannot be modified to do joins. (A join combines

rows from two or more database tables.) In addition, a procedure can process data

in ways that a single SQL statement cannot.

Understanding and Using Recursion

7-42 PL/SQL User’s Guide and Reference

Using Mutual Recursion
Subprograms are mutually recursive if they directly or indirectly call each other. In

the example below, the Boolean functions odd and even , which determine whether

a number is odd or even, call each other directly. The forward declaration of odd is

necessary because even calls odd , which is not yet declared when the call is made.

FUNCTION odd (n NATURAL) RETURN BOOLEAN; -- forward declaration

FUNCTION even (n NATURAL) RETURN BOOLEAN IS
BEGIN
 IF n = 0 THEN
 RETURN TRUE;
 ELSE
 RETURN odd(n - 1); -- mutually recursive call
 END IF;
END even;

FUNCTION odd (n NATURAL) RETURN BOOLEAN IS
BEGIN
 IF n = 0 THEN
 RETURN FALSE;
 ELSE
 RETURN even(n - 1); -- mutually recursive call
 END IF;
END odd;

When a positive integer n is passed to odd or even , the functions call each other by

turns. At each call, n is decremented. Ultimately, n becomes zero and the final call

returns TRUE or FALSE. For instance, passing the number 4 to odd results in this

sequence of calls:

odd(4)
even(3)
odd(2)
even(1)
odd(0) -- returns FALSE

On the other hand, passing the number 4 to even results in this sequence of calls:

even(4)
odd(3)
even(2)
odd(1)
even(0) -- returns TRUE

Understanding and Using Recursion

Subprograms 7-43

Recursion versus Iteration
Unlike iteration, recursion is not essential to PL/SQL programming. Any problem

that can be solved using recursion can be solved using iteration. Also, the iterative

version of a subprogram is usually easier to design than the recursive version.

However, the recursive version is usually simpler, smaller, and therefore easier to

debug. Compare the following functions, which compute the nth Fibonacci number:

-- recursive version
FUNCTION fib (n POSITIVE) RETURN INTEGER IS
BEGIN
 IF (n = 1) OR (n = 2) THEN
 RETURN 1;
 ELSE
 RETURN fib(n - 1) + fib(n - 2);
 END IF;
END fib;

-- iterative version
FUNCTION fib (n POSITIVE) RETURN INTEGER IS
 pos1 INTEGER := 1;
 pos2 INTEGER := 0;
 cum INTEGER;
BEGIN
 IF (n = 1) OR (n = 2) THEN
 RETURN 1;
 ELSE
 cum := pos1 + pos2;
 FOR i IN 3..n LOOP
 pos2 := pos1;
 pos1 := cum;
 cum := pos1 + pos2;
 END LOOP;
 RETURN cum;
 END IF;
END fib;

The recursive version of fib is more elegant than the iterative version. However,

the iterative version is more efficient; it runs faster and uses less storage. That is

because each recursive call requires additional time and memory. As the number of

recursive calls gets larger, so does the difference in efficiency. Still, if you expect the

number of recursive calls to be small, you might choose the recursive version for its

readability.

Calling External Routines

7-44 PL/SQL User’s Guide and Reference

Calling External Routines
PL/SQL is a powerful development tool; you can use it for almost any purpose.

However, it is specialized for SQL transaction processing. So, some tasks are more

quickly done in a lower-level language such as C, which is very efficient at

machine-precision calculations. Other tasks are more easily done in a fully

object-oriented, standardized language such as Java.

To support such special-purpose processing, you can use PL/SQL call specs to

invoke external routines (that is, routines written in other languages). This makes the

strengths and capabilities of those languages available to you. No longer are you

restricted to one language with its inherent limitations.

For example, you can call Java stored procedures from any PL/SQL block,

subprogram, or package. Suppose you store the following Java class in the database:

import java.sql.*;
import oracle.jdbc.driver.*;
public class Adjuster {
 public static void raiseSalary (int empNo, float percent)
 throws SQLException {
 Connection conn = new OracleDriver().defaultConnection();
 String sql = "UPDATE emp SET sal = sal * ? WHERE empno = ?";
 try {
 PreparedStatement pstmt = conn.prepareStatement(sql);
 pstmt.setFloat(1, (1 + percent / 100));
 pstmt.setInt(2, empNo);
 pstmt.executeUpdate();
 pstmt.close();
 } catch (SQLException e) {System.err.println(e.getMessage());}
 }
}

The class Adjuster has one method, which raises the salary of an employee by a

given percentage. Because raiseSalary is a void method, you publish it as a

procedure using this call spec:

CREATE PROCEDURE raise_salary (empno NUMBER, pct NUMBER)
AS LANGUAGE JAVA
NAME ’Adjuster.raiseSalary(int, float)’;

Using PL/SQL Server Pages

Subprograms 7-45

Later, you might call procedure raise_salary from an anonymous PL/SQL

block, as follows:

DECLARE
 emp_id NUMBER;
 percent NUMBER;
BEGIN
 -- assign values to emp_id and percent
 raise_salary(emp_id, percent); -- call external routine
 ...
END;

Typically, external C routines are used to interface with embedded systems, solve

engineering problems, analyze data, or control real-time devices and processes.

External C routines let you extend the functionality of the database server, and

move computation-bound programs from client to server, where they execute faster.

For more information about Java stored procedures, see Oracle8i Java Stored
Procedures Developer’s Guide. For more information about external C routines, see

Oracle8i Application Developer’s Guide - Fundamentals.

Using PL/SQL Server Pages
PL/SQL Server Pages (PSPs) enable you to develop Web pages with dynamic

content. Using special tags, you can embed PL/SQL scripts in HTML pages. The

scripts are executed when the pages are requested by Web clients (browsers for

example). A script can accept user input, then customize page content accordingly.

During development, PSPs can act like templates with a static part for page layout

and a dynamic part for content. You can design the layouts using your favorite

HTML authoring tools, leaving placeholders for the dynamic content. Then, you

can write the PL/SQL scripts that generate the content. When finished, you simply

load the resulting PSP files into the database as stored procedures.

For more information about creating and using PSPs, see Oracle8i Application
Developer’s Guide - Fundamentals.

Using PL/SQL Server Pages

7-46 PL/SQL User’s Guide and Reference

Packages 8-1

8
Packages

Goods which are not shared are not goods. —Fernando de Rojas

This chapter shows you how to bundle related PL/SQL programming resources

into a package. The resources might include a collection of procedures or a pool of

type definitions and variable declarations. For example, a Human Resources

package might contain hiring and firing procedures. Once written, your

general-purpose package is compiled, then stored in an Oracle database, where its

contents can be shared by many applications.

Major Topics
What Is a Package?

Advantages of Packages

The Package Spec

The Package Body

Some Examples

Private versus Public Items

Overloading Packaged Subprograms

Package STANDARD

Product-specific Packages

What Is a Package?

8-2 PL/SQL User’s Guide and Reference

What Is a Package?
A package is a schema object that groups logically related PL/SQL types, items, and

subprograms. Packages usually have two parts, a specification and a body, although

sometimes the body is unnecessary. The specification (spec for short) is the interface

to your applications; it declares the types, variables, constants, exceptions, cursors,

and subprograms available for use. The body fully defines cursors and subprograms,

and so implements the spec.

As Figure 8–1 shows, you can think of the spec as an operational interface and of

the body as a "black box." You can debug, enhance, or replace a package body

without changing the interface (package spec) to the package.

Figure 8–1 Package Interface

To create packages, use the CREATE PACKAGE statement, which you can execute

interactively from SQL*Plus. Here is the syntax:

CREATE [OR REPLACE] PACKAGE package_name
 [AUTHID {CURRENT_USER | DEFINER}]
 {IS | AS}
 [PRAGMA SERIALLY_REUSABLE;]
 [collection_type_definition ...]
 [record_type_definition ...]
 [subtype_definition ...]
 [collection_declaration ...]
 [constant_declaration ...]
 [exception_declaration ...]
 [object_declaration ...]
 [record_declaration ...]
 [variable_declaration ...]

Package DatabaseApplication

specification

body

What Is a Package?

Packages 8-3

 [cursor_spec ...]
 [function_spec ...]
 [procedure_spec ...]
 [call_spec ...]
 [PRAGMA RESTRICT_REFERENCES(assertions) ...]
END [package_name];

[CREATE [OR REPLACE] PACKAGE BODY package_name {IS | AS}
 [PRAGMA SERIALLY_REUSABLE;]
 [collection_type_definition ...]
 [record_type_definition ...]
 [subtype_definition ...]
 [collection_declaration ...]
 [constant_declaration ...]
 [exception_declaration ...]
 [object_declaration ...]
 [record_declaration ...]
 [variable_declaration ...]
 [cursor_body ...]
 [function_spec ...]
 [procedure_spec ...]
 [call_spec ...]
[BEGIN
 sequence_of_statements]
END [package_name];]

The spec holds public declarations, which are visible to your application. The body

holds implementation details and private declarations, which are hidden from your

application. Following the declarative part of the package body is the optional

initialization part, which typically holds statements that initialize package variables.

The AUTHIDclause determines whether all the packaged subprograms execute with

the privileges of their definer (the default) or invoker, and whether their unqualified

references to schema objects are resolved in the schema of the definer or invoker.

For more information, see "Invoker Rights versus Definer Rights" on page 7-29.

A call spec lets you publish a Java method or external C function in the Oracle data

dictionary. The call spec publishes the routine by mapping its name, parameter

types, and return type to their SQL counterparts. To learn how to write Java call

specs, see Oracle8i Java Stored Procedures Developer’s Guide. To learn how to write C

call specs, see Oracle8i Application Developer’s Guide - Fundamentals.

What Is a Package?

8-4 PL/SQL User’s Guide and Reference

In the example below, you package a record type, a cursor, and two employment

procedures. Notice that the procedure hire_employee uses the database sequence

empno_seq and the function SYSDATE to insert a new employee number and hire

date, respectively.

CREATE OR REPLACE PACKAGE emp_actions AS -- spec
 TYPE EmpRecTyp IS RECORD (emp_id INT, salary REAL);
 CURSOR desc_salary RETURN EmpRecTyp;
 PROCEDURE hire_employee (
 ename VARCHAR2,
 job VARCHAR2,
 mgr NUMBER,
 sal NUMBER,
 comm NUMBER,
 deptno NUMBER);
 PROCEDURE fire_employee (emp_id NUMBER);
END emp_actions;

CREATE OR REPLACE PACKAGE BODY emp_actions AS -- body
 CURSOR desc_salary RETURN EmpRecTyp IS
 SELECT empno, sal FROM emp ORDER BY sal DESC;
 PROCEDURE hire_employee (
 ename VARCHAR2,
 job VARCHAR2,
 mgr NUMBER,
 sal NUMBER,
 comm NUMBER,
 deptno NUMBER) IS
 BEGIN
 INSERT INTO emp VALUES (empno_seq.NEXTVAL, ename, job,
 mgr, SYSDATE, sal, comm, deptno);
 END hire_employee;

 PROCEDURE fire_employee (emp_id NUMBER) IS
 BEGIN
 DELETE FROM emp WHERE empno = emp_id;
 END fire_employee;
END emp_actions;

Only the declarations in the package spec are visible and accessible to applications.

Implementation details in the package body are hidden and inaccessible. So, you

can change the body (implementation) without having to recompile calling

programs.

Advantages of Packages

Packages 8-5

Advantages of Packages
Packages offer several advantages: modularity, easier application design,

information hiding, added functionality, and better performance.

Modularity
Packages let you encapsulate logically related types, items, and subprograms in a

named PL/SQL module. Each package is easy to understand, and the interfaces

between packages are simple, clear, and well defined. This aids application

development.

Easier Application Design
When designing an application, all you need initially is the interface information in

the package specs. You can code and compile a spec without its body. Then, stored

subprograms that reference the package can be compiled as well. You need not

define the package bodies fully until you are ready to complete the application.

Information Hiding
With packages, you can specify which types, items, and subprograms are public

(visible and accessible) or private (hidden and inaccessible). For example, if a

package contains four subprograms, three might be public and one private. The

package hides the implementation of the private subprogram so that only the

package (not your application) is affected if the implementation changes. This

simplifies maintenance and enhancement. Also, by hiding implementation details

from users, you protect the integrity of the package.

Added Functionality
Packaged public variables and cursors persist for the duration of a session. So, they

can be shared by all subprograms that execute in the environment. Also, they allow

you to maintain data across transactions without having to store it in the database.

Better Performance
When you call a packaged subprogram for the first time, the whole package is

loaded into memory. So, later calls to related subprograms in the package require no

disk I/O. Also, packages stop cascading dependencies and thereby avoid

unnecessary recompiling. For example, if you change the implementation of a

packaged function, Oracle need not recompile the calling subprograms because

they do not depend on the package body.

The Package Spec

8-6 PL/SQL User’s Guide and Reference

The Package Spec
The package spec contains public declarations. The scope of these declarations is

local to your database schema and global to the package. So, the declared items are

accessible from your application and from anywhere in the package. Figure 8–2

illustrates the scoping.

Figure 8–2 Package Scope

The spec lists the package resources available to applications. All the information

your application needs to use the resources is in the spec. For example, the

following declaration shows that the function named fac takes one argument of

type INTEGER and returns a value of type INTEGER:

FUNCTION fac (n INTEGER) RETURN INTEGER; -- returns n!

That is all the information you need to call the function. You need not consider its

underlying implementation (whether it is iterative or recursive for example).

Only subprograms and cursors have an underlying implementation. So, if a spec

declares only types, constants, variables, exceptions, and call specs, the package

body is unnecessary. Consider the following bodiless package:

CREATE PACKAGE trans_data AS -- bodiless package
 TYPE TimeRec IS RECORD (
 minutes SMALLINT,
 hours SMALLINT);
 TYPE TransRec IS RECORD (
 category VARCHAR2,
 account INT,
 amount REAL,
 time_of TimeRec);

schema

package spec

package spec

other objects

package body

package body

procedure
function
procedure

function
function
procedure

The Package Spec

Packages 8-7

 minimum_balance CONSTANT REAL := 10.00;
 number_processed INT;
 insufficient_funds EXCEPTION;
END trans_data;

The package trans_data needs no body because types, constants, variables, and

exceptions do not have an underlying implementation. Such packages let you

define global variables—usable by subprograms and database triggers—that persist

throughout a session.

Referencing Package Contents
To reference the types, items, subprograms, and call specs declared within a

package spec, use dot notation, as follows:

package_name.type_name
package_name.item_name
package_name.subprogram_name
package_name.call_spec_name

You can reference package contents from database triggers, stored subprograms,

3GL application programs, and various Oracle tools. For example, you might call

the packaged procedure hire_employee from SQL*Plus, as follows:

SQL> CALL emp_actions.hire_employee(’TATE’, ’CLERK’, ...);

In the example below, you call the same procedure from an anonymous PL/SQL

block embedded in a Pro*C program. The actual parameters emp_name and job_
title are host variables (that is, variables declared in a host environment).

EXEC SQL EXECUTE
 BEGIN
 emp_actions.hire_employee(:emp_name, :job_title, ...);

Restrictions
You cannot reference remote packaged variables directly or indirectly. For example,

you cannot call the following procedure remotely because it references a packaged

variable in a parameter initialization clause:

CREATE PACKAGE random AS
 seed NUMBER;
 PROCEDURE initialize (starter IN NUMBER := seed, ...);

Also, inside a package, you cannot reference host variables.

The Package Body

8-8 PL/SQL User’s Guide and Reference

The Package Body
The package body implements the package spec. That is, the package body contains

the implementation of every cursor and subprogram declared in the package spec.

Keep in mind that subprograms defined in a package body are accessible outside

the package only if their specs also appear in the package spec.

To match subprogram specs and bodies, PL/SQL does a token-by-token

comparison of their headers. So, except for white space, the headers must match

word for word. Otherwise, PL/SQL raises an exception, as the following example

shows:

CREATE PACKAGE emp_actions AS
 ...
 PROCEDURE calc_bonus (date_hired emp.hiredate%TYPE, ...);
END emp_actions;

CREATE PACKAGE BODY emp_actions AS
 ...
 PROCEDURE calc_bonus (date_hired DATE, ...) IS
 -- parameter declaration raises an exception because ’DATE’
 -- does not match ’emp.hiredate%TYPE’ word for word
 BEGIN ... END;
END emp_actions;

The package body can also contain private declarations, which define types and

items necessary for the internal workings of the package. The scope of these

declarations is local to the package body. Therefore, the declared types and items

are inaccessible except from within the package body. Unlike a package spec, the

declarative part of a package body can contain subprogram bodies.

Following the declarative part of a package body is the optional initialization part,

which typically holds statements that initialize some of the variables previously

declared in the package.

The initialization part of a package plays a minor role because, unlike subprograms,

a package cannot be called or passed parameters. As a result, the initialization part

of a package is run only once, the first time you reference the package.

Remember, if a package spec declares only types, constants, variables, exceptions,

and call specs, the package body is unnecessary. However, the body can still be used

to initialize items declared in the package spec.

Some Examples

Packages 8-9

Some Examples
Consider the package below named emp_actions . The package spec declares the

following types, items, and subprograms:

■ types EmpRecTyp and DeptRecTyp

■ cursor desc_salary

■ exception invalid_salary

■ functions hire_employee and nth_highest_salary

■ procedures fire_employee and raise_salary

After writing the package, you can develop applications that reference its types, call

its subprograms, use its cursor, and raise its exception. When you create the

package, it is stored in an Oracle database for general use.

CREATE PACKAGE emp_actions AS
 /* Declare externally visible types, cursor, exception. */
 TYPE EmpRecTyp IS RECORD (emp_id INT, salary REAL);
 TYPE DeptRecTyp IS RECORD (dept_id INT, location VARCHAR2);
 CURSOR desc_salary RETURN EmpRecTyp;
 invalid_salary EXCEPTION;

 /* Declare externally callable subprograms. */
 FUNCTION hire_employee (
 ename VARCHAR2,
 job VARCHAR2,
 mgr REAL,
 sal REAL,
 comm REAL,
 deptno REAL) RETURN INT;
 PROCEDURE fire_employee (emp_id INT);
 PROCEDURE raise_salary (emp_id INT, grade INT, amount REAL);
 FUNCTION nth_highest_salary (n INT) RETURN EmpRecTyp;
END emp_actions;

CREATE PACKAGE BODY emp_actions AS
 number_hired INT; -- visible only in this package

 /* Fully define cursor specified in package. */
 CURSOR desc_salary RETURN EmpRecTyp IS
 SELECT empno, sal FROM emp ORDER BY sal DESC;

Some Examples

8-10 PL/SQL User’s Guide and Reference

 /* Fully define subprograms specified in package. */
 FUNCTION hire_employee (
 ename VARCHAR2,
 job VARCHAR2,
 mgr REAL,
 sal REAL,
 comm REAL,
 deptno REAL) RETURN INT IS
 new_empno INT;
 BEGIN
 SELECT empno_seq.NEXTVAL INTO new_empno FROM dual;
 INSERT INTO emp VALUES (new_empno, ename, job,
 mgr, SYSDATE, sal, comm, deptno);
 number_hired := number_hired + 1;
 RETURN new_empno;
 END hire_employee;

 PROCEDURE fire_employee (emp_id INT) IS
 BEGIN
 DELETE FROM emp WHERE empno = emp_id;
 END fire_employee;

 /* Define local function, available only inside package. */
 FUNCTION sal_ok (rank INT, salary REAL) RETURN BOOLEAN IS
 min_sal REAL;
 max_sal REAL;
 BEGIN
 SELECT losal, hisal INTO min_sal, max_sal FROM salgrade
 WHERE grade = rank;
 RETURN (salary >= min_sal) AND (salary <= max_sal);
 END sal_ok;

 PROCEDURE raise_salary (emp_id INT, grade INT, amount REAL) IS
 salary REAL;
 BEGIN
 SELECT sal INTO salary FROM emp WHERE empno = emp_id;
 IF sal_ok(grade, salary + amount) THEN
 UPDATE emp SET sal = sal + amount WHERE empno = emp_id;
 ELSE
 RAISE invalid_salary;
 END IF;
 END raise_salary;

Some Examples

Packages 8-11

 FUNCTION nth_highest_salary (n INT) RETURN EmpRecTyp IS
 emp_rec EmpRecTyp;
 BEGIN
 OPEN desc_salary;
 FOR i IN 1..n LOOP
 FETCH desc_salary INTO emp_rec;
 END LOOP;
 CLOSE desc_salary;
 RETURN emp_rec;
 END nth_highest_salary;

BEGIN -- initialization part starts here
 INSERT INTO emp_audit VALUES (SYSDATE, USER, ’EMP_ACTIONS’);
 number_hired := 0;
END emp_actions;

Remember, the initialization part of a package is run just once, the first time you

reference the package. So, in the last example, only one row is inserted into the

database table emp_audit . Likewise, the variable number_hired is initialized

only once.

Every time the procedure hire_employee is called, the variable number_hired
is updated. However, the count kept by number_hired is session specific. That is,

the count reflects the number of new employees processed by one user, not the

number processed by all users.

In the next example, you package some typical bank transactions. Assume that

debit and credit transactions are entered after business hours via automatic teller

machines, then applied to accounts the next morning.

CREATE PACKAGE bank_transactions AS
 /* Declare externally visible constant. */
 minimum_balance CONSTANT REAL := 100.00;
 /* Declare externally callable procedures. */
 PROCEDURE apply_transactions;
 PROCEDURE enter_transaction (
 acct INT,
 kind CHAR,
 amount REAL);
END bank_transactions;

Some Examples

8-12 PL/SQL User’s Guide and Reference

CREATE PACKAGE BODY bank_transactions AS
 /* Declare global variable to hold transaction status. */
 new_status VARCHAR2(70) := ’Unknown’;

 /* Use forward declarations because apply_transactions
 calls credit_account and debit_account, which are not
 yet declared when the calls are made. */
 PROCEDURE credit_account (acct INT, credit REAL);
 PROCEDURE debit_account (acct INT, debit REAL);

 /* Fully define procedures specified in package. */
 PROCEDURE apply_transactions IS
 /* Apply pending transactions in transactions table
 to accounts table. Use cursor to fetch rows. */
 CURSOR trans_cursor IS
 SELECT acct_id, kind, amount FROM transactions
 WHERE status = ’Pending’
 ORDER BY time_tag
 FOR UPDATE OF status; -- to lock rows
 BEGIN
 FOR trans IN trans_cursor LOOP
 IF trans.kind = ’D’ THEN
 debit_account(trans.acct_id, trans.amount);
 ELSIF trans.kind = ’C’ THEN
 credit_account(trans.acct_id, trans.amount);
 ELSE
 new_status := ’Rejected’;
 END IF;
 UPDATE transactions SET status = new_status
 WHERE CURRENT OF trans_cursor;
 END LOOP;
 END apply_transactions;

 PROCEDURE enter_transaction (
 /* Add a transaction to transactions table. */
 acct INT,
 kind CHAR,
 amount REAL) IS
 BEGIN
 INSERT INTO transactions
 VALUES (acct, kind, amount, ’Pending’, SYSDATE);
 END enter_transaction;

Some Examples

Packages 8-13

 /* Define local procedures, available only in package. */
 PROCEDURE do_journal_entry (
 /* Record transaction in journal. */
 acct INT,
 kind CHAR,
 new_bal REAL) IS
 BEGIN
 INSERT INTO journal
 VALUES (acct, kind, new_bal, sysdate);
 IF kind = ’D’ THEN
 new_status := ’Debit applied’;
 ELSE
 new_status := ’Credit applied’;
 END IF;
 END do_journal_entry;

 PROCEDURE credit_account (acct INT, credit REAL) IS
 /* Credit account unless account number is bad. */
 old_balance REAL;
 new_balance REAL;
 BEGIN
 SELECT balance INTO old_balance FROM accounts
 WHERE acct_id = acct
 FOR UPDATE OF balance; -- to lock the row
 new_balance := old_balance + credit;
 UPDATE accounts SET balance = new_balance
 WHERE acct_id = acct;
 do_journal_entry(acct, ’C’, new_balance);
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 new_status := ’Bad account number’;
 WHEN OTHERS THEN
 new_status := SUBSTR(SQLERRM,1,70);
 END credit_account;

Some Examples

8-14 PL/SQL User’s Guide and Reference

 PROCEDURE debit_account (acct INT, debit REAL) IS
 /* Debit account unless account number is bad or
 account has insufficient funds. */
 old_balance REAL;
 new_balance REAL;
 insufficient_funds EXCEPTION;
 BEGIN
 SELECT balance INTO old_balance FROM accounts
 WHERE acct_id = acct
 FOR UPDATE OF balance; -- to lock the row
 new_balance := old_balance - debit;
 IF new_balance >= minimum_balance THEN
 UPDATE accounts SET balance = new_balance
 WHERE acct_id = acct;
 do_journal_entry(acct, ’D’, new_balance);
 ELSE
 RAISE insufficient_funds;
 END IF;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 new_status := ’Bad account number’;
 WHEN insufficient_funds THEN
 new_status := ’Insufficient funds’;
 WHEN OTHERS THEN
 new_status := SUBSTR(SQLERRM,1,70);
 END debit_account;
END bank_transactions;

In this package, the initialization part is not used.

Overloading Packaged Subprograms

Packages 8-15

Private versus Public Items
Look again at the package emp_actions . The package body declares a variable

named number_hired , which is initialized to zero. Unlike items declared in the

spec of emp_actions , items declared in the body are restricted to use within the

package. Therefore, PL/SQL code outside the package cannot reference the variable

number_hired . Such items are termed private.

However, items declared in the spec of emp_actions such as the exception

invalid_salary are visible outside the package. Therefore, any PL/SQL code can

reference the exception invalid_salary . Such items are termed public.

When you must maintain items throughout a session or across transactions, place

them in the declarative part of the package body. For example, the value of

number_hired is retained between calls to hire_employee . Remember, however,

that the value of number_hired is session specific.

If you must also make the items public, place them in the package spec. For

example, the constant minimum_balance declared in the spec of the package

bank_transactions is available for general use.

Overloading Packaged Subprograms
PL/SQL allows two or more packaged subprograms to have the same name. This

option is useful when you want a subprogram to accept parameters that have

different datatypes. For example, the following package defines two procedures

named journalize :

CREATE PACKAGE journal_entries AS
 ...
 PROCEDURE journalize (amount REAL, trans_date VARCHAR2);
 PROCEDURE journalize (amount REAL, trans_date INT);
END journal_entries;

CREATE PACKAGE BODY journal_entries AS
 ...
 PROCEDURE journalize (amount REAL, trans_date VARCHAR2) IS
 BEGIN
 INSERT INTO journal
 VALUES (amount, TO_DATE(trans_date, ’DD-MON-YYYY’));
 END journalize;

Package STANDARD

8-16 PL/SQL User’s Guide and Reference

 PROCEDURE journalize (amount REAL, trans_date INT) IS
 BEGIN
 INSERT INTO journal
 VALUES (amount, TO_DATE(trans_date, ’J’));
 END journalize;
END journal_entries;

The first procedure accepts trans_date as a character string, while the second

procedure accepts it as a number (the Julian day). Yet, each procedure handles the

data appropriately. For the rules that apply to overloaded subprograms, see "Using

Overloading" on page 7-24.

Package STANDARD
A package named STANDARD defines the PL/SQL environment. The package spec

globally declares types, exceptions, and subprograms, which are available

automatically to PL/SQL programs. For example, package STANDARD declares

function ABS, which returns the absolute value of its argument, as follows:

FUNCTION ABS (n NUMBER) RETURN NUMBER;

The contents of package STANDARDare directly visible to applications. So, you need

not qualify references to the contents by prefixing the package name. For example,

you might call ABS from a database trigger, stored subprogram, Oracle tool, or 3GL

application, as follows:

abs_diff := ABS(x - y);

If you redeclare ABS in a PL/SQL program, your local declaration overrides the

global declaration. However, you can still call the built-in function by qualifying the

reference to ABS, as follows:

abs_diff := STANDARD.ABS(x - y);

Most built-in functions are overloaded. For example, package STANDARD contains

the following declarations:

FUNCTION TO_CHAR (right DATE) RETURN VARCHAR2;
FUNCTION TO_CHAR (left NUMBER) RETURN VARCHAR2;
FUNCTION TO_CHAR (left DATE, right VARCHAR2) RETURN VARCHAR2;
FUNCTION TO_CHAR (left NUMBER, right VARCHAR2) RETURN VARCHAR2;

PL/SQL resolves a call to TO_CHAR by matching the number and datatypes of the

formal and actual parameters.

Product-specific Packages

Packages 8-17

Product-specific Packages
Oracle and various Oracle tools are supplied with product-specific packages that

help you build PL/SQL-based applications. For example, Oracle is supplied with

many utility packages, a few of which are highlighted below. For more information,

see Oracle8i Supplied PL/SQL Packages Reference.

DBMS_ALERT
Package DBMS_ALERT lets you use database triggers to alert an application when

specific database values change. The alerts are transaction based and asynchronous

(that is, they operate independently of any timing mechanism). For example, a

company might use this package to update the value of its investment portfolio as

new stock and bond quotes arrive.

DBMS_OUTPUT
Package DBMS_OUTPUT enables you to display output from PL/SQL blocks and

subprograms, which makes it easier to test and debug them. The procedure put_
line outputs information to a buffer in the SGA. You display the information by

calling the procedure get_line or by setting SERVEROUTPUT ON in SQL*Plus. For

example, suppose you create the following stored procedure:

CREATE PROCEDURE calc_payroll (payroll OUT NUMBER) AS
 CURSOR c1 IS SELECT sal, comm FROM emp;
BEGIN
 payroll := 0;
 FOR c1rec IN c1 LOOP
 c1rec.comm := NVL(c1rec.comm, 0);
 payroll := payroll + c1rec.sal + c1rec.comm;
 END LOOP;
 /* Display debug info. */
 DBMS_OUTPUT.PUT_LINE(’Value of payroll: ’ || TO_CHAR(payroll));
END;

When you issue the following commands, SQL*Plus displays the value assigned by

the procedure to parameter payroll :

SQL> SET SERVEROUTPUT ON
SQL> VARIABLE num NUMBER
SQL> CALL calc_payroll(:num);
Value of payroll: 31225

Guidelines

8-18 PL/SQL User’s Guide and Reference

DBMS_PIPE
Package DBMS_PIPE allows different sessions to communicate over named pipes.

(A pipe is an area of memory used by one process to pass information to another.)

You can use the procedures pack_message and send_message to pack a message

into a pipe, then send it to another session in the same instance.

At the other end of the pipe, you can use the procedures receive_message and

unpack_message to receive and unpack (read) the message. Named pipes are

useful in many ways. For example, you can write routines in C that allow external

servers to collect information, then send it through pipes to procedures stored in an

Oracle database.

UTL_FILE
Package UTL_FILE allows your PL/SQL programs to read and write operating

system (OS) text files. It provides a restricted version of standard OS stream file

I/O, including open, put, get, and close operations.

When you want to read or write a text file, you call the function fopen , which

returns a file handle for use in subsequent procedure calls. For example, the

procedure put_line writes a text string and line terminator to an open file, and

the procedure get_line reads a line of text from an open file into an output buffer.

UTL_HTTP
Package UTL_HTTP allows your PL/SQL programs to make hypertext transfer

protocol (HTTP) callouts. It can retrieve data from the Internet or call Oracle Web

Server cartridges. The package has two entry points, each of which accepts a URL

(uniform resource locator) string, contacts the specified site, and returns the

requested data, which is usually in hypertext markup language (HTML) format.

Guidelines
When writing packages, keep them as general as possible so they can be reused in

future applications. Avoid writing packages that duplicate some feature already

provided by Oracle.

Package specs reflect the design of your application. So, define them before the

package bodies. Place in a spec only the types, items, and subprograms that must be

visible to users of the package. That way, other developers cannot misuse the

package by basing their code on irrelevant implementation details.

Guidelines

Packages 8-19

To reduce the need for recompiling when code is changed, place as few items as

possible in a package spec. Changes to a package body do not require Oracle to

recompile dependent procedures. However, changes to a package spec require

Oracle to recompile every stored subprogram that references the package.

Guidelines

8-20 PL/SQL User’s Guide and Reference

Object Types 9-1

9
Object Types

... It next will be right
To describe each particular batch:
Distinguishing those that have feathers, and bite,
From those that have whiskers, and scratch. —Lewis Carroll

Object-oriented programming is rapidly gaining acceptance because it can reduce

the cost and time required to build complex applications. In PL/SQL,

object-oriented programming is based on object types. They provide abstract

templates for real-world objects, and so are an ideal modeling tool. They also

provide black-box encapsulation like an integrated component that can be plugged

into various electronic devices. To plug an object type into your programs, you need

to know only what it does, not how it works.

Major Topics
The Role of Abstraction

What Is an Object Type?

Why Use Object Types?

Structure of an Object Type

Components of an Object Type

Defining Object Types

Declaring and Initializing Objects

Accessing Attributes

Calling Constructors

Calling Methods

Sharing Objects

Manipulating Objects

The Role of Abstraction

9-2 PL/SQL User’s Guide and Reference

The Role of Abstraction
An abstraction is a high-level description or model of a real-world entity.

Abstractions keep our daily lives manageable. They help us reason about an object,

event, or relationship by suppressing irrelevant detail. For example, to drive a car,

you need not know how its engine works. A simple interface consisting of a

gearshift, steering wheel, accelerator, and brake, lets you use the car effectively. The

details of what happens under the hood are not important for day-to-day driving.

Abstractions are central to the discipline of programming. For example, you use

procedural abstraction when you suppress the details of a complex algorithm by

writing a procedure and passing it parameters. A single procedure call hides the

details of your implementation. To try a different implementation, you simply

replace the procedure with another having the same name and parameters. Thanks

to abstraction, programs that call the procedure need not be modified.

You use data abstraction when you specify the datatype of a variable. The datatype

stipulates a set of values and a set of operations appropriate for those values. For

instance, a variable of type POSITIVE can hold only positive integers, and can only

be added, subtracted, multiplied, and so on. To use the variable, you need not know

how PL/SQL stores integers or implements arithmetic operations; you simply

accept the programming interface.

Object types are a generalization of the built-in datatypes found in most

programming languages. PL/SQL provides a variety of built-in scalar and

composite datatypes, each of which is associated with a set of predefined

operations. A scalar type (such as CHAR) has no internal components. A composite
type (such as RECORD) has internal components that can be manipulated

individually. Like the RECORD type, an object type is a composite type. However, its

operations are user-defined, not predefined.

Currently, you cannot define object types within PL/SQL. They must be CREATEd
and stored in an Oracle database, where they can be shared by many programs. A

program that uses object types is called a client program. It can declare and

manipulate an object without knowing how the object type represents data or

implements operations. This allows you to write the program and object type

separately, and to change the implementation of the object type without affecting

the program. Thus, object types support both procedural and data abstraction.

What Is an Object Type?

Object Types 9-3

What Is an Object Type?
An object type is a user-defined composite datatype that encapsulates a data

structure along with the functions and procedures needed to manipulate the data.

The variables that form the data structure are called attributes. The functions and

procedures that characterize the behavior of the object type are called methods.

We usually think of an object (such as a person, car, or bank account) as having

attributes and behaviors. For example, a baby has the attributes gender, age, and

weight, and the behaviors eat, drink, and sleep. Object types let you maintain this

perspective when you sit down to write an application.

When you define an object type using the CREATE TYPE statement, you create an

abstract template for some real-world object. The template specifies only those

attributes and behaviors the object will need in the application environment. For

example, an employee has many attributes, but usually only a few are needed to fill

the requirements of an application (see Figure 9–1).

Figure 9–1 Form Follows Function

Suppose you must write a program to allocate employee bonuses. Not all employee

attributes are needed to solve this problem. So, you design an abstract employee

who has the following problem-specific attributes: name, ID number, department,

job title, salary, and rank. Then, you identify the operations needed to handle an

abstract employee. For example, you need an operation that lets Management

change the rank of an employee.

name
id_number
ss_number
salary
commission
benefits_choices
dependents

Payroll App

Space Planning App

Employee Attributes

id_number
job_title
department
office_location
office_size

name
address
phone_number
date_born
sex
marital_status
education_level
military_service
hobbies
id_number
ss_number
user_id
phone_extension

date_hired
status
department
job_title
salary
commission
rank
work_history
office_location
office_size
benefits_choices
dependents
beneficiaries

What Is an Object Type?

9-4 PL/SQL User’s Guide and Reference

Next, you define a set of variables (attributes) to represent the data, and a set of

subprograms (methods) to perform the operations. Finally, you encapsulate the

attributes and methods in an object type.

The data structure formed by the set of attributes is public (visible to client

programs). However, well-behaved programs do not manipulate it directly. Instead,

they use the set of methods provided. That way, the employee data is kept in a

proper state.

At run time, when the data structure is filled with values, you have created an

instance of an abstract employee. You can create as many instances (usually called

objects) as you need. Each object has the name, number, job title, and so on of an

actual employee (see Figure 9–2). This data is accessed or changed only by the

methods associated with it. Thus, object types let you create objects with

well-defined attributes and behavior.

Figure 9–2 Object Type and Objects (Instances) of that Type

name
id_number
department
job_title
salary
rank

Object Type Employee

Attributes Methods
calculate_bonus
change_dept
change_job_title
change_salary
change_rank

name:
id_number:
department:
job_title:
salary:
rank:

Ann Polk
8835
Marketing
Analyst
3200
3

Object

name:
id_number:
department:
job_title:
salary:
rank:

Hart Bell
8022
Accounting
Clerk
1750
4

Object

Structure of an Object Type

Object Types 9-5

Why Use Object Types?
Object types reduce complexity by breaking down a large system into logical

entities. This allows you to create software components that are modular,

maintainable, and reusable. It also allows different teams of programmers to

develop software components concurrently.

By encapsulating operations with data, object types let you move data-maintenance

code out of SQL scripts and PL/SQL blocks into methods. Object types minimize

side effects by allowing access to data only through approved operations. Also,

object types hide implementation details, so that you can change the details without

affecting client programs.

Object types allow for realistic data modeling. Complex real-world entities and

relationships map directly into object types. Moreover, object types map directly

into classes defined in object-oriented languages such as Java and C++. Now your

programs can better reflect the world they are trying to simulate.

Structure of an Object Type
Like a package, an object type has two parts: a specification and a body (refer to

Figure 9–3). The specification (spec for short) is the interface to your applications; it

declares a data structure (set of attributes) along with the operations (methods)

needed to manipulate the data. The body fully defines the methods, and so

implements the spec.

Figure 9–3 Object Type Structure

All the information a client program needs to use the methods is in the spec. Think

of the spec as an operational interface and of the body as a black box. You can

debug, enhance, or replace the body without changing the spec—and without

affecting client programs.

attribute declarations

spec

method specs

public interface

method bodies

body
private implementation

Structure of an Object Type

9-6 PL/SQL User’s Guide and Reference

In an object type spec, all attributes must be declared before any methods. Only

subprograms have an underlying implementation. So, if an object type spec declares

only attributes, the object type body is unnecessary. You cannot declare attributes in

the body. All declarations in the object type spec are public (visible outside the

object type).

To understand the structure better, study the example below, in which an object

type for complex numbers is defined. For now, it is enough to know that a complex

number has two parts, a real part and an imaginary part, and that several arithmetic

operations are defined for complex numbers.

CREATE TYPE Complex AS OBJECT (
 rpart REAL, -- attribute
 ipart REAL,
 MEMBER FUNCTION plus (x Complex) RETURN Complex, -- method
 MEMBER FUNCTION less (x Complex) RETURN Complex,
 MEMBER FUNCTION times (x Complex) RETURN Complex,
 MEMBER FUNCTION divby (x Complex) RETURN Complex
);

CREATE TYPE BODY Complex AS
 MEMBER FUNCTION plus (x Complex) RETURN Complex IS
 BEGIN
 RETURN Complex(rpart + x.rpart, ipart + x.ipart);
 END plus;

 MEMBER FUNCTION less (x Complex) RETURN Complex IS
 BEGIN
 RETURN Complex(rpart - x.rpart, ipart - x.ipart);
 END less;

 MEMBER FUNCTION times (x Complex) RETURN Complex IS
 BEGIN
 RETURN Complex(rpart * x.rpart - ipart * x.ipart,
 rpart * x.ipart + ipart * x.rpart);
 END times;

 MEMBER FUNCTION divby (x Complex) RETURN Complex IS
 z REAL := x.rpart**2 + x.ipart**2;
 BEGIN
 RETURN Complex((rpart * x.rpart + ipart * x.ipart) / z,
 (ipart * x.rpart - rpart * x.ipart) / z);
 END divby;
END;

Components of an Object Type

Object Types 9-7

Components of an Object Type
An object type encapsulates data and operations. So, you can declare attributes and

methods in an object type spec, but not constants, exceptions, cursors, or types. You

must declare at least one attribute (the maximum is 1000); methods are optional.

You cannot add attributes to an existing object type. However, you can add

methods using the ALTER TYPE ... REPLACE AS OBJECT statement. For more

information, see Oracle8i SQL Reference.

Attributes
Like a variable, an attribute is declared with a name and datatype. The name must

be unique within the object type (but can be reused in other object types). The

datatype can be any Oracle type except

■ LONG and LONG RAW

■ NCHAR, NCLOB, and NVARCHAR2

■ ROWID and UROWID

■ the PL/SQL-specific types BINARY_INTEGER (and its subtypes), BOOLEAN,
PLS_INTEGER, RECORD, REF CURSOR, %TYPE, and %ROWTYPE

■ types defined inside a PL/SQL package

You cannot initialize an attribute in its declaration using the assignment operator or

DEFAULT clause. Also, you cannot impose the NOT NULL constraint on an attribute.

However, objects can be stored in database tables on which you can impose

constraints.

The kind of data structure formed by a set of attributes depends on the real-world

object being modeled. For example, to represent a rational number, which has a

numerator and a denominator, you need only two INTEGER variables. On the other

hand, to represent a college student, you need several VARCHAR2variables to hold a

name, address, phone number, status, and so on, plus a VARRAY variable to hold

courses and grades.

The data structure can be very complex. For example, the datatype of an attribute

can be another object type (called a nested object type). That lets you build a

complex object type from simpler object types. Some object types such as queues,

lists, and trees are dynamic, meaning that they can grow as they are used. Recursive

object types, which contain direct or indirect references to themselves, allow for

highly sophisticated data models.

Components of an Object Type

9-8 PL/SQL User’s Guide and Reference

Methods
In general, a method is a subprogram declared in an object type spec using the

keyword MEMBER or STATIC. The method cannot have the same name as the object

type or any of its attributes. MEMBER methods are invoked on instances, as in

instance_expression.method()

However, STATIC methods are invoked on the object type, not its instances, as in

object_type_name.method()

Like packaged subprograms, methods have two parts: a specification and a body.

The specification (spec for short) consists of a method name, an optional parameter

list, and, for functions, a return type. The body is the code that executes to perform a

specific task.

For each method spec in an object type spec, there must be a corresponding method

body in the object type body. To match method specs and bodies, the PL/SQL

compiler does a token-by-token comparison of their headers. So, the headers must

match word for word.

Like an attribute, a formal parameter is declared with a name and datatype.

However, the datatype of a parameter cannot be size-constrained. The datatype can

be any Oracle type except those disallowed for attributes. (See "Attributes" on

page 9-7.) The same restrictions apply to return types.

In an object type, methods can reference attributes and other methods without a

qualifier, as the following example shows:

CREATE TYPE Stack AS OBJECT (
 top INTEGER,
 MEMBER FUNCTION full RETURN BOOLEAN,
 MEMBER PROCEDURE push (n IN INTEGER),
 ...
);

CREATE TYPE BODY Stack AS
 ...
 MEMBER PROCEDURE push (n IN INTEGER) IS
 BEGIN
 IF NOT full THEN
 top := top + 1;
 ...
 END push;
END;

Components of an Object Type

Object Types 9-9

Parameter SELF
MEMBER methods accept a built-in parameter named SELF, which is an instance of

the object type. Whether declared implicitly or explicitly, it is always the first

parameter passed to a MEMBER method. However, STATIC methods cannot accept

or reference SELF.

In the method body, SELF denotes the object whose method was invoked. For

example, method transform declares SELF as an IN OUT parameter:

CREATE TYPE Complex AS OBJECT (
 MEMBER FUNCTION transform (SELF IN OUT Complex) ...

You cannot specify a different datatype for SELF. In MEMBER functions, if SELF is

not declared, its parameter mode defaults to IN . However, in MEMBERprocedures, if

SELF is not declared, its parameter mode defaults to IN OUT. You cannot specify the

OUT parameter mode for SELF.

As the following example shows, methods can reference the attributes of SELF
without a qualifier:

CREATE FUNCTION gcd (x INTEGER, y INTEGER) RETURN INTEGER AS
-- find greatest common divisor of x and y
 ans INTEGER;
BEGIN
 IF (y <= x) AND (x MOD y = 0) THEN ans := y;
 ELSIF x < y THEN ans := gcd(y, x);
 ELSE ans := gcd(y, x MOD y);
 END IF;
 RETURN ans;
END;

CREATE TYPE Rational AS OBJECT (
 num INTEGER,
 den INTEGER,
 MEMBER PROCEDURE normalize,
 ...
);

CREATE TYPE BODY Rational AS
 MEMBER PROCEDURE normalize IS
 g INTEGER;
 BEGIN
 g := gcd(SELF.num, SELF.den);
 g := gcd(num, den); -- equivalent to previous statement
 num := num / g;

Components of an Object Type

9-10 PL/SQL User’s Guide and Reference

 den := den / g;
 END normalize;
 ...
END;

From a SQL statement, if you call a MEMBERmethod on a null instance (that is, SELF
is null), the method is not invoked and a null is returned. From a procedural

statement, if you call a MEMBER method on a null instance, PL/SQL raises the

predefined exception SELF_IS_NULL before the method is invoked.

Overloading
Like packaged subprograms, methods of the same kind (functions or procedures)

can be overloaded. That is, you can use the same name for different methods if their

formal parameters differ in number, order, or datatype family. When you call one of

the methods, PL/SQL finds it by comparing the list of actual parameters with each

list of formal parameters.

You cannot overload two methods if their formal parameters differ only in

parameter mode. Also, you cannot overload two member functions that differ only

in return type. For more information, see "Using Overloading" on page 7-24.

Map and Order Methods
The values of a scalar datatype such as CHAR or REAL have a predefined order,

which allows them to be compared. But, instances of an object type have no

predefined order. To put them in order, PL/SQL calls a map method supplied by you.

In the following example, the keyword MAP indicates that method convert()
orders Rational objects by mapping them to REAL values:

CREATE TYPE Rational AS OBJECT (
 num INTEGER,
 den INTEGER,
 MAP MEMBER FUNCTION convert RETURN REAL,
 ...
);

CREATE TYPE BODY Rational AS
 MAP MEMBER FUNCTION convert RETURN REAL IS
 BEGIN
 RETURN num / den;
 END convert;
 ...
END;

Components of an Object Type

Object Types 9-11

PL/SQL uses the ordering to evaluate Boolean expressions such as x > y , and to

do comparisons implied by the DISTINCT , GROUP BY, and ORDER BY clauses. Map

method convert() returns the relative position of an object in the ordering of all

Rational objects.

An object type can contain only one map method, which must be a parameterless

function with one of the following scalar return types: DATE, NUMBER, VARCHAR2,
or an ANSI SQL type such as CHARACTER or REAL.

Alternatively, you can supply PL/SQL with an order method. An object type can

contain only one order method, which must be a function that returns a numeric

result. In the following example, the keyword ORDER indicates that method

match() compares two objects:

CREATE TYPE Customer AS OBJECT (
 id NUMBER,
 name VARCHAR2(20),
 addr VARCHAR2(30),
 ORDER MEMBER FUNCTION match (c Customer) RETURN INTEGER
);

CREATE TYPE BODY Customer AS
 ORDER MEMBER FUNCTION match (c Customer) RETURN INTEGER IS
 BEGIN
 IF id < c.id THEN
 RETURN -1; -- any negative number will do
 ELSIF id > c.id THEN
 RETURN 1; -- any positive number will do
 ELSE
 RETURN 0;
 END IF;
 END;
END;

Every order method takes just two parameters: the built-in parameter SELF and

another object of the same type. If c1 and c2 are Customer objects, a comparison

such as c1 > c2 calls method match automatically. The method returns a negative

number, zero, or a positive number signifying that SELF is respectively less than,

equal to, or greater than the other parameter. If either parameter passed to an order

method is null, the method returns a null.

Guidelines A map method, acting like a hash function, maps object values into scalar

values (which are easier to compare), then compares the scalar values. An order

method simply compares one object value to another.

Defining Object Types

9-12 PL/SQL User’s Guide and Reference

You can declare a map method or an order method but not both. If you declare

either method, you can compare objects in SQL and procedural statements.

However, if you declare neither method, you can compare objects only in SQL

statements and only for equality or inequality. (Two objects of the same type are

equal only if the values of their corresponding attributes are equal.)

When sorting or merging a large number of objects, use a map method. One call

maps all the objects into scalars, then sorts the scalars. An order method is less

efficient because it must be called repeatedly (it can compare only two objects at a

time). You must use a map method for hash joins because PL/SQL hashes on the

object value.

Constructor Methods
Every object type has a constructor method (constructor for short), which is a

system-defined function with the same name as the object type. You use the

constructor to initialize and return an instance of that object type.

Oracle generates a default constructor for every object type. The formal parameters

of the constructor match the attributes of the object type. That is, the parameters

and attributes are declared in the same order and have the same names and

datatypes. PL/SQL never calls a constructor implicitly, so you must call it explicitly.

For more information, see "Calling Constructors" on page 9-25.

Defining Object Types
An object type can represent any real-world entity. For example, an object type can

represent a student, bank account, computer screen, rational number, or data

structure such as a queue, stack, or list. This section gives several complete

examples, which teach you a lot about the design of object types and prepare you to

start writing your own.

Currently, you cannot define object types in a PL/SQL block, subprogram, or

package. However, you can define them interactively in SQL*Plus using the

following syntax:

CREATE [OR REPLACE] TYPE type_name
 [AUTHID {CURRENT_USER | DEFINER}] {IS | AS} OBJECT (
 attribute_name datatype[, attribute_name datatype]...
 [{MAP | ORDER} MEMBER function_spec,]
 [{MEMBER | STATIC} {subprogram_spec | call_spec}
 [, {MEMBER | STATIC} {subprogram_spec | call_spec}]...]
);

Defining Object Types

Object Types 9-13

[CREATE [OR REPLACE] TYPE BODY type_name {IS | AS}
 { {MAP | ORDER} MEMBER function_body;
 | {MEMBER | STATIC} {subprogram_body | call_spec};}
 [{MEMBER | STATIC} {subprogram_body | call_spec};]...
END;]

The AUTHID clause determines whether all member methods execute with the

privileges of their definer (the default) or invoker, and whether their unqualified

references to schema objects are resolved in the schema of the definer or invoker.

For more information, see "Invoker Rights versus Definer Rights" on page 7-29.

A call spec publishes a Java method or external C function in the Oracle data

dictionary. It publishes the routine by mapping its name, parameter types, and

return type to their SQL counterparts. To learn how to write Java call specs, see

Oracle8i Java Stored Procedures Developer’s Guide. To learn how to write C call specs,

see Oracle8i Application Developer’s Guide - Fundamentals.

Object Type Stack
A stack holds an ordered collection of data items. As the name implies, stacks have a

top and a bottom. But, items can be added or removed only at the top. So, the last

item added to a stack is the first item removed. (Think of the stack of clean serving

trays in a cafeteria.) The operations push and pop update the stack while preserving

last in, first out (LIFO) behavior.

Stacks have many applications. For example, they are used in systems

programming to prioritize interrupts and to manage recursion. The simplest

implementation of a stack uses an integer array. Integers are stored in array

elements, with one end of the array representing the top of the stack.

PL/SQL provides the datatype VARRAY, which allows you to declare variable-size

arrays (varrays for short). To declare a varray attribute, you must first define its

type. However, you cannot define types in an object type spec. So, you define a

stand-alone varray type, specifying its maximum size, as follows:

CREATE TYPE IntArray AS VARRAY(25) OF INTEGER;

Defining Object Types

9-14 PL/SQL User’s Guide and Reference

Now, you can write the object type spec:

CREATE TYPE Stack AS OBJECT (
 max_size INTEGER,
 top INTEGER,
 position IntArray,
 MEMBER PROCEDURE initialize,
 MEMBER FUNCTION full RETURN BOOLEAN,
 MEMBER FUNCTION empty RETURN BOOLEAN,
 MEMBER PROCEDURE push (n IN INTEGER),
 MEMBER PROCEDURE pop (n OUT INTEGER)
);

Finally, you write the object type body:

CREATE TYPE BODY Stack AS
 MEMBER PROCEDURE initialize IS
 BEGIN
 top := 0;
 /* Call constructor for varray and set element 1 to NULL. */
 position := IntArray(NULL);
 max_size := position.LIMIT; -- get varray size constraint
 position.EXTEND(max_size - 1, 1); -- copy element 1 into 2..25
 END initialize;

 MEMBER FUNCTION full RETURN BOOLEAN IS
 BEGIN
 RETURN (top = max_size); -- return TRUE if stack is full
 END full;

 MEMBER FUNCTION empty RETURN BOOLEAN IS
 BEGIN
 RETURN (top = 0); -- return TRUE if stack is empty
 END empty;

 MEMBER PROCEDURE push (n IN INTEGER) IS
 BEGIN
 IF NOT full THEN
 top := top + 1; -- push integer onto stack
 position(top) := n;
 ELSE -- stack is full
 RAISE_APPLICATION_ERROR(-20101, ’stack overflow’);
 END IF;
 END push;

Defining Object Types

Object Types 9-15

 MEMBER PROCEDURE pop (n OUT INTEGER) IS
 BEGIN
 IF NOT empty THEN
 n := position(top);
 top := top - 1; -- pop integer off stack
 ELSE -- stack is empty
 RAISE_APPLICATION_ERROR(-20102, ’stack underflow’);
 END IF;
 END pop;
END;

In member procedures push and pop , you use the built-in procedure raise_
application_error to issue user-defined error messages. That way, you report

errors to the client program and avoid returning unhandled exceptions to the host

environment. The client program gets a PL/SQL exception, which it can process

using the error-reporting functions SQLCODEand SQLERRMin an OTHERSexception

handler. In the following example, when an exception is raised, you print the

corresponding Oracle error message:

DECLARE
 ...
BEGIN
 ...
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(SQLERRM);
END;

Alternatively, the program can use pragma EXCEPTION_INIT to map the error

numbers returned by raise_application_error to named exceptions, as the

following example shows:

DECLARE
 stack_overflow EXCEPTION;
 stack_underflow EXCEPTION;
 PRAGMA EXCEPTION_INIT(stack_overflow, -20101);
 PRAGMA EXCEPTION_INIT(stack_underflow, -20102);
BEGIN
 ...
EXCEPTION
 WHEN stack_overflow THEN
 ...
END;

Defining Object Types

9-16 PL/SQL User’s Guide and Reference

Object Type Ticket_Booth
Consider a chain of low-budget, triplex movie theatres. Each theatre has a ticket

booth where tickets for three different movies are sold. All tickets are priced at

$3.00. Periodically, ticket receipts are collected and the stock of tickets is

replenished.

Before defining an object type that represents a ticket booth, you must consider the

data and operations needed. For a simple ticket booth, the object type needs

attributes for the ticket price, quantity of tickets on hand, and receipts. It also needs

methods for the following operations: purchase ticket, take inventory, replenish

stock, and collect receipts.

For receipts, you use a three-element varray. Elements 1, 2, and 3 record the ticket

receipts for movies 1, 2, and 3, respectively. To declare a varray attribute, you must

first define its type, as follows:

CREATE TYPE RealArray AS VARRAY(3) OF REAL;

Now, you can write the object type spec:

CREATE TYPE Ticket_Booth AS OBJECT (
 price REAL,
 qty_on_hand INTEGER,
 receipts RealArray,
 MEMBER PROCEDURE initialize,
 MEMBER PROCEDURE purchase (
 movie INTEGER,
 amount REAL,
 change OUT REAL),
 MEMBER FUNCTION inventory RETURN INTEGER,
 MEMBER PROCEDURE replenish (quantity INTEGER),
 MEMBER PROCEDURE collect (movie INTEGER, amount OUT REAL)
);

Finally, you write the object type body:

CREATE TYPE BODY Ticket_Booth AS
 MEMBER PROCEDURE initialize IS
 BEGIN
 price := 3.00;
 qty_on_hand := 5000; -- provide initial stock of tickets
 -- call constructor for varray and set elements 1..3 to zero
 receipts := RealArray(0,0,0);
 END initialize;

Defining Object Types

Object Types 9-17

 MEMBER PROCEDURE purchase (
 movie INTEGER,
 amount REAL,
 change OUT REAL) IS
 BEGIN
 IF qty_on_hand = 0 THEN
 RAISE_APPLICATION_ERROR(-20103, ’out of stock’);
 END IF;
 IF amount >= price THEN
 qty_on_hand := qty_on_hand - 1;
 receipts(movie) := receipts(movie) + price;
 change := amount - price;
 ELSE -- amount is not enough
 change := amount; -- so return full amount
 END IF;
 END purchase;

 MEMBER FUNCTION inventory RETURN INTEGER IS
 BEGIN
 RETURN qty_on_hand;
 END inventory;

 MEMBER PROCEDURE replenish (quantity INTEGER) IS
 BEGIN
 qty_on_hand := qty_on_hand + quantity;
 END replenish;

 MEMBER PROCEDURE collect (movie INTEGER, amount OUT REAL) IS
 BEGIN
 amount := receipts(movie); -- get receipts for a given movie
 receipts(movie) := 0; -- reset receipts to zero
 END collect;
END;

Defining Object Types

9-18 PL/SQL User’s Guide and Reference

Object Type Bank_Account
Before defining an object type that represents a bank account, you must consider the

data and operations needed. For a simple bank account, the object type needs

attributes for an account number, balance, and status. It also needs methods for the

following operations: open account, verify account number, close account, deposit

money, withdraw money, and return balance.

First, you write the object type spec, as follows:

CREATE TYPE Bank_Account AS OBJECT (
 acct_number INTEGER(5),
 balance REAL,
 status VARCHAR2(10),
 MEMBER PROCEDURE open (amount IN REAL),
 MEMBER PROCEDURE verify_acct (num IN INTEGER),
 MEMBER PROCEDURE close (num IN INTEGER, amount OUT REAL),
 MEMBER PROCEDURE deposit (num IN INTEGER, amount IN REAL),
 MEMBER PROCEDURE withdraw (num IN INTEGER, amount IN REAL),
 MEMBER FUNCTION curr_bal (num IN INTEGER) RETURN REAL
);

Then, you write the object type body:

CREATE TYPE BODY Bank_Account AS
 MEMBER PROCEDURE open (amount IN REAL) IS
 -- open account with initial deposit
 BEGIN
 IF NOT amount > 0 THEN
 RAISE_APPLICATION_ERROR(-20104, ’bad amount’);
 END IF;
 SELECT acct_sequence.NEXTVAL INTO acct_number FROM dual;
 status := ’open’;
 balance := amount;
 END open;

 MEMBER PROCEDURE verify_acct (num IN INTEGER) IS
 -- check for wrong account number or closed account
 BEGIN
 IF (num <> acct_number) THEN
 RAISE_APPLICATION_ERROR(-20105, ’wrong number’);
 ELSIF (status = ’closed’) THEN
 RAISE_APPLICATION_ERROR(-20106, ’account closed’);
 END IF;
 END verify_acct;

Defining Object Types

Object Types 9-19

 MEMBER PROCEDURE close (num IN INTEGER, amount OUT REAL) IS
 -- close account and return balance
 BEGIN
 verify_acct(num);
 status := ’closed’;
 amount := balance;
 END close;

 MEMBER PROCEDURE deposit (num IN INTEGER, amount IN REAL) IS
 BEGIN
 verify_acct(num);
 IF NOT amount > 0 THEN
 RAISE_APPLICATION_ERROR(-20104, ’bad amount’);
 END IF;
 balance := balance + amount;
 END deposit;

 MEMBER PROCEDURE withdraw (num IN INTEGER, amount IN REAL) IS
 -- if account has enough funds, withdraw
 -- given amount; else, raise an exception
 BEGIN
 verify_acct(num);
 IF amount <= balance THEN
 balance := balance - amount;
 ELSE
 RAISE_APPLICATION_ERROR(-20107, ’insufficient funds’);
 END IF;
 END withdraw;

 MEMBER FUNCTION curr_bal (num IN INTEGER)
 RETURN REAL IS
 BEGIN
 verify_acct(num);
 RETURN balance;
 END curr_bal;
END;

Defining Object Types

9-20 PL/SQL User’s Guide and Reference

Object Type Rational
A rational number is a number expressible as the quotient of two integers, a

numerator and a denominator. Like most languages, PL/SQL does not have a

rational number type or predefined operations on rational numbers. Let us remedy

that omission by defining object type Rational . First, you write the object type

spec, as follows:

CREATE TYPE Rational AS OBJECT (
 num INTEGER,
 den INTEGER,
 MAP MEMBER FUNCTION convert RETURN REAL,
 MEMBER PROCEDURE normalize,
 MEMBER FUNCTION reciprocal RETURN Rational,
 MEMBER FUNCTION plus (x Rational) RETURN Rational,
 MEMBER FUNCTION less (x Rational) RETURN Rational,
 MEMBER FUNCTION times (x Rational) RETURN Rational,
 MEMBER FUNCTION divby (x Rational) RETURN Rational,
 PRAGMA RESTRICT_REFERENCES (DEFAULT, RNDS,WNDS,RNPS,WNPS)
);

PL/SQL does not allow the overloading of operators. So, you must define methods

named plus() , less() (the word minus is reserved), times() , and divby()
instead of overloading the infix operators +, –, * , and / .

Next, you create the following stand-alone stored function, which will be called by

method normalize() :

CREATE FUNCTION gcd (x INTEGER, y INTEGER) RETURN INTEGER AS
-- find greatest common divisor of x and y
 ans INTEGER;
BEGIN
 IF (y <= x) AND (x MOD y = 0) THEN
 ans := y;
 ELSIF x < y THEN
 ans := gcd(y, x); -- recursive call
 ELSE
 ans := gcd(y, x MOD y); -- recursive call
 END IF;
 RETURN ans;
END;

Defining Object Types

Object Types 9-21

Then, you write the object type body, as follows:

CREATE TYPE BODY Rational AS
 MAP MEMBER FUNCTION convert RETURN REAL IS
 -- convert rational number to real number
 BEGIN
 RETURN num / den;
 END convert;

 MEMBER PROCEDURE normalize IS
 -- reduce fraction num / den to lowest terms
 g INTEGER;
 BEGIN
 g := gcd(num, den);
 num := num / g;
 den := den / g;
 END normalize;

 MEMBER FUNCTION reciprocal RETURN Rational IS
 -- return reciprocal of num / den
 BEGIN
 RETURN Rational(den, num); -- call constructor
 END reciprocal;

 MEMBER FUNCTION plus (x Rational) RETURN Rational IS
 -- return sum of SELF + x
 r Rational;
 BEGIN
 r := Rational(num * x.den + x.num * den, den * x.den);
 r.normalize;
 RETURN r;
 END plus;

 MEMBER FUNCTION less (x Rational) RETURN Rational IS
 -- return difference of SELF - x
 r Rational;
 BEGIN
 r := Rational(num * x.den - x.num * den, den * x.den);
 r.normalize;
 RETURN r;
 END less;

 MEMBER FUNCTION times (x Rational) RETURN Rational IS
 -- return product of SELF * x
 r Rational;

Declaring and Initializing Objects

9-22 PL/SQL User’s Guide and Reference

 BEGIN
 r := Rational(num * x.num, den * x.den);
 r.normalize;
 RETURN r;
 END times;

 MEMBER FUNCTION divby (x Rational) RETURN Rational IS
 -- return quotient of SELF / x
 r Rational;
 BEGIN
 r := Rational(num * x.den, den * x.num);
 r.normalize;
 RETURN r;
 END divby;
END;

Declaring and Initializing Objects
Once an object type is defined and installed in the schema, you can use it to declare

objects in any PL/SQL block, subprogram, or package. For example, you can use

the object type to specify the datatype of an attribute, column, variable, bind

variable, record field, table element, formal parameter, or function result. At run

time, instances of the object type are created; that is, objects of that type are

instantiated. Each object can hold different values.

Such objects follow the usual scope and instantiation rules. In a block or

subprogram, local objects are instantiated when you enter the block or subprogram

and cease to exist when you exit. In a package, objects are instantiated when you

first reference the package and cease to exist when you end the database session.

Declaring Objects
You can use object types wherever built-in types such as CHAR or NUMBER can be

used. In the block below, you declare object r of type Rational . Then, you call the

constructor for object type Rational to initialize the object. The call assigns the

values 6 and 8 to attributes num and den , respectively.

DECLARE
 r Rational;
BEGIN
 r := Rational(6, 8);
 DBMS_OUTPUT.PUT_LINE(r.num); -- prints 6

Declaring and Initializing Objects

Object Types 9-23

You can declare objects as the formal parameters of functions and procedures. That

way, you can pass objects to stored subprograms and from one subprogram to

another. In the next example, you use object type Account to specify the datatype

of a formal parameter:

DECLARE
 ...
 PROCEDURE open_acct (new_acct IN OUT Account) IS ...

In the following example, you use object type Account to specify the return type of

a function:

DECLARE
 ...
 FUNCTION get_acct (acct_id IN INTEGER) RETURN Account IS ...

Initializing Objects
Until you initialize an object by calling the constructor for its object type, the object

is atomically null. That is, the object itself is null, not just its attributes. Consider the

following example:

DECLARE
 r Rational; -- r becomes atomically null
BEGIN
 r := Rational(2,3); -- r becomes 2/3

A null object is never equal to another object. In fact, comparing a null object with

any other object always yields NULL. Also, if you assign an atomically null object to

another object, the other object becomes atomically null (and must be reinitialized).

Likewise, if you assign the non-value NULL to an object, the object becomes

atomically null, as the following example shows:

DECLARE
 r Rational;
BEGIN
 r Rational := Rational(1,2); -- r becomes 1/2
 r := NULL; -- r becomes atomically null
 IF r IS NULL THEN ... -- condition yields TRUE

A good programming practice is to initialize an object in its declaration, as shown in

the following example:

DECLARE
 r Rational := Rational(2,3); -- r becomes 2/3

Accessing Attributes

9-24 PL/SQL User’s Guide and Reference

How PL/SQL Treats Uninitialized Objects
In an expression, attributes of an uninitialized object evaluate to NULL. Trying to

assign values to attributes of an uninitialized object raises the predefined exception

ACCESS_INTO_NULL. When applied to an uninitialized object or its attributes, the

IS NULL comparison operator yields TRUE.

The following example illustrates the difference between null objects and objects

with null attributes:

DECLARE
 r Rational; -- r is atomically null
BEGIN
 IF r IS NULL THEN ... -- yields TRUE
 IF r.num IS NULL THEN ... -- yields TRUE
 r := Rational(NULL, NULL); -- initializes r
 r.num := 4; -- succeeds because r is no longer atomically null
 -- even though all its attributes are null
 r := NULL; -- r becomes atomically null again
 r.num := 4; -- raises ACCESS_INTO_NULL
EXCEPTION
 WHEN ACCESS_INTO_NULL THEN
 ...
END;

Calls to methods of an uninitialized object are allowed, in which case SELF is

bound to NULL. When passed as arguments to IN parameters, attributes of an

uninitialized object evaluate to NULL. When passed as arguments to OUT or IN OUT
parameters, they raise an exception if you try to write to them.

Accessing Attributes
You can refer to an attribute only by name (not by its position in the object type). To

access or change the value of an attribute, you use dot notation. In the example

below, you assign the value of attribute den to variable denominator . Then, you

assign the value stored in variable numerator to attribute num.

DECLARE
 r Rational := Rational(NULL, NULL);
 numerator INTEGER;
 denominator INTEGER;
BEGIN
 ...
 denominator := r.den;
 r.num := numerator;

Calling Constructors

Object Types 9-25

Attribute names can be chained, which allows you to access the attributes of a

nested object type. For example, suppose you define object types Address and

Student , as follows:

CREATE TYPE Address AS OBJECT (
 street VARCHAR2(30),
 city VARCHAR2(20),
 state CHAR(2),
 zip_code VARCHAR2(5)
);

CREATE TYPE Student AS OBJECT (
 name VARCHAR2(20),
 home_address Address,
 phone_number VARCHAR2(10),
 status VARCAHR2(10),
 advisor_name VARCHAR2(20),
 ...
);’

Notice that zip_code is an attribute of object type Address and that Address is

the datatype of attribute home_address in object type Student . If s is a Student
object, you access the value of its zip_code attribute as follows:

s.home_address.zip_code

Calling Constructors
Calls to a constructor are allowed wherever function calls are allowed. Like all

functions, a constructor is called as part of an expression, as the following example

shows:

DECLARE
 r1 Rational := Rational(2, 3);
 FUNCTION average (x Rational, y Rational) RETURN Rational IS
 BEGIN
 ...
 END;
BEGIN
 r1 := average(Rational(3, 4), Rational(7, 11));
 IF (Rational(5, 8) > r1) THEN
 ...
 END IF;
END;

Calling Methods

9-26 PL/SQL User’s Guide and Reference

When you pass parameters to a constructor, the call assigns initial values to the

attributes of the object being instantiated. You must supply a parameter for every

attribute because, unlike constants and variables, attributes cannot have default

values. As the following example shows, the nth parameter assigns a value to the

nth attribute:

DECLARE
 r Rational;
BEGIN
 r := Rational(5, 6); -- assign 5 to num, 6 to den
 -- now r is 5/6

The next example shows that you can call a constructor using named notation

instead of positional notation:

BEGIN
 r := Rational(den => 6, num => 5); -- assign 5 to num, 6 to den

Calling Methods
Like packaged subprograms, methods are called using dot notation. In the

following example, you call method normalize() , which divides attributes num
and den by their greatest common divisor:

DECLARE
 r Rational;
BEGIN
 r := Rational(6, 8);
 r.normalize;
 DBMS_OUTPUT.PUT_LINE(r.num); -- prints 3
END;

As the example below shows, you can chain method calls. Execution proceeds from

left to right. First, member function reciprocal() is called, then member

procedure normalize() is called.

DECLARE
 r Rational := Rational(6, 8);
BEGIN
 r.reciprocal().normalize;
 DBMS_OUTPUT.PUT_LINE(r.num); -- prints 4
END;

Sharing Objects

Object Types 9-27

In SQL statements, calls to a parameterless method require an empty parameter list.

In procedural statements, an empty parameter list is optional unless you chain calls,

in which case it is required for all but the last call.

You cannot chain additional method calls to the right of a procedure call because a

procedure is called as a statement, not as part of an expression. For example, the

following statement is illegal:

r.normalize().reciprocal; -- illegal

Also, if you chain two function calls, the first function must return an object that can

be passed to the second function.

Sharing Objects
Most real-world objects are considerably larger and more complex than objects of

type Rational . Consider the following object types:

CREATE TYPE Address AS OBJECT (
 street_address VARCHAR2(35),
 city VARCHAR2(15),
 state CHAR(2),
 zip_code INTEGER
);

CREATE TYPE Person AS OBJECT (
 first_name VARCHAR2(15),
 last_name VARCHAR2(15),
 birthday DATE,
 home_address Address, -- nested object type
 phone_number VARCHAR2(15),
 ss_number INTEGER,
 ...
);

Address objects have twice as many attributes as Rational objects, and Person
objects have still more attributes including one of type Address . When an object is

large, it is inefficient to pass copies of it from subprogram to subprogram. It makes

more sense to share the object. You can do that if the object has an object identifier.

To share the object, you use references (refs for short). A ref is a pointer to an object.

Sharing has two important advantages. First, data is not replicated unnecessarily.

Second, when a shared object is updated, the change occurs in only one place, and

any ref can retrieve the updated values instantly.

Sharing Objects

9-28 PL/SQL User’s Guide and Reference

In the following example, you gain the advantages of sharing by defining object

type Home and then creating a table that stores instances of that object type:

CREATE TYPE Home AS OBJECT (
 address VARCHAR2(35),
 owner VARCHAR2(25),
 age INTEGER,
 style VARCHAR(15),
 floor plan BLOB,
 price REAL(9,2),
 ...
);
...
CREATE TABLE homes OF Home;

Using Refs
By revising object type Person , you can model a community in which several

people might share the same home. You use the type modifier REF to declare refs,

which hold pointers to objects.

CREATE TYPE Person AS OBJECT (
 first_name VARCHAR2(10),
 last_name VARCHAR2(15),
 birthday DATE,
 home_address REF Home, -- can be shared by family
 phone_number VARCHAR2(15),
 ss_number INTEGER,
 mother REF Person, -- family members refer to each other
 father REF Person,
 ...
);

Notice how references from persons to homes and between persons model

real-world relationships.

You can declare refs as variables, parameters, fields, or attributes. And, you can use

refs as input or output variables in SQL data manipulation statements. However,

you cannot navigate through refs. Given an expression such as x.attribute ,

where x is a ref, PL/SQL cannot navigate to the table in which the referenced object

is stored. For example, the following assignment is illegal:

DECLARE
 p_ref REF Person;
 phone_no VARCHAR2(15);

Sharing Objects

Object Types 9-29

BEGIN
 phone_no := p_ref.phone_number; -- illegal

Instead, you must use the function DEREF to access the object. For some examples,

see "Using Function DEREF" on page 9-33.

Forward Type Definitions
You can refer only to schema objects that already exist. In the following example,

the first CREATE TYPE statement is illegal because it refers to object type

Department , which does not yet exist:

CREATE TYPE Employee AS OBJECT (
 name VARCHAR2(20),
 dept REF Department, -- illegal
 ...
);

CREATE TYPE Department AS OBJECT (
 number INTEGER,
 manager Employee,
 ...
);

Switching the CREATE TYPE statements does not help because the object types are

mutually dependent. Object type Employee has an attribute that refers to object type

Department , and object type Department has an attribute of type Employee . To

solve this problem, you use a special CREATE TYPE statement called a forward type
definition, which lets you define mutually dependent object types.

To debug the last example, simply precede it with the following statement:

CREATE TYPE Department; -- forward type definition
 -- at this point, Department is an incomplete object type

The object type created by a forward type definition is called an incomplete object
type because (until it is defined fully) it has no attributes or methods.

An impure incomplete object type has attributes but causes compilation errors

because it refers to an undefined type. For example, the following CREATE TYPE
statement causes an error because object type Address is undefined:

CREATE TYPE Customer AS OBJECT (
 id NUMBER,
 name VARCHAR2(20),

Manipulating Objects

9-30 PL/SQL User’s Guide and Reference

 addr Address, -- not yet defined
 phone VARCHAR2(15)
);

This allows you to defer the definition of object type Address . Moreover, the

incomplete type Customer can be made available to other application developers

for use in refs.

Manipulating Objects
You can use an object type in the CREATE TABLE statement to specify the datatype

of a column. Once the table is created, you can use SQL statements to insert an

object, select its attributes, call its methods, and update its state.

Note: Access to remote or distributed objects is not allowed.

In the SQL*Plus script below, the INSERT statement calls the constructor for object

type Rational , then inserts the resulting object. The SELECT statement retrieves

the value of attribute num. The UPDATE statement calls member method

reciprocal() , which returns a Rational value after swapping attributes num
and den . Notice that a table alias is required when you reference an attribute or

method. (For an explanation, see Appendix D.)

CREATE TABLE numbers (rn Rational, ...)
/
INSERT INTO numbers (rn) VALUES (Rational(3, 62)) -- inserts 3/62
/
SELECT n.rn.num INTO my_num FROM numbers n ... -- returns 3
/
UPDATE numbers n SET n.rn = n.rn.reciprocal() ... -- yields 62/3
/

When you instantiate an object this way, it has no identity outside the database

table. However, the object type exists independently of any table, and can be used

to create objects in other ways.

In the next example, you create a table that stores objects of type Rational in its

rows. Such tables, having rows of objects, are called object tables. Each column in a

row corresponds to an attribute of the object type. Rows can have different column

values.

CREATE TABLE rational_nums OF Rational;

Each row in an object table has an object identifier, which uniquely identifies the

object stored in that row and serves as a reference to the object.

Manipulating Objects

Object Types 9-31

Selecting Objects
Assume that you have run the following SQL*Plus script, which creates object type

Person and object table persons , and that you have populated the table:

CREATE TYPE Person AS OBJECT (
 first_name VARCHAR2(15),
 last_name VARCHAR2(15),
 birthday DATE,
 home_address Address,
 phone_number VARCHAR2(15))
/
CREATE TABLE persons OF Person
/

The following subquery produces a result set of rows containing only the attributes

of Person objects:

BEGIN
 INSERT INTO employees -- another object table of type Person
 SELECT * FROM persons p WHERE p.last_name LIKE ’%Smith’;

To return a result set of objects, you must use the function VALUE, which is

discussed in the next section.

Using Function VALUE
As you might expect, the function VALUE returns the value of an object. VALUE
takes as its argument a correlation variable. (In this context, a correlation variable is a

row variable or table alias associated with a row in an object table.) For example, to

return a result set of Person objects, use VALUE as follows:

BEGIN
 INSERT INTO employees
 SELECT VALUE(p) FROM persons p
 WHERE p.last_name LIKE ’%Smith’;

In the next example, you use VALUE to return a specific Person object:

DECLARE
 p1 Person;
 p2 Person;
 ...

Manipulating Objects

9-32 PL/SQL User’s Guide and Reference

BEGIN
 SELECT VALUE(p) INTO p1 FROM persons p
 WHERE p.last_name = ’Kroll’;
 p2 := p1;
 ...
END;

At this point, p1 holds a local Person object, which is a copy of the stored object

whose last name is ’Kroll’ , and p2 holds another local Person object, which is a

copy of p1 . As the following example shows, you can use these variables to access

and update the objects they hold:

BEGIN
 p1.last_name := p1.last_name || ’ Jr’;

Now, the local Person object held by p1 has the last name ’Kroll Jr’ .

Using Function REF
You can retrieve refs using the function REF, which, like VALUE, takes as its

argument a correlation variable. In the following example, you retrieve one or more

refs to Person objects, then insert the refs into table person_refs :

BEGIN
 INSERT INTO person_refs
 SELECT REF(p) FROM persons p
 WHERE p.last_name LIKE ’%Smith’;

In the next example, you retrieve a ref and attribute at the same time:

DECLARE
 p_ref REF Person;
 taxpayer_id VARCHAR2(9);
BEGIN
 SELECT REF(p), p.ss_number INTO p_ref, taxpayer_id
 FROM persons p
 WHERE p.last_name = ’Parker’; -- must return one row
 ...
END;

In the final example, you update the attributes of a Person object:

DECLARE
 p_ref REF Person;
 my_last_name VARCHAR2(15);
 ...

Manipulating Objects

Object Types 9-33

BEGIN
 ...
 SELECT REF(p) INTO p_ref FROM persons p
 WHERE p.last_name = my_last_name;
 UPDATE persons p
 SET p = Person(’Jill’, ’Anders’, ’11-NOV-67’, ...)
 WHERE REF(p) = p_ref;
END;

Testing for Dangling Refs
If the object to which a ref points is deleted, the ref is left dangling (pointing to a

nonexistent object). To test for this condition, you can use the SQL predicate IS
DANGLING. For example, suppose column manager in relational table

department holds refs to Employee objects stored in an object table. You can use

the following UPDATE statement to convert any dangling refs into nulls:

BEGIN
 UPDATE department SET manager = NULL WHERE manager IS DANGLING;

Using Function DEREF
You cannot navigate through refs within PL/SQL procedural statements. Instead,

you must use the function DEREF in a SQL statement. (DEREF is short for

dereference. When you dereference a pointer, you get the value to which it points.)

DEREF takes as its argument a reference to an object, then returns the value of that

object. If the ref is dangling, DEREF returns a null object.

In the example below, you dereference a ref to a Person object. Notice that you

select the ref from dummy table dual . You need not specify an object table and

search criteria because each object stored in an object table has a unique, immutable

object identifier, which is part of every ref to that object.

DECLARE
 p1 Person;
 p_ref REF Person;
 name VARCHAR2(15);
BEGIN
 ...
 /* Assume that p_ref holds a valid reference
 to an object stored in an object table. */
 SELECT DEREF(p_ref) INTO p1 FROM dual;
 name := p1.last_name;

Manipulating Objects

9-34 PL/SQL User’s Guide and Reference

You can use DEREF in successive SQL statements to dereference refs, as the

following example shows:

CREATE TYPE PersonRef AS OBJECT (p_ref REF Person)
/
DECLARE
 name VARCHAR2(15);
 pr_ref REF PersonRef;
 pr PersonRef;
 p Person;
BEGIN
 ...
 /* Assume pr_ref holds a valid reference. */
 SELECT DEREF(pr_ref) INTO pr FROM dual;
 SELECT DEREF(pr.p_ref) INTO p FROM dual;
 name := p.last_name;
 ...
END
/
The next example shows that you cannot use function DEREF within procedural

statements:

BEGIN
 ...
 p1 := DEREF(p_ref); -- illegal

Within SQL statements, you can use dot notation to navigate through object

columns to ref attributes and through one ref attribute to another. You can also

navigate through ref columns to attributes if you use a table alias. For example, the

following syntax is valid:

table_alias.object_column.ref_attribute
table_alias.object_column.ref_attribute.attribute
table_alias.ref_column.attribute

Assume that you have run the following SQL*Plus script, which creates object types

Address and Person and object table persons :

CREATE TYPE Address AS OBJECT (
 street VARCHAR2(35),
 city VARCHAR2(15),
 state CHAR(2),
 zip_code INTEGER)
/

Manipulating Objects

Object Types 9-35

CREATE TYPE Person AS OBJECT (
 first_name VARCHAR2(15),
 last_name VARCHAR2(15),
 birthday DATE,
 home_address REF Address, -- shared with other Person objects
 phone_number VARCHAR2(15))
/
CREATE TABLE persons OF Person
/

Ref attribute home_address corresponds to a column in object table persons that

holds refs to Address objects stored in some other table. After populating the

tables, you can select a particular address by dereferencing its ref, as follows:

DECLARE
 addr1 Address,
 addr2 Address,
 ...
BEGIN
 SELECT DEREF(home_address) INTO addr1 FROM persons p
 WHERE p.last_name = ’Derringer’;

In the example below, you navigate through ref column home_address to attribute

street . In this case, a table alias is required.

DECLARE
 my_street VARCHAR2(25),
 ...
BEGIN
 SELECT p.home_address.street INTO my_street FROM persons p
 WHERE p.last_name = ’Lucas’;

Inserting Objects
You use the INSERT statement to add objects to an object table. In the following

example, you insert a Person object into object table persons :

BEGIN
 INSERT INTO persons
 VALUES (’Jenifer’, ’Lapidus’, ...);

Manipulating Objects

9-36 PL/SQL User’s Guide and Reference

Alternatively, you can use the constructor for object type Person to insert an object

into object table persons :

BEGIN
 INSERT INTO persons
 VALUES (Person(’Albert’, ’Brooker’, ...));

In the next example, you use the RETURNING clause to store Person refs in local

variables. Notice how the clause mimics a SELECT statement.You can also use the

RETURNING clause in UPDATE and DELETE statements.

DECLARE
 p1_ref REF Person;
 p2_ref REF Person;
 ...
BEGIN
 INSERT INTO persons p
 VALUES (Person(’Paul’, ’Chang’, ...))
 RETURNING REF(p) INTO p1_ref;
 INSERT INTO persons p
 VALUES (Person(’Ana’, ’Thorne’, ...))
 RETURNING REF(p) INTO p2_ref;

To insert objects into an object table, you can use a subquery that returns objects of

the same type. An example follows:

BEGIN
 INSERT INTO persons2
 SELECT VALUE(p) FROM persons p
 WHERE p.last_name LIKE ’%Jones’;

The rows copied to object table persons2 are given new object identifiers. No

object identifiers are copied from object table persons .

The script below creates a relational table named department , which has a column

of type Person , then inserts a row into the table. Notice how constructor

Person() provides a value for column manager .

CREATE TABLE department (
 dept_name VARCHAR2(20),
 manager Person,
 location VARCHAR2(20))
/

Manipulating Objects

Object Types 9-37

INSERT INTO department
 VALUES (’Payroll’, Person(’Alan’, ’Tsai’, ...), ’Los Angeles’)
/

The new Person object stored in column manager cannot be referenced because it

is stored in a column (not a row) and therefore has no object identifier.

Updating Objects
To modify the attributes of objects in an object table, you use the UPDATEstatement,

as the following example shows:

BEGIN
 UPDATE persons p SET p.home_address = ’341 Oakdene Ave’
 WHERE p.last_name = ’Brody’;
 ...
 UPDATE persons p SET p = Person(’Beth’, ’Steinberg’, ...)
 WHERE p.last_name = ’Steinway’;
 ...
END;

Deleting Objects
You use the DELETE statement to remove objects (rows) from an object table. To

remove objects selectively, you use the WHERE clause, as follows:

BEGIN
 DELETE FROM persons p
 WHERE p.home_address = ’108 Palm Dr’;
 ...
END;

Manipulating Objects

9-38 PL/SQL User’s Guide and Reference

Native Dynamic SQL 10-1

10
Native Dynamic SQL

A happy and gracious flexibility ... —Matthew Arnold

This chapter shows you how to use native dynamic SQL (dynamic SQL for short), a

PL/SQL interface that makes your applications more flexible and versatile. You

learn simple ways to write programs that can build and process SQL statements "on

the fly" at run time.

Within PL/SQL, you can execute any kind of SQL statement (even data definition

and data control statements) without resorting to cumbersome programmatic

approaches. Dynamic SQL blends seamlessly into your programs, making them

more efficient, readable, and concise.

Major Topics
What Is Dynamic SQL?

The Need for Dynamic SQL

Using the EXECUTE IMMEDIATE Statement

Using the OPEN-FOR, FETCH, and CLOSE Statements

Tips and Traps

What Is Dynamic SQL?

10-2 PL/SQL User’s Guide and Reference

What Is Dynamic SQL?
Most PL/SQL programs do a specific, predictable job. For example, a stored

procedure might accept an employee number and salary increase, then update the

sal column in the emp table. In this case, the full text of the UPDATE statement is

known at compile time. Such statements do not change from execution to execution.

So, they are called static SQL statements.

However, some programs must build and process a variety of SQL statements at

run time. For example, a general-purpose report writer must build different

SELECT statements for the various reports it generates. In this case, the full text of

the statement is unknown until run time. Such statements can, and probably will,

change from execution to execution. So, they are called dynamic SQL statements.

Dynamic SQL statements are stored in character strings built by your program at

run time. Such strings must contain the text of a valid SQL statement or PL/SQL

block. They can also contain placeholders for bind arguments. A placeholder is an

undeclared identifier, so its name, to which you must prefix a colon, does not

matter. For example, PL/SQL makes no distinction between the following strings:

’DELETE FROM emp WHERE sal > :my_sal AND comm < :my_comm’
’DELETE FROM emp WHERE sal > :s AND comm < :c’

To process most dynamic SQL statements, you use the EXECUTE IMMEDIATE
statement. However, to process a multi-row query (SELECT statement), you must

use the OPEN-FOR, FETCH, and CLOSE statements.

The Need for Dynamic SQL
You need dynamic SQL in the following situations:

■ You want to execute a SQL data definition statement (such as CREATE), a data

control statement (such as GRANT), or a session control statement (such as

ALTER SESSION). In PL/SQL, such statements cannot be executed statically.

■ You want more flexibility. For example, you might want to defer your choice of

schema objects until run time. Or, you might want your program to build

different search conditions for the WHEREclause of a SELECTstatement. A more

complex program might choose from various SQL operations, clauses, etc.

■ You use package DBMS_SQL to execute SQL statements dynamically, but you

want better performance, something easier to use, or functionality that DBMS_
SQL lacks such as support for objects and collections. (For a comparison with

DBMS_SQL, see Oracle8i Application Developer’s Guide - Fundamentals.)

Using the EXECUTE IMMEDIATE Statement

Native Dynamic SQL 10-3

Using the EXECUTE IMMEDIATE Statement
The EXECUTE IMMEDIATE statement prepares (parses) and immediately executes a

dynamic SQL statement or an anonymous PL/SQL block. The syntax is

EXECUTE IMMEDIATE dynamic_string
[INTO {define_variable[, define_variable]... | record}]
[USING [IN | OUT | IN OUT] bind_argument
 [, [IN | OUT | IN OUT] bind_argument]...]
[{RETURNING | RETURN} INTO bind_argument[, bind_argument]...];

where dynamic_string is a string expression that represents a SQL statement or

PL/SQL block, define_variable is a variable that stores a selected column

value, and record is a user-defined or %ROWTYPE record that stores a selected row.

An input bind_argument is an expression whose value is passed to the dynamic

SQL statement or PL/SQL block. An output bind_argument is a variable that

stores a value returned by the dynamic SQL statement or PL/SQL block.

Except for multi-row queries, the dynamic string can contain any SQL statement

(without the terminator) or any PL/SQL block (with the terminator). The string can

also contain placeholders for bind arguments. However, you cannot use bind

arguments to pass the names of schema objects to a dynamic SQL statement. For the

right way, see "Passing the Names of Schema Objects" on page 10-11.

Used only for single-row queries, the INTO clause specifies the variables or record

into which column values are retrieved. For each value retrieved by the query, there

must be a corresponding, type-compatible variable or field in the INTO clause.

Used only for DML statements that have a RETURNING clause (without a BULK
COLLECT clause), the RETURNING INTO clause specifies the variables into which

column values are returned. For each value returned by the DML statement, there

must be a corresponding, type-compatible variable in the RETURNING INTO clause.

You can place all bind arguments in the USING clause. The default parameter mode

is IN . For DML statements that have a RETURNING clause, you can place OUT
arguments in the RETURNING INTO clause without specifying the parameter mode,

which, by definition, is OUT. If you use both the USING clause and the RETURNING
INTO clause, the USING clause can contain only IN arguments.

At run time, bind arguments replace corresponding placeholders in the dynamic

string. So, every placeholder must be associated with a bind argument in the USING
clause and/or RETURNING INTO clause. You can use numeric, character, and string

literals as bind arguments, but you cannot use Boolean literals (TRUE, FALSE, and

NULL). To pass nulls to the dynamic string, you must use a workaround. See

"Passing Nulls" on page 10-13.

Using the EXECUTE IMMEDIATE Statement

10-4 PL/SQL User’s Guide and Reference

Dynamic SQL supports all the SQL datatypes. So, for example, define variables and

bind arguments can be collections, LOBs, instances of an object type, and refs. As a

rule, dynamic SQL does not support PL/SQL-specific types. So, for example, define

variables and bind arguments cannot be Booleans or index-by tables. The only

exception is that a PL/SQL record can appear in the INTO clause.

You can execute a dynamic SQL statement repeatedly using new values for the bind

arguments. However, you incur some overhead because EXECUTE IMMEDIATE
re-prepares the dynamic string before every execution.

Some Examples
The following PL/SQL block contains several examples of dynamic SQL:

DECLARE
 sql_stmt VARCHAR2(200);
 plsql_block VARCHAR2(500);
 emp_id NUMBER(4) := 7566;
 salary NUMBER(7,2);
 dept_id NUMBER(2) := 50;
 dept_name VARCHAR2(14) := ’PERSONNEL’;
 location VARCHAR2(13) := ’DALLAS’;
 emp_rec emp%ROWTYPE;
BEGIN
 EXECUTE IMMEDIATE ’CREATE TABLE bonus (id NUMBER, amt NUMBER)’;

 sql_stmt := ’INSERT INTO dept VALUES (:1, :2, :3)’;
 EXECUTE IMMEDIATE sql_stmt USING dept_id, dept_name, location;

 sql_stmt := ’SELECT * FROM emp WHERE empno = :id’;
 EXECUTE IMMEDIATE sql_stmt INTO emp_rec USING emp_id;

 plsql_block := ’BEGIN emp_pkg.raise_salary(:id, :amt); END;’;
 EXECUTE IMMEDIATE plsql_block USING 7788, 500;

 sql_stmt := ’UPDATE emp SET sal = 2000 WHERE empno = :1
 RETURNING sal INTO :2’;
 EXECUTE IMMEDIATE sql_stmt USING emp_id RETURNING INTO salary;

 EXECUTE IMMEDIATE ’DELETE FROM dept WHERE deptno = :num’
 USING dept_id;

 EXECUTE IMMEDIATE ’ALTER SESSION SET SQL_TRACE TRUE’;
END;

Using the EXECUTE IMMEDIATE Statement

Native Dynamic SQL 10-5

In the example below, a stand-alone procedure accepts the name of a database table

(such as ’emp’) and an optional WHERE-clause condition (such as ’sal > 2000’).

If you omit the condition, the procedure deletes all rows from the table. Otherwise,

the procedure deletes only those rows that meet the condition.

CREATE PROCEDURE delete_rows (
 table_name IN VARCHAR2,
 condition IN VARCHAR2 DEFAULT NULL) AS
 where_clause VARCHAR2(100) := ’ WHERE ’ || condition;
BEGIN
 IF condition IS NULL THEN where_clause := NULL; END IF;
 EXECUTE IMMEDIATE ’DELETE FROM ’ || table_name || where_clause;
EXCEPTION
 ...
END;

Backward Compatibility
When a dynamic INSERT, UPDATE, or DELETE statement has a RETURNING clause,

output bind arguments can go in the RETURNING INTO clause or the USING clause.

In new applications, use the RETURNING INTO clause. In old applications, you can

continue to use the USING clause. For example, both of the following EXECUTE
IMMEDIATE statements are legal:

DECLARE
 sql_stmt VARCHAR2(200);
 my_empno NUMBER(4) := 7902;
 my_ename VARCHAR2(10);
 my_job VARCHAR2(9);
 my_sal NUMBER(7,2) := 3250.00;
BEGIN
 sql_stmt := ’UPDATE emp SET sal = :1 WHERE empno = :2
 RETURNING ename, job INTO :3, :4’;

 /* Bind returned values via USING clause. */
 EXECUTE IMMEDIATE sql_stmt
 USING my_sal, my_empno, OUT my_ename, OUT my_job;

 /* Bind returned values via RETURNING INTO clause. */
 EXECUTE IMMEDIATE sql_stmt
 USING my_sal, my_empno RETURNING INTO my_ename, my_job;
 ...
END;

Using the EXECUTE IMMEDIATE Statement

10-6 PL/SQL User’s Guide and Reference

Specifying Parameter Modes
With the USING clause, you need not specify a parameter mode for input bind

arguments because the mode defaults to IN . With the RETURNING INTOclause, you

cannot specify a parameter mode for output bind arguments because, by definition,

the mode is OUT. An example follows:

DECLARE
 sql_stmt VARCHAR2(200);
 dept_id NUMBER(2) := 30;
 old_loc VARCHAR2(13);
BEGIN
 sql_stmt :=
 ’DELETE FROM dept WHERE deptno = :1 RETURNING loc INTO :2’;
 EXECUTE IMMEDIATE sql_stmt USING dept_id RETURNING INTO old_loc;
 ...
END;

When appropriate, you must specify the OUT or IN OUT mode for bind arguments

passed as parameters. For example, suppose you want to call the following

stand-alone procedure:

CREATE PROCEDURE create_dept (
 deptno IN OUT NUMBER,
 dname IN VARCHAR2,
 loc IN VARCHAR2) AS
BEGIN
 deptno := deptno_seq.NEXTVAL;
 INSERT INTO dept VALUES (deptno, dname, loc);
END;

To call the procedure from a dynamic PL/SQL block, you must specify the IN OUT
mode for the bind argument associated with formal parameter deptno , as follows:

DECLARE
 plsql_block VARCHAR2(500);
 new_deptno NUMBER(2);
 new_dname VARCHAR2(14) := ’ADVERTISING’;
 new_loc VARCHAR2(13) := ’NEW YORK’;
BEGIN
 plsql_block := ’BEGIN create_dept(:a, :b, :c); END;’;
 EXECUTE IMMEDIATE plsql_block
 USING IN OUT new_deptno, new_dname, new_loc;
 IF new_deptno > 90 THEN ...
END;

Using the OPEN-FOR, FETCH, and CLOSE Statements

Native Dynamic SQL 10-7

Using the OPEN-FOR, FETCH, and CLOSE Statements
You use three statements to process a dynamic multi-row query: OPEN-FOR, FETCH,

and CLOSE. First, you OPEN a cursor variable FOR a multi-row query. Then, you

FETCH rows from the result set one at a time. When all the rows are processed, you

CLOSEthe cursor variable. (For more information about cursor variables, see "Using

Cursor Variables" on page 5-15.)

Opening the Cursor Variable
The OPEN-FOR statement associates a cursor variable with a multi-row query,

executes the query, identifies the result set, positions the cursor on the first row in

the result set, then zeroes the rows-processed count kept by %ROWCOUNT.

Unlike the static form of OPEN-FOR, the dynamic form has an optional USING
clause. At run time, bind arguments in the USING clause replace corresponding

placeholders in the dynamic SELECT statement. The syntax is

OPEN {cursor_variable | :host_cursor_variable} FOR dynamic_string
 [USING bind_argument[, bind_argument]...];

where cursor_variable is a weakly typed cursor variable (one without a return

type), host_cursor_variable is a cursor variable declared in a PL/SQL host

environment such as an OCI program, and dynamic_string is a string expression

that represents a multi-row query.

In the following example, you declare a cursor variable, then associate it with a

dynamic SELECT statement that returns rows from the emp table:

DECLARE
 TYPE EmpCurTyp IS REF CURSOR; -- define weak REF CURSOR type
 emp_cv EmpCurTyp; -- declare cursor variable
 my_ename VARCHAR2(15);
 my_sal NUMBER := 1000;
BEGIN
 OPEN emp_cv FOR -- open cursor variable
 ’SELECT ename, sal FROM emp WHERE sal > :s’ USING my_sal;
 ...
END;

Any bind arguments in the query are evaluated only when the cursor variable is

opened. So, to fetch from the cursor using different bind values, you must reopen

the cursor variable with the bind arguments set to their new values.

Using the OPEN-FOR, FETCH, and CLOSE Statements

10-8 PL/SQL User’s Guide and Reference

Fetching from the Cursor Variable
The FETCHstatement returns a row from the result set of a multi-row query, assigns

the values of select-list items to corresponding variables or fields in the INTO clause,

increments the count kept by %ROWCOUNT, and advances the cursor to the next row.

The syntax follows:

FETCH {cursor_variable | :host_cursor_variable}
 INTO {define_variable[, define_variable]... | record};

Continuing the example, you fetch rows from cursor variable emp_cv into define

variables my_ename and my_sal :

LOOP
 FETCH emp_cv INTO my_ename, my_sal; -- fetch next row
 EXIT WHEN emp_cv%NOTFOUND; -- exit loop when last row is fetched
 -- process row
END LOOP;

For each column value returned by the query associated with the cursor variable,

there must be a corresponding, type-compatible variable or field in the INTO clause.

You can use a different INTO clause on separate fetches with the same cursor

variable. Each fetch retrieves another row from the same result set.

If you try to fetch from a closed or never-opened cursor variable, PL/SQL raises the

predefined exception INVALID_CURSOR.

Closing the Cursor Variable
The CLOSE statement disables a cursor variable. After that, the associated result set

is undefined. The syntax follows:

CLOSE {cursor_variable | :host_cursor_variable};

In this example, when the last row is processed, you close cursor variable emp_cv :

LOOP
 FETCH emp_cv INTO my_ename, my_sal;
 EXIT WHEN emp_cv%NOTFOUND;
 -- process row
END LOOP;
CLOSE emp_cv; -- close cursor variable

If you try to close an already-closed or never-opened cursor variable, PL/SQL raises

INVALID_CURSOR.

Using the OPEN-FOR, FETCH, and CLOSE Statements

Native Dynamic SQL 10-9

Some Examples
As the following example shows, you can fetch rows from the result set of a

dynamic multi-row query into a record:

DECLARE
 TYPE EmpCurTyp IS REF CURSOR;
 emp_cv EmpCurTyp;
 emp_rec emp%ROWTYPE;
 sql_stmt VARCHAR2(200);
 my_job VARCHAR2(15) := ’CLERK’;
BEGIN
 sql_stmt := ’SELECT * FROM emp WHERE job = :j’;
 OPEN emp_cv FOR sql_stmt USING my_job;
 LOOP
 FETCH emp_cv INTO emp_rec;
 EXIT WHEN emp_cv%NOTFOUND;
 -- process record
 END LOOP;
 CLOSE emp_cv;
END;

The next example illustrates the use of objects and collections. Suppose you define

object type Person and VARRAY type Hobbies , as follows:

CREATE TYPE Person AS OBJECT (name VARCHAR2(25), age NUMBER);
CREATE TYPE Hobbies IS VARRAY(10) OF VARCHAR2(25);

Now, using dynamic SQL, you can write a package of procedures that uses these

types, as follows:

CREATE PACKAGE teams AS
 PROCEDURE create_table (tab_name VARCHAR2);
 PROCEDURE insert_row (tab_name VARCHAR2, p Person, h Hobbies);
 PROCEDURE print_table (tab_name VARCHAR2);
END;

CREATE PACKAGE BODY teams AS
 PROCEDURE create_table (tab_name VARCHAR2) IS
 BEGIN
 EXECUTE IMMEDIATE ’CREATE TABLE ’ || tab_name ||
 ’ (pers Person, hobbs Hobbies)’;
 END;

Using the OPEN-FOR, FETCH, and CLOSE Statements

10-10 PL/SQL User’s Guide and Reference

 PROCEDURE insert_row (
 tab_name VARCHAR2,
 p Person,
 h Hobbies) IS
 BEGIN
 EXECUTE IMMEDIATE ’INSERT INTO ’ || tab_name ||
 ’ VALUES (:1, :2)’ USING p, h;
 END;

 PROCEDURE print_table (tab_name VARCHAR2) IS
 TYPE RefCurTyp IS REF CURSOR;
 cv RefCurTyp;
 p Person;
 h Hobbies;
 BEGIN
 OPEN cv FOR ’SELECT pers, hobbs FROM ’ || tab_name;
 LOOP
 FETCH cv INTO p, h;
 EXIT WHEN cv%NOTFOUND;
 -- print attributes of ’p’ and elements of ’h’
 END LOOP;
 CLOSE cv;
 END;
END;

From an anonymous PL/SQL block, you might call the procedures in package

teams , as follows:

DECLARE
 team_name VARCHAR2(15);
 ...
BEGIN
 ...
 team_name := ’Notables’;
 teams.create_table(team_name);
 teams.insert_row(team_name, Person(’John’, 31),
 Hobbies(’skiing’, ’coin collecting’, ’tennis’));
 teams.insert_row(team_name, Person(’Mary’, 28),
 Hobbies(’golf’, ’quilting’, ’rock climbing’));
 teams.print_table(team_name);
END;

Tips and Traps

Native Dynamic SQL 10-11

Tips and Traps
This section shows you how to take full advantage of dynamic SQL and how to

avoid some common pitfalls.

Improving Performance
In the example below, Oracle opens a different cursor for each distinct value of

emp_id . This can lead to resource contention and poor performance.

CREATE PROCEDURE fire_employee (emp_id NUMBER) AS
BEGIN
 EXECUTE IMMEDIATE
 ’DELETE FROM emp WHERE empno = ’ || TO_CHAR(emp_id);
END;

You can improve performance by using a bind variable, as shown below. This

allows Oracle to reuse the same cursor for different values of emp_id .

CREATE PROCEDURE fire_employee (emp_id NUMBER) AS
BEGIN
 EXECUTE IMMEDIATE
 ’DELETE FROM emp WHERE empno = :num’ USING emp_id;
END;

Passing the Names of Schema Objects
Suppose you need a procedure that accepts the name of any database table, then

drops that table from your schema. Using dynamic SQL, you might write the

following stand-alone procedure:

CREATE PROCEDURE drop_table (table_name IN VARCHAR2) AS
BEGIN
 EXECUTE IMMEDIATE ’DROP TABLE :tab’ USING table_name;
END;

However, at run time, this procedure fails with an invalid table name error. That is

because you cannot use bind arguments to pass the names of schema objects to a

dynamic SQL statement. Instead, you must embed parameters in the dynamic

string, then pass the names of schema objects to those parameters.

Tips and Traps

10-12 PL/SQL User’s Guide and Reference

To debug the last example, you must revise the EXECUTE IMMEDIATE statement.

Instead of using a placeholder and bind argument, you embed parameter table_
name in the dynamic string, as follows:

CREATE PROCEDURE drop_table (table_name IN VARCHAR2) AS
BEGIN
 EXECUTE IMMEDIATE ’DROP TABLE ’ || table_name;
END;

Now, you can pass the name of any database table to the dynamic SQL statement.

Using Duplicate Placeholders
Placeholders in a dynamic SQL statement are associated with bind arguments in the

USING clause by position, not by name. So, if the same placeholder appears two or

more times in the SQL statement, each appearance must correspond to a bind

argument in the USING clause. For example, given the dynamic string

sql_stmt := ’INSERT INTO payroll VALUES (:x, :x, :y, :x)’;

you might code the corresponding USING clause as follows:

EXECUTE IMMEDIATE sql_stmt USING a, a, b, a;

However, only the unique placeholders in a dynamic PL/SQL block are associated

with bind arguments in the USING clause by position. So, if the same placeholder

appears two or more times in a PL/SQL block, all appearances correspond to one

bind argument in the USING clause. In the example below, the first unique

placeholder (x) is associated with the first bind argument (a). Likewise, the second

unique placeholder (y) is associated with the second bind argument (b).

DECLARE
 a NUMBER := 4;
 b NUMBER := 7;
BEGIN
 plsql_block := ’BEGIN calc_stats(:x, :x, :y, :x); END;’
 EXECUTE IMMEDIATE plsql_block USING a, b;
 ...
END;

Tips and Traps

Native Dynamic SQL 10-13

Using Cursor Attributes
Every explicit cursor has four attributes: %FOUND, %ISOPEN, %NOTFOUND, and

%ROWCOUNT. When appended to the cursor name, they return useful information

about the execution of static and dynamic SQL statements.

To process SQL data manipulation statements, Oracle opens an implicit cursor

named SQL. Its attributes return information about the most recently executed

INSERT, UPDATE, DELETE, or single-row SELECT statement. For example, the

following stand-alone function uses %ROWCOUNT to return the number of rows

deleted from a database table:

CREATE FUNCTION rows_deleted (
 table_name IN VARCHAR2,
 condition IN VARCHAR2) RETURN INTEGER AS
BEGIN
 EXECUTE IMMEDIATE
 ’DELETE FROM ’ || table_name || ’ WHERE ’ || condition;
 RETURN SQL%ROWCOUNT; -- return number of rows deleted
END;

Likewise, when appended to a cursor variable name, the cursor attributes return

information about the execution of a multi-row query. For more information about

cursor attributes, see "Using Cursor Attributes" on page 5-35.

Passing Nulls
Suppose you want to pass nulls to a dynamic SQL statement. For example, you

might write the following EXECUTE IMMEDIATE statement:

EXECUTE IMMEDIATE ’UPDATE emp SET comm = :x’ USING NULL;

However, this statement fails with a bad expression error because the literal NULL is

not allowed in the USINGclause. To work around this restriction, simply replace the

keyword NULL with an uninitialized variable, as follows:

DECLARE
 a_null CHAR(1); -- set to NULL automatically at run time
BEGIN
 EXECUTE IMMEDIATE ’UPDATE emp SET comm = :x’ USING a_null;
END;

Tips and Traps

10-14 PL/SQL User’s Guide and Reference

Doing Remote Operations
As the following example shows, PL/SQL subprograms can execute dynamic SQL

statements that refer to objects on a remote database:

PROCEDURE delete_dept (db_link VARCHAR2, dept_id INTEGER) IS
BEGIN
 EXECUTE IMMEDIATE ’DELETE FROM dept@’ || db_link ||
 ’ WHERE deptno = :num’ USING dept_id;
END;

Also, the targets of remote procedure calls (RPCs) can contain dynamic SQL

statements. For example, suppose the following stand-alone function, which returns

the number of rows in a table, resides on the Chicago database:

CREATE FUNCTION row_count (tab_name VARCHAR2) RETURN INTEGER AS
 rows INTEGER;
BEGIN
 EXECUTE IMMEDIATE ’SELECT COUNT(*) FROM ’ || tab_name INTO rows;
 RETURN rows;
END;

From an anonymous block, you might call the function remotely, as follows:

DECLARE
 emp_count INTEGER;
BEGIN
 emp_count := row_count@chicago(’emp’);

Using Invoker Rights
By default, a stored procedure executes with the privileges of its definer, not its

invoker. Such procedures are bound to the schema in which they reside. For

example, assume that the following stand-alone procedure, which can drop any

kind of database object, resides in schema scott :

CREATE PROCEDURE drop_it (kind IN VARCHAR2, name IN VARCHAR2) AS
BEGIN
 EXECUTE IMMEDIATE ’DROP ’ || kind || ’ ’ || name;
END;

Also assume that user jones has been granted the EXECUTE privilege on this

procedure. When user jones calls drop_it , as follows, the dynamic DROP
statement executes with the privileges of user scott :

SQL> CALL drop_it(’TABLE’, ’dept’);

Tips and Traps

Native Dynamic SQL 10-15

Also, the unqualified reference to table dept is resolved in schema scott . So, the

procedure drops the table from schema scott , not from schema jones .

However, the AUTHID clause enables a stored procedure to execute with the

privileges of its invoker (current user). Such procedures are not bound to a

particular schema. For example, the following version of drop_it executes with

the privileges of its invoker:

CREATE PROCEDURE drop_it (kind IN VARCHAR2, name IN VARCHAR2)
 AUTHID CURRENT_USER AS
BEGIN
 EXECUTE IMMEDIATE ’DROP ’ || kind || ’ ’ || name;
END;

Also, the unqualified reference to the database object is resolved in the schema of

the invoker. For details, see "Invoker Rights versus Definer Rights" on page 7-29.

Using Pragma RESTRICT_REFERENCES
A function called from SQL statements must obey certain rules meant to control

side effects. (See "Controlling Sides Effects" on page 7-9.) To check for violations of

the rules, you can use the pragma RESTRICT_REFERENCES. The pragma asserts

that a function does not read and/or write database tables and/or package

variables. (For more information, See Oracle8i Application Developer’s Guide -
Fundamentals.)

However, if the function body contains a dynamic INSERT, UPDATE, or DELETE
statement, the function always violates the rules "write no database state" (WNDS)
and "read no database state" (RNDS). That is because dynamic SQL statements are

checked at run time, not at compile time. In an EXECUTE IMMEDIATE statement,

only the INTO clause can be checked at compile time for violations of RNDS.

Avoiding Deadlocks
In a few situations, executing a SQL data definition statement results in a deadlock.

For example, the procedure below causes a deadlock because it attempts to drop

itself. To avoid deadlocks, never try to ALTER or DROP a subprogram or package

while you are still using it.

CREATE PROCEDURE calc_bonus (emp_id NUMBER) AS
BEGIN
 ...
 EXECUTE IMMEDIATE ’DROP PROCEDURE calc_bonus’;

Tips and Traps

10-16 PL/SQL User’s Guide and Reference

Language Elements 11-1

11
Language Elements

Grammar, which knows how to control even kings. —Molière

This chapter is a quick reference guide to PL/SQL syntax and semantics. It shows

you how commands, parameters, and other language elements are sequenced to

form PL/SQL statements. Also, to save you time and trouble, it provides usage

notes and short examples.

Major Topics
Assignment Statement

AUTONOMOUS_TRANSACTION Pragma

Blocks

CLOSE Statement

Collection Methods

Collections

Comments

COMMIT Statement

Constants and Variables

Cursor Attributes

Cursor Variables

Cursors

DELETE Statement

EXCEPTION_INIT Pragma

Exceptions

EXECUTE IMMEDIATE Statement

EXIT Statement

Expressions

FETCH Statement

FORALL Statement

11-2 PL/SQL User’s Guide and Reference

Functions

GOTO Statement

IF Statement

INSERT Statement

Literals

LOCK TABLE Statement

LOOP Statements

NULL Statement

Object Types

OPEN Statement

OPEN-FOR Statement

OPEN-FOR-USING Statement

Packages

Procedures

RAISE Statement

Records

RESTRICT_REFERENCES Pragma

RETURN Statement

ROLLBACK Statement

%ROWTYPE Attribute

SAVEPOINT Statement

SELECT INTO Statement

SERIALLY_REUSABLE Pragma

SET TRANSACTION Statement

SQL Cursor

SQLCODE Function

SQLERRM Function

%TYPE Attribute

UPDATE Statement

Reading the Syntax Diagrams
When you are unsure of the syntax to use in a PL/SQL statement, trace through its

syntax diagram, reading from left to right and top to bottom. You can verify or

construct any PL/SQL statement that way.

The diagrams are graphic representations of Bachus-Naur Form (BNF) productions.

Within the diagrams, keywords are enclosed in boxes, delimiters in circles, and

identifiers in ovals.

Each diagram defines a syntactic element. Every path through the diagram

describes a possible form of that element. Follow in the direction of the arrows. If a

line loops back on itself, you can repeat the element enclosed by the loop.

Assignment Statement

Language Elements 11-3

Assignment Statement

An assignment statement sets the current value of a variable, field, parameter, or

element. The statement consists of an assignment target followed by the assignment

operator and an expression. When the statement is executed, the expression is

evaluated and the resulting value is stored in the target. For more information, see

"Assignments" on page 2-41.

Syntax

Keyword and Parameter Description

attribute_name
This identifies an attribute of an object type. The name must be unique within the

object type (but can be reused in other object types). You cannot initialize an

attribute in its declaration using the assignment operator or DEFAULT clause. Also,

you cannot impose the NOT NULL constraint on an attribute.

collection_name
(index)

cursor_variable_name

: host_cursor_variable_name

: host_variable_name
: indicator_name

object_name
. attribute_name

parameter_name

record_name
. field_name

variable_name

:= expression ;

assignment_statement

Assignment Statement

11-4 PL/SQL User’s Guide and Reference

collection_name
This identifies a nested table, index-by table, or varray previously declared within

the current scope.

cursor_variable_name
This identifies a PL/SQL cursor variable previously declared within the current

scope. Only the value of another cursor variable can be assigned to a cursor

variable.

expression
This is an arbitrarily complex combination of variables, constants, literals,

operators, and function calls. The simplest expression consists of a single variable.

For the syntax of expression , see "Expressions" on page 11-67. When the

assignment statement is executed, the expression is evaluated and the resulting

value is stored in the assignment target. The value and target must have compatible

datatypes.

field_name
This identifies a field in a user-defined or %ROWTYPE record.

host_cursor_variable_name
This identifies a cursor variable declared in a PL/SQL host environment and passed

to PL/SQL as a bind variable. The datatype of the host cursor variable is compatible

with the return type of any PL/SQL cursor variable. Host variables must be

prefixed with a colon.

host_variable_name
This identifies a variable declared in a PL/SQL host environment and passed to

PL/SQL as a bind variable. Host variables must be prefixed with a colon.

index
This is an expression that must yield (or convert implicitly to) an integer. For more

information, see "Datatype Conversion" on page 2-28.

Assignment Statement

Language Elements 11-5

indicator_name
This identifies an indicator variable declared in a PL/SQL host environment and

passed to PL/SQL. Indicator variables must be prefixed with a colon. An indicator

variable "indicates" the value or condition of its associated host variable. For

example, in the Oracle Precompiler environment, indicator variables let you detect

nulls or truncated values in output host variables.

object_name
This identifies an object (instance of an object type) previously declared within the

current scope.

parameter_name
This identifies a formal OUT or IN OUT parameter of the subprogram in which the

assignment statement appears.

record_name
This identifies a user-defined or %ROWTYPE record previously declared within the

current scope.

variable_name
This identifies a PL/SQL variable previously declared within the current scope.

Usage Notes
By default, unless a variable is initialized in its declaration, it is initialized to NULL
every time a block or subprogram is entered. So, never reference a variable before

you assign it a value.

You cannot assign nulls to a variable defined as NOT NULL. If you try, PL/SQL raises

the predefined exception VALUE_ERROR.

Only the values TRUE, FALSE, and NULL can be assigned to a Boolean variable.

When applied to an expression, the relational operators return a Boolean value. So,

the following assignment is legal:

DECLARE
 out_of_range BOOLEAN;
 ...
BEGIN
 ...
 out_of_range := (salary < minimum) OR (salary > maximum);

Assignment Statement

11-6 PL/SQL User’s Guide and Reference

As the next example shows, you can assign the value of an expression to a specific

field in a record:

DECLARE
 emp_rec emp%ROWTYPE;
BEGIN
 ...
 emp_rec.sal := current_salary + increase;

Moreover, you can assign values to all fields in a record at once. PL/SQL allows

aggregate assignment between entire records if their declarations refer to the same

cursor or table. For example, the following assignment is legal:

DECLARE
 emp_rec1 emp%ROWTYPE;
 emp_rec2 emp%ROWTYPE;
 dept_rec dept%ROWTYPE;
BEGIN
 ...
 emp_rec1 := emp_rec2;

Using the following syntax, you can assign the value of an expression to a specific

element in a collection:

collection_name(index) := expression;

In the following example, you assign the uppercase value of last_name to the

third row in nested table ename_tab :

ename_tab(3) := UPPER(last_name);

Examples
Several examples of assignment statements follow:

wages := hours_worked * hourly_salary;
country := ’France’;
costs := labor + supplies;
done := (count > 100);
dept_rec.loc := ’BOSTON’;
comm_tab(5) := sales * 0.15;

Related Topics
 Constants and Variables, Expressions, SELECT INTO Statement

AUTONOMOUS_TRANSACTION Pragma

Language Elements 11-7

AUTONOMOUS_TRANSACTION Pragma

The AUTONOMOUS_TRANSACTIONpragma instructs the PL/SQL compiler to mark a

routine as autonomous (independent). An autonomous transaction is an independent

transaction started by another transaction, the main transaction. Autonomous

transactions let you suspend the main transaction, do SQL operations, commit or

roll back those operations, then resume the main transaction. For more information,

see "Using Autonomous Transactions" on page 5-52.

Syntax

Keyword and Parameter Description

PRAGMA
This keyword signifies that the statement is a pragma (compiler directive). Pragmas

are processed at compile time, not at run time. They do not affect the meaning of a

program; they simply convey information to the compiler.

Usage Notes
In this context, the term routine includes

■ top-level (not nested) anonymous PL/SQL blocks

■ local, stand-alone, and packaged functions and procedures

■ methods of a SQL object type

■ database triggers

You cannot use the pragma to mark all subprograms in a package (or all methods in

an object type) as autonomous. Only individual routines can be marked

autonomous. You can code the pragma anywhere in the declarative section of a

routine. But, for readability, code the pragma at the top of the section.

Once started, an autonomous transaction is fully independent. It shares no locks,

resources, or commit-dependencies with the main transaction. So, you can log

events, increment retry counters, and so on, even if the main transaction rolls back.

PRAGMA AUTONOMOUS_TRANSACTION ;

autonomous_transaction_pragma

AUTONOMOUS_TRANSACTION Pragma

11-8 PL/SQL User’s Guide and Reference

Unlike regular triggers, autonomous triggers can contain transaction control

statements such as COMMIT and ROLLBACK. Also, unlike regular triggers,

autonomous triggers can execute DDL statements (such as CREATE and DROP)
using native dynamic SQL.

Changes made by an autonomous transaction become visible to other transactions

when the autonomous transaction commits. The changes also become visible to the

main transaction when it resumes, but only if its isolation level is set to READ
COMMITTED (the default).

If you set the isolation level of the main transaction to SERIALIZABLE , as follows,

changes made by its autonomous transactions are not visible to the main transaction

when it resumes:

When in the main transaction, rolling back to a savepoint marked before you started

an autonomous transaction does not roll back the autonomous transaction.

Remember, autonomous transactions are fully independent of the main transaction.

If an autonomous transaction attempts to access a resource held by the main

transaction (which cannot resume until the autonomous routine exits), a deadlock

can occur. In that case, Oracle raises an exception in the autonomous transaction,

which is rolled back if the exception goes unhandled.

If you try to exit an active autonomous transaction without committing or rolling

back, Oracle raises an exception. If the exception goes unhandled, the transaction is

rolled back.

Examples
In the following example, you mark a packaged function as autonomous:

CREATE PACKAGE banking AS
 ...
 FUNCTION balance (acct_id INTEGER) RETURN REAL;
END banking;

CREATE PACKAGE BODY banking AS
 ...
 FUNCTION balance (acct_id INTEGER) RETURN REAL IS
 PRAGMA AUTONOMOUS_TRANSACTION;
 my_bal REAL;
 BEGIN
 ...
 END;
END banking;

AUTONOMOUS_TRANSACTION Pragma

Language Elements 11-9

In the example below, you mark a database trigger as autonomous. Unlike regular

triggers, autonomous triggers can contain transaction control statements.

CREATE TRIGGER parts_trigger
BEFORE INSERT ON parts FOR EACH ROW
DECLARE
 PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN
 INSERT INTO parts_log VALUES(:new.pnum, :new.pname);
 COMMIT; -- allowed only in autonomous triggers
END;

Related Topics
EXCEPTION_INIT Pragma, RESTRICT_REFERENCES Pragma, SERIALLY_

RESUABLE Pragma

Blocks

11-10 PL/SQL User’s Guide and Reference

Blocks

The basic program unit in PL/SQL is the block. A PL/SQL block is defined by the

keywords DECLARE, BEGIN, EXCEPTION, and END. These keywords partition the

block into a declarative part, an executable part, and an exception-handling part.

Only the executable part is required. You can nest a block within another block

wherever you can place an executable statement. For more information, see "Block

Structure" on page 1-2 and "Scope and Visibility" on page 2-38.

Syntax

<< label_name >> DECLARE

plsql_block

BEGIN statement

EXCEPTION exception_handler
END

label_name
;

record_type_definition

ref_cursor_type_definition

table_type_definition

subtype_definition

varray_type_definition

type_definition

type_definition

item_declaration

function_declaration

procedure_declaration

SUBTYPE subtype_name IS base_type
(constraint) NOT NULL

;

subtype_definition

Blocks

Language Elements 11-11

collection_declaration

constant_declaration

cursor_declaration

cursor_variable_declaration

exception_declaration

object_declaration

object_ref_declaration

record_declaration

variable_declaration

item_declaration

commit_statement

delete_statement

insert_statement

lock_table_statement

rollback_statement

savepoint_statement

select_statement

set_transaction_statement

update_statement

sql_statement

Blocks

11-12 PL/SQL User’s Guide and Reference

Keyword and Parameter Description

base_type
This is any scalar or user-defined PL/SQL datatype specifier such as CHAR, DATE, or

RECORD.

BEGIN
This keyword signals the start of the executable part of a PL/SQL block, which

contains executable statements. The executable part of a block is required. That is, a

PL/SQL block must contain at least one executable statement. The NULL statement

meets this requirement.

<< label_name >>

assignment_statement

close_statement

execute_immediate_statement

exit_statement

fetch_statement

forall_statement

goto_statement

if_statement

loop_statement

null_statement

open_statement

open_for_statement

plsql_block

raise_statement

return_statement

sql_statement

statement

Blocks

Language Elements 11-13

collection_declaration
This declares a collection (index-by table, nested table, or varray). For the syntax of

collection_declaration , see "Collections" on page 11-24.

constant_declaration
This declares a constant. For the syntax of constant_declaration , see

"Constants and Variables" on page 11-33.

constraint
This applies only to datatypes that can be constrained such as CHAR and NUMBER.
For character datatypes, this specifies a maximum size in bytes. For numeric

datatypes, this specifies a maximum precision and scale.

cursor_declaration
This declares an explicit cursor. For the syntax of cursor_declaration , see

"Cursors" on page 11-48.

cursor_variable_declaration
This declares a cursor variable. For the syntax of cursor_variable_
declaration , see "Cursor Variables" on page 11-42.

DECLARE
This keyword signals the start of the declarative part of a PL/SQL block, which

contains local declarations. Items declared locally exist only within the current block

and all its sub-blocks and are not visible to enclosing blocks. The declarative part of

a PL/SQL block is optional. It is terminated implicitly by the keyword BEGIN,

which introduces the executable part of the block.

PL/SQL does not allow forward references. So, you must declare an item before

referencing it in other statements, including other declarative statements. Also, you

must declare subprograms at the end of a declarative section after all other program

items.

END
This keyword signals the end of a PL/SQL block. It must be the last keyword in a

block. Neither the END IF in an IF statement nor the END LOOPin a LOOPstatement

can substitute for the keyword END. Remember, END does not signal the end of a

transaction. Just as a block can span multiple transactions, a transaction can span

multiple blocks.

Blocks

11-14 PL/SQL User’s Guide and Reference

EXCEPTION
This keyword signals the start of the exception-handling part of a PL/SQL block.

When an exception is raised, normal execution of the block stops and control

transfers to the appropriate exception handler. After the exception handler

completes, execution proceeds with the statement following the block.

If there is no exception handler for the raised exception in the current block, control

passes to the enclosing block. This process repeats until an exception handler is

found or there are no more enclosing blocks. If PL/SQL can find no exception

handler for the exception, execution stops and an unhandled exception error is

returned to the host environment. For more information, see Chapter 6.

exception_declaration
This declares an exception. For the syntax of exception_declaration , see

"Exceptions" on page 11-58.

exception_handler
This associates an exception with a sequence of statements, which is executed when

that exception is raised. For the syntax of exception_handler , see "Exceptions"

on page 11-58.

function_declaration
This declares a function. For the syntax of function_declaration , see

"Functions" on page 11-84.

label_name
This is an undeclared identifier that optionally labels a PL/SQL block. If used,

label_name must be enclosed by double angle brackets and must appear at the

beginning of the block. Optionally, label_name (not enclosed by angle brackets)

can also appear at the end of the block.

A global identifier declared in an enclosing block can be redeclared in a sub-block,

in which case the local declaration prevails and the sub-block cannot reference the

global identifier you use a block label to qualify the reference, as the following

example shows:

<<outer>>
DECLARE
 x INTEGER;
BEGIN
 ...

Blocks

Language Elements 11-15

 DECLARE
 x INTEGER;
 BEGIN
 ...
 IF x = outer.x THEN -- refers to global x
 ...
 END IF;
 END;
END outer;

object_declaration
This declares an object (instance of an object type). For the syntax of object_
declaration , see "Object Types" on page 11-110.

procedure_declaration
This declares a procedure. For the syntax of procedure_declaration , see

"Procedures" on page 11-133.

record_declaration
This declares a user-defined record. For the syntax of record_declaration , see

"Records" on page 11-140.

sql_statement
PL/SQL supports a subset of SQL statements that includes data manipulation,

cursor control, and transaction control statements but excludes data definition and

data control statements such as ALTER, CREATE, GRANT, and REVOKE. However,

you can execute data definition and data control statements using native dynamic

SQL (see Chapter 10).

statement
This is an executable (not declarative) statement that you use to create algorithms. A

sequence of statements can include procedural statements such as RAISE, SQL

statements such as UPDATE, and PL/SQL blocks (sometimes called "block

statements").

PL/SQL statements are free format. That is, they can continue from line to line if

you do not split keywords, delimiters, or literals across lines. A semicolon (;) serves

as the statement terminator.

Blocks

11-16 PL/SQL User’s Guide and Reference

subtype_name
This identifies a user-defined subtype that was defined using any scalar or

user-defined PL/SQL datatype specifier such as CHAR, DATE, or RECORD.

variable_declaration
This declares a variable. For the syntax of variable_declaration , see

"Constants and Variables" on page 11-33.

Example
The following PL/SQL block declares several variables and constants, then

calculates a ratio using values selected from a database table:

-- available online in file ’examp11’
DECLARE
 numerator NUMBER;
 denominator NUMBER;
 the_ratio NUMBER;
 lower_limit CONSTANT NUMBER := 0.72;
 samp_num CONSTANT NUMBER := 132;
BEGIN
 SELECT x, y INTO numerator, denominator FROM result_table
 WHERE sample_id = samp_num;
 the_ratio := numerator/denominator;
 IF the_ratio > lower_limit THEN
 INSERT INTO ratio VALUES (samp_num, the_ratio);
 ELSE
 INSERT INTO ratio VALUES (samp_num, -1);
 END IF;
 COMMIT;
EXCEPTION
 WHEN ZERO_DIVIDE THEN
 INSERT INTO ratio VALUES (samp_num, 0);
 COMMIT;
 WHEN OTHERS THEN
 ROLLBACK;
END;

Related Topics
Constants and Variables, Exceptions, Functions, Procedures

CLOSE Statement

Language Elements 11-17

CLOSE Statement

The CLOSE statement allows resources held by an open cursor or cursor variable to

be reused. No more rows can be fetched from a closed cursor or cursor variable. For

more information, see "Managing Cursors" on page 5-6.

Syntax

Keyword and Parameter Description

cursor_name
This identifies an explicit cursor previously declared within the current scope and

currently open.

cursor_variable_name
This identifies a PL/SQL cursor variable (or parameter) previously declared within

the current scope and currently open.

host_cursor_variable_name
This identifies a cursor variable declared in a PL/SQL host environment and passed

to PL/SQL as a bind variable. The datatype of the host cursor variable is compatible

with the return type of any PL/SQL cursor variable. Host variables must be

prefixed with a colon.

CLOSE

cursor_name

cursor_variable_name

: host_cursor_variable_name

;

close_statement

CLOSE Statement

11-18 PL/SQL User’s Guide and Reference

Usage Notes
Once a cursor or cursor variable is closed, you can reopen it using the OPEN or

OPEN-FOR statement, respectively. If you reopen a cursor without closing it first,

PL/SQL raises the predefined exception CURSOR_ALREADY_OPEN. However, you

need not close a cursor variable before reopening it.

If you try to close an already-closed or never-opened cursor or cursor variable,

PL/SQL raises the predefined exception INVALID_CURSOR.

Example
In the following example, after the last row is fetched and processed, you close the

cursor variable emp_cv :

LOOP
 FETCH emp_cv INTO emp_rec;
 EXIT WHEN emp_cv%NOTFOUND;
 ... -- process data record
END LOOP;
/* Close cursor variable. */
CLOSE emp_cv;

Related Topics
FETCH Statement, OPEN Statement, OPEN-FOR Statement

Collection Methods

Language Elements 11-19

Collection Methods

A collection method is a built-in function or procedure that operates on collections

and is called using dot notation. The methods EXISTS, COUNT, LIMIT , FIRST,

LAST, PRIOR, NEXT, EXTEND, TRIM, and DELETE help generalize code, make

collections easier to use, and make your applications easier to maintain.

EXISTS, COUNT, LIMIT , FIRST, LAST, PRIOR, and NEXT are functions, which

appear as part of an expression. EXTEND, TRIM, and DELETE are procedures, which

appear as a statement. EXISTS, PRIOR, NEXT, TRIM, EXTEND, and DELETE take

integer parameters. ssion. EXTEND and TRIM cannot be used with index-by tables.

For more information, see "Using Collection Methods" on page 4-21.

Syntax

collection_name .

COUNT

DELETE
(index

, index
)

EXISTS (index)

EXTEND
(number

, index
)

FIRST

LAST

LIMIT

NEXT (index)

PRIOR (index)

TRIM
(number)

collection_method_call

Collection Methods

11-20 PL/SQL User’s Guide and Reference

Keyword and Parameter Description

collection_name
This identifies an index-by table, nested table, or varray previously declared within

the current scope.

COUNT
COUNT returns the number of elements that a collection currently contains, which is

useful because the current size of a collection is not always known. You can use

COUNT wherever an integer expression is allowed.

For varrays, COUNT always equals LAST. For nested tables, normally, COUNT equals

LAST. But, if you delete elements from the middle of a nested table, COUNT is
smaller than LAST.

DELETE
This procedure has three forms. DELETE removes all elements from a collection.

DELETE(n) removes the nth element from an index-by table or nested table. If n is

null, DELETE(n) does nothing. DELETE(m,n) removes all elements in the range

m..n from an index-by table or nested table. If m is larger than n or if m or n is null,

DELETE(m,n) does nothing.

EXISTS
EXISTS(n) returns TRUE if the nth element in a collection exists. Otherwise,

EXISTS(n) returns FALSE. Mainly, you use EXISTS with DELETE to maintain

sparse nested tables. You can also use EXISTS to avoid raising an exception when

you reference a nonexistent element. When passed an out-of-range subscript,

EXISTS returns FALSE instead of raising SUBSCRIPT_OUTSIDE_LIMIT.

EXTEND
This procedure has three forms. EXTEND appends one null element to a collection.

EXTEND(n) appends n null elements to a collection. EXTEND(n,i) appends n
copies of the i th element to a collection. EXTEND operates on the internal size of a

collection. So, if EXTEND encounters deleted elements, it includes them in its tally.

You cannot use EXTEND with index-by tables.

Collection Methods

Language Elements 11-21

FIRST, LAST
FIRST and LAST return the first and last (smallest and largest) index numbers in a

collection. If the collection is empty, FIRST and LAST return NULL. If the collection

contains only one element, FIRST and LAST return the same index number.

For varrays, FIRST always returns 1 and LAST always equals COUNT. For nested

tables, normally, LAST equals COUNT. But, if you delete elements from the middle of

a nested table, LAST is larger than COUNT.

index
This is an expression that must yield (or convert implicitly to) an integer.

LIMIT
For nested tables, which have no maximum size, LIMIT returns NULL. For varrays,

LIMIT returns the maximum number of elements that a varray can contain (which

you must specify in its type definition).

NEXT, PRIOR
PRIOR(n) returns the index number that precedes index n in a collection. NEXT(n)
returns the index number that succeeds index n. If n has no predecessor, PRIOR(n)
returns NULL. Likewise, if n has no successor, NEXT(n) returns NULL.

TRIM
This procedure has two forms. TRIM removes one element from the end of a

collection. TRIM(n) removes n elements from the end of a collection. If n is greater

than COUNT, TRIM(n) raises SUBSCRIPT_BEYOND_COUNT. You cannot use TRIM
with index-by tables.

TRIM operates on the internal size of a collection. So, if TRIM encounters deleted

elements, it includes them in its tally.

Usage Notes
You cannot use collection methods in a SQL statement. If you try, you get a

compilation error.

Only EXISTS can be applied to atomically null collections. If you apply another

method to such collections, PL/SQL raises COLLECTION_IS_NULL.

You can use PRIOR or NEXT to traverse collections indexed by any series of

subscripts. For example, you can use PRIOR or NEXT to traverse a nested table from

which some elements have been deleted.

Collection Methods

11-22 PL/SQL User’s Guide and Reference

EXTEND operates on the internal size of a collection, which includes deleted

elements. You cannot use EXTEND to initialize an atomically null collection. Also, if

you impose the NOT NULLconstraint on a TABLEor VARRAYtype, you cannot apply

the first two forms of EXTEND to collections of that type.

If an element to be deleted does not exist, DELETE simply skips it; no exception is

raised. Varrays are dense, so you cannot delete their individual elements.

PL/SQL keeps placeholders for deleted elements. So, you can replace a deleted

element simply by assigning it a new value. However, PL/SQL does not keep

placeholders for trimmed elements.

The amount of memory allocated to a nested table can increase or decrease

dynamically. As you delete elements, memory is freed page by page. If you delete

the entire table, all the memory is freed.

In general, do not depend on the interaction between TRIM and DELETE. It is better

to treat nested tables like fixed-size arrays and use only DELETE, or to treat them

like stacks and use only TRIM and EXTEND.

Within a subprogram, a collection parameter assumes the properties of the

argument bound to it. So, you can apply methods FIRST, LAST, COUNT, and so on

to such parameters. For varray parameters, the value of LIMIT is always derived

from the parameter type definition, regardless of the parameter mode.

Examples
In the following example, you use NEXT to traverse a nested table from which some

elements have been deleted:

i := courses.FIRST; -- get subscript of first element
WHILE i IS NOT NULL LOOP
 -- do something with courses(i)
 i := courses.NEXT(i); -- get subscript of next element
END LOOP;

In the following example, PL/SQL executes the assignment statement only if

element i exists:

IF courses.EXISTS(i) THEN
 courses(i) := new_course;
END IF;

Collection Methods

Language Elements 11-23

The next example shows that you can use FIRST and LAST to specify the lower and

upper bounds of a loop range provided each element in that range exists:

FOR i IN courses.FIRST..courses.LAST LOOP ...

In the following example, you delete elements 2 through 5 from a nested table:

courses.DELETE(2, 5);

In the final example, you use LIMIT to determine if you can add 20 more elements

to varray projects :

IF (projects.COUNT + 20) < projects.LIMIT THEN
 -- add 20 more elements

Related Topics
Collections, Functions, Procedures

Collections

11-24 PL/SQL User’s Guide and Reference

Collections

A collection is an ordered group of elements, all of the same type (for example, the

grades for a class of students). Each element has a unique subscript that determines

its position in the collection. PL/SQL offers three kinds of collections: index-by

tables, nested tables, and varrays (short for variable-size arrays). Nested tables

extend the functionality of index-by tables (formerly called "PL/SQL tables").

Collections work like the arrays found in most third-generation programming

languages. However, collections can have only one dimension and must be indexed

by integers. (In some languages such as Ada and Pascal, arrays can have multiple

dimensions and can be indexed by enumeration types.)

Nested tables and varrays can store instances of an object type and, conversely, can

be attributes of an object type. Also, collections can be passed as parameters. So,

you can use them to move columns of data into and out of database tables or

between client-side applications and stored subprograms.

For more information, see "Defining and Declaring Collections" on page 4-5.

Syntax

TYPE type_name IS TABLE OF element_type
NOT NULL

table_type_definition

TYPE type_name IS
VARRAY

VARRYING ARRAY
(size_limit)

varray_type_definition

OF element_type
NOT NULL

;

collection_name type_name ;

collection_declaration

INDEX BY BINARY_INTEGER
;

Collections

Language Elements 11-25

Keyword and Parameter Description

element_type
This is any PL/SQL datatype except BINARY_INTEGER, BOOLEAN, LONG, LONG
RAW, NATURAL, NATURALN, NCHAR, NCLOB, NVARCHAR2, object types with TABLEor

VARRAY attributes, PLS_INTEGER, POSITIVE , POSITIVEN, REF CURSOR,
SIGNTYPE, STRING, TABLE, or VARRAY. Also, with varrays, element_type cannot

be BLOB, CLOB, or an object type with BLOB or CLOB attributes. If element_type
is a record type, every field in the record must be a scalar type or an object type.

INDEX BY BINARY_INTEGER
This optional clause lets you define Version 2 PL/SQL tables, which are called

index-by tables in Version 8.

size_limit
This is a positive integer literal that specifies the maximum size of a varray, which is

the maximum number of elements the varray can contain.

cursor_name % ROWTYPE

db_table_name
% ROWTYPE

. column_name % TYPE

object_name % TYPE

REF
object_type_name

record_name
. field_name

% TYPE

record_type_name

scalar_datatype_name

variable_name % TYPE

element_type

Collections

11-26 PL/SQL User’s Guide and Reference

type_name
This identifies a user-defined collection type that was defined using the datatype

specifier TABLE or VARRAY.

Usage Notes
Nested tables extend the functionality of index-by tables, so they differ in several

ways. See "Nested Tables versus Index-by Tables" on page 4-3.

Every element reference includes the collection name and a subscript enclosed in

parentheses; the subscript determines which element is processed. Except for

index-by tables, which can have negative subscripts, collection subscripts have a

fixed lower bound of 1.

You can define all three collection types in the declarative part of any PL/SQL

block, subprogram, or package. But, only nested table and varray types can be

CREATEd and stored in an Oracle database.

Index-by tables and nested tables can be sparse (have non-consecutive subscripts),

but varrays are always dense (have consecutive subscripts). Unlike nested tables,

varrays retain their ordering and subscripts when stored in the database.

Initially, index-by tables are sparse. That enables you, for example, to store reference

data in a temporary index-by table using a numeric primary key (account numbers

or employee numbers for example) as the index.

Collections follow the usual scoping and instantiation rules. In a package,

collections are instantiated when you first reference the package and cease to exist

when you end the database session. In a block or subprogram, local collections are

instantiated when you enter the block or subprogram and cease to exist when you

exit.

Until you initialize it, a nested table or varray is atomically null (that is, the

collection itself is null, not its elements). To initialize a nested table or varray, you

use a constructor, which is a system-defined function with the same name as the

collection type. This function "constructs" a collection from the elements passed to

it.

Because nested tables and varrays can be atomically null, they can be tested for

nullity. However, they cannot be compared for equality or inequality. This

restriction also applies to implicit comparisons. For example, collections cannot

appear in a DISTINCT , GROUP BY, or ORDER BY list.

Collections

Language Elements 11-27

Collections can store instances of an object type and, conversely, can be attributes of

an object type. Also, collections can be passed as parameters. So, you can use them

to move columns of data into and out of database tables or between client-side

applications and stored subprograms.

When calling a function that returns a collection, you use the following syntax to

reference elements in the collection:

collection_name(parameter_list)(subscript)

With the Oracle Call Interface (OCI) or the Oracle Precompilers, you can bind host

arrays to index-by tables declared as the formal parameters of a subprogram. That

allows you to pass host arrays to stored functions and procedures.

Examples
To specify the element type of a collection, you can use %TYPE or %ROWTYPE, as the

following example shows:

DECLARE
 TYPE JobList IS VARRAY(10) OF emp.job%TYPE; -- based on column
 CURSOR c1 IS SELECT * FROM dept;
 TYPE DeptFile IS TABLE OF c1%ROWTYPE; -- based on cursor

TYPE EmpFile IS VARRAY(150) OF emp%ROWTYPE; -- based on database
table

In the next example, you use a RECORD type to specify the element type:

DECLARE
 TYPE Entry IS RECORD (
 term VARCHAR2(20),
 meaning VARCHAR2(200));
 TYPE Glossary IS VARRAY(250) OF Entry;

In the example below, you declare an index-by table of records. Each element of the

table stores a row from the emp database table.

DECLARE
 TYPE EmpTabTyp IS TABLE OF emp%ROWTYPE
 INDEX BY BINARY_INTEGER;
 emp_tab EmpTabTyp;
BEGIN
 /* Retrieve employee record. */
 SELECT * INTO emp_tab(7468) FROM emp WHERE empno = 7468;

Collections

11-28 PL/SQL User’s Guide and Reference

When defining a VARRAYtype, you must specify its maximum size. In the following

example, you define a type that stores up to 366 dates:

DECLARE
 TYPE Calendar IS VARRAY(366) OF DATE;

Once you define a collection type, you can declare collections of that type, as the

following SQL*Plus script shows:

CREATE TYPE Project AS OBJECT(
 project_no NUMBER(2),
 title VARCHAR2(35),
 cost NUMBER(7,2))
/
CREATE TYPE ProjectList AS VARRAY(50) OF Project -- VARRAY type
/
CREATE TABLE department (
 idnum NUMBER(2),
 name VARCHAR2(15),
 budget NUMBER(11,2),
 projects ProjectList) -- declare varray
/

The identifier projects represents an entire varray. Each element of projects
will store a Project object.

In the following example, you declare a nested table as the formal parameter of a

packaged procedure:

CREATE PACKAGE personnel AS
 TYPE Staff IS TABLE OF Employee;
 ...
 PROCEDURE award_bonuses (members IN Staff);

You can specify a collection type in the RETURN clause of a function spec, as the

following example shows:

DECLARE
 TYPE SalesForce IS VARRAY(20) OF Salesperson;
 FUNCTION top_performers (n INTEGER) RETURN SalesForce IS ...

Collections

Language Elements 11-29

In the following example, you update the list of projects assigned to the Security

Department:

DECLARE
 new_projects ProjectList :=
 ProjectList(Project(1, ’Issue New Employee Badges’, 13500),
 Project(2, ’Inspect Emergency Exits’, 1900),
 Project(3, ’Upgrade Alarm System’, 3350),
 Project(4, ’Analyze Local Crime Stats’, 825));
BEGIN
 UPDATE department
 SET projects = new_projects WHERE name = ’Security’;

In the next example, you retrieve all the projects for the Accounting Department

into a local varray:

DECLARE
 my_projects ProjectList;
BEGIN
 SELECT projects INTO my_projects FROM department
 WHERE name = ’Accounting’;

Related Topics
Collection Methods, Object Types, Records

Comments

11-30 PL/SQL User’s Guide and Reference

Comments

Comments describe the purpose and use of code segments and so promote

readability. PL/SQL supports two comment styles: single-line and multi-line.

Single-line comments begin with a double hyphen (--) anywhere on a line and

extend to the end of the line. Multi-line comments begin with a slash-asterisk (/*),

end with an asterisk-slash (*/), and can span multiple lines. For more information,

see "Comments" on page 2-10.

Syntax

Usage Notes
Comments can appear within a statement at the end of a line. However, you cannot

nest comments.

You cannot use single-line comments in a PL/SQL block that will be processed

dynamically by an Oracle Precompiler program because end-of-line characters are

ignored. As a result, single-line comments extend to the end of the block, not just to

the end of a line. Instead, use multi-line comments.

While testing or debugging a program, you might want to disable a line of code.

The following example shows how you can "comment-out" the line:

-- UPDATE dept SET loc = my_loc WHERE deptno = my_deptno;

You can use multi-line comment delimiters to comment-out whole sections of code.

Examples
The following examples show various comment styles:

-- compute the area of a circle
area := pi * radius**2; -- pi equals 3.14159
/* Compute the area
 of a circle. */
area := pi * radius**2; /* pi equals 3.14159 */

- - text

/* text */

comment

COMMIT Statement

Language Elements 11-31

COMMIT Statement

The COMMIT statement explicitly makes permanent any changes made to the

database during the current transaction. Changes made to the database are not

considered permanent until they are committed. A commit also makes the changes

visible to other users. For more information, see "Processing Transactions" on

page 5-41.

Syntax

Keyword and Parameter Description

COMMENT
This keyword specifies a comment to be associated with the current transaction and

is typically used with distributed transactions. The text must be a quoted literal no

more than 50 characters long.

WORK
This keyword is optional and has no effect except to improve readability.

Usage Notes
The COMMITstatement releases all row and table locks. It also erases any savepoints

you marked since the last commit or rollback. Until your changes are committed,

the following conditions hold:

■ You can see the changes when you query the tables you modified, but other

users cannot see the changes.

■ If you change your mind or need to correct a mistake, you can use the

ROLLBACK statement to roll back (undo) the changes.

COMMIT
WORK COMMENT ’ text ’

;

commit_statement

COMMIT Statement

11-32 PL/SQL User’s Guide and Reference

If you commit while a FOR UPDATE cursor is open, a subsequent fetch on that

cursor raises an exception. The cursor remains open, however, so you should close

it. For more information, see "Using FOR UPDATE" on page 5-48.

When a distributed transaction fails, the text specified by COMMENT helps you

diagnose the problem. If a distributed transaction is ever in doubt, Oracle stores the

text in the data dictionary along with the transaction ID. For more information

about distributed transactions, see Oracle8i Concepts.

In SQL, the FORCE clause manually commits an in-doubt distributed transaction.

However, PL/SQL does not support this clause. For example, the following

statement is illegal:

COMMIT WORK FORCE ’23.51.54’; -- illegal

In embedded SQL, the RELEASE option frees all Oracle resources (locks and

cursors) held by a program and disconnects from the database. However, PL/SQL

does not support this option. For example, the following statement is illegal:

COMMIT WORK RELEASE; -- illegal

Related Topics
ROLLBACK Statement, SAVEPOINT Statement

Constants and Variables

Language Elements 11-33

Constants and Variables

You can declare constants and variables in the declarative part of any PL/SQL

block, subprogram, or package. Declarations allocate storage space for a value,

specify its datatype, and name the storage location so that you can reference it.

Declarations can also assign an initial value and impose the NOT NULL constraint.

For more information, see "Declarations" on page 2-30.

Syntax

variable_name datatype

NOT NULL :=

DEFAULT
expression

;

variable_declaration

collection_name % TYPE

collection_type_name

cursor_name % ROWTYPE

cursor_variable_name % TYPE

db_table_name
% ROWTYPE

. column_name % TYPE

object_name % TYPE

REF
object_type_name

record_name % TYPE

record_type_name

ref_cursor_type_name

scalar_datatype_name

variable_name % TYPE

datatype

Constants and Variables

11-34 PL/SQL User’s Guide and Reference

Keyword and Parameter Description

collection_name
This identifies a collection (index-by table, nested table, or varray) previously

declared within the current scope.

collection_type_name
This identifies a user-defined collection type that was defined using the datatype

specifier TABLE or VARRAY.

CONSTANT
This keyword denotes the declaration of a constant. You must initialize a constant in

its declaration. Once initialized, the value of a constant cannot be changed.

constant_name
This identifies a program constant. For naming conventions, see "Identifiers" on

page 2-4.

cursor_name
This identifies an explicit cursor previously declared within the current scope.

cursor_variable_name
This identifies a PL/SQL cursor variable previously declared within the current

scope.

db_table_name
This identifies a database table (or view) that must be accessible when the

declaration is elaborated.

NOT NULL :=

DEFAULT
expression ;constant_name CONSTANT datatype

constant_declaration

Constants and Variables

Language Elements 11-35

db_table_name.column_name
This identifies a database table and column that must be accessible when the

declaration is elaborated.

expression
This is an arbitrarily complex combination of variables, constants, literals,

operators, and function calls. The simplest expression consists of a single variable.

When the declaration is elaborated, the value of expression is assigned to the

constant or variable. The value and the constant or variable must have compatible

datatypes.

NOT NULL
This constraint prevents the assigning of nulls to a variable or constant. At run time,

trying to assign a null to a variable defined as NOT NULL raises the predefined

exception VALUE_ERROR. The constraint NOT NULL must be followed by an

initialization clause.

object_name
This identifies an object (instance of an object type) previously declared within the

current scope.

record_name
This identifies a user-defined or %ROWTYPE record previously declared within the

current scope.

record_name.field_name
This identifies a field in a user-defined or %ROWTYPE record previously declared

within the current scope.

record_type_name
This identifies a user-defined record type that was defined using the datatype

specifier RECORD.

ref_cursor_type_name
This identifies a user-defined cursor variable type that was defined using the

datatype specifier REF CURSOR .

Constants and Variables

11-36 PL/SQL User’s Guide and Reference

%ROWTYPE
This attribute provides a record type that represents a row in a database table or a

row fetched from a previously declared cursor. Fields in the record and

corresponding columns in the row have the same names and datatypes.

scalar_datatype_name
This identifies a predefined scalar datatype such as BOOLEAN, NUMBER, or

VARCHAR2. For more information, see "Datatypes" on page 2-11.

%TYPE
This attribute provides the datatype of a previously declared collection, cursor

variable, field, object, record, database column, or variable.

variable_name
This identifies a program variable.

Usage Notes
Constants and variables are initialized every time a block or subprogram is entered.

By default, variables are initialized to NULL. So, unless you expressly initialize a

variable, its value is undefined.

Whether public or private, constants and variables declared in a package spec are

initialized only once per session.

An initialization clause is required when declaring NOT NULL variables and when

declaring constants. If you use %ROWTYPE to declare a variable, initialization is not

allowed.

Examples
Several examples of variable and constant declarations follow:

credit_limit CONSTANT NUMBER := 5000;
invalid BOOLEAN := FALSE;
acct_id INTEGER(4) NOT NULL DEFAULT 9999;
pi CONSTANT REAL := 3.14159;
last_name VARCHAR2(20);
my_ename emp.ename%TYPE;

Related Topics
Assignment Statement, Expressions, %ROWTYPE Attribute, %TYPE Attribute

Cursor Attributes

Language Elements 11-37

Cursor Attributes

Every explicit cursor and cursor variable has four attributes: %FOUND, %ISOPEN
%NOTFOUND, and %ROWCOUNT. When appended to the cursor or cursor variable,

these attributes return useful information about the execution of a data

manipulation statement. For more information, see "Using Cursor Attributes" on

page 5-35.

The implicit cursor SQL has an additional attribute, %BULK_ROWCOUNT. For more

information, see "SQL Cursor" on page 11-163.

Syntax

Keyword and Parameter Description

cursor_name
This identifies an explicit cursor previously declared within the current scope.

cursor_variable_name
This identifies a PL/SQL cursor variable (or parameter) previously declared within

the current scope.

%FOUND
This is a cursor attribute that can be appended to the name of a cursor or cursor

variable. Before the first fetch from an open cursor, cursor_name%FOUND yields

NULL. Thereafter, it yields TRUE if the last fetch returned a row, or FALSE if the last

fetch failed to return a row.

cursor_name

cursor_variable_name

: host_cursor_variable_name

%

FOUND

ISOPEN

NOTFOUND

ROWCOUNT

cursor_attribute

Cursor Attributes

11-38 PL/SQL User’s Guide and Reference

host_cursor_variable_name
This identifies a cursor variable declared in a PL/SQL host environment and passed

to PL/SQL as a bind variable. The datatype of the host cursor variable is compatible

with the return type of any PL/SQL cursor variable. Host variables must be

prefixed with a colon.

%ISOPEN
This is a cursor attribute that can be appended to the name of a cursor or cursor

variable. If a cursor is open, cursor_name%ISOPEN yields TRUE; otherwise, it

yields FALSE.

%NOTFOUND
This is a cursor attribute that can be appended to the name of a cursor or cursor

variable. Before the first fetch from an open cursor, cursor_name%NOTFOUND
yields NULL. Thereafter, it yields FALSE if the last fetch returned a row, or TRUE if
the last fetch failed to return a row.

%ROWCOUNT
This is a cursor attribute that can be appended to the name of a cursor or cursor

variable. When a cursor is opened, %ROWCOUNT is zeroed. Before the first fetch,

cursor_name%ROWCOUNTyields 0. Thereafter, it yields the number of rows fetched

so far. The number is incremented if the latest fetch returned a row.

Usage Notes
The cursor attributes apply to every cursor or cursor variable. So, for example, you

can open multiple cursors, then use %FOUND or %NOTFOUND to tell which cursors

have rows left to fetch. Likewise, you can use %ROWCOUNT to tell how many rows

have been fetched so far.

If a cursor or cursor variable is not open, referencing it with %FOUND, %NOTFOUND,

or %ROWCOUNT raises the predefined exception INVALID_CURSOR.

When a cursor or cursor variable is opened, the rows that satisfy the associated

query are identified and form the result set. Rows are fetched from the result set one

at a time.

If a SELECT INTO statement returns more than one row, PL/SQL raises the

predefined exception TOO_MANY_ROWS and sets %ROWCOUNT to 1, not the actual

number of rows that satisfy the query.

Cursor Attributes

Language Elements 11-39

Before the first fetch, %NOTFOUND evaluates to NULL. So, if FETCH never executes

successfully, the loop is never exited. That is because the EXIT WHEN statement

executes only if its WHEN condition is true. To be safe, you might want to use the

following EXIT statement instead:

EXIT WHEN c1%NOTFOUND OR c1%NOTFOUND IS NULL;

You can use the cursor attributes in procedural statements but not in SQL

statements.

Examples
The PL/SQL block below uses %FOUND to select an action. The IF statement either

inserts a row or exits the loop unconditionally.

-- available online in file ’examp12’
DECLARE
 CURSOR num1_cur IS SELECT num FROM num1_tab
 ORDER BY sequence;
 CURSOR num2_cur IS SELECT num FROM num2_tab
 ORDER BY sequence;
 num1 num1_tab.num%TYPE;
 num2 num2_tab.num%TYPE;
 pair_num NUMBER := 0;
BEGIN
 OPEN num1_cur;
 OPEN num2_cur;
 LOOP -- loop through the two tables and get pairs of numbers
 FETCH num1_cur INTO num1;
 FETCH num2_cur INTO num2;
 IF (num1_cur%FOUND) AND (num2_cur%FOUND) THEN
 pair_num := pair_num + 1;
 INSERT INTO sum_tab VALUES (pair_num, num1 + num2);
 ELSE
 EXIT;
 END IF;
 END LOOP;
 CLOSE num1_cur;
 CLOSE num2_cur;
END;

Cursor Attributes

11-40 PL/SQL User’s Guide and Reference

The next example uses the same block. However, instead of using %FOUND in an IF
statement, it uses %NOTFOUND in an EXIT WHEN statement.

-- available online in file ’examp13’
DECLARE
 CURSOR num1_cur IS SELECT num FROM num1_tab
 ORDER BY sequence;
 CURSOR num2_cur IS SELECT num FROM num2_tab
 ORDER BY sequence;
 num1 num1_tab.num%TYPE;
 num2 num2_tab.num%TYPE;
 pair_num NUMBER := 0;
BEGIN
 OPEN num1_cur;
 OPEN num2_cur;
 LOOP -- loop through the two tables and get
 -- pairs of numbers
 FETCH num1_cur INTO num1;
 FETCH num2_cur INTO num2;
 EXIT WHEN (num1_cur%NOTFOUND) OR (num2_cur%NOTFOUND);
 pair_num := pair_num + 1;
 INSERT INTO sum_tab VALUES (pair_num, num1 + num2);
 END LOOP;
 CLOSE num1_cur;
 CLOSE num2_cur;
END;

In the following example, you use %ISOPEN to make a decision:

IF NOT (emp_cur%ISOPEN) THEN
 OPEN emp_cur;
END IF;
FETCH emp_cur INTO emp_rec;

The following PL/SQL block uses %ROWCOUNTto fetch the names and salaries of the

five highest-paid employees:

-- available online in file ’examp14’
DECLARE
 CURSOR c1 is
 SELECT ename, empno, sal FROM emp
 ORDER BY sal DESC; -- start with highest-paid employee
 my_ename CHAR(10);
 my_empno NUMBER(4);
 my_sal NUMBER(7,2);

Cursor Attributes

Language Elements 11-41

BEGIN
 OPEN c1;
 LOOP
 FETCH c1 INTO my_ename, my_empno, my_sal;
 EXIT WHEN (c1%ROWCOUNT > 5) OR (c1%NOTFOUND);
 INSERT INTO temp VALUES (my_sal, my_empno, my_ename);
 COMMIT;
 END LOOP;
 CLOSE c1;
END;

In the final example, you use %ROWCOUNT to raise an exception if an unexpectedly

high number of rows is deleted:

DELETE FROM accts WHERE status = ’BAD DEBT’;
IF SQL%ROWCOUNT > 10 THEN

 RAISE out_of_bounds;
END IF;

Related Topics
Cursors, Cursor Variables

Cursor Variables

11-42 PL/SQL User’s Guide and Reference

Cursor Variables

To execute a multi-row query, Oracle opens an unnamed work area that stores

processing information. To access the information, you can use an explicit cursor,

which names the work area. Or, you can use a cursor variable, which points to the

work area. Whereas a cursor always refers to the same query work area, a cursor

variable can refer to different work areas. To create cursor variables, you define a

REF CURSOR type, then declare cursor variables of that type.

Cursor variables are like C or Pascal pointers, which hold the memory location

(address) of some item instead of the item itself. So, declaring a cursor variable

creates a pointer, not an item.

For more information, see "Using Cursor Variables" on page 5-15.

Syntax

TYPE type_name IS REF CURSOR

ref_cursor_type_definition

cursor_variable_name type_name ;

cursor_variable_declaration

RETURN

db_table_name

cursor_name

cursor_variable_name

% ROWTYPE

record_name % TYPE

record_type_name

ref_cursor_type_name
;

Cursor Variables

Language Elements 11-43

Keyword and Parameter Description

cursor_name
This identifies an explicit cursor previously declared within the current scope.

cursor_variable_name
This identifies a PL/SQL cursor variable previously declared within the current

scope.

db_table_name
This identifies a database table (or view) that must be accessible when the

declaration is elaborated.

record_name
This identifies a user-defined record previously declared within the current scope.

record_type_name
This identifies a user-defined record type that was defined using the datatype

specifier RECORD.

REF CURSOR
In PL/SQL, pointers have datatype REF X, where REF is short for REFERENCE and

X stands for a class of objects. Therefore, cursor variables have datatype REF
CURSOR.

RETURN
This keyword introduces the RETURN clause, which specifies the datatype of a

cursor variable return value. You can use the %ROWTYPE attribute in the RETURN
clause to provide a record type that represents a row in a database table or a row

returned by a cursor or strongly typed cursor variable. Also, you can use the %TYPE
attribute to provide the datatype of a previously declared record.

%ROWTYPE
This attribute provides a record type that represents a row in a database table or a

row fetched from a cursor or strongly typed cursor variable. Fields in the record and

corresponding columns in the row have the same names and datatypes.

Cursor Variables

11-44 PL/SQL User’s Guide and Reference

%TYPE
This attribute provides the datatype of a previously declared user-defined record.

type_name
This is a user-defined cursor variable type that was defined using the datatype

specifier REF CURSOR.

Usage Notes
Cursor variables are available to every PL/SQL client. For example, you can declare

a cursor variable in a PL/SQL host environment such as an OCI or Pro*C program,

then pass it as a bind variable to PL/SQL. Moreover, application development tools

such as Oracle Forms and Oracle Reports, which have a PL/SQL engine, can use

cursor variables entirely on the client side.

The Oracle database server also has a PL/SQL engine. So, you can pass cursor

variables back and forth between an application and server via remote procedure

calls (RPCs). And, if you have a PL/SQL engine on the client side, calls from client

to server impose no restrictions. For example, you can declare a cursor variable on

the client side, open and fetch from it on the server side, then continue to fetch from

it back on the client side.

Mainly, you use cursor variables to pass query result sets between PL/SQL stored

subprograms and various clients. Neither PL/SQL nor any of its clients owns a

result set; they simply share a pointer to the query work area in which the result set

is stored. For example, an OCI client, Oracle Forms application, and Oracle server

can all refer to the same work area.

REF CURSOR types can be strong (restrictive) or weak (nonrestrictive). A strong REF
CURSOR type definition specifies a return type, but a weak definition does not.

Strong REF CURSOR types are less error prone because the PL/SQL compiler lets

you associate a strongly typed cursor variable only with type-compatible queries.

However, weak REF CURSOR types are more flexible because the compiler lets you

associate a weakly typed cursor variable with any query.

Once you define a REF CURSOR type, you can declare cursor variables of that type.

You can use %TYPE to provide the datatype of a record variable. Also, in the

RETURNclause of a REF CURSORtype definition, you can use %ROWTYPEto specify a

record type that represents a row returned by a strongly (not weakly) typed cursor

variable.

Currently, cursor variables are subject to several restrictions. See "Restrictions on

Cursor Variables" on page 5-34.

Cursor Variables

Language Elements 11-45

You use three statements to control a cursor variable: OPEN-FOR, FETCH, and

CLOSE. First, you OPEN a cursor variable FOR a multi-row query. Then, you FETCH
rows from the result set. When all the rows are processed, you CLOSE the cursor

variable.

Other OPEN-FOR statements can open the same cursor variable for different queries.

You need not close a cursor variable before reopening it. When you reopen a cursor

variable for a different query, the previous query is lost.

PL/SQL makes sure the return type of the cursor variable is compatible with the

INTO clause of the FETCH statement. For each column value returned by the query

associated with the cursor variable, there must be a corresponding, type-compatible

field or variable in the INTO clause. Also, the number of fields or variables must

equal the number of column values. Otherwise, you get an error.

If both cursor variables involved in an assignment are strongly typed, they must

have the same datatype. However, if one or both cursor variables are weakly typed,

they need not have the same datatype.

When declaring a cursor variable as the formal parameter of a subprogram that

fetches from or closes the cursor variable, you must specify the IN or IN OUT mode.

If the subprogram opens the cursor variable, you must specify the IN OUT mode.

Be careful when passing cursor variables as parameters. At run time, PL/SQL raises

ROWTYPE_MISMATCH if the return types of the actual and formal parameters are

incompatible.

You can apply the cursor attributes %FOUND, %NOTFOUND, %ISOPEN, and

%ROWCOUNT to a cursor variable. For more information, see "Using Cursor

Attributes" on page 5-35.

If you try to fetch from, close, or apply cursor attributes to a cursor variable that

does not point to a query work area, PL/SQL raises the predefined exception

INVALID_CURSOR. You can make a cursor variable (or parameter) point to a query

work area in two ways:

■ OPEN the cursor variable FOR the query.

■ Assign to the cursor variable the value of an already OPENed host cursor

variable or PL/SQL cursor variable.

A query work area remains accessible as long as any cursor variable points to it.

Therefore, you can pass the value of a cursor variable freely from one scope to

another. For example, if you pass a host cursor variable to a PL/SQL block

embedded in a Pro*C program, the work area to which the cursor variable points

remains accessible after the block completes.

Cursor Variables

11-46 PL/SQL User’s Guide and Reference

Examples
You can declare a cursor variable in a PL/SQL host environment such as an OCI or

Pro*C program. To use the host cursor variable, you must pass it as a bind variable

to PL/SQL. In the following Pro*C example, you pass a host cursor variable and a

selector to a PL/SQL block, which opens the cursor variable for the chosen query:

EXEC SQL BEGIN DECLARE SECTION;
 ...
 /* Declare host cursor variable. */
 SQL_CURSOR generic_cv;
 int choice;
EXEC SQL END DECLARE SECTION;
...
/* Initialize host cursor variable. */
EXEC SQL ALLOCATE :generic_cv;
...
/* Pass host cursor variable and selector to PL/SQL block. */
EXEC SQL EXECUTE
BEGIN
 IF :choice = 1 THEN
 OPEN :generic_cv FOR SELECT * FROM emp;
 ELSIF :choice = 2 THEN
 OPEN :generic_cv FOR SELECT * FROM dept;
 ELSIF :choice = 3 THEN
 OPEN :generic_cv FOR SELECT * FROM salgrade;
 END IF;
END;
END-EXEC;

Host cursor variables are compatible with any query return type. They behave just

like weakly typed PL/SQL cursor variables.

When passing host cursor variables to PL/SQL, you can reduce network traffic by

grouping OPEN-FOR statements. For example, the following PL/SQL block opens

three cursor variables in a single round-trip:

/* anonymous PL/SQL block in host environment */
BEGIN
 OPEN :emp_cv FOR SELECT * FROM emp;
 OPEN :dept_cv FOR SELECT * FROM dept;
 OPEN :grade_cv FOR SELECT * FROM salgrade;
END;

Cursor Variables

Language Elements 11-47

You can also pass a cursor variable to PL/SQL by calling a stored procedure that

declares a cursor variable as one of its formal parameters. To centralize data

retrieval, you can group type-compatible queries in a packaged procedure, as the

following example shows:

CREATE PACKAGE emp_data AS
 TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;
 PROCEDURE open_emp_cv (emp_cv IN OUT EmpCurTyp,
 choice IN NUMBER);
END emp_data;

CREATE PACKAGE BODY emp_data AS
 PROCEDURE open_emp_cv (emp_cv IN OUT EmpCurTyp,
 choice IN NUMBER) IS
 BEGIN
 IF choice = 1 THEN
 OPEN emp_cv FOR SELECT * FROM emp WHERE comm IS NOT NULL;
 ELSIF choice = 2 THEN
 OPEN emp_cv FOR SELECT * FROM emp WHERE sal > 2500;
 ELSIF choice = 3 THEN
 OPEN emp_cv FOR SELECT * FROM emp WHERE deptno = 20;
 END IF;
 END open_emp_cv;
END emp_data;

Alternatively, you can use a stand-alone procedure to open the cursor variable.

Simply define the REF CURSOR type in a separate package, then reference that type

in the stand-alone procedure. For instance, if you create the following (bodiless)

package, you can create stand-alone procedures that reference the types it defines:

CREATE PACKAGE cv_types AS
 TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;
 TYPE DeptCurTyp IS REF CURSOR RETURN dept%ROWTYPE;
 TYPE BonusCurTyp IS REF CURSOR RETURN bonus%ROWTYPE;
 ...
END cv_types;

Related Topics
CLOSE Statement, Cursor Attributes, Cursors, FETCH Statement, OPEN-FOR

Statement

Cursors

11-48 PL/SQL User’s Guide and Reference

Cursors

To execute a multi-row query, Oracle opens an unnamed work area that stores

processing information. An explicit cursor lets you name the work area, access the

information, and process the rows individually. For more information, see

"Managing Cursors" on page 5-6.

Syntax

CURSOR cursor_name
(cursor_parameter_declaration

,

)

cursor_body

RETURN rowtype IS select_statement ;

CURSOR cursor_name
(cursor_parameter_declaration

,

)

cursor_spec

RETURN rowtype ;

CURSOR cursor_name
(cursor_parameter_declaration

,

)

cursor_declaration

RETURN rowtype
IS select_statement ;

parameter_name
IN

datatype

:=

DEFAULT
expression

cursor_parameter_declaration

Cursors

Language Elements 11-49

Keyword and Parameter Description

cursor_name
This identifies an explicit cursor previously declared within the current scope.

datatype
This is a type specifier. For the syntax of datatype , see "Constants and Variables"

on page 11-33.

db_table_name
This identifies a database table (or view) that must be accessible when the

declaration is elaborated.

expression
This is an arbitrarily complex combination of variables, constants, literals,

operators, and function calls. The simplest expression consists of a single variable.

When the declaration is elaborated, the value of expression is assigned to the

parameter. The value and the parameter must have compatible datatypes.

parameter_name
This identifies a cursor parameter; that is, a variable declared as the formal

parameter of a cursor. A cursor parameter can appear in a query wherever a

constant can appear. The formal parameters of a cursor must be IN parameters. The

query can also reference other PL/SQL variables within its scope.

db_table_name

cursor_name

cursor_variable_name

% ROWTYPE

record_name % TYPE

record_type_name

rowtype

Cursors

11-50 PL/SQL User’s Guide and Reference

record_name
This identifies a user-defined record previously declared within the current scope.

record_type_name
This identifies a user-defined record type that was defined using the datatype

specifier RECORD.

RETURN
This keyword introduces the RETURN clause, which specifies the datatype of a

cursor return value. You can use the %ROWTYPE attribute in the RETURN clause to

provide a record type that represents a row in a database table or a row returned by

a previously declared cursor. Also, you can use the %TYPE attribute to provide the

datatype of a previously declared record.

A cursor body must have a SELECT statement and the same RETURN clause as its

corresponding cursor spec. Also, the number, order, and datatypes of select items in

the SELECT clause must match the RETURN clause.

%ROWTYPE
This attribute provides a record type that represents a row in a database table or a

row fetched from a previously declared cursor or cursor variable. Fields in the

record and corresponding columns in the row have the same names and datatypes.

select_statement
This is a query that returns a result set of rows. Its syntax is like that of select_
into_statement without the INTO clause. See "SELECT INTO Statement" on

page 11-154. If the cursor declaration declares parameters, each parameter must be

used in the query.

%TYPE
This attribute provides the datatype of a previously declared user-defined record.

Usage Notes
You must declare a cursor before referencing it in an OPEN, FETCH, or CLOSE
statement. And, you must declare a variable before referencing it in a cursor

declaration. The word SQL is reserved by PL/SQL for use as the default name for

implicit cursors and cannot be used in a cursor declaration.

Cursors

Language Elements 11-51

You cannot assign values to a cursor name or use it in an expression. However,

cursors and variables follow the same scoping rules. For more information, see

"Scope and Visibility" on page 2-38.

You retrieve data from a cursor by opening it, then fetching from it. Because the

FETCH statement specifies the target variables, using an INTO clause in the SELECT
statement of a cursor_declaration is redundant and invalid.

The scope of cursor parameters is local to the cursor, meaning that they can be

referenced only within the query used in the cursor declaration. The values of

cursor parameters are used by the associated query when the cursor is opened. The

query can also reference other PL/SQL variables within its scope.

The datatype of a cursor parameter must be specified without constraints. For

example, the following parameter declarations are illegal:

CURSOR c1 (emp_id NUMBER NOT NULL, dept_no NUMBER(2)) -- illegal

Examples
Some examples of cursor declarations follow:

CURSOR c1 IS SELECT empno, ename, job, sal FROM emp
 WHERE sal > 2000;
CURSOR c2 RETURN dept%ROWTYPE IS
 SELECT * FROM dept WHERE deptno = 10;
CURSOR c3 (start_date DATE) IS
 SELECT empno, sal FROM emp WHERE hiredate > start_date;

Related Topics
CLOSE Statement, FETCH Statement, OPEN Statement, SELECT INTO Statement

DELETE Statement

11-52 PL/SQL User’s Guide and Reference

DELETE Statement

The DELETE statement removes entire rows of data from a specified table or view.

For a full description of the DELETE statement, see Oracle8i SQL Reference.

Syntax

WHERE
search_condition

CURRENT OF cursor_name returning_clause
;

schema_name . db_table_name

view_name

@ dblink_name

table_reference

RETURNING

single_row_expression

,

INTO
variable_name

: host_variable_name

,

multiple_row_expression

,
BULK COLLECT

INTO
collection_name

: host_array_name

,

returning_clause

delete_statement

DELETE
FROM

(subquery

TABLE (subquery2)

alias
table_reference

)

DELETE Statement

Language Elements 11-53

Keyword and Parameter Description

alias
This is another (usually short) name for the referenced table or view and is typically

used in the WHERE clause.

BULK COLLECT
This clause instructs the SQL engine to bulk-bind output collections before

returning them to the PL/SQL engine. The SQL engine bulk-binds all collections

referenced in the RETURNING INTO list. The corresponding columns must store

scalar (not composite) values. For more information, see "Taking Advantage of Bulk

Binds" on page 4-29.

returning_clause
This clause lets you return values from the deleted rows, thereby eliminating the

need to SELECT the rows beforehand. You can retrieve the column values into

variables and/or host variables, or into collections and/or host arrays. However,

you cannot use the RETURNING clause for remote or parallel deletes.

subquery
This is a SELECT statement that provides a set of rows for processing. Its syntax is

like that of select_into_statement without the INTO clause. See "SELECT

INTO Statement" on page 11-154.

table_reference
This specifies a table or view, which must be accessible when you execute the

DELETE statement, and for which you must have DELETE privileges.

TABLE (subquery2)
The operand of TABLE is a SELECT statement that returns a single column value,

which must be a nested table. Operator TABLE informs Oracle that the value is a

collection, not a scalar value.

DELETE Statement

11-54 PL/SQL User’s Guide and Reference

WHERE CURRENT OF cursor_name
This clause refers to the latest row processed by the FETCH statement associated

with the cursor identified by cursor_name . The cursor must be FOR UPDATE and

must be open and positioned on a row. If the cursor is not open, the CURRENT OF
clause causes an error.

If the cursor is open, but no rows have been fetched or the last fetch returned no

rows, PL/SQL raises the predefined exception NO_DATA_FOUND.

WHERE search_condition
This clause conditionally chooses rows to be deleted from the referenced table or

view. Only rows that meet the search condition are deleted. If you omit the WHERE
clause, all rows in the table or view are deleted.

Usage Notes
You can use the DELETE WHERE CURRENT OF statement after a fetch from an open

cursor (this includes implicit fetches executed in a cursor FOR loop), provided the

associated query is FOR UPDATE. This statement deletes the current row; that is, the

one just fetched.

The implicit cursor SQL and the cursor attributes %NOTFOUND, %FOUND, and

%ROWCOUNT let you access useful information about the execution of a DELETE
statement.

Examples
The following statement deletes from the bonus table all employees whose sales

were below quota:

DELETE FROM bonus WHERE sales_amt < quota;

The following statement returns two column values from a deleted row into local

variables:

DECLARE
 my_empno emp.empno%TYPE;
 my_ename emp.ename%TYPE;
 my_job emp.job%TYPE;
BEGIN
 ...
 DELETE FROM emp WHERE empno = my_empno
 RETURNING ename, job INTO my_ename, my_job;
END;

DELETE Statement

Language Elements 11-55

You can combine the BULK COLLECT clause with a FORALL statement, in which

case, the SQL engine bulk-binds column values incrementally. In the following

example, if collection depts has 3 elements, each of which causes 5 rows to be

deleted, then collection enums has 15 elements when the statement completes:

FORALL j IN depts.FIRST..depts.LAST
 DELETE FROM emp WHERE deptno = depts(j)
 RETURNING empno BULK COLLECT INTO enums;

The column values returned by each execution are added to the values returned

previously.

Related Topics
FETCH Statement, SELECT Statement

EXCEPTION_INIT Pragma

11-56 PL/SQL User’s Guide and Reference

EXCEPTION_INIT Pragma

The pragma EXCEPTION_INIT associates an exception name with an Oracle error

number. That allows you to refer to any internal exception by name and to write a

specific handler for it instead of using the OTHERS handler. For more information,

see "Using EXCEPTION_INIT" on page 6-8.

Syntax

Keyword and Parameter Description

error_number
This is any valid Oracle error number. These are the same error numbers returned

by the function SQLCODE.

exception_name
This identifies a user-defined exception previously declared within the current

scope.

PRAGMA
This keyword signifies that the statement is a pragma (compiler directive). Pragmas

are processed at compile time, not at run time. They do not affect the meaning of a

program; they simply convey information to the compiler.

Usage Notes
You can use EXCEPTION_INIT in the declarative part of any PL/SQL block,

subprogram, or package. The pragma must appear in the same declarative part as

its associated exception, somewhere after the exception declaration.

Be sure to assign only one exception name to an error number.

PRAGMA EXCEPTION_INIT (exception_name , error_number) ;

exception_init_pragma

EXCEPTION_INIT Pragma

Language Elements 11-57

Example
The following pragma associates the exception deadlock_detected with Oracle

error 60:

DECLARE
 deadlock_detected EXCEPTION;
 PRAGMA EXCEPTION_INIT(deadlock_detected, -60);
BEGIN
 ...
EXCEPTION
 WHEN deadlock_detected THEN
 -- handle the error
 ...
END;

Related Topics
AUTONOMOUS_TRANSACTION Pragma, Exceptions, RESTRICT_REFERENCES

Pragma, SERIALLY_RESUABLE Pragma, SQLCODE

Exceptions

11-58 PL/SQL User’s Guide and Reference

Exceptions

An exception is a runtime error or warning condition, which can be predefined or

user-defined. Predefined exceptions are raised implicitly (automatically) by the

runtime system. User-defined exceptions must be raised explicitly by RAISE
statements. To handle raised exceptions, you write separate routines called

exception handlers. For more information, see Chapter 6, "Error Handling".

Syntax

Keyword and Parameter Description

exception_name
This identifies a predefined exception such as ZERO_DIVIDE, or a user-defined

exception previously declared within the current scope.

OTHERS
This keyword stands for all the exceptions not explicitly named in the

exception-handling part of the block. The use of OTHERS is optional and is allowed

only as the last exception handler. You cannot include OTHERSin a list of exceptions

following the keyword WHEN.

statement
This is an executable statement. For the syntax of statement , see "Blocks" on

page 11-10.

exception_name EXCEPTION ;

exception_declaration

WHEN
exception_name

OR exception_name

OTHERS
THEN statement

exception_handler

Exceptions

Language Elements 11-59

WHEN
This keyword introduces an exception handler. You can have multiple exceptions

execute the same sequence of statements by following the keyword WHEN with a list

of the exceptions, separating them by the keyword OR. If any exception in the list is

raised, the associated statements are executed.

Usage Notes
An exception declaration can appear only in the declarative part of a block,

subprogram, or package. The scope rules for exceptions and variables are the same.

But, unlike variables, exceptions cannot be passed as parameters to subprograms.

Some exceptions are predefined by PL/SQL. For a list of these exceptions, see

"Predefined Exceptions" on page 6-4. PL/SQL declares predefined exceptions

globally in package STANDARD, so you need not declare them yourself.

Redeclaring predefined exceptions is error prone because your local declaration

overrides the global declaration. In such cases, you must use dot notation to specify

the predefined exception, as follows:

EXCEPTION
 WHEN invalid_number OR STANDARD.INVALID_NUMBER THEN ...

The exception-handling part of a PL/SQL block is optional. Exception handlers

must come at the end of the block. They are introduced by the keyword

EXCEPTION. The exception-handling part of the block is terminated by the same

keyword END that terminates the entire block. An exception handler can reference

only those variables that the current block can reference.

An exception should be raised only when an error occurs that makes it undesirable

or impossible to continue processing. If there is no exception handler in the current

block for a raised exception, the exception propagates according to the following

rules:

■ If there is an enclosing block for the current block, the exception is passed on to

that block. The enclosing block then becomes the current block. If a handler for

the raised exception is not found, the process repeats.

■ If there is no enclosing block for the current block, an unhandled exception error is

passed back to the host environment.

Only one exception at a time can be active in the exception-handling part of a block.

Therefore, if an exception is raised inside a handler, the block that encloses the

current block is the first block searched to find a handler for the newly raised

exception. From there on, the exception propagates normally.

Exceptions

11-60 PL/SQL User’s Guide and Reference

Example
The following PL/SQL block has two exception handlers:

DECLARE
 bad_emp_id EXCEPTION;
 bad_acct_no EXCEPTION;
 ...
BEGIN
 ...
EXCEPTION
 WHEN bad_emp_id OR bad_acct_no THEN -- user-defined
 ROLLBACK;
 WHEN ZERO_DIVIDE THEN -- predefined
 INSERT INTO inventory VALUES (part_number, quantity);
 COMMIT;
END;

Related Topics
Blocks, EXCEPTION_INIT Pragma, RAISE Statement

EXECUTE IMMEDIATE Statement

Language Elements 11-61

EXECUTE IMMEDIATE Statement

The EXECUTE IMMEDIATE statement prepares (parses) and immediately executes a

dynamic SQL statement or anonymous PL/SQL block. For more information, see

Chapter 10, "Native Dynamic SQL".

Syntax

Keyword and Parameter Description

bind_argument
This can be an expression whose value is passed to the dynamic SQL statement or

PL/SQL block, or it can be a variable that stores a value returned by the dynamic

SQL statement or PL/SQL block.

EXECUTE IMMEDIATE dynamic_string

execute_immediate_statement

INTO
define_variable

,

record_name

RETURNING

RETURN
INTO bind_argument

,

;

USING

IN

OUT

IN OUT
bind_argument

,

EXECUTE IMMEDIATE Statement

11-62 PL/SQL User’s Guide and Reference

define_variable_name
This identifies a variable that stores a selected column value.

dynamic_string
This is a string literal, variable, or expression that represents a SQL statement or

PL/SQL block.

INTO ...
Used only for single-row queries, this clause specifies the variables or record into

which column values are retrieved. For each value retrieved by the query, there

must be a corresponding, type-compatible variable or field in the INTO clause.

record_name
This identifies a user-defined or %ROWTYPE record that stores a selected row.

RETURNING INTO ...
Used only for DML statements that have a RETURNING clause (without a BULK
COLLECT clause), this clause specifies the bind variables into which column values

are returned. For each value returned by the DML statement, there must be a

corresponding, type-compatible variable in the RETURNING INTO clause.

USING ...
This clause specifies a list of input and/or output bind arguments. If you do not

specify a parameter mode, it defaults to IN .

Usage Notes
Except for multi-row queries, the dynamic string can contain any SQL statement

(without the terminator) or any PL/SQL block (with the terminator). The string can

also contain placeholders for bind arguments. However, you cannot use bind

arguments to pass the names of schema objects to a dynamic SQL statement. For the

right way, see "Passing the Names of Schema Objects" on page 10-11.

You can place all bind arguments in the USING clause. The default parameter mode

is IN . For DML statements that have a RETURNING clause, you can place OUT
arguments in the RETURNING INTO clause without specifying the parameter mode,

which, by definition, is OUT. If you use both the USING clause and the RETURNING
INTO clause, the USING clause can contain only IN arguments.

EXECUTE IMMEDIATE Statement

Language Elements 11-63

At run time, bind arguments replace corresponding placeholders in the dynamic

string. So, every placeholder must be associated with a bind argument in the USING
clause and/or RETURNING INTO clause. You can use numeric, character, and string

literals as bind arguments, but you cannot use Boolean literals (TRUE, FALSE, and

NULL). To pass nulls to the dynamic string, you must use a workaround. See

"Passing Nulls" on page 10-13.

Numeric, character, and string literals are allowed in the USING clause, but Boolean

literals (TRUE, FALSE, NULL) are not. To pass nulls to the dynamic string, you must

use a workaround (see "Passing Nulls" on page 10-13).

Dynamic SQL supports all the SQL datatypes. So, for example, define variables and

bind arguments can be collections, LOBs, instances of an object type, and refs. As a

rule, dynamic SQL does not support PL/SQL-specific types. So, for example, define

variables and bind arguments cannot be Booleans or index-by tables. The only

exception is that a PL/SQL record can appear in the INTO clause.

You can execute a dynamic SQL statement repeatedly using new values for the bind

arguments. However, you incur some overhead because EXECUTE IMMEDIATE
re-prepares the dynamic string before every execution.

Examples
The following PL/SQL block contains several examples of dynamic SQL:

DECLARE
 sql_stmt VARCHAR2(200);
 plsql_block VARCHAR2(500);
 emp_id NUMBER(4) := 7566;
 salary NUMBER(7,2);
 dept_id NUMBER(2) := 50;
 dept_name VARCHAR2(14) := ’PERSONNEL’;
 location VARCHAR2(13) := ’DALLAS’;
 emp_rec emp%ROWTYPE;
BEGIN
 EXECUTE IMMEDIATE ’CREATE TABLE bonus (id NUMBER, amt NUMBER)’;

 sql_stmt := ’INSERT INTO dept VALUES (:1, :2, :3)’;
 EXECUTE IMMEDIATE sql_stmt USING dept_id, dept_name, location;

 sql_stmt := ’SELECT * FROM emp WHERE empno = :id’;
 EXECUTE IMMEDIATE sql_stmt INTO emp_rec USING emp_id;

 plsql_block := ’BEGIN emp_pkg.raise_salary(:id, :amt); END;’;
 EXECUTE IMMEDIATE plsql_block USING 7788, 500;

EXECUTE IMMEDIATE Statement

11-64 PL/SQL User’s Guide and Reference

 sql_stmt := ’UPDATE emp SET sal = 2000 WHERE empno = :1
 RETURNING sal INTO :2’;
 EXECUTE IMMEDIATE sql_stmt USING emp_id RETURNING INTO salary;

 EXECUTE IMMEDIATE ’DELETE FROM dept WHERE deptno = :num’
 USING dept_id;

 EXECUTE IMMEDIATE ’ALTER SESSION SET SQL_TRACE TRUE’;
END;

Related Topics
OPEN-FOR-USING Statement

EXIT Statement

Language Elements 11-65

EXIT Statement

You use the EXIT statement to exit a loop. The EXIT statement has two forms: the

unconditional EXIT and the conditional EXIT WHEN. With either form, you can

name the loop to be exited. For more information, see "Iterative Control: LOOP and

EXIT Statements" on page 3-6.

Syntax

Keyword and Parameter Description

boolean_expression
This is an expression that yields the Boolean value TRUE, FALSE, or NULL. It is

evaluated with each iteration of the loop in which the EXIT WHEN statement

appears. If the expression yields TRUE, the current loop (or the loop labeled by

label_name) is exited immediately. For the syntax of boolean_expression , see

"Expressions" on page 11-67.

EXIT
An unconditional EXIT statement (that is, one without a WHEN clause) exits the

current loop immediately. Execution resumes with the statement following the loop.

label_name
This identifies the loop to be exited. You can exit not only the current loop but any

enclosing labeled loop.

Usage Notes
The EXIT statement can be used only inside a loop. PL/SQL allows you to code an

infinite loop. For example, the following loop will never terminate normally:

WHILE TRUE LOOP ... END LOOP;

In such cases, you must use an EXIT statement to exit the loop.

EXIT
label_name WHEN boolean_expression

;

exit_statement

EXIT Statement

11-66 PL/SQL User’s Guide and Reference

If you use an EXIT statement to exit a cursor FOR loop prematurely, the cursor is

closed automatically. The cursor is also closed automatically if an exception is raised

inside the loop.

Examples
The EXIT statement in the following example is illegal because you cannot exit

from a block directly; you can exit only from a loop:

DECLARE
 amount NUMBER;
 maximum NUMBER;
BEGIN
 ...
 BEGIN
 ...
 IF amount >= maximum THEN
 EXIT; -- illegal; use RETURN instead
 END IF;
 END;

The following loop normally executes ten times, but it will exit prematurely if there

are less than ten rows to fetch:

FOR i IN 1..10 LOOP
 FETCH c1 INTO emp_rec;
 EXIT WHEN c1%NOTFOUND;
 total_comm := total_comm + emp_rec.comm;
END LOOP;

The following example illustrates the use of loop labels:

<<outer>>
FOR i IN 1..10 LOOP
 ...
 <<inner>>
 FOR j IN 1..100 LOOP
 ...
 EXIT outer WHEN ... -- exits both loops
 END LOOP inner;
END LOOP outer;

Related Topics
Expressions, LOOP Statements

Expressions

Language Elements 11-67

Expressions

An expression is an arbitrarily complex combination of variables, constants, literals,

operators, and function calls. The simplest expression is a single variable.

The PL/SQL compiler determines the datatype of an expression from the types of

the variables, constants, literals, and operators that comprise the expression. Every

time the expression is evaluated, a single value of that type results. For more

information, see "Expressions and Comparisons" on page 2-42.

Syntax

(

boolean_expression

character_expression

date_expression

numeric_expression

)

expression

AND

OR

NOT

boolean_constant_name

boolean_function_call

boolean_literal

boolean_variable_name

other_boolean_form

NOT

boolean_constant_name

boolean_function_call

boolean_literal

boolean_variable_name

other_boolean_form

boolean_expression

Expressions

11-68 PL/SQL User’s Guide and Reference

character_constant_name

character_function_call

character_literal

character_variable_name

: host_variable_name
: indicator_name

character_expression

||

character_constant_name

character_function_call

character_literal

character_variable_name

: host_variable_name
: indicator_name

collection_name . EXISTS (index)

cursor_name

cursor_variable_name

: host_cursor_variable_name

SQL

%

FOUND

ISOPEN

NOTFOUND

expression

relational_operator expression

IS
NOT

NULL

NOT

LIKE pattern

BETWEEN expression AND expression

IN (expression

,

)

other_boolean_form

Expressions

Language Elements 11-69

cursor_name

cursor_variable_name

: host_cursor_variable_name

SQL

% ROWCOUNT

SQL % BULK_ROWCOUNT (index)

: host_variable_name
: indicator_name

numeric_constant_name

numeric_function_call

numeric_literal

numeric_variable_name

collection_name .

COUNT

FIRST

LAST

LIMIT

NEXT

PRIOR
(index)

** exponent

numeric_subexpression

Expressions

11-70 PL/SQL User’s Guide and Reference

Keyword and Parameter Description

BETWEEN
This comparison operator tests whether a value lies in a specified range. It means

"greater than or equal to low value and less than or equal to high value."

boolean_constant_name
This identifies a constant of type BOOLEAN, which must be initialized to the value

TRUE, FALSE, or NULL. Arithmetic operations on Boolean constants are illegal.

boolean_expression
This is an expression that yields the Boolean value TRUE, FALSE, or NULL.

date_constant_name

date_function_call

date_literal

date_variable_name

: host_variable_name
: indicator_name

date_expression

+

_
numeric_expression

numeric_subexpression

+

–

*

/

numeric_subexpression

numeric_expression

Expressions

Language Elements 11-71

boolean_function_call
This is any function call that returns a Boolean value.

boolean_literal
This is the predefined value TRUE, FALSE, or NULL (which stands for a missing,

unknown, or inapplicable value). You cannot insert the value TRUE or FALSE into a

database column.

boolean_variable_name
This identifies a variable of type BOOLEAN. Only the values TRUE, FALSE, and NULL
can be assigned to a BOOLEAN variable. You cannot select or fetch column values

into a BOOLEAN variable. Also, arithmetic operations on BOOLEAN variables are

illegal.

%BULK_ROWCOUNT
Designed for use with the FORALL statement, this is a composite attribute of the

implicit cursor SQL. For more information, see "SQL Cursor" on page 11-163.

character_constant_name
This identifies a previously declared constant that stores a character value. It must

be initialized to a character value or a value implicitly convertible to a character

value.

character_expression
This is an expression that yields a character or character string.

character_function_call
This is a function call that returns a character value or a value implicitly convertible

to a character value.

character_literal
This is a literal that represents a character value or a value implicitly convertible to a

character value.

character_variable_name
This identifies a previously declared variable that stores a character value.

Expressions

11-72 PL/SQL User’s Guide and Reference

collection_name
This identifies a collection (nested table, index-by table, or varray) previously

declared within the current scope.

cursor_name
This identifies an explicit cursor previously declared within the current scope.

cursor_variable_name
This identifies a PL/SQL cursor variable previously declared within the current

scope.

date_constant_name
This identifies a previously declared constant that stores a date value. It must be

initialized to a date value or a value implicitly convertible to a date value.

date_expression
This is an expression that yields a date/time value.

date_function_call
This is a function call that returns a date value or a value implicitly convertible to a

date value.

date_literal
This is a literal that represents a date value or a value implicitly convertible to a date

value.

date_variable_name
This identifies a previously declared variable that stores a date value.

EXISTS, COUNT, FIRST, LAST, LIMIT, NEXT, PRIOR
These are collection methods. When appended to the name of a collection, these

methods return useful information. For example, EXISTS(n) returns TRUE if the

nth element of a collection exists. Otherwise, EXISTS(n) returns FALSE. For more

information, see "Collection Methods" on page 11-19.

exponent
This is an expression that must yield a numeric value.

Expressions

Language Elements 11-73

%FOUND, %ISOPEN, %NOTFOUND, %ROWCOUNT
These are cursor attributes. When appended to the name of a cursor or cursor

variable, these attributes return useful information about the execution of a

multi-row query. You can also append them to the implicit cursor SQL. For more

information, see "Using Cursor Attributes" on page 5-35.

host_cursor_variable_name
This identifies a cursor variable declared in a PL/SQL host environment and passed

to PL/SQL as a bind variable. Host cursor variables must be prefixed with a colon.

host_variable_name
This identifies a variable declared in a PL/SQL host environment and passed to

PL/SQL as a bind variable. The datatype of the host variable must be implicitly

convertible to the appropriate PL/SQL datatype. Also, host variables must be

prefixed with a colon.

IN
This comparison operator tests set membership. It means "equal to any member of."

The set can contain nulls, but they are ignored. Also, expressions of the form

value NOT IN set

yield FALSE if the set contains a null.

index
This is an expression that must yield (or convert implicitly to) an integer.

indicator_name
This identifies an indicator variable declared in a PL/SQL host environment and

passed to PL/SQL. Indicator variables must be prefixed with a colon. An indicator

variable "indicates" the value or condition of its associated host variable. For

example, in the Oracle Precompiler environment, indicator variables can detect

nulls or truncated values in output host variables.

IS NULL
This comparison operator returns the Boolean value TRUE if its operand is null, or

FALSE if its operand is not null.

Expressions

11-74 PL/SQL User’s Guide and Reference

LIKE
This comparison operator compares a character value to a pattern. Case is

significant. LIKE returns the Boolean value TRUE if the character patterns match, or

FALSE if they do not match.

NOT, AND, OR
These are logical operators, which follow the tri-state logic of Table 2–3 on

page 2-44. AND returns the value TRUE only if both its operands are true. OR returns

the value TRUE if either of its operands is true. NOT returns the opposite value

(logical negation) of its operand. For more information, see "Logical Operators" on

page 2-44.

NULL
This keyword represents a null; it stands for a missing, unknown, or inapplicable

value. When NULL is used in a numeric or date expression, the result is a null.

numeric_constant_name
This identifies a previously declared constant that stores a numeric value. It must be

initialized to a numeric value or a value implicitly convertible to a numeric value.

numeric_expression
This is an expression that yields an integer or real value.

numeric_function_call
This is a function call that returns a numeric value or a value implicitly convertible

to a numeric value.

numeric_literal
This is a literal that represents a number or a value implicitly convertible to a

number.

numeric_variable_name
This identifies a previously declared variable that stores a numeric value.

pattern
This is a character string compared by the LIKE operator to a specified string value.

It can include two special-purpose characters called wildcards. An underscore (_)

matches exactly one character; a percent sign (%) matches zero or more characters.

Expressions

Language Elements 11-75

relational_operator
This operator allows you to compare expressions. For the meaning of each operator,

see "Comparison Operators" on page 2-45.

SQL
This identifies a cursor opened implicitly by Oracle to process a SQL data

manipulation statement. The implicit cursor SQL always refers to the most recently

executed SQL statement.

+, -, /, *, **
These symbols are the addition, subtraction, division, multiplication, and

exponentiation operators, respectively.

||
This is the concatenation operator. As the following example shows, the result of

concatenating string1 with string2 is a character string that contains string1 followed

by string2:

’Good’ || ’ morning!’ = ’Good morning!’

The next example shows that nulls have no effect on the result of a concatenation:

’suit’ || NULL || ’case’ = ’suitcase’

A null string (’’), which is zero characters in length, is treated like a null.

Usage Notes
In a Boolean expression, you can only compare values that have compatible

datatypes. For more information, see "Datatype Conversion" on page 2-28.

In conditional control statements, if a Boolean expression yields TRUE, its associated

sequence of statements is executed. But, if the expression yields FALSE or NULL, its

associated sequence of statements is not executed.

The relational operators can be applied to operands of type BOOLEAN. By definition,

TRUE is greater than FALSE. Comparisons involving nulls always yield a null. The

value of a Boolean expression can be assigned only to Boolean variables, not to host

variables or database columns. Also, datatype conversion to or from type BOOLEAN
is not supported.

Expressions

11-76 PL/SQL User’s Guide and Reference

You can use the addition and subtraction operators to increment or decrement a

date value, as the following examples show:

hire_date := ’10-MAY-95’;
hire_date := hire_date + 1; -- makes hire_date ’11-MAY-95’
hire_date := hire_date - 5; -- makes hire_date ’06-MAY-95’

When PL/SQL evaluates a boolean expression, NOT has the highest precedence,

AND has the next-highest precedence, and OR has the lowest precedence. However,

you can use parentheses to override the default operator precedence.

Within an expression, operations occur in their predefined order of precedence.

From first to last (top to bottom), the default order of operations is

parentheses

exponents

unary operators

multiplication and division

addition, subtraction, and concatenation

PL/SQL evaluates operators of equal precedence in no particular order. When

parentheses enclose an expression that is part of a larger expression, PL/SQL

evaluates the parenthesized expression first, then uses the result in the larger

expression. When parenthesized expressions are nested, PL/SQL evaluates the

innermost expression first and the outermost expression last.

Examples
Several examples of expressions follow:

(a + b) > c -- Boolean expression
NOT finished -- Boolean expression
TO_CHAR(acct_no) -- character expression
’Fat ’ || ’cats’ -- character expression
’15-NOV-95’ -- date expression
MONTHS_BETWEEN(d1, d2) -- date expression
pi * r**2 -- numeric expression
emp_cv%ROWCOUNT -- numeric expression

Related Topics
Assignment Statement, Constants and Variables, EXIT Statement, IF Statement,

LOOP Statements

FETCH Statement

Language Elements 11-77

FETCH Statement

The FETCH statement retrieves rows of data one at a time from the result set of a

multi-row query. The data is stored in variables or fields that correspond to the

columns selected by the query. For more information, see "Managing Cursors" on

page 5-6.

Syntax

Keyword and Parameter Description

BULK COLLECT
This clause instructs the SQL engine to bulk-bind output collections before

returning them to the PL/SQL engine. The SQL engine bulk-binds all collections

referenced in the INTO list. For more information, see "Taking Advantage of Bulk

Binds" on page 4-29.

collection_name
This identifies a declared collection into which column values are bulk fetched. For

each query select_item , there must be a corresponding, type-compatible

collection in the list.

FETCH

cursor_name

cursor_variable_name

: host_cursor_variable_name

fetch_statement

INTO
variable_name

,

record_name

BULK COLLECT INTO
collection_name

: host_array_name

,

LIMIT numeric_expression

;

FETCH Statement

11-78 PL/SQL User’s Guide and Reference

cursor_name
This identifies an explicit cursor previously declared within the current scope.

cursor_variable_name
This identifies a PL/SQL cursor variable (or parameter) previously declared within

the current scope.

host_array_name
This identifies an array (declared in a PL/SQL host environment and passed to

PL/SQL as a bind variable) into which column values are bulk fetched. For each

query select_item , there must be a corresponding, type-compatible array in the

list. Host arrays must be prefixed with a colon.

host_cursor_variable_name
This identifies a cursor variable declared in a PL/SQL host environment and passed

to PL/SQL as a bind variable. The datatype of the host cursor variable is compatible

with the return type of any PL/SQL cursor variable. Host variables must be

prefixed with a colon.

LIMIT
This optional clause, allowed only in bulk (not scalar) FETCH statements, lets you

limit the number of rows fetched from the database.

record_name
This identifies a user-defined or %ROWTYPE record into which rows of values are

fetched. For each column value returned by the query associated with the cursor or

cursor variable, there must be a corresponding, type-compatible field in the record.

variable_name
This identifies a previously declared variable into which a column value is fetched.

For each column value returned by the query associated with the cursor or cursor

variable, there must be a corresponding, type-compatible variable in the list.

Usage Notes
You must use either a cursor FOR loop or the FETCH statement to process a

multi-row query.

FETCH Statement

Language Elements 11-79

Any variables in the WHERE clause of the query are evaluated only when the cursor

or cursor variable is opened. To change the result set or the values of variables in

the query, you must reopen the cursor or cursor variable with the variables set to

their new values.

To reopen a cursor, you must close it first. However, you need not close a cursor

variable before reopening it.

You can use different INTO lists on separate fetches with the same cursor or cursor

variable. Each fetch retrieves another row and assigns values to the target variables.

If you FETCH past the last row in the result set, the values of the target fields or

variables are indeterminate and the %NOTFOUND attribute yields TRUE.

PL/SQL makes sure the return type of a cursor variable is compatible with the

INTO clause of the FETCH statement. For each column value returned by the query

associated with the cursor variable, there must be a corresponding, type-compatible

field or variable in the INTO clause. Also, the number of fields or variables must

equal the number of column values.

When you declare a cursor variable as the formal parameter of a subprogram that

fetches from the cursor variable, you must specify the IN or IN OUT mode.

However, if the subprogram also opens the cursor variable, you must specify the IN
OUT mode.

Eventually, the FETCHstatement must fail to return a row, so when that happens, no

exception is raised. To detect the failure, you must use the cursor attribute %FOUND
or %NOTFOUND. For more information, see "Using Cursor Attributes" on page 5-35.

PL/SQL raises the predefined exception INVALID_CURSOR if you try to fetch from

a closed or never-opened cursor or cursor variable.

Examples
The following example shows that any variables in the query associated with a

cursor are evaluated only when the cursor is opened:

DECLARE
 my_sal NUMBER(7,2);
 n INTEGER(2) := 2;
 CURSOR emp_cur IS SELECT n*sal FROM emp;

FETCH Statement

11-80 PL/SQL User’s Guide and Reference

BEGIN
 OPEN emp_cur; -- n equals 2 here
 LOOP
 FETCH emp_cur INTO my_sal;
 EXIT WHEN emp_cur%NOTFOUND;
 -- process the data
 n := n + 1; -- does not affect next FETCH; sal will be
multiplied by 2
 END LOOP;

In the following example, you fetch rows one at a time from the cursor variable

emp_cv into the user-defined record emp_rec :

DECLARE
 TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;
 emp_cv EmpCurTyp;
 emp_rec emp%ROWTYPE;
BEGIN
 LOOP
 FETCH emp_cv INTO emp_rec;
 EXIT WHEN emp_cv%NOTFOUND;
 ...
 END LOOP;
END;

The BULK COLLECT clause lets you bulk-bind entire columns of Oracle data. That

way, you can fetch all rows from the result set at once. In the following example,

you bulk-fetch from a cursor into a collection:

DECLARE
 TYPE NameList IS TABLE OF emp.ename%TYPE;
 names NameList;
 CURSOR c1 IS SELECT ename FROM emp WHERE job = ’CLERK’;
BEGIN
 OPEN c1;
 FETCH c1 BULK COLLECT INTO names;
 ...
 CLOSE c1;
END;

FETCH Statement

Language Elements 11-81

In the example below, you use the LIMIT clause. With each iteration of the loop, the

FETCH statement fetches 100 rows (or less) into index-by table acct_ids . The

previous values are overwritten.

DECLARE
 TYPE NumList IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;
 CURSOR c1 IS SELECT acct_id FROM accounts;
 acct_ids NumList;
 rows NATURAL := 100; -- set limit
BEGIN
 OPEN c1;
 LOOP
 /* The following statement fetches 100 rows (or less). */
 FETCH c1 BULK COLLECT INTO acct_ids LIMIT rows;
 EXIT WHEN c1%NOTFOUND;
 ...
 END LOOP;
 CLOSE c1;
END;

Related Topics
CLOSE Statement, Cursors, Cursor Variables, LOOP Statements, OPEN Statement,

OPEN-FOR Statement

FORALL Statement

11-82 PL/SQL User’s Guide and Reference

FORALL Statement

The FORALL statement instructs the PL/SQL engine to bulk-bind input collections

before sending them to the SQL engine. Although the FORALL statement contains

an iteration scheme, it is not a FOR loop. For more information, see "Taking

Advantage of Bulk Binds" on page 4-29.

Syntax

Keyword and Parameter Description

index_name
This is an undeclared identifier that can be referenced only within the FORALL
statement and only as a collection subscript.

The implicit declaration of index_name overrides any other declaration outside the

loop. So, another variable with the same name cannot be referenced inside the

statement. Inside a FORALL statement, index_name cannot appear in expressions

and cannot be assigned a value.

lower_bound .. upper_bound
These are expressions that must yield number, which, if necessary, PL/SQL rounds

to the nearest integer. The integers must specify a valid range of consecutive index

numbers. The SQL engine executes the SQL statement once for each index number

in the range. The expressions are evaluated only when the FORALLstatement is first

entered.

sql_statement
This must be an INSERT, UPDATE, or DELETE statement that references collection

elements.

FORALL index_name IN lower_bound .. upper_bound

forall_statement

sql_statement ;

FORALL Statement

Language Elements 11-83

Usage Notes
The SQL statement can reference more than one collection. However, the PL/SQL

engine bulk-binds only subscripted collections.

All collection elements in the specified range must exist. If an element is missing or

was deleted, you get an error.

If a FORALL statement fails, database changes are rolled back to an implicit

savepoint marked before each execution of the SQL statement. Changes made

during previous executions are not rolled back.

Example
The following example shows that you can use the lower and upper bounds to

bulk-bind arbitrary slices of a collection:

DECLARE
 TYPE NumList IS VARRAY(15) OF NUMBER;
 depts NumList := NumList();
BEGIN
 -- fill varray here
 ...
 FORALL j IN 6..10 -- bulk-bind middle third of varray
 UPDATE emp SET sal = sal * 1.10 WHERE deptno = depts(j);
END;

Remember, the PL/SQL engine bulk-binds only subscripted collections. So, in the

following example, it does not bulk-bind the collection sals , which is passed to the

function median :

FORALL i IN 1..20
 INSERT INTO emp2 VALUES (enums(i), names(i), median(sals), ...);

Related Topics
BULK COLLECT Clause

Functions

11-84 PL/SQL User’s Guide and Reference

Functions

A function is a subprogram that can take parameters and be invoked. Generally,

you use a function to compute a value. A function has two parts: the specification

and the body. The specification (spec for short) begins with the keyword FUNCTION
and ends with the RETURN clause, which specifies the datatype of the return value.

Parameter declarations are optional. Functions that take no parameters are written

without parentheses. The function body begins with the keyword IS (or AS) and

ends with the keyword END followed by an optional function name.

The function body has three parts: an optional declarative part, an executable part,

and an optional exception-handling part. The declarative part contains declarations

of types, cursors, constants, variables, exceptions, and subprograms. These items

are local and cease to exist when you exit the function. The executable part contains

statements that assign values, control execution, and manipulate Oracle data. The

exception-handling part contains handlers that deal with exceptions raised during

execution. For more information, see "Understanding Functions" on page 7-6.

Syntax

ffunction_declaration | function body

FUNCTION function_name
(parameter_declaration

,

)
RETURN datatype ;

function_spec

CREATE
OR REPLACE

FUNCTION function_name

(parameter_declaration

,

)
RETURN datatype

AUTHID
CURRENT_USER

DEFINER PARALLEL_ENABLE DETERMINISTIC IS

AS

Functions

Language Elements 11-85

Keyword and Parameter Description

AUTHID
This clause determines whether a stored function executes with the privileges of its

owner (the default) or current user and whether its unqualified references to

schema objects are resolved in the schema of the owner or current user. You can

override the default behavior by specifying CURRENT_USER. For more information,

see "Invoker Rights versus Definer Rights" on page 7-29.

CREATE
The optional CREATE clause lets you create stand-alone functions, which are stored

in the Oracle database. You can execute the CREATE statement interactively from

SQL*Plus or from a program using native dynamic SQL (see Chapter 10).

EXCEPTION exception_handler
END

function_name
;

parameter_name

IN

OUT

IN OUT

NOCOPY

datatype

parameter_declaration

:=

DEFAULT
expression

type_definition

item_declaration

function_declaration

procedure_declaration
BEGIN statement

PRAGMA AUTONOMOUS_TRANSACTION ;

Functions

11-86 PL/SQL User’s Guide and Reference

datatype
This is a type specifier. For the syntax of datatype , see "Constants and Variables"

on page 11-33.

DETERMINISTIC
This hint helps the optimizer avoid redundant function calls. If a stored function

was called previously with the same arguments, the optimizer can elect to use the

previous result. The function result should not depend on the state of session

variables or schema objects. Otherwise, results might vary across calls. Only

DETERMINISTIC functions can be called from a function-based index or a

materialized view that has query-rewrite enabled. For more information, see the

statements CREATE INDEX and CREATE MATERIALIZED VIEW in Oracle8i SQL
Reference.

exception_handler
This associates an exception with a sequence of statements, which is executed when

that exception is raised. For the syntax of exception_handler , see "Exceptions"

on page 11-58.

expression
This is an arbitrarily complex combination of variables, constants, literals,

operators, and function calls. The simplest expression consists of a single variable.

When the declaration is elaborated, the value of expression is assigned to the

parameter. The value and the parameter must have compatible datatypes.

function_name
This identifies a user-defined function.

IN, OUT, IN OUT
These parameter modes define the behavior of formal parameters. An IN parameter

lets you pass values to the subprogram being called. An OUT parameter lets you

return values to the caller of the subprogram. An IN OUT parameter lets you pass

initial values to the subprogram being called and return updated values to the

caller.

item_declaration
This declares a program object. For the syntax of item_declaration , see "Blocks"

on page 11-10.

Functions

Language Elements 11-87

NOCOPY
This is a compiler hint (not directive), which allows the PL/SQL compiler to pass

OUTand IN OUT parameters by reference instead of by value (the default). For more

information, see "Using the NOCOPY Compiler Hint" on page 7-17.

PARALLEL_ENABLE
This option declares that a stored function can be used safely in the slave sessions of

parallel DML evaluations. The state of a main (logon) session is never shared with

slave sessions. Each slave session has its own state, which is initialized when the

session begins. The function result should not depend on the state of session

(static) variables. Otherwise, results might vary across sessions.

parameter_name
This identifies a formal parameter, which is a variable declared in a function spec

and referenced in the function body.

PRAGMA AUTONOMOUS_TRANSACTION
This pragma instructs the PL/SQL compiler to mark a function as autonomous
(independent). An autonomous transaction is an independent transaction started by

another transaction, the main transaction. Autonomous transactions let you

suspend the main transaction, do SQL operations, commit or roll back those

operations, then resume the main transaction. For more information, see "Using

Autonomous Transactions" on page 5-52.

procedure_declaration
This declares a procedure. For the syntax of procedure_declaration , see

"Procedures" on page 11-133.

RETURN
This keyword introduces the RETURN clause, which specifies the datatype of the

return value.

type_definition
This specifies a user-defined datatype. For the syntax of type_definition , see

"Blocks" on page 11-10.

:= | DEFAULT
This operator or keyword allows you to initialize IN parameters to default values.

Functions

11-88 PL/SQL User’s Guide and Reference

Usage Notes
A function is called as part of an expression, as the example below shows. To be

callable from SQL statements, a stored function must obey certain rules meant to

control side effects. See "Controlling Sides Effects" on page 7-9.

promotable := sal_ok(new_sal, new_title) AND (rating > 3);

In a function, there must be at least one execution path that leads to a RETURN
statement. Otherwise, you get a function returned without value error at run time.

Also, the RETURN statement must contain an expression, which is evaluated when

the RETURN statement is executed. The resulting value is assigned to the function

identifier, which acts like a variable.

You can write the function spec and body as a unit. Or, you can separate the

function spec from its body. That way, you can hide implementation details by

placing the function in a package. You can define functions in a package body

without declaring their specs in the package spec. However, such functions can be

called only from inside the package.

Inside a function, an IN parameter acts like a constant. So, you cannot assign it a

value. An OUT parameter acts like a local variable. So, you can change its value and

reference the value in any way. An IN OUT parameter acts like an initialized

variable. So, you can assign it a value, which can be assigned to another variable.

For summary information about the parameter modes, see Table 7–1 on page 7-16.

Avoid using the OUT and IN OUT modes with functions. The purpose of a function

is to take zero or more parameters and return a single value. Also, functions should

be free from side effects, which change the values of variables not local to the

subprogram.

Example
The following function returns the balance of a specified bank account:

FUNCTION balance (acct_id INTEGER) RETURN REAL IS
 acct_bal REAL;
BEGIN
 SELECT bal INTO acct_bal FROM accts WHERE acctno = acct_id;
 RETURN acct_bal;
END balance;

Related Topics
Collection Methods, Packages, Procedures

GOTO Statement

Language Elements 11-89

GOTO Statement

The GOTO statement branches unconditionally to a statement label or block label.

The label must be unique within its scope and must precede an executable

statement or a PL/SQL block. The GOTO statement transfers control to the labelled

statement or block. For more information, see "GOTO Statement" on page 3-15.

Syntax

Keyword and Parameter Description

label_name
This is an undeclared identifier that labels an executable statement or a PL/SQL

block. You use a GOTO statement to transfer control to the statement or block

following <<label_name>> .

Usage Notes
Some possible destinations of a GOTO statement are illegal. In particular, a GOTO
statement cannot branch into an IF statement, LOOP statement, or sub-block. For

example, the following GOTO statement is illegal:

BEGIN
 ...
 GOTO update_row; -- illegal branch into IF statement
 ...
 IF valid THEN
 ...
 <<update_row>>
 UPDATE emp SET ...
 END IF;

<< label_name >>

label_declaration

GOTO label_name ;

goto_statement

GOTO Statement

11-90 PL/SQL User’s Guide and Reference

From the current block, a GOTO statement can branch to another place in the block

or into an enclosing block, but not into an exception handler. From an exception

handler, a GOTO statement can branch into an enclosing block, but not into the

current block.

If you use the GOTO statement to exit a cursor FOR loop prematurely, the cursor is

closed automatically. The cursor is also closed automatically if an exception is raised

inside the loop.

A given label can appear only once in a block. However, the label can appear in

other blocks including enclosing blocks and sub-blocks. If a GOTO statement cannot

find its target label in the current block, it branches to the first enclosing block in

which the label appears.

Examples
A GOTO label cannot precede just any keyword. It must precede an executable

statement or a PL/SQL block. For example, the following GOTO statement is illegal:

FOR ctr IN 1..50 LOOP
 DELETE FROM emp WHERE ...
 IF SQL%FOUND THEN
 GOTO end_loop; -- illegal
 END IF;
 ...
<<end_loop>>
END LOOP; -- not an executable statement

To debug the last example, simply add the NULL statement, as follows:

FOR ctr IN 1..50 LOOP
 DELETE FROM emp WHERE ...
 IF SQL%FOUND THEN
 GOTO end_loop;
 END IF;
 ...
<<end_loop>>
NULL; -- an executable statement that specifies inaction
END LOOP;

For more examples of legal and illegal GOTO statements, see "GOTO Statement" on

page 3-15.

IF Statement

Language Elements 11-91

IF Statement

The IF statement lets you execute a sequence of statements conditionally. Whether

the sequence is executed or not depends on the value of a Boolean expression. For

more information, see "Conditional Control: IF Statements" on page 3-2.

Syntax

Keyword and Parameter Description

boolean_expression
This is an expression that yields the Boolean value TRUE, FALSE, or NULL. It is

associated with a sequence of statements, which is executed only if the expression

yields TRUE.

ELSE
If control reaches this keyword, the sequence of statements that follows it is

executed.

ELSIF
This keyword introduces a Boolean expression to be evaluated if the expression

following IF and all the expressions following any preceding ELSIF s yield FALSE
or NULL.

IF boolean_expression THEN statement

if_statement

ELSIF boolean_expression THEN statement

ELSE statement
END IF ;

IF Statement

11-92 PL/SQL User’s Guide and Reference

THEN
This keyword associates the Boolean expression that precedes it with the sequence

of statements that follows it. If the expression yields TRUE, the associated sequence

of statements is executed.

Usage Notes
There are three forms of IF statements: IF-THEN , IF-THEN-ELSE , and

IF-THEN-ELSIF . The simplest form of IF statement associates a Boolean

expression with a sequence of statements enclosed by the keywords THEN and END
IF . The sequence of statements is executed only if the expression yields TRUE. If the

expression yields FALSE or NULL, the IF statement does nothing. In either case,

control passes to the next statement.

The second form of IF statement adds the keyword ELSE followed by an

alternative sequence of statements. The sequence of statements in the ELSEclause is

executed only if the Boolean expression yields FALSE or NULL. Thus, the ELSE
clause ensures that a sequence of statements is executed.

The third form of IF statement uses the keyword ELSIF to introduce additional

Boolean expressions. If the first expression yields FALSE or NULL, the ELSIF clause

evaluates another expression. An IF statement can have any number of ELSIF
clauses; the final ELSE clause is optional. Boolean expressions are evaluated one by

one from top to bottom. If any expression yields TRUE, its associated sequence of

statements is executed and control passes to the next statement. If all expressions

yield FALSE or NULL, the sequence in the ELSE clause is executed.

An IF statement never executes more than one sequence of statements because

processing is complete after any sequence of statements is executed. However, the

THEN and ELSE clauses can include more IF statements. That is, IF statements can

be nested.

IF Statement

Language Elements 11-93

Examples
In the example below, if shoe_count has a value of 10, both the first and second

Boolean expressions yield TRUE. Nevertheless, order_quantity is assigned the

proper value of 50 because processing of an IF statement stops after an expression

yields TRUE and its associated sequence of statements is executed. The expression

associated with ELSIF is never evaluated and control passes to the INSERT
statement.

IF shoe_count < 20 THEN
 order_quantity := 50;
ELSIF shoe_count < 30 THEN
 order_quantity := 20;
ELSE
 order_quantity := 10;
END IF;

INSERT INTO purchase_order VALUES (shoe_type, order_quantity);

In the following example, depending on the value of score , one of two status

messages is inserted into the grades table:

IF score < 70 THEN
 fail := fail + 1;
 INSERT INTO grades VALUES (student_id, ’Failed’);
ELSE
 pass := pass + 1;
 INSERT INTO grades VALUES (student_id, ’Passed’);
END IF;

Related Topics
Expressions

INSERT Statement

11-94 PL/SQL User’s Guide and Reference

INSERT Statement

The INSERT statement adds new rows of data to a specified database table. For a

full description of the INSERT statement, see Oracle8i SQL Reference.

Syntax

Keyword and Parameter Description

alias
This is another (usually short) name for the referenced table or view.

column_name[, column_name]...
This identifies a list of columns in a database table or view. Column names need not

appear in the order in which they were defined by the CREATE TABLE or CREATE
VIEWstatement. However, no column name can appear more than once in the list. If

the list does not include all the columns in a table, the missing columns are set to

NULL or to a default value specified in the CREATE TABLE statement.

insert_statement

(column_name

,

)

INSERT INTO (subquery

TABLE (subquery2)

alias
table_reference

)

VALUES (sql_expression

,

)
returning_clause

subquery3
;

INSERT Statement

Language Elements 11-95

returning_clause
This clause lets you return values from inserted rows, thereby eliminating the need

to SELECT the rows afterward. You can retrieve the column values into variables

and/or host variables, or into collections and/or host arrays. However, you cannot

use the RETURNING clause for remote or parallel inserts. For the syntax of

returning_clause , see "DELETE Statement" on page 11-52.

sql_expression
This is any expression valid in SQL. For more information, see Oracle8i SQL
Reference.

subquery
This is a SELECT statement that provides a set of rows for processing. Its syntax is

like that of select_into_statement without the INTO clause. See "SELECT

INTO Statement" on page 11-154.

subquery3
This is a SELECT statement that returns a value or set of values. As many rows are

added to the table as are returned by the subquery. It must return a value for every

column in the column list or for every column in the table if there is no column list.

table_reference
This identifies a table or view that must be accessible when you execute the INSERT
statement, and for which you must have INSERT privileges. For the syntax of

table_reference , see "DELETE Statement" on page 11-52.

TABLE (subquery2)
The operand of TABLE is a SELECT statement that returns a single column value,

which must be a nested table. Operator TABLE informs Oracle that the value is a

collection, not a scalar value.

VALUES (...)
This clause assigns the values of expressions to corresponding columns in the

column list. If there is no column list, the first value is inserted into the first column

defined by the CREATE TABLE statement, the second value is inserted into the

second column, and so on. There must be only one value for each column in the

column list. Also, the datatypes of the values being inserted must be compatible

with the datatypes of corresponding columns in the column list.

INSERT Statement

11-96 PL/SQL User’s Guide and Reference

Usage Notes
Character and date literals in the VALUES list must be enclosed by single quotes (’).

Numeric literals are not enclosed by quotes.

The implicit cursor SQL and the cursor attributes %NOTFOUND, %FOUND,
%ROWCOUNT, and %ISOPEN let you access useful information about the execution of

an INSERT statement.

Examples
The following examples show various forms of INSERT statement:

INSERT INTO bonus SELECT ename, job, sal, comm FROM emp
 WHERE comm > sal * 0.25;
...
INSERT INTO emp (empno, ename, job, sal, comm, deptno)
 VALUES (4160, ’STURDEVIN’, ’SECURITY GUARD’, 2045, NULL, 30);
...
INSERT INTO dept
 VALUES (my_deptno, UPPER(my_dname), ’CHICAGO’);

Related Topics
SELECT Statement

Literals

Language Elements 11-97

Literals

A literal is an explicit numeric, character, string, or Boolean value not represented

by an identifier. The numeric literal 135 and the string literal ’hello world’ are

examples. For more information, see "Literals" on page 2-7.

Syntax

+

_
integer

real_number

numeric_literal

digit

integer

integer

. integer

.

. integer

E

e

+

_

integer

real_number

’ character ’

’ ’

character_literal

’ character ’

’ ’

string_literal

Literals

11-98 PL/SQL User’s Guide and Reference

Keyword and Parameter Description

character
This is a member of the PL/SQL character set. For more information, see "Character

Set" on page 2-2.

digit
This is one of the numerals 0 .. 9.

TRUE, FALSE, NULL
This is a predefined Boolean value.

Usage Notes
Two kinds of numeric literals can be used in arithmetic expressions: integers and

reals. Numeric literals must be separated by punctuation. Spaces can be used in

addition to the punctuation.

A character literal is an individual character enclosed by single quotes

(apostrophes). Character literals include all the printable characters in the PL/SQL

character set: letters, numerals, spaces, and special symbols.

PL/SQL is case sensitive within character literals. So, for example, PL/SQL

considers the literals ’Q’ and ’q’ to be different.

A string literal is a sequence of zero or more characters enclosed by single quotes.

The null string (’’) contains zero characters. To represent an apostrophe within a

string, write two single quotes. PL/SQL is case sensitive within string literals. So,

for example, PL/SQL considers the literals ’white’ and ’White’ to be different.

Also, trailing blanks are significant within string literals, so ’abc’ and ’abc ’ are

different. Trailing blanks in a literal are never trimmed.

The Boolean values TRUE and FALSE cannot be inserted into a database column.

TRUE

FALSE

NULL

boolean_literal

Literals

Language Elements 11-99

Examples
Several examples of numeric literals follow:

25 6.34 7E2 25e-03 .1 1. +17 -4.4

Several examples of character literals follow:

’H’ ’&’ ’ ’ ’9’ ’]’ ’g’

A few examples of string literals follow:

’$5,000’
’02-AUG-87’
’Don’’t leave without saving your work.’

Related Topics
Constants and Variables, Expressions

LOCK TABLE Statement

11-100 PL/SQL User’s Guide and Reference

LOCK TABLE Statement

The LOCK TABLE statement lets you lock entire database tables in a specified lock

mode. That enables you to share or deny access to tables while maintaining their

integrity. For more information, see "Using LOCK TABLE" on page 5-49.

Syntax

Keyword and Parameter Description

lock_mode
This parameter specifies the lock mode. It must be one of the following: ROW SHARE,

ROW EXCLUSIVE, SHARE UPDATE, SHARE, SHARE ROW EXCLUSIVE, or EXCLUSIVE.

NOWAIT
This optional keyword tells Oracle not to wait if the table has been locked by

another user. Control is immediately returned to your program, so it can do other

work before trying again to acquire the lock.

table_reference
This identifies a table or view that must be accessible when you execute the LOCK
TABLE statement. For the syntax of table_reference , see "DELETE Statement"

on page 11-52.

Usage Notes
If you omit the keyword NOWAIT, Oracle waits until the table is available; the wait

has no set limit. Table locks are released when your transaction issues a commit or

rollback.

A table lock never keeps other users from querying a table, and a query never

acquires a table lock.

LOCK TABLE table_reference

,

IN lock_mode MODE
NOWAIT

;

lock_table_statement

LOCK TABLE Statement

Language Elements 11-101

If your program includes SQL locking statements, make sure the Oracle users

requesting locks have the privileges needed to obtain the locks. Your DBA can lock

any table. Other users can lock tables they own or tables for which they have a

privilege, such as SELECT, INSERT, UPDATE, or DELETE.

Example
The following statement locks the accts table in shared mode:

LOCK TABLE accts IN SHARE MODE;

Related Topics
COMMIT Statement, ROLLBACK Statement

LOOP Statements

11-102 PL/SQL User’s Guide and Reference

LOOP Statements

LOOPstatements execute a sequence of statements multiple times. The loop encloses

the sequence of statements that is to be repeated. PL/SQL provides four kinds of

loop statements: basic loop, WHILE loop, FOR loop, and cursor FOR loop. For more

information, see "Iterative Control: LOOP and EXIT Statements" on page 3-6.

Syntax

<< label_name >>
LOOP statement END LOOP

label_name
;

basic_loop_statement

<< label_name >>
WHILE boolean_expression

while_loop_statement

<< label_name >>
FOR index_name IN

for_loop_statement

REVERSE
lower_bound .. upper_bound

LOOP statement END LOOP
label_name

;

LOOP statement END LOOP
label_name

;

LOOP Statements

Language Elements 11-103

Keyword and Parameter Description

basic_loop_statement
The simplest form of LOOP statement is the basic (or infinite) loop, which encloses a

sequence of statements between the keywords LOOP and END LOOP. With each

iteration of the loop, the sequence of statements is executed, then control resumes at

the top of the loop. If further processing is undesirable or impossible, you can use

the EXIT , GOTO, or RAISE statement to complete the loop. A raised exception will

also complete the loop.

boolean_expression
This is an expression that yields the Boolean value TRUE, FALSE, or NULL. It is

associated with a sequence of statements, which is executed only if the expression

yields TRUE. For the syntax of boolean_expression , see "Expressions" on

page 11-67.

cursor_for_loop_statement
A cursor FOR loop implicitly declares its loop index as a %ROWTYPE record, opens a

cursor, repeatedly fetches rows of values from the result set into fields in the record,

and closes the cursor when all rows have been processed.

<< label_name >>
FOR record_name IN

cursor_for_loop_statement

cursor_name
(cursor_parameter_name

,

)

(select_statement)

LOOP statement END LOOP
label_name

;

LOOP Statements

11-104 PL/SQL User’s Guide and Reference

cursor_name
This identifies an explicit cursor previously declared within the current scope.

When the cursor FOR loop is entered, cursor_name cannot refer to a cursor

already opened by an OPEN statement or an enclosing cursor FOR loop.

cursor_parameter_name
This identifies a cursor parameter; that is, a variable declared as the formal

parameter of a cursor. (For the syntax of cursor_parameter_declaration , see

"Cursors" on page 11-48.) A cursor parameter can appear in a query wherever a

constant can appear. The formal parameters of a cursor must be IN parameters.

for_loop_statement
Whereas the number of iterations through a WHILE loop is unknown until the loop

completes, the number of iterations through a FOR loop is known before the loop is

entered. Numeric FOR loops iterate over a specified range of integers. The range is

part of an iteration scheme, which is enclosed by the keywords FOR and LOOP.

The range is evaluated when the FOR loop is first entered and is never re-evaluated.

The sequence of statements in the loop is executed once for each integer in the range

defined by lower_bound..upper_bound . After each iteration, the loop index is

incremented.

index_name
This is an undeclared identifier that names the loop index (sometimes called a loop

counter). Its scope is the loop itself. Therefore, you cannot reference the index

outside the loop.

The implicit declaration of index_name overrides any other declaration outside the

loop. So, another variable with the same name cannot be referenced inside the loop

unless a label is used, as follows:

<<main>>
DECLARE
 num NUMBER;
BEGIN
 ...
 FOR num IN 1..10 LOOP
 IF main.num > 5 THEN -- refers to the variable num,
 ... -- not to the loop index
 END IF;
 END LOOP;
END main;

LOOP Statements

Language Elements 11-105

Inside a loop, its index is treated like a constant. The index can appear in

expressions, but cannot be assigned a value.

label_name
This is an undeclared identifier that optionally labels a loop. If used, label_name
must be enclosed by double angle brackets and must appear at the beginning of the

loop. Optionally, label_name (not enclosed in angle brackets) can also appear at

the end of the loop.

You can use label_name in an EXIT statement to exit the loop labelled by label_
name. You can exit not only the current loop, but any enclosing loop.

You cannot reference the index of a FORloop from a nested FORloop if both indexes

have the same name unless the outer loop is labeled by label_name and you use

dot notation, as follows:

label_name.index_name

In the following example, you compare two loop indexes that have the same name,

one used by an enclosing loop, the other by a nested loop:

<<outer>>
FOR ctr IN 1..20 LOOP
 ...
 <<inner>>
 FOR ctr IN 1..10 LOOP
 IF outer.ctr > ctr THEN ...
 END LOOP inner;
END LOOP outer;

lower_bound .. upper_bound
These are expressions that must yield numbers. Otherwise, PL/SQL raises the

predefined exception VALUE_ERROR. The expressions are evaluated only when the

loop is first entered. The lower bound need not be 1, as the example below shows.

However, the loop counter increment (or decrement) must be 1.

FOR i IN -5..10 LOOP
 ...
END LOOP;

LOOP Statements

11-106 PL/SQL User’s Guide and Reference

Internally, PL/SQL assigns the values of the bounds to temporary PLS_INTEGER
variables, and, if necessary, rounds the values to the nearest integer. The magnitude

range of a PLS_INTEGER is +/- 2**31 . So, if a bound evaluates to a number

outside that range, you get a numeric overflow error when PL/SQL attempts the

assignment.

By default, the loop index is assigned the value of lower_bound . If that value is

not greater than the value of upper_bound , the sequence of statements in the loop

is executed, then the index is incremented. If the value of the index is still not

greater than the value of upper_bound , the sequence of statements is executed

again. This process repeats until the value of the index is greater than the value of

upper_bound . At that point, the loop completes.

record_name
This identifies an implicitly declared record. The record has the same structure as a

row retrieved by cursor_name or select_statement .

The record is defined only inside the loop. You cannot refer to its fields outside the

loop. The implicit declaration of record_name overrides any other declaration

outside the loop. So, another record with the same name cannot be referenced inside

the loop unless a label is used.

Fields in the record store column values from the implicitly fetched row. The fields

have the same names and datatypes as their corresponding columns. To access field

values, you use dot notation, as follows:

record_name.field_name

Select-items fetched from the FOR loop cursor must have simple names or, if they

are expressions, must have aliases. In the following example, wages is an alias for

the select item sal+NVL(comm,0) :

CURSOR c1 IS SELECT empno, sal+comm wages, job ...

REVERSE
By default, iteration proceeds upward from the lower bound to the upper bound.

However, if you use the keyword REVERSE, iteration proceeds downward from the

upper bound to the lower bound.

An example follows:

FOR i IN REVERSE 1..10 LOOP -- i starts at 10, ends at 1
 -- statements here execute 10 times
END LOOP;

LOOP Statements

Language Elements 11-107

The loop index is assigned the value of upper_bound . If that value is not less than

the value of lower_bound , the sequence of statements in the loop is executed, then

the index is decremented. If the value of the index is still not less than the value of

lower_bound , the sequence of statements is executed again. This process repeats

until the value of the index is less than the value of lower_bound . At that point,

the loop completes.

select_statement
This is a query associated with an internal cursor unavailable to you. Its syntax is

like that of select_into_statement without the INTO clause. See "SELECT

INTO Statement" on page 11-154. PL/SQL automatically declares, opens, fetches

from, and closes the internal cursor. Because select_statement is not an

independent statement, the implicit cursor SQL does not apply to it.

while_loop_statement
The WHILE-LOOP statement associates a Boolean expression with a sequence of

statements enclosed by the keywords LOOP and END LOOP. Before each iteration of

the loop, the expression is evaluated. If the expression yields TRUE, the sequence of

statements is executed, then control resumes at the top of the loop. If the expression

yields FALSE or NULL, the loop is bypassed and control passes to the next

statement.

Usage Notes
You can use the EXIT WHEN statement to exit any loop prematurely. If the Boolean

expression in the WHEN clause yields TRUE, the loop is exited immediately.

When you exit a cursor FOR loop, the cursor is closed automatically even if you use

an EXIT or GOTO statement to exit the loop prematurely. The cursor is also closed

automatically if an exception is raised inside the loop.

LOOP Statements

11-108 PL/SQL User’s Guide and Reference

Example
The following cursor FOR loop calculates a bonus, then inserts the result into a

database table:

DECLARE
 bonus REAL;
 CURSOR c1 IS SELECT empno, sal, comm FROM emp;
BEGIN
 FOR c1rec IN c1 LOOP
 bonus := (c1rec.sal * 0.05) + (c1rec.comm * 0.25);
 INSERT INTO bonuses VALUES (c1rec.empno, bonus);
 END LOOP;
 COMMIT;
END;

Related Topics
Cursors, EXIT Statement, FETCH Statement, OPEN Statement, %ROWTYPE

Attribute

NULL Statement

Language Elements 11-109

NULL Statement

The NULL statement explicitly specifies inaction; it does nothing other than pass

control to the next statement. In a construct allowing alternative actions, the NULL
statement serves as a placeholder. For more information, see "NULL Statement" on

page 3-19.

Syntax

Usage Notes
The NULL statement improves readability by making the meaning and action of

conditional statements clear. It tells readers that the associated alternative has not

been overlooked, but that indeed no action is necessary.

Each clause in an IF statement must contain at least one executable statement. The

NULL statement meets this requirement. So, you can use the NULL statement in

clauses that correspond to circumstances in which no action is taken. The NULL
statement and Boolean value NULL are unrelated.

Examples
In the following example, the NULL statement emphasizes that only salespeople

receive commissions:

IF job_title = ’SALESPERSON’ THEN
 compute_commission(emp_id);
ELSE
 NULL;
END IF;

In the next example, the NULL statement shows that no action is taken for unnamed

exceptions:

EXCEPTION
 ...
 WHEN OTHERS THEN
 NULL;

NULL ;

null_statement

Object Types

11-110 PL/SQL User’s Guide and Reference

Object Types

An object type is a user-defined composite datatype that encapsulates a data

structure along with the functions and procedures needed to manipulate the data.

The variables that form the data structure are called attributes. The functions and

procedures that characterize the behavior of the object type are called methods.

element Currently, you cannot define object types within PL/SQL. They must be

CREATEd and stored in an Oracle database, where they can be shared by many

programs. When you define an object type (in SQL*Plus for example) using the

CREATE TYPEstatement, you create an abstract template for some real-world object.

The template specifies only those attributes and behaviors the object will need in

the application environment.

The data structure formed by the set of attributes is public (visible to client

programs). However, well-behaved programs do not manipulate it directly. Instead,

they use the set of methods provided. That way, the data is kept in a proper state. At

run time, when the data structure is filled with values, you have created an instance
of an object type. You can create as many instances (usually called objects) as you

need. For more information, see Chapter 9, "Object Types".

Syntax

CREATE
OR REPLACE

TYPE
schema_name .

type_name

object_type_declaration | object_type_spec

AUTHID
CURRENT_USER

DEFINER IS

AS
OBJECT (member_list) ;

attribute_name attribute_type

,

member_list

Object Types

Language Elements 11-111

Keyword and Parameter Description

attribute_datatype
This is any Oracle datatype except LONG, LONG RAW, NCHAR, NCLOB, NVARCHAR2,
ROWID, UROWID, the PL/SQL-specific types BINARY_INTEGER (and its subtypes),

BOOLEAN, PLS_INTEGER, RECORD, REF CURSOR, %TYPE, and %ROWTYPE, and types

defined inside a PL/SQL package.

attribute_name
This identifies an object attribute. The name must be unique within the object type

(but can be reused in other object types). You cannot initialize an attribute in its

declaration using the assignment operator or DEFAULT clause. Also, you cannot

impose the NOT NULL constraint on an attribute.

,
MAP

ORDER
MEMBER function_spec

CREATE
OR REPLACE

TYPE BODY
schema_name .

type_name

object_type_body

IS

AS

MEMBER

STATIC

subprogram_body

call_spec
;

,
MEMBER

STATIC

subprogram_spec

call_spec

, pragma_restrict_refs

MAP

ORDER
MEMBER function_body ;

END ;

Object Types

11-112 PL/SQL User’s Guide and Reference

AUTHID Clause
This determines whether all member methods execute with the privileges of their

definer (the default) or invoker, and whether their unqualified references to schema

objects are resolved in the schema of the definer or invoker. For more information,

see "Invoker Rights versus Definer Rights" on page 7-29.

call_spec
This publishes a Java method or external C function in the Oracle data dictionary. It

publishes the routine by mapping its name, parameter types, and return type to

their SQL counterparts. To learn how to write Java call specs, see Oracle8i Java Stored
Procedures Developer’s Guide. To learn how to write C call specs Oracle8i Application
Developer’s Guide - Fundamentals.

function_body
This defines the underlying implementation of a MEMBERfunction. For the syntax of

function_body , see "Functions" on page 11-84.

MAP
This keyword indicates that a method orders objects by mapping them to values of

a scalar datatype such as CHAR or REAL, which have a predefined order. PL/SQL

uses the ordering to evaluate Boolean expressions such as x > y , and to do

comparisons implied by the DISTINCT , GROUP BY, and ORDER BY clauses. A map

method returns the relative position of an object in the ordering of all such objects.

An object type can contain only one map method, which must be a parameterless

function having the return type DATE, NUMBER, VARCHAR2, or an ANSI SQL type

such as CHARACTER, INTEGER, or REAL.

MEMBER | STATIC
This keyword allows you to declare a subprogram or call spec as a method in an

object type spec. The method cannot have the same name as the object type or any

of its attributes. MEMBER methods are invoked on instances, as in

instance_expression.method()

However, STATIC methods are invoked on the object type, not its instances, as in

object_type_name.method()

Object Types

Language Elements 11-113

For each subprogram spec in an object type spec, there must be a corresponding

subprogram body in the object type body. To match specs and bodies, the compiler

does a token-by-token comparison of their headers. So, the headers must match

word for word.

MEMBER methods accept a built-in parameter named SELF, which is an instance of

the object type. Whether declared implicitly or explicitly, it is always the first

parameter passed to a MEMBER method. However, STATIC methods cannot accept

or reference SELF.

In the method body, SELF denotes the object whose method was invoked. For

example, method transform declares SELF as an IN OUT parameter:

CREATE TYPE Complex AS OBJECT (
 MEMBER FUNCTION transform (SELF IN OUT Complex) ...

You cannot specify a different datatype for SELF. In MEMBER functions, if SELF is

not declared, its parameter mode defaults to IN . However, in MEMBERprocedures, if

SELF is not declared, its parameter mode defaults to IN OUT. You cannot specify the

OUT parameter mode for SELF.

ORDER
This keyword indicates that a method compares two objects. An object type can

contain only one order method, which must be a function that returns a numeric

result.

Every order method takes just two parameters: the built-in parameter SELF and

another object of the same type. If c1 and c2 are Customer objects, a comparison

such as c1 > c2 calls method match automatically. The method returns a negative

number, zero, or a positive number signifying that SELF is respectively less than,

equal to, or greater than the other parameter. If either parameter passed to an order

method is null, the method returns a null.

pragma_restrict_refs
This is pragma RESTRICT_REFERENCES, which lets you check for violations of

"purity" rules. To be callable from SQL statements, a member function must obey

those rules, which are meant to control side effects. If any SQL statement inside the

function body violates a rule, you get an error at run time (when the statement is

parsed). For the syntax of the pragma, see "RESTRICT_REFERENCES Pragma" on

page 11-144 (in this context, omit the pragma terminator).

Object Types

11-114 PL/SQL User’s Guide and Reference

The pragma asserts that a member function does not read and/or write database

tables and/or package variables. For more information about the purity rules and

pragma RESTRICT_REFERENCES, see Oracle8i Application Developer’s Guide -
Fundamentals.

schema_name
This qualifier identifies the schema containing the object type. If you omit schema_
name, Oracle assumes the object type is in your schema.

subprogram_body
This defines the underlying implementation of a MEMBER or STATIC function or

procedure. Its syntax is like that of function_body or procedure_body without

the terminator. See "Functions" on page 11-84 and/or "Procedures" on page 11-133.

subprogram_spec
This declares the interface to a MEMBER or STATIC function or procedure. Its syntax

is like that of function_spec or procedure_spec without the terminator. See

"Functions" on page 11-84 and/or "Procedures" on page 11-133.

type_name
This identifies a user-defined object type that was defined using the datatype

specifier OBJECT.

Usage Notes
Once an object type is defined and installed in the schema, you can use it to declare

objects in any PL/SQL block, subprogram, or package. For example, you can use

the object type to specify the datatype of an attribute, column, variable, bind

variable, record field, table element, formal parameter, or function result.

Like a package, an object type has two parts: a specification and a body. The

specification (spec for short) is the interface to your applications; it declares a data

structure (set of attributes) along with the operations (methods) needed to

manipulate the data. The body fully defines the methods, and so implements the

spec.

All the information a client program needs to use the methods is in the spec. Think

of the spec as an operational interface and of the body as a black box. You can

debug, enhance, or replace the body without changing the spec.

Object Types

Language Elements 11-115

An object type encapsulates data and operations. So, you can declare attributes and

methods in an object type spec, but not constants, exceptions, cursors, or types. At

least one attribute is required (the maximum is 1000); methods are optional.

In an object type spec, all attributes must be declared before any methods. Only

subprograms have an underlying implementation. So, if an object type spec declares

only attributes and/or call specs, the object type body is unnecessary. You cannot

declare attributes in the body. All declarations in the object type spec are public

(visible outside the object type).

You can refer to an attribute only by name (not by its position in the object type). To

access or change the value of an attribute, you use dot notation. Attribute names

can be chained, which allows you to access the attributes of a nested object type.

In an object type, methods can reference attributes and other methods without a

qualifier. In SQL statements, calls to a parameterless method require an empty

parameter list. In procedural statements, an empty parameter list is optional unless

you chain calls, in which case it is required for all but the last call.

From a SQL statement, if you call a MEMBERmethod on a null instance (that is, SELF
is null), the method is not invoked and a null is returned. From a procedural

statement, if you call a MEMBER method on a null instance, PL/SQL raises the

predefined exception SELF_IS_NULL before the method is invoked.

You can declare a map method or an order method but not both. If you declare

either method, you can compare objects in SQL and procedural statements.

However, if you declare neither method, you can compare objects only in SQL

statements and only for equality or inequality. Two objects of the same type are

equal only if the values of their corresponding attributes are equal.

Like packaged subprograms, methods of the same kind (functions or procedures)

can be overloaded. That is, you can use the same name for different methods if their

formal parameters differ in number, order, or datatype family.

Every object type has a constructor method (constructor for short), which is a

system-defined function with the same name as the object type. You use the

constructor to initialize and return an instance of that object type. PL/SQL never

calls a constructor implicitly, so you must call it explicitly. Constructor calls are

allowed wherever function calls are allowed.

Object Types

11-116 PL/SQL User’s Guide and Reference

Examples
In the SQL*Plus script below, an object type for a stack is defined. The last item

added to a stack is the first item removed. The operations push and pop update the

stack while preserving last in, first out (LIFO) behavior. The simplest

implementation of a stack uses an integer array. Integers are stored in array

elements, with one end of the array representing the top of the stack.

CREATE TYPE IntArray AS VARRAY(25) OF INTEGER;

CREATE TYPE Stack AS OBJECT (
 max_size INTEGER,
 top INTEGER,
 position IntArray,
 MEMBER PROCEDURE initialize,
 MEMBER FUNCTION full RETURN BOOLEAN,
 MEMBER FUNCTION empty RETURN BOOLEAN,
 MEMBER PROCEDURE push (n IN INTEGER),
 MEMBER PROCEDURE pop (n OUT INTEGER)
);

CREATE TYPE BODY Stack AS
 MEMBER PROCEDURE initialize IS
 -- fill stack with nulls
 BEGIN
 top := 0;
 -- call constructor for varray and set element 1 to NULL
 position := IntArray(NULL);
 max_size := position.LIMIT; -- use size constraint (25)
 position.EXTEND(max_size - 1, 1); -- copy element 1
 END initialize;

 MEMBER FUNCTION full RETURN BOOLEAN IS
 -- return TRUE if stack is full
 BEGIN
 RETURN (top = max_size);
 END full;

 MEMBER FUNCTION empty RETURN BOOLEAN IS
 -- return TRUE if stack is empty
 BEGIN
 RETURN (top = 0);
 END empty;

Object Types

Language Elements 11-117

 MEMBER PROCEDURE push (n IN INTEGER) IS
 -- push integer onto stack
 BEGIN
 IF NOT full THEN
 top := top + 1;
 position(top) := n;
 ELSE -- stack is full
 RAISE_APPLICATION_ERROR(-20101, ’stack overflow’);
 END IF;
 END push;

 MEMBER PROCEDURE pop (n OUT INTEGER) IS
 -- pop integer off stack and return its value
 BEGIN
 IF NOT empty THEN
 n := position(top);
 top := top - 1;
 ELSE -- stack is empty
 RAISE_APPLICATION_ERROR(-20102, ’stack underflow’);
 END IF;
 END pop;
END;

In methods push and pop , the built-in procedure raise_application_error
issues user-defined error messages. That way, you can report errors to the client

program and avoid returning unhandled exceptions to the host environment. In an

object type, methods can reference attributes and other methods without a qualifier,

as the following example shows:

CREATE TYPE Stack AS OBJECT (
 top INTEGER,
 MEMBER FUNCTION full RETURN BOOLEAN,
 MEMBER PROCEDURE push (n IN INTEGER),
 ...
);

CREATE TYPE BODY Stack AS
 ...
 MEMBER PROCEDURE push (n IN INTEGER) IS
 BEGIN
 IF NOT full THEN
 top := top + 1;
 ...
 END push;
END;

Object Types

11-118 PL/SQL User’s Guide and Reference

The following example shows that you can nest object types:

CREATE TYPE Address AS OBJECT (
 street_address VARCHAR2(35),
 city VARCHAR2(15),
 state CHAR(2),
 zip_code INTEGER
);

CREATE TYPE Person AS OBJECT (
 first_name VARCHAR2(15),
 last_name VARCHAR2(15),
 birthday DATE,
 home_address Address, -- nested object type
 phone_number VARCHAR2(15),
 ss_number INTEGER,
);

Related Topics
Functions, Packages, Procedures

OPEN Statement

Language Elements 11-119

OPEN Statement

The OPEN statement executes the multi-row query associated with an explicit

cursor. It also allocates resources used by Oracle to process the query and identifies

the result set, which consists of all rows that meet the query search criteria. The

cursor is positioned before the first row in the result set. For more information, see

"Managing Cursors" on page 5-6.

Syntax

Keyword and Parameter Description

cursor_name
This identifies an explicit cursor previously declared within the current scope and

not currently open.

cursor_parameter_name
This identifies a cursor parameter; that is, a variable declared as the formal

parameter of a cursor. (For the syntax of cursor_parameter_declaration , see

"Cursors" on page 11-48.) A cursor parameter can appear in a query wherever a

constant can appear.

Usage Notes
Generally, PL/SQL parses an explicit cursor only the first time it is opened and

parses a SQL statement (thereby creating an implicit cursor) only the first time the

statement is executed. All the parsed SQL statements are cached. A SQL statement

must be reparsed only if it is aged out of the cache by a new SQL statement.

So, although you must close a cursor before you can reopen it, PL/SQL need not

reparse the associated SELECT statement. If you close, then immediately reopen the

cursor, a reparse is definitely not needed.

OPEN cursor_name
(cursor_parameter_name

,

)
;

open_statement

OPEN Statement

11-120 PL/SQL User’s Guide and Reference

Rows in the result set are not retrieved when the OPEN statement is executed.

Rather, the FETCH statement retrieves the rows. With a FOR UPDATE cursor, the

rows are locked when the cursor is opened.

If formal parameters are declared, actual parameters must be passed to the cursor.

The formal parameters of a cursor must be IN parameters. Therefore, they cannot

return values to actual parameters. The values of actual parameters are used when

the cursor is opened. The datatypes of the formal and actual parameters must be

compatible. The query can also reference PL/SQL variables declared within its

scope.

Unless you want to accept default values, each formal parameter in the cursor

declaration must have a corresponding actual parameter in the OPEN statement.

Formal parameters declared with a default value need not have a corresponding

actual parameter. They can simply assume their default values when the OPEN
statement is executed.

You can associate the actual parameters in an OPEN statement with the formal

parameters in a cursor declaration using positional or named notation. For more

information, see "Positional versus Named Notation" on page 7-13.

If a cursor is currently open, you cannot use its name in a cursor FOR loop.

Examples
Given the cursor declaration

CURSOR parts_cur IS SELECT part_num, part_price FROM parts;

the following statement opens the cursor:

OPEN parts_cur;

Given the cursor declaration

CURSOR emp_cur(my_ename VARCHAR2, my_comm NUMBER DEFAULT 0)
 IS SELECT * FROM emp WHERE ...

any of the following statements opens the cursor:

OPEN emp_cur(’LEE’);
OPEN emp_cur(’BLAKE’, 300);
OPEN emp_cur(employee_name, 150);

Related Topics
CLOSE Statement, Cursors, FETCH Statement, LOOP Statements

OPEN-FOR Statement

Language Elements 11-121

OPEN-FOR Statement

The OPEN-FOR statement executes the multi-row query associated with a cursor

variable. It also allocates resources used by Oracle to process the query and

identifies the result set, which consists of all rows that meet the query search

criteria. The cursor variable is positioned before the first row in the result set. For

more information, see "Using Cursor Variables" on page 5-15.

Syntax

Keyword and Parameter Description

cursor_variable_name
This identifies a cursor variable (or parameter) previously declared within the

current scope.

host_cursor_variable_name
This identifies a cursor variable previously declared in a PL/SQL host environment

and passed to PL/SQL as a bind variable. The datatype of the host cursor variable is

compatible with the return type of any PL/SQL cursor variable. Host variables

must be prefixed with a colon.

select_statement
This is a query associated with cursor_variable , which returns a set of values.

The query can reference bind variables and PL/SQL variables, parameters, and

functions. The syntax of select_statement is similar to the syntax for select_
into_statement defined in "SELECT INTO Statement" on page 11-154, except

that select_statement cannot have an INTO clause.

OPEN
cursor_variable_name

: host_cursor_variable_name
FOR select_statement ;

open_for_statement

OPEN-FOR Statement

11-122 PL/SQL User’s Guide and Reference

Usage Notes
You can declare a cursor variable in a PL/SQL host environment such as an OCI or

Pro*C program. To open the host cursor variable, you can pass it as a bind variable

to an anonymous PL/SQL block. You can reduce network traffic by grouping

OPEN-FOR statements. For example, the following PL/SQL block opens five cursor

variables in a single round-trip:

/* anonymous PL/SQL block in host environment */
BEGIN
 OPEN :emp_cv FOR SELECT * FROM emp;
 OPEN :dept_cv FOR SELECT * FROM dept;
 OPEN :grade_cv FOR SELECT * FROM salgrade;
 OPEN :pay_cv FOR SELECT * FROM payroll;
 OPEN :ins_cv FOR SELECT * FROM insurance;
END;

Other OPEN-FORstatements can open the same cursor variable for different queries.

You need not close a cursor variable before reopening it. When you reopen a cursor

variable for a different query, the previous query is lost.

Unlike cursors, cursor variables do not take parameters. No flexibility is lost,

however, because you can pass whole queries (not just parameters) to a cursor

variable.

You can pass a cursor variable to PL/SQL by calling a stored procedure that

declares a cursor variable as one of its formal parameters. However, remote

subprograms on another server cannot accept the values of cursor variables.

Therefore, you cannot use a remote procedure call (RPC) to open a cursor variable.

When you declare a cursor variable as the formal parameter of a subprogram that

opens the cursor variable, you must specify the IN OUT mode. That way, the

subprogram can pass an open cursor back to the caller.

Examples
To centralize data retrieval, you can group type-compatible queries in a stored

procedure. When called, the following packaged procedure opens the cursor

variable emp_cv for the chosen query:

CREATE PACKAGE emp_data AS
 TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;
 PROCEDURE open_emp_cv (emp_cv IN OUT EmpCurTyp, choice IN INT);
END emp_data;

OPEN-FOR Statement

Language Elements 11-123

CREATE PACKAGE BODY emp_data AS
 PROCEDURE open_emp_cv (emp_cv IN OUT EmpCurTyp, choice IN INT) IS
 BEGIN
 IF choice = 1 THEN
 OPEN emp_cv FOR SELECT * FROM emp WHERE comm IS NOT NULL;
 ELSIF choice = 2 THEN
 OPEN emp_cv FOR SELECT * FROM emp WHERE sal > 2500;
 ELSIF choice = 3 THEN
 OPEN emp_cv FOR SELECT * FROM emp WHERE deptno = 20;
 END IF;
 END;
END emp_data;

For more flexibility, you can pass a cursor variable and a selector to a stored

procedure that executes queries with different return types. Here is an example:

CREATE PACKAGE admin_data AS
 TYPE GenCurTyp IS REF CURSOR;
 PROCEDURE open_cv (generic_cv IN OUT GenCurTyp, choice INT);
END admin_data;

CREATE PACKAGE BODY admin_data AS
 PROCEDURE open_cv (generic_cv IN OUT GenCurTyp, choice INT) IS
 BEGIN
 IF choice = 1 THEN
 OPEN generic_cv FOR SELECT * FROM emp;
 ELSIF choice = 2 THEN
 OPEN generic_cv FOR SELECT * FROM dept;
 ELSIF choice = 3 THEN
 OPEN generic_cv FOR SELECT * FROM salgrade;
 END IF;
 END;
END admin_data;

Related Topics
CLOSE Statement, Cursor Variables, FETCH Statement, LOOP Statements

OPEN-FOR-USING Statement

11-124 PL/SQL User’s Guide and Reference

OPEN-FOR-USING Statement

The OPEN-FOR-USING statement associates a cursor variable with a multi-row

query, executes the query, identifies the result set, positions the cursor before the

first row in the result set, then zeroes the rows-processed count kept by

%ROWCOUNT. For more information, see Chapter 10, "Native Dynamic SQL".

Syntax

Keyword and Parameter Description

bind_argument
This is an expression whose value is passed to the dynamic SELECT statement.

cursor_variable_name
This identifies a weakly typed cursor variable (one without a return type)

previously declared within the current scope.

dynamic_string
This is a string literal, variable, or expression that represents a multi-row SELECT
statement.

host_cursor_variable_name
This identifies a cursor variable declared in a PL/SQL host environment and passed

to PL/SQL as a bind variable. The datatype of the host cursor variable is compatible

with the return type of any PL/SQL cursor variable. Host variables must be

prefixed with a colon.

OPEN
cursor_variable_name

: host_cursor_variable_name
FOR dynamic_string

open_for_using_statement

USING bind_argument

,

;

OPEN-FOR-USING Statement

Language Elements 11-125

USING ...
This optional clause specifies a list of bind arguments. At run time, bind arguments

in the USING clause replace corresponding placeholders in the dynamic SELECT
statement.

Usage Notes
You use three statements to process a dynamic multi-row query:

OPEN-FOR-USING, FETCH, and CLOSE. First, you OPEN a cursor variable FOR a

multi-row query. Then, you FETCH rows from the result set. When all the rows are

processed, you CLOSE the cursor variable. (For more information about cursor

variables, see "Using Cursor Variables" on page 5-15.)

The dynamic string can contain any multi-row SELECT statement (without the

terminator). The string can also contain placeholders for bind arguments. However,

you cannot use bind arguments to pass the names of schema objects to a dynamic

SQL statement. For the right way, see "Passing the Names of Schema Objects" on

page 10-11.

Every placeholder in the dynamic string must be associated with a bind argument

in the USING clause. Numeric, character, and string literals are allowed in the

USINGclause, but Boolean literals (TRUE, FALSE, NULL) are not. To pass nulls to the

dynamic string, you must use a workaround. See "Passing Nulls" on page 10-13.

Any bind arguments in the query are evaluated only when the cursor variable is

opened. So, to fetch from the cursor using different bind values, you must reopen

the cursor variable with the bind arguments set to their new values.

Dynamic SQL supports all the SQL datatypes. For example, bind arguments can be

collections, LOBs, instances of an object type, and refs. As a rule, dynamic SQL does

not support PL/SQL-specific types. For instance, bind arguments cannot be

Booleans or index-by tables.

OPEN-FOR-USING Statement

11-126 PL/SQL User’s Guide and Reference

Example
In the following example, we declare a cursor variable, then associate it with a

dynamic SELECT statement that returns rows from the emp table:

DECLARE
 TYPE EmpCurTyp IS REF CURSOR; -- define weak REF CURSOR type
 emp_cv EmpCurTyp; -- declare cursor variable
 my_ename VARCHAR2(15);
 my_sal NUMBER := 1000;
BEGIN
 OPEN emp_cv FOR -- open cursor variable
 ’SELECT ename, sal FROM emp WHERE sal > :s’ USING my_sal;
 ...
END;

Related Topics
EXECUTE IMMEDIATE Statement

Packages

Language Elements 11-127

Packages

A package is a schema object that groups logically related PL/SQL types, items, and

subprograms. Packages have two parts: a specification (spec for short) and a body.

For more information, see Chapter 8, "Packages".

Syntax

CREATE
OR REPLACE

PACKAGE
schema_name .

package_name

package_declaration | package_spec

collection_type_definition

record_type_definition

subtype_definition

collection_declaration

constant_declaration

exception_declaration

object_declaration

record_declaration

variable_declaration

cursor_spec

function_spec

procedure_spec

call spec

pragma_restrict_refs

END
package_name

;

AUTHID
CURRENT_USER

DEFINER IS

AS

PRAGMA SERIALLY_REUSABLE ;

Packages

11-128 PL/SQL User’s Guide and Reference

Keyword and Parameter Description

AUTHID
This determines whether all the packaged subprograms execute with the privileges

of their definer (the default) or invoker, and whether their unqualified references to

schema objects are resolved in the schema of the definer or invoker. For more

information, see "Invoker Rights versus Definer Rights" on page 7-29.

CREATE
OR REPLACE

PACKAGE BODY
schema_name .

package_name

package_body

collection_type_definition

record_type_definition

subtype_definition

collection_declaration

constant_declaration

exception_declaration

object_declaration

record_declaration

variable_declaration

cursor_body

function_body

procedure_body

call spec

BEGIN statement
END

package_name
;

IS

AS

PRAGMA SERIALLY_REUSABLE ;

Packages

Language Elements 11-129

call_spec
This publishes a Java method or external C function in the Oracle data dictionary. It

publishes the routine by mapping its name, parameter types, and return type to

their SQL counterparts. For more information, see Oracle8i Java Stored Procedures
Developer’s Guide and/or Oracle8i Application Developer’s Guide - Fundamentals.

collection_declaration
This declares a collection (nested table, index-by table, or varray). For the syntax of

collection_declaration , see "Collections" on page 11-24.

collection_type_definition
This defines a collection type using the datatype specifier TABLE or VARRAY.

constant_declaration
This declares a constant. For the syntax of constant_declaration , see

"Constants and Variables" on page 11-33.

cursor_body
This defines the underlying implementation of an explicit cursor. For the syntax of

cursor_body , see "Cursors" on page 11-48.

cursor_spec
This declares the interface to an explicit cursor. For the syntax of cursor_spec , see

"Cursors" on page 11-48.

exception_declaration
This declares an exception. For the syntax of exception_declaration , see

"Exceptions" on page 11-58.

function_body
This defines the underlying implementation of a function. For the syntax of

function_body , see "Functions" on page 11-84.

function_spec
This declares the interface to a function. For the syntax of function_spec , see

"Functions" on page 11-84.

Packages

11-130 PL/SQL User’s Guide and Reference

object_declaration
This declares an object (instance of an object type). For the syntax of object_
declaration , see "Object Types" on page 11-110.

package_name
This identifies a package stored in the database. For naming conventions, see

"Identifiers" on page 2-4.

pragma_restrict_refs
This is pragma RESTRICT_REFERENCES, which lets you check for violations of

"purity" rules. To be callable from SQL statements, a function must obey those rules,

which are meant to control side effects. If any SQL statement inside the function

body violates a rule, you get an error at run time (when the statement is parsed).

For the syntax of the pragma, see "RESTRICT_REFERENCES Pragma" on

page 11-144.

The pragma asserts that a function does not read and/or write database tables

and/or package variables. For more information about the purity rules and pragma

RESTRICT_REFERENCES, see Oracle8i Application Developer’s Guide - Fundamentals.

PRAGMA SERIALLY_REUSABLE
This pragma lets you mark a package as serially reusable. You can so mark a package

if its state is needed only for the duration of one call to the server (for example, an

OCI call to the server or a server-to-server RPC). For more information, see Oracle8i
Application Developer’s Guide - Fundamentals.

procedure_body
This defines the underlying implementation of a procedure. For the syntax of

procedure_body , see "Procedures" on page 11-133.

procedure_spec
This declares the interface to a procedure. For the syntax of procedure_spec , see

"Procedures" on page 11-133.

record_declaration
This declares a user-defined record. For the syntax of record_declaration , see

"Records" on page 11-140.

Packages

Language Elements 11-131

record_type_definition
This defines a record type using the datatype specifier RECORD or the attribute

%ROWTYPE.

schema_name
This qualifier identifies the schema containing the package. If you omit schema_
name, Oracle assumes the package is in your schema.

variable_declaration
This declares a variable. For the syntax of variable_declaration , see

"Constants and Variables" on page 11-33.

Usage Notes
You cannot define packages in a PL/SQL block or subprogram. However, you can

use any Oracle tool that supports PL/SQL to create and store packages in an Oracle

database. You can issue the CREATE PACKAGE and CREATE PACKAGE BODY
statements from an Oracle Precompiler or OCI host program, or interactively from

SQL*Plus.

Most packages have a spec and a body. The spec is the interface to your

applications; it declares the types, variables, constants, exceptions, cursors, and

subprograms available for use. The body fully defines cursors and subprograms,

and so implements the spec.

Only subprograms and cursors have an underlying implementation (definition). So,

if a spec declares only types, constants, variables, exceptions, and call specs, the

package body is unnecessary. However, the body can still be used to initialize items

declared in the spec, as the following example shows:

CREATE PACKAGE emp_actions AS
 ...
 number_hired INTEGER;
END emp_actions;

CREATE PACKAGE BODY emp_actions AS
BEGIN
 number_hired := 0;
END emp_actions;

Packages

11-132 PL/SQL User’s Guide and Reference

You can code and compile a spec without its body. Once the spec has been

compiled, stored subprograms that reference the package can be compiled as well.

You need not define the package bodies fully until you are ready to complete the

application. Furthermore, you can debug, enhance, or replace a package body

without changing the interface (package spec) to the package body. So, you need

not recompile calling programs.

Cursors and subprograms declared in a package spec must be defined in the

package body. Other program items declared in the package spec cannot be

redeclared in the package body.

To match subprogram specs and bodies, PL/SQL does a token-by-token

comparison of their headers. So, except for white space, the headers must match

word for word. Otherwise, PL/SQL raises an exception.

Related Topics
Collections, Cursors, Exceptions, Functions, Procedures, Records

Procedures

Language Elements 11-133

Procedures

A procedure is a subprogram that can take parameters and be invoked. Generally,

you use a procedure to perform an action. A procedure has two parts: the

specification and the body. The specification (spec for short) begins with the

keyword PROCEDURE and ends with the procedure name or a parameter list.

Parameter declarations are optional. Procedures that take no parameters are written

without parentheses. The procedure body begins with the keyword IS (or AS) and

ends with the keyword END followed by an optional procedure name.

The procedure body has three parts: an optional declarative part, an executable

part, and an optional exception-handling part. The declarative part contains

declarations of types, cursors, constants, variables, exceptions, and subprograms.

These items are local and cease to exist when you exit the procedure. The executable

part contains statements that assign values, control execution, and manipulate

Oracle data. The exception-handling part contains handlers that deal with

exceptions raised during execution. For more information, see "Understanding

Procedures" on page 7-3.

Syntax

PROCEDURE procedure_name
(parameter_declaration

,

)
;

procedure_spec

procedure_declaration | procedure body

(parameter_declaration

,

)
AUTHID

CURRENT_USER

DEFINER IS

AS

CREATE
OR REPLACE

PROCEDURE procedure_name

Procedures

11-134 PL/SQL User’s Guide and Reference

Keyword and Parameter Description

AUTHID
This clause determines whether a stored procedure executes with the privileges of

its owner (the default) or current user and whether its unqualified references to

schema objects are resolved in the schema of the owner or current user. You can

override the default behavior by specifying CURRENT_USER. For more information,

see "Invoker Rights versus Definer Rights" on page 7-29.

CREATE
The optional CREATE clause lets you create stand-alone procedures, which are

stored in the Oracle database. You can execute the CREATE statement interactively

from SQL*Plus or from a program using native dynamic SQL (see Chapter 10).

EXCEPTION exception_handler
END

procedure_name
;

parameter_name

IN

OUT

IN OUT

NOCOPY

datatype

parameter_declaration

:=

DEFAULT
expression

type_definition

item_declaration

function_declaration

procedure_declaration
BEGIN statement

PRAGMA AUTONOMOUS_TRANSACTION ;

Procedures

Language Elements 11-135

 datatype
This is a type specifier. For the syntax of datatype , see "Constants and Variables"

on page 11-33.

exception_handler
This associates an exception with a sequence of statements, which is executed when

that exception is raised. For the syntax of exception_handler , see "Exceptions"

on page 11-58.

expression
This is an arbitrarily complex combination of variables, constants, literals,

operators, and function calls. The simplest expression consists of a single variable.

When the declaration is elaborated, the value of expression is assigned to the

parameter. The value and the parameter must have compatible datatypes.

function_declaration
This declares a function. For the syntax of function_declaration , see

"Functions" on page 11-84.

IN, OUT, IN OUT
These parameter modes define the behavior of formal parameters. An IN parameter

lets you pass values to the subprogram being called. An OUT parameter lets you

return values to the caller of the subprogram. An IN OUT parameter lets you pass

initial values to the subprogram being called and return updated values to the

caller.

item_declaration
This declares a program object. For the syntax of item_declaration , see "Blocks"

on page 11-10.

NOCOPY
This is a compiler hint (not directive), which allows the PL/SQL compiler to pass

OUTand IN OUT parameters by reference instead of by value (the default). For more

information, see "Using the NOCOPY Compiler Hint" on page 7-17.

parameter_name
This identifies a formal parameter, which is a variable declared in a procedure spec

and referenced in the procedure body.

Procedures

11-136 PL/SQL User’s Guide and Reference

PRAGMA AUTONOMOUS_TRANSACTION
This pragma instructs the PL/SQL compiler to mark a function as autonomous
(independent). An autonomous transaction is an independent transaction started by

another transaction, the main transaction. Autonomous transactions let you

suspend the main transaction, do SQL operations, commit or roll back those

operations, then resume the main transaction. For more information, see "Using

Autonomous Transactions" on page 5-52.

procedure_name
This identifies a user-defined procedure.

type_definition
This specifies a user-defined datatype. For the syntax of type_definition , see

"Blocks" on page 11-10.

:= | DEFAULT
This operator or keyword allows you to initialize IN parameters to default values.

Usage Notes
A procedure is called as a PL/SQL statement. For example, the procedure raise_
salary might be called as follows:

raise_salary(emp_num, amount);

Inside a procedure, an IN parameter acts like a constant. So, you cannot assign it a

value. An OUT parameter acts like a local variable. So, you can change its value and

reference the value in any way. An IN OUT parameter acts like an initialized

variable. So, you can assign it a value, which can be assigned to another variable.

For summary information about the parameter modes, see Table 7–1 on page 7-16.

Unlike OUT and IN OUT parameters, IN parameters can be initialized to default

values. For more information, see "Using Parameter Defaults" on page 7-20.

Before exiting a procedure, explicitly assign values to all OUTformal parameters. An

OUT actual parameter can have a value before the subprogram is called. However,

when you call the subprogram, the value is lost unless you specify the compiler hint

NOCOPY or the subprogram exits with an unhandled exception.

Procedures

Language Elements 11-137

You can write the procedure spec and body as a unit. Or, you can separate the

procedure spec from its body. That way, you can hide implementation details by

placing the procedure in a package. You can define procedures in a package body

without declaring their specs in the package spec. However, such procedures can be

called only from inside the package.

At least one statement must appear in the executable part of a procedure. The NULL
statement meets this requirement.

Examples
The following procedure debits a bank account:

PROCEDURE debit_account (acct_id INTEGER, amount REAL) IS
 old_balance REAL;
 new_balance REAL;
 overdrawn EXCEPTION;
BEGIN
 SELECT bal INTO old_balance FROM accts WHERE acctno = acct_id;
 new_balance := old_balance - amount;
 IF new_balance < 0 THEN
 RAISE overdrawn;
 ELSE
 UPDATE accts SET bal = new_balance WHERE acctno = acct_id;
 END IF;
EXCEPTION
 WHEN overdrawn THEN
 ...
END debit_account;

In the following example, you call the procedure using named notation:

debit_account(amount => 500, acct_id => 10261);

Related Topics
Collection Methods, Functions, Packages

RAISE Statement

11-138 PL/SQL User’s Guide and Reference

RAISE Statement

The RAISE statement stops normal execution of a PL/SQL block or subprogram

and transfers control to the appropriate exception handler. Normally, predefined

exceptions are raised implicitly by the runtime system. However, RAISE statements

can also raise predefined exceptions. User-defined exceptions must be raised

explicitly by RAISE statements. For more information, see "User-Defined

Exceptions" on page 6-7.

Syntax

Keyword and Parameter Description

exception_name
This identifies a predefined or user-defined exception. For a list of the predefined

exceptions, see "Predefined Exceptions" on page 6-4.

Usage Notes
PL/SQL blocks and subprograms should RAISE an exception only when an error

makes it undesirable or impossible to continue processing. You can code a RAISE
statement for a given exception anywhere within the scope of that exception.

When an exception is raised, if PL/SQL cannot find a handler for it in the current

block, the exception propagates. That is, the exception reproduces itself in

successive enclosing blocks until a handler is found or there are no more blocks to

search. In the latter case, PL/SQL returns an unhandled exception error to the host

environment.

Omitting the exception name in a RAISE statement, which is allowed only in an

exception handler, reraises the current exception. When a parameterless RAISE
statement executes in an exception handler, the first block searched is the enclosing

block, not the current block.

RAISE
exception_name

;

raise_statement

RAISE Statement

Language Elements 11-139

Example
In the following example, you raise an exception when an inventoried part is out of

stock:

IF quantity_on_hand = 0 THEN
 RAISE out_of_stock;
END IF;

Related Topics
Exceptions

Records

11-140 PL/SQL User’s Guide and Reference

Records

Records are items of type RECORD. Records have uniquely named fields that can

store data values of different types. Thus, a record lets you treat related but

dissimilar data as a logical unit. For more information, see "What Is a Record?" on

page 4-42.

Syntax

Keyword and Parameter Description

datatype
This is a datatype specifier. For the syntax of datatype , see "Constants and

Variables" on page 11-33.

expression
This is an arbitrarily complex combination of variables, constants, literals,

operators, and function calls. The simplest expression consists of a single variable.

For the syntax of expression , see "Expressions" on page 11-67. When the

declaration is elaborated, the value of expression is assigned to the field. The

value and the field must have compatible datatypes.

TYPE type_name IS RECORD (field_declaration

,

) ;

record_type_definition

field_name datatype

NOT NULL :=

DEFAULT
expressionfield_declaration

record_name type_name ;

record_declaration

Records

Language Elements 11-141

field_name
This identifies a field in a user-defined record.

NOT NULL
This constraint prevents the assigning of nulls to a field. At run time, trying to

assign a null to a field defined as NOT NULL raises the predefined exception VALUE_
ERROR. The constraint NOT NULL must be followed by an initialization clause.

record_name
This identifies a user-defined record.

type_name
This identifies a user-defined record type that was defined using the datatype

specifier RECORD.

:= | DEFAULT
This operator or keyword allows you to initialize fields to default values.

Usage Notes
You can define RECORD types and declare user-defined records in the declarative

part of any block, subprogram, or package. Also, a record can be initialized in its

declaration, as the following example shows:

DECLARE
 TYPE TimeTyp IS RECORD(
 seconds SMALLINT := 0,
 minutes SMALLINT := 0,
 hours SMALLINT := 0);

The next example shows that you can use the %TYPE attribute to specify the

datatype of a field. It also shows that you can add the NOT NULL constraint to any

field declaration and thereby prevent the assigning of nulls to that field. Fields

declared as NOT NULL must be initialized.

DECLARE
 TYPE DeptRecTyp IS RECORD(
 deptno NUMBER(2) NOT NULL := 99,
 dname dept.dname%TYPE,
 loc dept.loc%TYPE);
 dept_rec DeptRecTyp;

Records

11-142 PL/SQL User’s Guide and Reference

To reference individual fields in a record, you use dot notation. For example, you

might assign a value to the field dname in the record dept_rec as follows:

dept_rec.dname := ’PURCHASING’;

Instead of assigning values separately to each field in a record, you can assign

values to all fields at once. This can be done in two ways. First, you can assign one

user-defined record to another if they have the same datatype. (Having fields that

match exactly is not enough.) You can assign a %ROWTYPE record to a user-defined

record if their fields match in number and order, and corresponding fields have

compatible datatypes.

Second, you can use the SELECT or FETCH statement to fetch column values into a

record. The columns in the select-list must appear in the same order as the fields in

your record.

You can declare and reference nested records. That is, a record can be the

component of another record, as the following example shows:

DECLARE
 TYPE TimeTyp IS RECORD(
 minutes SMALLINT,
 hours SMALLINT);
 TYPE MeetingTyp IS RECORD(
 day DATE,
 time_of TimeTyp, -- nested record
 place VARCHAR2(20),
 purpose VARCHAR2(50));
 TYPE PartyTyp IS RECORD(
 day DATE,
 time_of TimeTyp, -- nested record
 place VARCHAR2(15));
 meeting MeetingTyp;
 seminar MeetingTyp;
 party PartyTyp;

The next example shows that you can assign one nested record to another if they

have the same datatype:

seminar.time_of := meeting.time_of;

Such assignments are allowed even if the containing records have different

datatypes.

Records

Language Elements 11-143

User-defined records follow the usual scoping and instantiation rules. In a package,

they are instantiated when you first reference the package and cease to exist when

you end the database session. In a block or subprogram, they are instantiated when

you enter the block or subprogram and cease to exist when you exit the block or

subprogram.

Like scalar variables, user-defined records can be declared as the formal parameters

of procedures and functions. The restrictions that apply to scalar parameters also

apply to user-defined records.

You can specify a RECORDtype in the RETURNclause of a function spec. That allows

the function to return a user-defined record of the same type. When calling a

function that returns a user-defined record, use the following syntax to reference

fields in the record:

function_name(parameter_list).field_name

To reference nested fields, use this syntax:

function_name(parameter_list).field_name.nested_field_name

If the function takes no parameters, code an empty parameter list. The syntax

follows:

function_name().field_name

Example
In the following example, you define a RECORDtype named DeptRecTyp , declare a

record named dept_rec , then select a row of values into the record:

DECLARE
 TYPE DeptRecTyp IS RECORD(
 deptno NUMBER(2),
 dname VARCHAR2(14),
 loc VARCHAR2(13));
 dept_rec DeptRecTyp;
 ...
BEGIN
 SELECT deptno, dname, loc INTO dept_rec FROM dept
 WHERE deptno = 20;

Related Topics
Collections, Functions, Procedures, Packages

RESTRICT_REFERENCES Pragma

11-144 PL/SQL User’s Guide and Reference

RESTRICT_REFERENCES Pragma

To be callable from SQL statements, a stored function must obey certain "purity"

rules, which are meant to control side effects. (See "Controlling Sides Effects" on

page 7-9.) If any SQL statement inside the function body violates a rule, you get an

error at run time (when the statement is parsed). To check for violations of the rules,

you can use the pragma (compiler directive) RESTRICT_REFERENCES. The pragma

asserts that a function does not read and/or write database tables and/or package

variables. For more information, see Oracle8i Application Developer’s Guide -
Fundamentals.

Syntax

Keyword and Parameter Description

DEFAULT
This specifies that the pragma applies to all functions in the package spec or object

type spec. You can still declare the pragma for individual functions. Such pragmas

override the default pragma.

function_name
This identifies a user-defined function.

PRAGMA
This keyword signifies that the statement is a pragma (compiler directive). Pragmas

are processed at compile time, not at run time. They do not affect the meaning of a

program; they simply convey information to the compiler.

PRAGMA RESTRICT_REFERENCES (
function_name

DEFAULT
,

RNDS

WNDS

RNPS

WNPS

TRUST

,

) ;

pragma_restrict_refs

RESTRICT_REFERENCES Pragma

Language Elements 11-145

RNDS
This asserts that the function reads no database state (does not query database

tables).

RNPS
This asserts that the function reads no package state (does not reference the values

of packaged variables)

TRUST
This asserts that the function can be trusted not to violate one or more rules.

WNDS
This asserts that the function writes no database state (does not modify database

tables).

WNPS
This asserts that the function writes no package state (does not change the values of

packaged variables).

Usage Notes
You can declare the pragma RESTRICT_REFERENCES only in a package spec or

object type spec. You can specify up to four constraints (RNDS, RNPS, WNDS, WNPS)
in any order. To call the function from parallel queries, you must specify all four

constraints. No constraint implies another. For example, WNPS does not imply RNPS.

When you specify TRUST, the function body is not checked for violations of the

constraints listed in the pragma. The function is trusted not to violate them.

If you specify DEFAULT instead of a function name, the pragma applies to all

functions in the package spec or object type spec (including, in the latter case, the

system-defined constructor). You can still declare the pragma for individual

functions. Such pragmas override the default pragma.

A RESTRICT_REFERENCES pragma can apply to only one function declaration. So,

a pragma that references the name of overloaded functions always applies to the

nearest foregoing function declaration.

RESTRICT_REFERENCES Pragma

11-146 PL/SQL User’s Guide and Reference

Examples
The following pragma asserts that packaged function balance writes no database

state (WNDS) and reads no package state (RNPS):

CREATE PACKAGE loans AS
 ...
 FUNCTION balance RETURN NUMBER;
 PRAGMA RESTRICT_REFERENCES (balance, WNDS, RNPS);
END loans;

A pragma that references the name of overloaded functions always applies to the

nearest foregoing function declaration. So, in the following example, the pragma

applies to the second declaration of credit_ok :

CREATE PACKAGE loans AS
 FUNCTION credit_ok (amount_limit NUMBER) RETURN BOOLEAN;
 FUNCTION credit_ok (time_limit DATE) RETURN BOOLEAN;
 PRAGMA RESTRICT_REFERENCES (credit_ok, WNDS);
 ...
END loans;

Related Topics
AUTONOMOUS_TRANSACTION Pragma, EXCEPTION_INIT Pragma,

SERIALLY_REUSABLE Pragma

RETURN Statement

Language Elements 11-147

RETURN Statement

The RETURN statement immediately completes the execution of a subprogram and

returns control to the caller. Execution then resumes with the statement following

the subprogram call. In a function, the RETURN statement also sets the function

identifier to the return value. For more information, see "Using the RETURN

Statement" on page 7-8.

Syntax

Keyword and Parameter Description

expression
This is an arbitrarily complex combination of variables, constants, literals,

operators, and function calls. The simplest expression consists of a single variable.

When the RETURN statement is executed, the value of expression is assigned to

the function identifier.

Usage Notes
Do not confuse the RETURN statement with the RETURN clause in a function spec,

which specifies the datatype of the return value.

A subprogram can contain several RETURN statements, none of which need be the

last lexical statement. Executing any of them completes the subprogram

immediately. However, to have multiple exit points in a subprogram is a poor

programming practice.

In procedures, a RETURN statement cannot contain an expression. The statement

simply returns control to the caller before the normal end of the procedure is

reached.

RETURN

(
expression

)

;

return_statement

RETURN Statement

11-148 PL/SQL User’s Guide and Reference

However, in functions, a RETURN statement must contain an expression, which is

evaluated when the RETURN statement is executed. The resulting value is assigned

to the function identifier. Therefore, in functions, there must be at least one

execution path that leads to a RETURN statement. Otherwise, PL/SQL raises an

exception at run time.

The RETURN statement can also be used in an anonymous block to exit the block

(and all enclosing blocks) immediately, but the RETURNstatement cannot contain an

expression.

Example
In the following example, the function balance returns the balance of a specified

bank account:

FUNCTION balance (acct_id INTEGER) RETURN REAL IS
 acct_bal REAL;

BEGIN
 SELECT bal INTO acct_bal FROM accts WHERE acctno = acct_id;
 RETURN acct_bal;

END balance;

Related Topics
Functions, Procedures

ROLLBACK Statement

Language Elements 11-149

ROLLBACK Statement

The ROLLBACKstatement is the inverse of the COMMITstatement. It undoes some or

all database changes made during the current transaction. For more information,

see "Processing Transactions" on page 5-41.

Syntax

Keyword and Parameter Description

ROLLBACK
When a parameterless ROLLBACK statement is executed, all database changes made

during the current transaction are undone.

ROLLBACK TO
This statement undoes all database changes (and releases all locks acquired) since

the savepoint identified by savepoint_name was marked.

SAVEPOINT
This keyword is optional and has no effect except to improve readability.

savepoint_name
This is an undeclared identifier, which marks the current point in the processing of

a transaction. For naming conventions, see "Identifiers" on page 2-4.

WORK
This keyword is optional and has no effect except to improve readability.

ROLLBACK
WORK TO

SAVEPOINT
savepoint_name

;

rollback_statement

ROLLBACK Statement

11-150 PL/SQL User’s Guide and Reference

Usage Notes
All savepoints marked after the savepoint to which you roll back are erased.

However, the savepoint to which you roll back is not erased. For example, if you

mark savepoints A, B, C, and D in that order, then roll back to savepoint B, only

savepoints C and D are erased.

An implicit savepoint is marked before executing an INSERT, UPDATE, or DELETE
statement. If the statement fails, a rollback to the implicit savepoint is done.

Normally, just the failed SQL statement is rolled back, not the whole transaction.

However, if the statement raises an unhandled exception, the host environment

determines what is rolled back.

In SQL, the FORCE clause manually rolls back an in-doubt distributed transaction.

However, PL/SQL does not support this clause. For example, the following

statement is illegal:

ROLLBACK WORK FORCE ’24.37.85’; -- illegal

In embedded SQL, the RELEASE option frees all Oracle resources (locks and

cursors) held by a program and disconnects from the database. However, PL/SQL

does not support this option. For example, the following statement is illegal:

ROLLBACK WORK RELEASE; -- illegal

Related Topics
COMMIT Statement, SAVEPOINT Statement

%ROWTYPE Attribute

Language Elements 11-151

%ROWTYPE Attribute

The %ROWTYPE attribute provides a record type that represents a row in a database

table. The record can store an entire row of data selected from the table or fetched

from a cursor or cursor variable. Fields in a record and corresponding columns in a

row have the same names and datatypes.

You can use the %ROWTYPE attribute in variable declarations as a datatype specifier.

Variables declared using %ROWTYPE are treated like those declared using a datatype

name. For more information, see "Using %ROWTYPE" on page 2-33.

Syntax

Keyword and Parameter Description

cursor_name
This identifies an explicit cursor previously declared within the current scope.

cursor_variable_name
This identifies a PL/SQL strongly (not weakly) typed cursor variable previously

declared within the current scope.

table_name
This identifies a database table (or view) that must be accessible when the

declaration is elaborated.

cursor_name

cursor_variable_name

table_name

% ROWTYPE

rowtype_attribute

%ROWTYPE Attribute

11-152 PL/SQL User’s Guide and Reference

Usage Notes
The %ROWTYPE attribute lets you declare records structured like a row of data in a

database table. To reference a field in the record, you use dot notation. For example,

you might reference the deptno field as follows:

IF emp_rec.deptno = 20 THEN ...

You can assign the value of an expression to a specific field, as follows:

emp_rec.sal := average * 1.15;

There are two ways to assign values to all fields in a record at once. First, PL/SQL

allows aggregate assignment between entire records if their declarations refer to the

same table or cursor. Second, you can assign a list of column values to a record by

using the SELECTor FETCHstatement. The column names must appear in the order

in which they were declared. Select-items fetched from a cursor associated with

%ROWTYPE must have simple names or, if they are expressions, must have aliases.

Examples
In the example below, you use %ROWTYPE to declare two records. The first record

stores a row selected from the emp table. The second record stores a row fetched

from the c1 cursor.

DECLARE
 emp_rec emp%ROWTYPE;
 CURSOR c1 IS SELECT deptno, dname, loc FROM dept;
 dept_rec c1%ROWTYPE;

In the next example, you select a row from the emp table into a %ROWTYPE record:

DECLARE
 emp_rec emp%ROWTYPE;
 ...
BEGIN
 SELECT * INTO emp_rec FROM emp WHERE empno = my_empno;
 IF (emp_rec.deptno = 20) AND (emp_rec.sal > 2000) THEN
 ...
 END IF;
END;

Related Topics
Constants and Variables, Cursors, Cursor Variables, FETCH Statement

SAVEPOINT Statement

Language Elements 11-153

SAVEPOINT Statement

The SAVEPOINT statement names and marks the current point in the processing of

a transaction. With the ROLLBACK TO statement, savepoints let you undo parts of a

transaction instead of the whole transaction. For more information, see "Processing

Transactions" on page 5-41.

Syntax

Keyword and Parameter Description

savepoint_name
This is an undeclared identifier, which marks the current point in the processing of

a transaction.

Usage Notes
When you roll back to a savepoint, any savepoints marked after that savepoint are

erased. However, the savepoint to which you roll back is not erased. A simple

rollback or commit erases all savepoints. Savepoint names can be reused within a

transaction. This moves the savepoint from its old position to the current point in

the transaction.

If you mark a savepoint within a recursive subprogram, new instances of the

SAVEPOINT statement are executed at each level in the recursive descent. However,

you can only roll back to the most recently marked savepoint.

An implicit savepoint is marked before executing an INSERT, UPDATE, or DELETE
statement. If the statement fails, a rollback to the implicit savepoint is done.

Normally, just the failed SQL statement is rolled back, not the whole transaction.

However, if the statement raises an unhandled exception, the host environment

determines what is rolled back.

Related Topics
COMMIT Statement, ROLLBACK Statement

SAVEPOINT savepoint_name ;

savepoint_statement

SELECT INTO Statement

11-154 PL/SQL User’s Guide and Reference

SELECT INTO Statement

The SELECT INTO statement retrieves data from one or more database tables, then

assigns the selected values to variables or fields. For a full description of the

SELECT statement, see Oracle8i SQL Reference.

Syntax

SELECT

*

select_item

,

select_into_statement

INTO
variable_name

,

record_name

BULK COLLECT INTO
collection_name

: host_array_name

,

FROM
alias

,

rest_of_statement ;(subquery

TABLE (subquery2)

table_reference

)

DISTINCT

UNIQUE

ALL

SELECT INTO Statement

Language Elements 11-155

Keyword and Parameter Description

alias
This is another (usually short) name for the referenced column, table, or view.

BULK COLLECT
This clause instructs the SQL engine to bulk-bind output collections before

returning them to the PL/SQL engine. The SQL engine bulk-binds all collections

referenced in the INTO list. For more information, see "Taking Advantage of Bulk

Binds" on page 4-29.

collection_name
This identifies a declared collection into which select_item values are bulk

fetched. For each select_item , there must be a corresponding, type-compatible

collection in the list.

function_name
This identifies a user-defined function.

function_name
(parameter_name

,

)

NULL

numeric_literal

schema_name . table_name

view_name
. *

schema_name . table_name

view_name
.

column_name

sequence_name .
CURRVAL

NEXTVAL

' text '

AS
alias

select_item

SELECT INTO Statement

11-156 PL/SQL User’s Guide and Reference

host_array_name
This identifies an array (declared in a PL/SQL host environment and passed to

PL/SQL as a bind variable) into which select_item values are bulk fetched. For

each select_item , there must be a corresponding, type-compatible array in the

list. Host arrays must be prefixed with a colon.

numeric_literal
This is a literal that represents a number or a value implicitly convertible to a

number.

parameter_name
This identifies a formal parameter of a user-defined function.

record_name
This identifies a user-defined or %ROWTYPE record into which rows of values are

fetched. For each select_item value returned by the query, there must be a

corresponding, type-compatible field in the record.

rest_of_statement
This is anything that can legally follow the FROM clause in a SELECT statement

except the SAMPLE clause.

schema_name
This qualifier identifies the schema containing the table or view. If you omit

schema_name, Oracle assumes the table or view is in your schema.

subquery
This is a SELECT statement that provides a set of rows for processing. Its syntax is

like that of select_into_statement without the INTO clause. See "SELECT

INTO Statement" on page 11-154.

table_reference
This identifies a table or view that must be accessible when you execute the SELECT
statement, and for which you must have SELECT privileges. For the syntax of

table_reference , see "DELETE Statement" on page 11-52.

SELECT INTO Statement

Language Elements 11-157

TABLE (subquery2)
The operand of TABLE is a SELECT statement that returns a single column value,

which must be a nested table or a varray. Operator TABLE informs Oracle that the

value is a collection, not a scalar value.

variable_name
This identifies a previously declared variable into which a select_item value is

fetched. For each select_item value returned by the query, there must be a

corresponding, type-compatible variable in the list.

Usage Notes
The BULK COLLECT clause tells the SQL engine to bulk-bind output collections

before returning them. It bulk-binds all collections referenced in the INTO list. The

corresponding columns can store scalar or composite values including objects.

When you use a SELECT INTO statement without the BULK COLLECT clause, it

should return only one row. If it returns more than one row, PL/SQL raises the

predefined exception TOO_MANY_ROWS.

However, if no rows are returned, PL/SQL raises NO_DATA_FOUND unless the

SELECT statement called a SQL aggregate function such as AVG or SUM. (SQL

aggregate functions always return a value or a null. So, a SELECT INTO statement

that calls an aggregate function never raises NO_DATA_FOUND.)

The implicit cursor SQL and the cursor attributes %NOTFOUND, %FOUND,
%ROWCOUNT, and %ISOPEN let you access useful information about the execution of

a SELECT INTO statement.

SELECT INTO Statement

11-158 PL/SQL User’s Guide and Reference

Examples
The following SELECT statement returns an employee’s name, job title, and salary

from the emp database table:

SELECT ename, job, sal INTO my_ename, my_job, my_sal FROM emp
 WHERE empno = my_empno;

In the following example, the SQL engine loads the entire empno and ename
database columns into nested tables before returning the tables to the PL/SQL:

DECLARE
 TYPE NumTab IS TABLE OF emp.empno%TYPE;
 TYPE NameTab IS TABLE OF emp.ename%TYPE;
 enums NumTab; -- no need to initialize
 names NameTab;
BEGIN
 SELECT empno, ename BULK COLLECT INTO enums, names FROM emp;
 ...
END;

Related Topics
Assignment Statement, FETCH Statement, %ROWTYPE Attribute

SERIALLY_REUSABLE Pragma

Language Elements 11-159

SERIALLY_REUSABLE Pragma

The pragma SERIALLY_REUSABLE lets you mark a package as serially reusable. You

can so mark a package if its state is needed only for the duration of one call to the

server (for example, an OCI call to the server or a server-to-server RPC). For more

information, see Oracle8i Application Developer’s Guide - Fundamentals.

Syntax

Keyword and Parameter Description

PRAGMA
This keyword signifies that the statement is a pragma (compiler directive). Pragmas

are processed at compile time, not at run time. They do not affect the meaning of a

program; they simply convey information to the compiler.

Usage Notes
You can mark a bodiless package as serially reusable. If a package has a spec and

body, you must mark both. You cannot mark only the body.

The global memory for serially reusable packages is pooled in the System Global

Area (SGA), not allocated to individual users in the User Global Area (UGA). That

way, the package work area can be reused. When the call to the server ends, the

memory is returned to the pool. Each time the package is reused, its public variables

are initialized to their default values or to NULL.

Serially reusable packages cannot be accessed from database triggers. If you try,

Oracle generates an error.

PRAGMA SERIALLY_REUSABLE ;

serially_reusable_pragma

SERIALLY_REUSABLE Pragma

11-160 PL/SQL User’s Guide and Reference

Examples
In the following example, you create a serially reusable package:

CREATE PACKAGE pkg1 IS
 PRAGMA SERIALLY_REUSABLE;
 num NUMBER := 0;
 PROCEDURE init_pkg_state(n NUMBER);
 PROCEDURE print_pkg_state;
END pkg1;

CREATE PACKAGE BODY pkg1 IS
 PRAGMA SERIALLY_REUSABLE;
 PROCEDURE init_pkg_state (n NUMBER) IS
 BEGIN
 pkg1.num := n;
 END;
 PROCEDURE print_pkg_state IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE(’Num: ’ || pkg1.num);
 END;
END pkg1;

Related Topics
AUTONOMOUS_TRANSACTION Pragma, EXCEPTION_INIT Pragma,

RESTRICT_REFERENCES Pragma

SET TRANSACTION Statement

Language Elements 11-161

SET TRANSACTION Statement

The SET TRANSACTION statement begins a read-only or read-write transaction,

establishes an isolation level, or assigns the current transaction to a specified

rollback segment. Read-only transactions are useful for running multiple queries

against one or more tables while other users update the same tables. For more

information, see "Using SET TRANSACTION" on page 5-47.

Syntax

Keyword and Parameter Description

READ ONLY
This clause establishes the current transaction as read-only. If a transaction is set to

READ ONLY, subsequent queries see only changes committed before the transaction

began. The use of READ ONLY does not affect other users or transactions.

READ WRITE
This clause establishes the current transaction as read-write. The use of READ WRITE
does not affect other users or transactions. If the transaction executes a data

manipulation statement, Oracle assigns the transaction to a rollback segment.

ISOLATION LEVEL
This clause specifies how transactions that modify the database are handled. When

you specify SERIALIZABLE , if a serializable transaction tries to execute a SQL data

manipulation statement that modifies any table already modified by an

uncommitted transaction, the statement fails.

SET TRANSACTION

READ ONLY

READ WRITE

ISOLATION LEVEL
SERIALIZABLE

READ COMMITTED

USE ROLLBACK SEGMENT rollback_segment_name

;

set_transaction_statement

SET TRANSACTION Statement

11-162 PL/SQL User’s Guide and Reference

To enable SERIALIZABLE mode, your DBA must set the Oracle initialization

parameter COMPATIBLE to 7.3.0 or higher.

When you specify READ COMMITTED, if a transaction includes SQL data

manipulation statements that require row locks held by another transaction, the

statement waits until the row locks are released.

USE ROLLBACK SEGMENT
This clause assigns the current transaction to the specified rollback segment and

establishes the transaction as read-write. You cannot use this parameter with the

READ ONLY parameter in the same transaction because read-only transactions do

not generate rollback information.

Usage Notes
The SET TRANSACTION statement must be the first SQL statement in your

transaction and can appear only once in the transaction.

Example
In the following example, you establish a read-only transaction:

COMMIT; -- end previous transaction
SET TRANSACTION READ ONLY;
SELECT ... FROM emp WHERE ...
SELECT ... FROM dept WHERE ...
SELECT ... FROM emp WHERE ...
COMMIT; -- end read-only transaction

Related Topics
COMMIT Statement, ROLLBACK Statement, SAVEPOINT Statement

SQL Cursor

Language Elements 11-163

SQL Cursor

Oracle implicitly opens a cursor to process each SQL statement not associated with

an explicit cursor. PL/SQL lets you refer to the most recent implicit cursor as the

SQL cursor, which has four attributes: %FOUND, %ISOPEN, %NOTFOUND, and

%ROWCOUNT. They give you useful information about the execution of data

manipulation statements. The SQL cursor has an additional attribute, %BULK_
ROWCOUNT, designed for use with the FORALL statement.

For more information, see "Managing Cursors" on page 5-6.

Syntax

Keyword and Parameter Description

%BULK_ROWCOUNT
This is a composite attribute designed for use with the FORALL statement. This

attribute has the semantics of an index-by table. Its ith element stores the number of

rows processed by the ith execution of an UPDATE or DELETE statement. If the ith
execution affects no rows, %BULK_ROWCOUNT(i) returns zero.

%FOUND
This attribute yields TRUEif an INSERT, UPDATE, or DELETEstatement affected one

or more rows or a SELECT INTO statement returned one or more rows. Otherwise,

it yields FALSE.

index
This is an expression that must yield (or convert implicitly to) an integer.

SQL %

FOUND

ISOPEN

NOTFOUND

ROWCOUNT

BULK_ROWCOUNT (index)

sql_cursor

SQL Cursor

11-164 PL/SQL User’s Guide and Reference

%ISOPEN
This attribute always yields FALSE because Oracle closes the SQL cursor

automatically after executing its associated SQL statement.

%NOTFOUND
This attribute is the logical opposite of %FOUND. It yields TRUE if an INSERT,

UPDATE, or DELETE statement affected no rows, or a SELECT INTO statement

returned no rows. Otherwise, it yields FALSE.

%ROWCOUNT
This attribute yields the number of rows affected by an INSERT, UPDATE, or

DELETE statement, or returned by a SELECT INTO statement.

SQL
This is the name of the Oracle implicit cursor.

Usage Notes
You can use cursor attributes in procedural statements but not in SQL statements.

Before Oracle opens the SQL cursor automatically, the implicit cursor attributes

yield NULL.

The values of cursor attributes always refer to the most recently executed SQL

statement, wherever that statement appears. It might be in a different scope. So, if

you want to save an attribute value for later use, assign it to a Boolean variable

immediately.

If a SELECT INTO statement fails to return a row, PL/SQL raises the predefined

exception NO_DATA_FOUND whether you check SQL%NOTFOUND on the next line or

not. However, a SELECT INTO statement that calls a SQL aggregate function never

raises NO_DATA_FOUND because those functions always return a value or a null. In

such cases, SQL%NOTFOUND yields FALSE.

%BULK_ROWCOUNT is not maintained for bulk inserts because that would be

redundant. For example, the FORALL statement below inserts one row per

execution. So, after each execution, %BULK_ROWCOUNT would return 1:

FORALL i IN 1..15
 INSERT INTO emp (sal) VALUES (sals(i));

SQL Cursor

Language Elements 11-165

You can use the scalar attributes %FOUND, %NOTFOUND, and %ROWCOUNT with bulk

binds. For example, %ROWCOUNT returns the total number of rows processed by all

executions of the SQL statement.

%FOUND and %NOTFOUND refer only to the last execution of the SQL statement.

However, you can use %BULK_ROWCOUNT to infer their values for individual

executions. For example, when %BULK_ROWCOUNT(i) is zero, %FOUND and

%NOTFOUND are FALSE and TRUE, respectively.

Examples
In the following example, %NOTFOUNDis used to insert a row if an update affects no

rows:

UPDATE emp SET sal = sal * 1.05 WHERE empno = my_empno;
IF SQL%NOTFOUND THEN
 INSERT INTO emp VALUES (my_empno, my_ename, ...);
END IF;

In the next example, you use %ROWCOUNT to raise an exception if more than 100

rows are deleted:

DELETE FROM parts WHERE status = ’OBSOLETE’;
IF SQL%ROWCOUNT > 100 THEN -- more than 100 rows were deleted
 RAISE large_deletion;
END IF;

Here is an example that uses %BULK_ROWCOUNT:

DECLARE
 TYPE NumList IS TABLE OF NUMBER;
 depts NumList := NumList(10, 20, 50);
BEGIN
 FORALL j IN depts.FIRST..depts.LAST
 UPDATE emp SET sal = sal * 1.10 WHERE deptno = depts(j);
 IF SQL%BULK_ROWCOUNT(3) = 0 THEN
 ...
 END;
END;

Related Topics
Cursors, Cursor Attributes

SQLCODE Function

11-166 PL/SQL User’s Guide and Reference

SQLCODE Function

The function SQLCODE returns the number code associated with the most recently

raised exception. SQLCODE is meaningful only in an exception handler. Outside a

handler, SQLCODE always returns 0.

For internal exceptions, SQLCODEreturns the number of the associated Oracle error.

The number that SQLCODE returns is negative unless the Oracle error is no data
found, in which case SQLCODE returns +100 .

For user-defined exceptions, SQLCODE returns +1 unless you used the pragma

EXCEPTION_INIT to associate the exception with an Oracle error number, in which

case SQLCODE returns that error number. For more information, see "Using

SQLCODE and SQLERRM" on page 6-18.

Syntax

Usage Notes
SQLCODE is especially useful in the OTHERS exception handler because it lets you

identify which internal exception was raised.

You cannot use SQLCODE directly in a SQL statement. First, you must assign the

value of SQLCODE to a local variable, as follows:

my_sqlcode := SQLCODE;
...
INSERT INTO errors VALUES (my_sqlcode, ...);

When using pragma RESTRICT_REFERENCES to assert the purity of a stored

function, you cannot specify the constraints WNPS and RNPS if the function calls

SQLCODE.

SQLCODE

sqlcode_function

SQLCODE Function

Language Elements 11-167

Example
In the following example, you insert the value of SQLCODE into an audit table:

DECLARE
 my_sqlcode NUMBER;
BEGIN
 ...
EXCEPTION
 WHEN OTHERS THEN
 my_sqlcode := SQLCODE;
 INSERT INTO audits VALUES (my_sqlcode, ...);
END;

Related Topics
Exceptions, SQLERRM Function

SQLERRM Function

11-168 PL/SQL User’s Guide and Reference

SQLERRM Function

The function SQLERRM returns the error message associated with its error-number

argument or, if the argument is omitted, with the current value of SQLCODE.
SQLERRM with no argument is meaningful only in an exception handler. Outside a

handler, SQLERRM with no argument always returns the message normal, successful
completion.

For internal exceptions, SQLERRM returns the message associated with the Oracle

error that occurred. The message begins with the Oracle error code.

For user-defined exceptions, SQLERRM returns the message user-defined exception
unless you used the pragma EXCEPTION_INIT to associate the exception with an

Oracle error number, in which case SQLERRM returns the corresponding error

message. For more information, see "Using SQLCODE and SQLERRM" on

page 6-18.

Syntax

Keyword and Parameter Description

error_number
This must be a valid Oracle error number. For a list of Oracle errors, see Oracle8i
Error Messages.

Usage Notes
SQLERRM is especially useful in the OTHERS exception handler because it lets you

identify which internal exception was raised.

You can pass an error number to SQLERRM, in which case SQLERRM returns the

message associated with that error number. The error number passed to SQLERRM
should be negative. Passing a zero to SQLERRM always returns the following

message:

ORA-0000: normal, successful completion

SQLERRM
(error_number)

sqlerrm_function

SQLERRM Function

Language Elements 11-169

Passing a positive number to SQLERRM always returns the message

User-Defined Exception

unless you pass +100 , in which case SQLERRM returns the following message:

ORA-01403: no data found

You cannot use SQLERRM directly in a SQL statement. First, you must assign the

value of SQLERRM to a local variable, as follows:

my_sqlerrm := SQLERRM;
...
INSERT INTO errors VALUES (my_sqlerrm, ...);

When using pragma RESTRICT_REFERENCES to assert the purity of a stored

function, you cannot specify the constraints WNPS and RNPS if the function calls

SQLERRM.

Example
In the following example, the string function SUBSTR ensures that a VALUE_ERROR
exception (for truncation) is not raised when you assign the value of SQLERRM to
my_sqlerrm :

DECLARE
 my_sqlerrm VARCHAR2(150);
 ...
BEGIN
 ...
EXCEPTION
 ...
 WHEN OTHERS THEN
 my_sqlerrm := SUBSTR(SQLERRM, 1, 150);
 INSERT INTO audits VALUES (my_sqlerrm, ...);
END;

Related Topics
Exceptions, SQLCODE Function

%TYPE Attribute

11-170 PL/SQL User’s Guide and Reference

%TYPE Attribute

The %TYPE attribute provides the datatype of a field, record, nested table, database

column, or variable. You can use the %TYPE attribute as a datatype specifier when

declaring constants, variables, fields, and parameters. For more information, see

"Using %TYPE" on page 2-32.

Syntax

Keyword and Parameter Description

collection_name
This identifies a nested table, index-by table, or varray previously declared within

the current scope.

cursor_variable_name
This identifies a PL/SQL cursor variable previously declared within the current

scope. Only the value of another cursor variable can be assigned to a cursor

variable.

db_table_name.column_name
This refers to a table and column that must be accessible when the declaration is

elaborated.

collection_name

cursor_variable_name

object_name

record_name
. field_name

db_table_name . column_name

variable_name

% TYPE

type_attribute

%TYPE Attribute

Language Elements 11-171

object_name
This identifies an object (instance of an object type) previously declared within the

current scope.

record_name
This identifies a user-defined or %ROWTYPE record previously declared within the

current scope.

record_name.field_name
This identifies a field in a user-defined or %ROWTYPE record previously declared

within the current scope.

variable_name
This identifies a variable previously declared in the same scope.

Usage Notes
The %TYPE attribute is particularly useful when declaring variables, fields, and

parameters that refer to database columns. However, the NOT NULL column

constraint is not inherited by items declared using %TYPE.

Related Topics
Constants and Variables, %ROWTYPE Attribute

UPDATE Statement

11-172 PL/SQL User’s Guide and Reference

UPDATE Statement

The UPDATEstatement changes the values of specified columns in one or more rows

in a table or view. For a full description of the UPDATE statement, see Oracle8i SQL
Reference.

Syntax

Keyword and Parameter Description

alias
This is another (usually short) name for the referenced table or view and is typically

used in the WHERE clause.

UPDATE (subquery

TABLE ()subquery2

alias
table_reference

)

SET

column_name =
sql_expression

()

(column_name

,

) = ()

,

WHERE
search_condition

CURRENT OF cursor_name returning_clause
;

subquery3

subquery4

update_statement

SET

column_name =
sql_expression

(subque)

(column_name

,

) = (sub)

,

WHERE
search_condition

CURRENT OF cursor_name returning_clause
;

UPDATE Statement

Language Elements 11-173

column_name
This is the name of the column (or one of the columns) to be updated. It must be the

name of a column in the referenced table or view. A column name cannot be

repeated in the column_name list. Column names need not appear in the UPDATE
statement in the same order that they appear in the table or view.

returning_clause
This clause lets you return values from updated rows, thereby eliminating the need

to SELECT the rows afterward. You can retrieve the column values into variables

and/or host variables, or into collections and/or host arrays. However, you cannot

use the RETURNING clause for remote or parallel updates. For the syntax of

returning_clause , see "DELETE Statement" on page 11-52.

SET column_name = sql_expression
This clause assigns the value of sql_expression to the column identified by

column_name . If sql_expression contains references to columns in the table

being updated, the references are resolved in the context of the current row. The old

column values are used on the right side of the equal sign.

In the following example, you increase every employee’s salary by 10%. The

original value of the sal column is multiplied by 1.10 , then the result is assigned

to the sal column overwriting the original value.

UPDATE emp SET sal = sal * 1.10;

SET column_name = (subquery3)
This clause assigns the value retrieved from the database by subquery3 to the

column identified by column_name . The subquery must return exactly one row

and one column.

SET (column_name, column_name, ...) = (subquery4)
This clause assigns the values retrieved from the database by subquery4 to the

columns in the column_name list. The subquery must return exactly one row that

includes all the columns listed.

The column values returned by the subquery are assigned to the columns in the

column list in order. The first value is assigned to the first column in the list, the

second value is assigned to the second column in the list, and so on.

UPDATE Statement

11-174 PL/SQL User’s Guide and Reference

In the following correlated query, the column item_id is assigned the value stored

in item_num , and the column price is assigned the value stored in item_price :

UPDATE inventory inv -- alias
 SET (item_id, price) =
 (SELECT item_num, item_price FROM item_table
 WHERE item_name = inv.item_name);

sql_expression
This is any valid SQL expression. For more information, see Oracle8i SQL Reference.

subquery
This is a SELECT statement that provides a set of rows for processing. Its syntax is

like that of select_into_statement without the INTO clause. See "SELECT

INTO Statement" on page 11-154.

table_reference
This identifies a table or view that must be accessible when you execute the UPDATE
statement, and for which you must have UPDATE privileges. For the syntax of

table_reference , see "DELETE Statement" on page 11-52.

TABLE (subquery2)
The operand of TABLE is a SELECT statement that returns a single column value,

which must be a nested table or a varray. Operator TABLE informs Oracle that the

value is a collection, not a scalar value.

WHERE CURRENT OF cursor_name
This clause refers to the latest row processed by the FETCH statement associated

with the cursor identified by cursor_name . The cursor must be FOR UPDATE and

must be open and positioned on a row.

If the cursor is not open, the CURRENT OF clause causes an error. If the cursor is

open, but no rows have been fetched or the last fetch returned no rows, PL/SQL

raises the predefined exception NO_DATA_FOUND.

WHERE search_condition
This clause chooses which rows to update in the database table. Only rows that

meet the search condition are updated. If you omit the search condition, all rows in

the table are updated.

UPDATE Statement

Language Elements 11-175

Usage Notes
You can use the UPDATE WHERE CURRENT OF statement after a fetch from an open

cursor (this includes implicit fetches executed in a cursor FOR loop), provided the

associated query is FOR UPDATE. This statement updates the current row, that is, the

one just fetched.

The implicit cursor SQL and the cursor attributes %NOTFOUND, %FOUND,
%ROWCOUNT, and %ISOPEN let you access useful information about the execution of

an UPDATE statement.

Examples
In the following example, a 10% raise is given to analysts in department 20 :

UPDATE emp SET sal = sal * 1.10
 WHERE job = ’ANALYST’ AND DEPTNO = 20;

In the next example, an employee named Ford is promoted to the position of

Analyst and her salary is raised by 15%:

UPDATE emp SET job = ’ANALYST’, sal = sal * 1.15
 WHERE ename = ’FORD’;

In the final example, values returned from an updated row are stored in variables:

UPDATE emp SET sal = sal + 500 WHERE ename = ’MILLER’
 RETURNING sal, ename INTO my_sal, my_ename;

Related Topics
DELETE Statement, FETCH Statement

UPDATE Statement

11-176 PL/SQL User’s Guide and Reference

Sample Programs A-1

A
Sample Programs

This appendix provides several PL/SQL programs to guide you in writing your

own. The sample programs illustrate several important PL/SQL concepts and

features.

Major Topics
Running the Programs

Sample 1. FOR Loop

Sample 2. Cursors

Sample 3. Scoping

Sample 4. Batch Transaction Processing

Sample 5. Embedded PL/SQL

Sample 6. Calling a Stored Procedure

Running the Programs

A-2 PL/SQL User’s Guide and Reference

Running the Programs
All the sample programs in this appendix and several others throughout this guide

are available online. So, they are preceded by the following comment:

-- available online in file ’<filename>’

You can find the online files in the PL/SQL demo directory. For the location of the

directory, see the Oracle installation or user’s guide for your system. Here is a list of

the files and their locations in this guide:

You run some samples interactively from SQL*Plus, others from Pro*C programs.

You can experiment with the samples from any Oracle account. However, the Pro*C

examples expect you to use the scott/tiger account.

Filename Location in This Guide

examp1 "Main Features" on page 1-2

examp2 "Conditional Control" on page 1-9

examp3 "Iterative Control" on page 1-10

examp4 "Using Aliases" on page 2-35

examp7 "Using Cursor FOR Loops" on page 5-13

examp8 "Passing Parameters" on page 5-15

examp5 "Some Examples" on page 5-37

examp6 "Some Examples" on page 5-37

examp11 "Example" on page 11-16

examp12 "Examples" on page 11-39

examp13 "Examples" on page 11-39

examp14 "Examples" on page 11-39

sample1 "Sample 1. FOR Loop" on page A-3

sample2 "Sample 2. Cursors" on page A-4

sample3 "Sample 3. Scoping" on page A-6

sample4 "Sample 4. Batch Transaction Processing" on page A-7

sample5 "Sample 5. Embedded PL/SQL" on page A-11

sample6 "Sample 6. Calling a Stored Procedure" on page A-15

Sample 1. FOR Loop

Sample Programs A-3

Before trying the samples, you must create some database tables, then load the

tables with data. You do that by running two SQL*Plus scripts, exampbld and

examplod , which are supplied with PL/SQL. You can find these scripts in the

PL/SQL demo directory.

The first script builds the database tables processed by the sample programs. The

second script loads (or reloads) the database tables. To run the scripts, invoke

SQL*Plus, then issue the following commands:

SQL> START exampbld
...
SQL> START examplod

Sample 1. FOR Loop
The following example uses a simple FOR loop to insert ten rows into a database

table. The values of a loop index, counter variable, and either of two character

strings are inserted. Which string is inserted depends on the value of the loop index.

Input Table
Not applicable.

PL/SQL Block
-- available online in file ’sample1’
DECLARE
 x NUMBER := 100;
BEGIN
 FOR i IN 1..10 LOOP
 IF MOD(i,2) = 0 THEN -- i is even
 INSERT INTO temp VALUES (i, x, ’i is even’);
 ELSE
 INSERT INTO temp VALUES (i, x, ’i is odd’);
 END IF;
 x := x + 100;
 END LOOP;
 COMMIT;
END;

Sample 2. Cursors

A-4 PL/SQL User’s Guide and Reference

Output Table
SQL> SELECT * FROM temp ORDER BY col1;

NUM_COL1 NUM_COL2 CHAR_COL
-------- -------- ---------
 1 100 i is odd
 2 200 i is even
 3 300 i is odd
 4 400 i is even
 5 500 i is odd
 6 600 i is even
 7 700 i is odd
 8 800 i is even
 9 900 i is odd
 10 1000 i is even

Sample 2. Cursors
The following example uses a cursor to select the five highest paid employees from

the emp table.

Input Table
SQL> SELECT ename, empno, sal FROM emp ORDER BY sal DESC;

ENAME EMPNO SAL
---------- --------- --------
KING 7839 5000
SCOTT 7788 3000
FORD 7902 3000
JONES 7566 2975
BLAKE 7698 2850
CLARK 7782 2450
ALLEN 7499 1600
TURNER 7844 1500
MILLER 7934 1300
WARD 7521 1250
MARTIN 7654 1250
ADAMS 7876 1100
JAMES 7900 950
SMITH 7369 800

Sample 2. Cursors

Sample Programs A-5

PL/SQL Block
-- available online in file ’sample2’
DECLARE
 CURSOR c1 is
 SELECT ename, empno, sal FROM emp
 ORDER BY sal DESC; -- start with highest paid employee
 my_ename VARCHAR2(10);
 my_empno NUMBER(4);
 my_sal NUMBER(7,2);
BEGIN
 OPEN c1;
 FOR i IN 1..5 LOOP
 FETCH c1 INTO my_ename, my_empno, my_sal;
 EXIT WHEN c1%NOTFOUND; /* in case the number requested */
 /* is more than the total */
 /* number of employees */
 INSERT INTO temp VALUES (my_sal, my_empno, my_ename);
 COMMIT;
 END LOOP;
 CLOSE c1;
END;

Output Table
SQL> SELECT * FROM temp ORDER BY col1 DESC;

NUM_COL1 NUM_COL2 CHAR_COL
-------- -------- --------
 5000 7839 KING
 3000 7902 FORD
 3000 7788 SCOTT
 2975 7566 JONES
 2850 7698 BLAKE

Sample 3. Scoping

A-6 PL/SQL User’s Guide and Reference

Sample 3. Scoping
The following example illustrates block structure and scope rules. An outer block

declares two variables named x and counter and loops four times. Inside this loop

is a sub-block that also declares a variable named x . The values inserted into the

temp table show that the two x ’s are indeed different.

Input Table
Not applicable.

PL/SQL Block
-- available online in file ’sample3’
DECLARE
 x NUMBER := 0;
 counter NUMBER := 0;
BEGIN
 FOR i IN 1..4 LOOP
 x := x + 1000;
 counter := counter + 1;
 INSERT INTO temp VALUES (x, counter, ’in OUTER loop’);
 /* start an inner block */
 DECLARE
 x NUMBER := 0; -- this is a local version of x
 BEGIN
 FOR i IN 1..4 LOOP
 x := x + 1; -- this increments the local x
 counter := counter + 1;
 INSERT INTO temp VALUES (x, counter, ’inner loop’);
 END LOOP;
 END;
 END LOOP;
 COMMIT;
END;

Sample 4. Batch Transaction Processing

Sample Programs A-7

Output Table
SQL> SELECT * FROM temp ORDER BY col2;

NUM_COL1 NUM_COL2 CHAR_COL
-------- -------- -------------
 1000 1 in OUTER loop
 1 2 inner loop
 2 3 inner loop
 3 4 inner loop
 4 5 inner loop
 2000 6 in OUTER loop
 1 7 inner loop
 2 8 inner loop
 3 9 inner loop
 4 10 inner loop
 3000 11 in OUTER loop
 1 12 inner loop
 2 13 inner loop
 3 14 inner loop
 4 15 inner loop
 4000 16 in OUTER loop
 1 17 inner loop
 2 18 inner loop
 3 19 inner loop
 4 20 inner loop

Sample 4. Batch Transaction Processing
In the next example the accounts table is modified according to instructions

stored in the action table. Each row in the action table contains an account

number, an action to be taken (I, U, or D for insert, update, or delete), an amount by

which to update the account, and a time tag used to sequence the transactions.

On an insert, if the account already exists, an update is done instead. On an update,

if the account does not exist, it is created by an insert. On a delete, if the row does

not exist, no action is taken.

Sample 4. Batch Transaction Processing

A-8 PL/SQL User’s Guide and Reference

Input Tables
SQL> SELECT * FROM accounts ORDER BY account_id;

ACCOUNT_ID BAL
---------- -------
 1 1000
 2 2000
 3 1500
 4 6500
 5 500

SQL> SELECT * FROM action ORDER BY time_tag;

ACCOUNT_ID O NEW_VALUE STATUS TIME_TAG
---------- - ---------- -------------------- ---------
 3 u 599 18-NOV-88
 6 i 20099 18-NOV-88
 5 d 18-NOV-88
 7 u 1599 18-NOV-88
 1 i 399 18-NOV-88
 9 d 18-NOV-88
 10 x 18-NOV-88

PL/SQL Block
-- available online in file ’sample4’
DECLARE
 CURSOR c1 IS
 SELECT account_id, oper_type, new_value FROM action
 ORDER BY time_tag
 FOR UPDATE OF status;
BEGIN
 FOR acct IN c1 LOOP -- process each row one at a time

 acct.oper_type := upper(acct.oper_type);

 /*--*/
 /* Process an UPDATE. If the account to */
 /* be updated doesn’t exist, create a new */
 /* account. */
 /*--*/
 IF acct.oper_type = ’U’ THEN
 UPDATE accounts SET bal = acct.new_value
 WHERE account_id = acct.account_id;

Sample 4. Batch Transaction Processing

Sample Programs A-9

 IF SQL%NOTFOUND THEN -- account didn’t exist. Create it.
 INSERT INTO accounts
 VALUES (acct.account_id, acct.new_value);
 UPDATE action SET status =
 ’Update: ID not found. Value inserted.’
 WHERE CURRENT OF c1;
 ELSE
 UPDATE action SET status = ’Update: Success.’
 WHERE CURRENT OF c1;
 END IF;

 /*--*/
 /* Process an INSERT. If the account already */
 /* exists, do an update of the account */
 /* instead. */
 /*--*/
 ELSIF acct.oper_type = ’I’ THEN
 BEGIN
 INSERT INTO accounts
 VALUES (acct.account_id, acct.new_value);
 UPDATE action set status = ’Insert: Success.’
 WHERE CURRENT OF c1;
 EXCEPTION
 WHEN DUP_VAL_ON_INDEX THEN -- account already exists
 UPDATE accounts SET bal = acct.new_value
 WHERE account_id = acct.account_id;
 UPDATE action SET status =
 ’Insert: Acct exists. Updated instead.’
 WHERE CURRENT OF c1;
 END;

 /*--*/
 /* Process a DELETE. If the account doesn’t */
 /* exist, set the status field to say that */
 /* the account wasn’t found. */
 /*--*/
 ELSIF acct.oper_type = ’D’ THEN
 DELETE FROM accounts
 WHERE account_id = acct.account_id;

 IF SQL%NOTFOUND THEN -- account didn’t exist.
 UPDATE action SET status = ’Delete: ID not found.’
 WHERE CURRENT OF c1;
 ELSE

Sample 4. Batch Transaction Processing

A-10 PL/SQL User’s Guide and Reference

 UPDATE action SET status = ’Delete: Success.’
 WHERE CURRENT OF c1;
 END IF;

 /*--*/
 /* The requested operation is invalid. */
 /*--*/
 ELSE -- oper_type is invalid
 UPDATE action SET status =
 ’Invalid operation. No action taken.’
 WHERE CURRENT OF c1;

 END IF;

 END LOOP;
 COMMIT;
END;

Output Tables
SQL> SELECT * FROM accounts ORDER BY account_id;

ACCOUNT_ID BAL
---------- --------
 1 399
 2 2000
 3 599
 4 6500
 6 20099
 7 1599

SQL> SELECT * FROM action ORDER BY time_tag;

ACCOUNT_ID O NEW_VALUE STATUS TIME_TAG
---------- - ---------- --------------------- ---------
 3 u 599 Update: Success. 18-NOV-88
 6 i 20099 Insert: Success. 18-NOV-88
 5 d Delete: Success. 18-NOV-88
 7 u 1599 Update: ID not found. 18-NOV-88
 Value inserted.
 1 i 399 Insert: Acct exists. 18-NOV-88
 Updated instead.
 9 d Delete: ID not found. 18-NOV-88
 10 x Invalid operation. 18-NOV-88
 No action taken.

Sample 5. Embedded PL/SQL

Sample Programs A-11

Sample 5. Embedded PL/SQL
The following example shows how you can embed PL/SQL in a high-level host

language such as C and demonstrates how a banking debit transaction might be

done.

Input Table
SQL> SELECT * FROM accounts ORDER BY account_id;

ACCOUNT_ID BAL
---------- --------
 1 1000
 2 2000
 3 1500
 4 6500
 5 500

PL/SQL Block in a C Program
/* available online in file ’sample5’ */
#include <stdio.h>
 char buf[20];
EXEC SQL BEGIN DECLARE SECTION;
 int acct;
 double debit;
 double new_bal;
 VARCHAR status[65];
 VARCHAR uid[20];
 VARCHAR pwd[20];
EXEC SQL END DECLARE SECTION;

EXEC SQL INCLUDE SQLCA;

main()
{
 extern double atof();

 strcpy (uid.arr,"scott");
 uid.len=strlen(uid.arr);
 strcpy (pwd.arr,"tiger");
 pwd.len=strlen(pwd.arr);

Sample 5. Embedded PL/SQL

A-12 PL/SQL User’s Guide and Reference

 printf("\n\n\tEmbedded PL/SQL Debit Transaction Demo\n\n");
 printf("Trying to connect...");
 EXEC SQL WHENEVER SQLERROR GOTO errprint;
 EXEC SQL CONNECT :uid IDENTIFIED BY :pwd;
 printf(" connected.\n");
for (;;) /* Loop infinitely */
{
 printf("\n** Debit which account number? (-1 to end) ");
 gets(buf);
 acct = atoi(buf);
 if (acct == -1) /* Need to disconnect from Oracle */
 { /* and exit loop if account is -1 */
 EXEC SQL COMMIT RELEASE;
 exit(0);
 }

 printf(" What is the debit amount? ");
 gets(buf);
 debit = atof(buf);

 /* ---------------------------------- */
 /* ----- Begin the PL/SQL block ----- */
 /* ---------------------------------- */
 EXEC SQL EXECUTE

 DECLARE
 insufficient_funds EXCEPTION;
 old_bal NUMBER;
 min_bal CONSTANT NUMBER := 500;
 BEGIN
 SELECT bal INTO old_bal FROM accounts
 WHERE account_id = :acct;
 -- If the account doesn’t exist, the NO_DATA_FOUND
 -- exception will be automatically raised.
 :new_bal := old_bal - :debit;
 IF :new_bal >= min_bal THEN
 UPDATE accounts SET bal = :new_bal
 WHERE account_id = :acct;
 INSERT INTO journal
 VALUES (:acct, ’Debit’, :debit, SYSDATE);
 :status := ’Transaction completed.’;
 ELSE
 RAISE insufficient_funds;
 END IF;
 COMMIT;

Sample 5. Embedded PL/SQL

Sample Programs A-13

 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 :status := ’Account not found.’;
 :new_bal := -1;
 WHEN insufficient_funds THEN
 :status := ’Insufficient funds.’;
 :new_bal := old_bal;
 WHEN OTHERS THEN
 ROLLBACK;
 :status := ’Error: ’ || SQLERRM(SQLCODE);
 :new_bal := -1;
 END;

 END-EXEC;
 /* -------------------------------- */
 /* ----- End the PL/SQL block ----- */
 /* -------------------------------- */

 status.arr[status.len] = ’\0’; /* null-terminate */
 /* the string */
 printf("\n\n Status: %s\n", status.arr);
 if (new_bal >= 0)
 printf(" Balance is now: $%.2f\n", new_bal);
} /* End of loop */

errprint:
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("\n\n>>>>> Error during execution:\n");
 printf("%s\n",sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK RELEASE;
 exit(1);
}

Interactive Session
Embedded PL/SQL Debit Transaction Demo

Trying to connect... connected.

** Debit which account number? (-1 to end) 1
 What is the debit amount? 300

 Status: Transaction completed.
 Balance is now: $700.00

Sample 5. Embedded PL/SQL

A-14 PL/SQL User’s Guide and Reference

** Debit which account number? (-1 to end) 1
 What is the debit amount? 900
 Status: Insufficient funds.
 Balance is now: $700.00

** Debit which account number? (-1 to end) 2
 What is the debit amount? 500

 Status: Transaction completed.
 Balance is now: $1500.00

** Debit which account number? (-1 to end) 2
 What is the debit amount? 100

 Status: Transaction completed.
 Balance is now: $1400.00

** Debit which account number? (-1 to end) 99
 What is the debit amount? 100

 Status: Account not found.

** Debit which account number? (-1 to end) -1

Output Tables
SQL> SELECT * FROM accounts ORDER BY account_id;

ACCOUNT_ID BAL
---------- ------
 1 700
 2 1400
 3 1500
 4 6500
 5 500

SQL> SELECT * FROM journal ORDER BY date_tag;

ACCOUNT_ID ACTION AMOUNT DATE_TAG
---------- -------------------- --------- ---------
 1 Debit 300 28-NOV-88
 2 Debit 500 28-NOV-88
 2 Debit 100 28-NOV-88

Sample 6. Calling a Stored Procedure

Sample Programs A-15

Sample 6. Calling a Stored Procedure
This Pro*C program connects to Oracle, prompts the user for a department number,

then calls procedure get_employees , which is stored in package personnel . The

procedure declares three index-by tables as OUT formal parameters, then fetches a

batch of employee data into the index-by tables. The matching actual parameters

are host arrays.

When the procedure finishes, it automatically assigns all row values in the index-by

tables to corresponding elements in the host arrays. The program calls the

procedure repeatedly, displaying each batch of employee data, until no more data is

found.

Input Table
SQL> SELECT ename, empno, sal FROM emp ORDER BY sal DESC;

ENAME EMPNO SAL
---------- --------- --------
KING 7839 5000
SCOTT 7788 3000
FORD 7902 3000
JONES 7566 2975
BLAKE 7698 2850
CLARK 7782 2450
ALLEN 7499 1600
TURNER 7844 1500
MILLER 7934 1300
WARD 7521 1250
MARTIN 7654 1250
ADAMS 7876 1100
JAMES 7900 950
SMITH 7369 800

Stored Procedure
/* available online in file ’sample6’ */
#include <stdio.h>
#include <string.h>

typedef char asciz;

Sample 6. Calling a Stored Procedure

A-16 PL/SQL User’s Guide and Reference

EXEC SQL BEGIN DECLARE SECTION;
 /* Define type for null-terminated strings. */
 EXEC SQL TYPE asciz IS STRING(20);
 asciz username[20];
 asciz password[20];
 int dept_no; /* which department to query */
 char emp_name[10][21];
 char job[10][21];
 EXEC SQL VAR emp_name is STRING (21);
 EXEC SQL VAR job is STRING (21);
 float salary[10];
 int done_flag;
 int array_size;
 int num_ret; /* number of rows returned */
 int SQLCODE;
EXEC SQL END DECLARE SECTION;

EXEC SQL INCLUDE sqlca;

int print_rows(); /* produces program output */
int sqlerror(); /* handles unrecoverable errors */

main()
{
 int i;

 /* Connect to Oracle. */
 strcpy(username, "SCOTT");
 strcpy(password, "TIGER");

 EXEC SQL WHENEVER SQLERROR DO sqlerror();

 EXEC SQL CONNECT :username IDENTIFIED BY :password;
 printf("\nConnected to Oracle as user: %s\n\n", username);

 printf("Enter department number: ");
 scanf("%d", &dept_no);
 fflush(stdin);

 /* Print column headers. */
 printf("\n\n");
 printf("%-10.10s%-10.10s%s\n", "Employee", "Job", "Salary");
 printf("%-10.10s%-10.10s%s\n", "--------", "---", "------");

Sample 6. Calling a Stored Procedure

Sample Programs A-17

 /* Set the array size. */
 array_size = 10;
 done_flag = 0;
 num_ret = 0;

 /* Array fetch loop - ends when NOT FOUND becomes true. */
 for (;;)
 {
 EXEC SQL EXECUTE
 BEGIN personnel.get_employees
 (:dept_no, :array_size, :num_ret, :done_flag,
 :emp_name, :job, :salary);
 END;
 END-EXEC;

 print_rows(num_ret);

 if (done_flag)
 break;
 }

 /* Disconnect from Oracle. */
 EXEC SQL COMMIT WORK RELEASE;
 exit(0);
}

print_rows(n)
int n;
{
 int i;

 if (n == 0)
 {
 printf("No rows retrieved.\n");
 return;
 }

 for (i = 0; i < n; i++)
 printf("%10.10s%10.10s%6.2f\n",
 emp_name[i], job[i], salary[i]);
}

Sample 6. Calling a Stored Procedure

A-18 PL/SQL User’s Guide and Reference

sqlerror()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("\nOracle error detected:");
 printf("\n% .70s \n", sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

Interactive Session
Connected to Oracle as user: SCOTT

Enter department number: 20

Employee Job Salary
-------- --- ------
SMITH CLERK 800.00
JONES MANAGER 2975.00
SCOTT ANALYST 3000.00
ADAMS CLERK 1100.00
FORD ANALYST 3000.00

CHAR versus VARCHAR2 Semantics B-1

B
CHAR versus VARCHAR2 Semantics

This appendix explains the semantic differences between the CHAR and VARCHAR2
base types. These subtle but important differences come into play when you assign,

compare, insert, update, select, or fetch character values.

Major Topics
Assigning Character Values

Comparing Character Values

Inserting Character Values

Selecting Character Values

Assigning Character Values

B-2 PL/SQL User’s Guide and Reference

Assigning Character Values
When you assign a character value to a CHAR variable, if the value is shorter than

the declared length of the variable, PL/SQL blank-pads the value to the declared

length. So, information about trailing blanks is lost. In the following example, the

value assigned to last_name includes six trailing blanks, not just one:

last_name CHAR(10) := ’CHEN ’; -- note trailing blank

If the character value is longer than the declared length of the CHAR variable,

PL/SQL aborts the assignment and raises the predefined exception VALUE_ERROR.
PL/SQL neither truncates the value nor tries to trim trailing blanks. For example,

given the declaration

acronym CHAR(4);

the following assignment raises VALUE_ERROR:

acronym := ’SPCA ’; -- note trailing blank

When you assign a character value to a VARCHAR2 variable, if the value is shorter

than the declared length of the variable, PL/SQL neither blank-pads the value nor

strips trailing blanks. Character values are assigned intact, so no information is lost.

If the character value is longer than the declared length of the VARCHAR2 variable,

PL/SQL aborts the assignment and raises VALUE_ERROR. PL/SQL neither truncates

the value nor tries to trim trailing blanks.

Comparing Character Values
You can use the relational operators to compare character values for equality or

inequality. Comparisons are based on the collating sequence used for the database

character set. One character value is greater than another if it follows it in the

collating sequence. For example, given the declarations

last_name1 VARCHAR2(10) := ’COLES’;
last_name2 VARCHAR2(10) := ’COLEMAN’;

the following IF condition is true:

IF last_name1 > last_name2 THEN ...

Comparing Character Values

CHAR versus VARCHAR2 Semantics B-3

ANSI/ISO SQL requires that two character values being compared have equal

lengths. So, if both values in a comparison have datatype CHAR, blank-padding
semantics are used. That is, before comparing character values of unequal length,

PL/SQL blank-pads the shorter value to the length of the longer value. For

example, given the declarations

last_name1 CHAR(5) := ’BELLO’;
last_name2 CHAR(10) := ’BELLO ’; -- note trailing blanks

the following IF condition is true:

IF last_name1 = last_name2 THEN ...

If either value in a comparison has datatype VARCHAR2, non-blank-padding
semantics are used. That is, when comparing character values of unequal length,

PL/SQL makes no adjustments and uses the exact lengths. For example, given the

declarations

last_name1 VARCHAR2(10) := ’DOW’;
last_name2 VARCHAR2(10) := ’DOW ’; -- note trailing blanks

the following IF condition is false:

IF last_name1 = last_name2 THEN ...

If one value in a comparison has datatype VARCHAR2 and the other value has

datatype CHAR, non-blank-padding semantics are used. But, remember, when you

assign a character value to a CHAR variable, if the value is shorter than the declared

length of the variable, PL/SQL blank-pads the value to the declared length. So,

given the declarations

last_name1 VARCHAR2(10) := ’STAUB’;
last_name2 CHAR(10) := ’STAUB’; -- PL/SQL blank-pads value

the following IF condition is false because the value of last_name2 includes five

trailing blanks:

IF last_name1 = last_name2 THEN ...

All string literals have datatype CHAR. So, if both values in a comparison are literals,

blank-padding semantics are used. If one value is a literal, blank-padding semantics

are used only if the other value has datatype CHAR.

Inserting Character Values

B-4 PL/SQL User’s Guide and Reference

Inserting Character Values
When you insert the value of a PL/SQL character variable into an Oracle database

column, whether the value is blank-padded or not depends on the column type, not

on the variable type.

When you insert a character value into a CHAR database column, Oracle does not

strip trailing blanks. If the value is shorter than the defined width of the column,

Oracle blank-pads the value to the defined width. As a result, information about

trailing blanks is lost. If the character value is longer than the defined width of the

column, Oracle aborts the insert and generates an error.

When you insert a character value into a VARCHAR2 database column, Oracle does

not strip trailing blanks. If the value is shorter than the defined width of the

column, Oracle does not blank-pad the value. Character values are stored intact, so

no information is lost. If the character value is longer than the defined width of the

column, Oracle aborts the insert and generates an error.

Note: The same rules apply when updating.

When inserting character values, to ensure that no trailing blanks are stored, use the

function RTRIM, which trims trailing blanks. An example follows:

DECLARE
 ...
 my_name VARCHAR2(15);
BEGIN
 ...
 my_ename := ’LEE ’; -- note trailing blanks
 INSERT INTO emp
 VALUES (my_empno, RTRIM(my_ename), ...); -- inserts ’LEE’
END;

Selecting Character Values
When you select a value from an Oracle database column into a PL/SQL character

variable, whether the value is blank-padded or not depends on the variable type,

not on the column type.

When you select a column value into a CHAR variable, if the value is shorter than

the declared length of the variable, PL/SQL blank-pads the value to the declared

length. As a result, information about trailing blanks is lost. If the character value is

longer than the declared length of the variable, PL/SQL aborts the assignment and

raises VALUE_ERROR.

Selecting Character Values

CHAR versus VARCHAR2 Semantics B-5

When you select a column value into a VARCHAR2 variable, if the value is shorter

than the declared length of the variable, PL/SQL neither blank-pads the value nor

strips trailing blanks. Character values are stored intact, so no information is lost.

For example, when you select a blank-padded CHARcolumn value into a VARCHAR2
variable, the trailing blanks are not stripped. If the character value is longer than the

declared length of the VARCHAR2 variable, PL/SQL aborts the assignment and

raises VALUE_ERROR.

Note: The same rules apply when fetching.

Selecting Character Values

B-6 PL/SQL User’s Guide and Reference

Wrap Utility C-1

C
Wrap Utility

This appendix shows you how to run the Wrap Utility, a stand-alone programming

utility that encrypts PL/SQL source code. You can use the Wrap Utility to deliver

PL/SQL applications without exposing your source code.

Major Topics
Advantages of Wrapping

Running the Wrap Utility

Guidelines

Advantages of Wrapping

C-2 PL/SQL User’s Guide and Reference

Advantages of Wrapping
By hiding application internals, the Wrap Utility prevents

■ misuse of your application by other developers

■ exposure of your algorithms to business competitors

Wrapped code is as portable as source code. The PL/SQL compiler recognizes and

loads wrapped compilation units automatically. Other advantages include

■ platform independence—you need not deliver multiple versions of the same

compilation unit

■ dynamic loading—users need not shut down and re-link to add a new feature

■ dynamic binding—external references are resolved at load time

■ strict dependency checking—invalidated program units are recompiled

automatically

■ normal importing and exporting—the Import/Export utility accepts wrapped

files

Running the Wrap Utility
To run the Wrap Utility, enter the wrap command at your operating system prompt

using the following syntax:

wrap iname=input_file [oname=output_file]

Leave no space around the equal signs because spaces delimit individual

arguments.

The wrap command requires only one argument, which is

iname=input_file

where input_file is the name of the Wrap Utility input file. You need not specify

the file extension because it defaults to sql . For example, the following commands

are equivalent:

wrap iname=/mydir/myfile
wrap iname=/mydir/myfile.sql

However, you can specify a different file extension as the following example shows:

wrap iname=/mydir/myfile.src

Running the Wrap Utility

Wrap Utility C-3

Optionally, the wrap command takes a second argument, which is

oname=output_file

where output_file is the name of the Wrap Utility output file. You need not

specify the output file because its name defaults to that of the input file and its

extension defaults to plb (PL/SQL binary). For example, the following commands

are equivalent:

wrap iname=/mydir/myfile
wrap iname=/mydir/myfile.sql oname=/mydir/myfile.plb

However, you can use the option oname to specify a different file name and

extension, as the following example shows:

wrap iname=/mydir/myfile oname=/yourdir/yourfile.obj

Input and Output Files
The input file can contain any combination of SQL statements. However, the Wrap

Utility encrypts only the following CREATE statements, which define subprograms,

packages, or object types:

CREATE [OR REPLACE] FUNCTION function_name
CREATE [OR REPLACE] PROCEDURE procedure_name
CREATE [OR REPLACE] PACKAGE package_name
CREATE [OR REPLACE] PACKAGE BODY package_name
CREATE [OR REPLACE] TYPE type_name ... OBJECT
CREATE [OR REPLACE] TYPE BODY type_name

All other SQL statements are passed intact to the output file. Comment lines are

deleted unless they appear inside a subprogram, package, or object type.

When encrypted, a subprogram, package, or object type has the form

<header> wrapped <body>

where header begins with the reserved word CREATE and ends with the name of

the subprogram, package, or object type, and body is an intermediate form of object

code. The word wrapped tells the PL/SQL compiler that the subprogram, package,

or object type was encrypted by the Wrap Utility.

Running the Wrap Utility

C-4 PL/SQL User’s Guide and Reference

The header can contain comments. For example, the Wrap Utility converts

CREATE PACKAGE
-- Author: J. Hollings
-- Date: 10/15/99
banking AS
 minimum_balance CONSTANT REAL := 25.00;
 insufficient_funds EXCEPTION;
END banking;

into

CREATE PACKAGE
-- Author: J. Hollings
-- Date: 10/15/99
banking wrapped
0
abcd ...

Generally, the output file is much larger than the input file.

Error Handling
If your input file contains syntax errors, the Wrap Utility detects and reports them.

However, the Wrap Utility cannot detect semantic errors because it does not resolve

external references. For example, it does not report the following error (table or view
does not exist):

CREATE PROCEDURE raise_salary (emp_id INTEGER, amount NUMBER) AS
BEGIN
 UPDATE amp -- should be emp
 SET sal = sal + amount WHERE empno = emp_id;
END;

The PL/SQL compiler resolves external references. So, semantic errors are reported

when the Wrap Utility output file (.plb file) is compiled.

Version Compatibility
The Wrap Utility is upward-compatible with Oracle. So, for example, you can load

files processed by the V8.1.5 Wrap Utility into a V8.1.6 Oracle database. However,

the Wrap Utility is not downward-compatible with Oracle. So, for example, you

cannot load files processed by the V8.1.6 Wrap Utility into a V8.1.5 Oracle database.

Guidelines

Wrap Utility C-5

Guidelines
When wrapping a package or object type, wrap only the body, not the spec. That

way, other developers see the information they need to use the package or type, but

they do not see its implementation.

Like all encrypted files, wrapped files cannot be edited. To revise a wrapped file,

you must revise and re-wrap the underlying source code. So, do not wrap a

subprogram, package, or object type until it is ready for shipment to end-users.

Guidelines

C-6 PL/SQL User’s Guide and Reference

Name Resolution D-1

D
Name Resolution

This appendix explains how PL/SQL resolves references to names in potentially

ambiguous SQL and procedural statements.

Major Topics
What Is Name Resolution?

Various Forms of References

Name-Resolution Algorithm

Understanding Capture

Avoiding Capture

Accessing Attributes and Methods

Calling Subprograms and Methods

What Is Name Resolution?

D-2 PL/SQL User’s Guide and Reference

What Is Name Resolution?
During compilation, the PL/SQL compiler associates identifiers such as the name of

a variable with an address (memory location), datatype, or actual value. This

process is called binding. The association lasts through all subsequent executions

until a recompilation occurs, which might cause a rebinding.

Before binding the names, PL/SQL must resolve all references to them in the

compilation unit. This process is called name resolution. PL/SQL considers all names

to be in the same namespace. So, one declaration or definition in an inner scope can

hide another in an outer scope. In the following example, the declaration of variable

client hides the definition of datatype Client because PL/SQL is not case

sensitive except within string literals:

BEGIN
 <<block1>>
 DECLARE
 TYPE Client IS RECORD (...);
 TYPE Customer IS RECORD (...);
 BEGIN
 DECLARE
 client Customer; -- hides definition of type Client
 -- in outer scope
 lead1 Client; -- illegal; Client resolves to the
 -- variable client
 lead2 block1.Client; -- OK; refers to type Client
 BEGIN
 NULL;
 END;
 END;
END;

However, you can still refer to datatype Client by qualifying the reference with

block label block1 .

In the CREATE TYPE person1 statement below, the compiler resolves the second

reference to manager as the name of the attribute you are trying to declare. In the

CREATE TYPE person2 statement, the compiler resolves the second reference to

manager as the name of the attribute you just declared. In both cases, the reference

to manager generates an error because the compiler expects a type name.

CREATE TYPE manager AS OBJECT (dept NUMBER);
CREATE TYPE person1 AS OBJECT (manager manager);
CREATE TYPE person2 AS OBJECT (manager NUMBER, mgr manager);

Various Forms of References

Name Resolution D-3

Various Forms of References
During name resolution, the compiler can encounter various forms of references

including simple unqualified names, dot-separated chains of identifiers, indexed

components of a collection, and so on. Some examples of legal references follow:

CREATE PACKAGE pkg1 AS
 m NUMBER;
 TYPE t1 IS RECORD (a NUMBER);
 v1 t1;
 TYPE t2 IS TABLE OF t1 INDEX BY BINARY_INTEGER;
 v2 t2;
 FUNCTION f1 (p1 NUMBER) RETURN t1;
 FUNCTION f2 (q1 NUMBER) RETURN t2;
END pkg1;

CREATE PACKAGE BODY pkg1 AS
 FUNCTION f1 (p1 NUMBER) RETURN t1 IS
 n NUMBER;
 BEGIN
 n := m; -- (1) unqualified name
 n := pkg1.m; -- (2) dot-separated chain of identifiers
 -- (package name used as scope
 -- qualifier followed by variable name)
 n := pkg1.f1.p1; -- (3) dot-separated chain of identifiers
 -- (package name used as scope
 -- qualifier followed by function name
 -- also used as scope qualifier
 -- followed by parameter name)
 n := v1.a; -- (4) dot-separated chain of identifiers
 -- (variable name followed by
 -- component selector)
 n := pkg1.v1.a; -- (5) dot-separated chain of identifiers
 -- (package name used as scope
 -- qualifier followed by
 -- variable name followed by component
 -- selector)
 n := v2(10).a; -- (6) indexed name followed by component
 -- selector
 n := f1(10).a; -- (7) function call followed by component
 -- selector
 n := f2(10)(10).a; -- (8) function call followed by indexing
 -- followed by component selector
 n := scott.pkg1.f2(10)(10).a;

Name-Resolution Algorithm

D-4 PL/SQL User’s Guide and Reference

 -- (9) function call (which is a dot-
 -- separated chain of identifiers,
 -- including schema name used as
 -- scope qualifier followed by package
 -- name used as scope qualifier
 -- followed by function name)
 -- followed by component selector
 -- of the returned result followed
 -- by indexing followed by component
 -- selector
 n := scott.pkg1.f1.n;
 -- (10) dot-separated chain of identifiers
 -- (schema name used as scope qualifier
 -- followed by package name also used
 -- as scope qualifier followed by
 -- function name also used as scope
 -- qualifier followed by local
 -- variable name)
 ...
 END f1;

 FUNCTION f2 (q1 NUMBER) RETURN t2 IS
 BEGIN
 ...
 END f2;
END pkg1;

Name-Resolution Algorithm
Let us take a look at the name-resolution algorithm.

The first part of name resolution involves finding the basis. The basis is the smallest

prefix to a dot-separated chain of identifiers that can be resolved by looking in the

current scope, then moving outward to schema-level scopes.

In the previous examples, the basis for (3) pkg1.f1.p1 is pkg1 , the basis for (4)

scott.pkg1.f1.n is scott.pkg1 , and the basis for (5) v1.a is v1 . In (5), the a in

v1.a is a component selector and resolves as field a of variable v1 because v1 is of

type t1 , which has a field called a.

If a basis is not found, the compiler generates a not declared error. If the basis is

found, the compiler attempts to resolve the complete reference. If it fails, the

compiler generates an error.

Name-Resolution Algorithm

Name Resolution D-5

The length of the basis is always 1, 2, or 3. And, it can be 3 only inside SQL scope

when the compiler resolves a three-part name as

schema_name.table_name.column_name

Here are more examples of bases:

variable_name
type_name
package_name
schema_name.package_name
schema_name.function_name
table_name
table_name.column_name
schema_name.table_name
schema_name.table_name.column_name

Finding the Basis
Now, let us look at the algorithm for finding the basis.

If the compiler is resolving a name in SQL scope (which includes everything in a

DML statement except items in the INTO clause and schema-level table names), it

first attempts to find the basis in that scope. If it fails, it attempts to find the basis in

PL/SQL local scopes and at the schema level just as it would for names in non-SQL

scopes.

Here are the rules for finding the basis in SQL scope when the compiler expects to

find a column name:

■ Given one identifier, the compiler attempts to find a basis of length 1 using the

identifier as an unqualified column name in one of the tables listed in any FROM
clauses that are in scope, starting with the current scope and moving outward.

■ Given a of chain two identifiers, the compiler attempts to find a basis of length

2 using the identifiers as a column name qualified by a table name or table alias,

starting with the current scope and moving outward.

■ Given a chain of three identifiers, the compiler attempts to find in each scope

that it searches, starting with the current scope and moving outward, either

– a basis of length 3 using the three identifiers as a column name qualified by

a table name qualified by a schema name, or

– a basis of length 2 using the first two identifiers as a column name of some

user-defined type qualified by a table alias

Name-Resolution Algorithm

D-6 PL/SQL User’s Guide and Reference

■ Given a chain of four identifiers, the compiler attempts to find a basis of length

2, using the first two identifiers as a column name of some user-defined type

qualified by a table alias, starting with the current scope and moving outward.

Once the compiler finds the basis as a column name, it attempts to resolve the

complete reference by finding a component of the basis and so on depending upon

the type of column name.

Here are the rules for finding the basis in SQL scope when the compiler expects to

find a row expression (which is a table alias that can appear by itself; it can be used

only with an object table and operator REF or VALUE, or in an INSERT or UPDATE
statement for an object table):

■ Given one identifier, the compiler attempts to find a basis of length 1 as a table

alias, starting with the current scope and moving outward. If the table alias

does not correspond to an object table, the compiler generates an error.

■ Given a chain of two or more identifiers, the compiler generates an error.

If the name being resolved either

■ does not appear in SQL scope, or

■ appears in SQL scope but the compiler cannot find a basis for it in that scope

the compiler attempts to find the basis by searching all PL/SQL scopes local to the

compilation unit, starting with the current scope and moving outward. If the name

is found, the length of the basis is 1. If the name is not found, the compiler attempts

to find the basis by searching for schema objects using the following rules:

1. First, the compiler attempts to find a basis of length 1 by searching the current

schema for a schema object whose name matches the first identifier in the chain

of identifiers. The schema object found might be a package specification,

function, procedure, table, view, sequence, synonym, or schema-level datatype.

If it is a synonym, the basis will be resolved as the base object designated by the

synonym.

2. If the previous search fails, the compiler attempts to find a basis of length 1 by

searching for a public synonym whose name matches the first identifier in the

chain. If this succeeds, the basis will be resolved as the base object designated

by the synonym.

3. If the previous search fails and there are at least two identifiers in the chain, the

compiler attempts to find a basis of length 2 by searching for a schema object

whose name matches the second identifier in the chain and which is owned by

a schema whose name matches the first identifier in the chain.

Understanding Capture

Name Resolution D-7

4. If the compiler finds a basis as a schema object, it checks the privileges on the

base object. If the base object is not visible, the compiler generates a not declared
error because an insufficient privileges error would acknowledge the existence of

the object, which is a security violation.

5. If the compiler fails to find a basis by searching for schema objects, it generates

a not declared error.

6. If the compiler finds a basis, it attempts to resolve the complete reference

depending on how the basis was resolved. If it fails to resolve the complete

reference, the compiler generates an error.

Understanding Capture
When a declaration or type definition in another scope prevents the compiler from

resolving a reference correctly, that declaration or definition is said to "capture" the

reference. Usually this is the result of migration or schema evolution. There are

three kinds of capture: inner, same-scope, and outer. Inner and same-scope capture

apply only in SQL scope.

Inner Capture
An inner capture occurs when a name in an inner scope that once resolved to an

entity in an outer scope, either

■ gets resolved to an entity in an inner scope, or

■ causes an error because the basis of the identifier chain got captured in an inner

scope and the complete reference could not be resolved

If the situation was resolved without error in an inner scope, the capture might

occur without your knowing. In the following example, the reference to col2 in the

inner SELECT statement binds to column col2 in table tab1 because table tab2
has no column named col2 :

CREATE TABLE tab1 (col1 NUMBER, col2 NUMBER);
CREATE TABLE tab2 (col1 NUMBER);
CREATE PROCEDURE proc AS
 CURSOR c1 IS SELECT * FROM tab1
 WHERE EXISTS (SELECT * FROM tab2 WHERE col2 = 10);
BEGIN
 ...
END;

Understanding Capture

D-8 PL/SQL User’s Guide and Reference

In the last example, if you add a column named col2 to table tab2 , as follows

ALTER TABLE tab2 ADD (col2 NUMBER);

then procedure proc is invalidated and recompiled automatically upon next use.

However, upon recompilation, the col2 in the inner SELECT statement binds to

column col2 in table tab2 because tab2 is in the inner scope. Thus, the reference

to col2 is captured by the addition of column col2 to table tab2 .

The use of collections and object types allows for more inner capture situations. In

the following example, the reference to s.tab2.a resolves to attribute a of column

tab2 in table tab1 via table alias s which is visible in the outer scope of the query:

CREATE TYPE type1 AS OBJECT (a NUMBER);
CREATE TABLE tab1 (tab2 type1);
CREATE TABLE tab2 (x NUMBER);
SELECT * FROM tab1 s -- alias with same name as schema name
 WHERE EXISTS (SELECT * FROM s.tab2 WHERE x = s.tab2.a);
 -- note lack of alias

In the last example, suppose you add a column named a to table s.tab2, which

appears in the inner subquery. When the query is processed, an inner capture

occurs because the reference to s.tab2.a resolves to column a of table tab2 in

schema s . You can avoid inner captures by following the rules given in "Avoiding

Capture" on page D-9. According to those rules, you should revise the query as

follows:

SELECT * FROM s.tab1 p1
 WHERE EXISTS (SELECT * FROM s.tab2 p2 WHERE p2.x = p1.tab2.a);

Same-Scope Capture
In SQL scope, a same-scope capture occurs when a column is added to one of two

tables in the same scope, and that column has the same name as a column in the

other table. Consider the following query (and refer to the previous example):

PROCEDURE proc IS
 CURSOR c1 IS SELECT * FROM tab1, tab2 WHERE col2 = 10;

In this example, the reference to col2 in the query binds to column col2 in table

tab1 . If you add a column named col2 to table tab2 , the query compiles with

errors. Thus, the reference to col2 is captured by an error.

Accessing Attributes and Methods

Name Resolution D-9

Outer Capture
An outer capture occurs when a name in an inner scope, which once resolved to an

entity in an inner scope, gets resolved to an entity in an outer scope. Fortunately,

SQL and PL/SQL are designed to prevent outer captures.

Avoiding Capture
You can avoid inner capture in DML statements by following these rules:

■ Specify an alias for each table in the DML statement.

■ Keep table aliases unique throughout the DML statement.

■ Avoid table aliases that match schema names used in the query.

■ Qualify each column reference with the table alias.

Qualifying a reference with <schema-name>.<table-name> does not prevent inner

capture if the DML statement references tables that have columns of a user-defined

object type.

Accessing Attributes and Methods
Columns of a user-defined object type allow for more inner capture situations. To

minimize problems, the name-resolution algorithm includes the following rules:

■ All references to attributes and methods must be qualified by a table alias. So,

when referencing a table, if you reference the attributes or methods of an object

stored in that table, the table name must be accompanied by an alias. As the

following examples show, column-qualified references to an attribute or

method are illegal if they are prefixed with a table name:

CREATE TYPE t1 AS OBJECT (x NUMBER);
CREATE TABLE tb1 (col t1);
SELECT col.x FROM tb1; -- illegal
SELECT tb1.col.x FROM tb1; -- illegal
SELECT scott.tb1.col.x FROM scott.tb1; -- illegal
SELECT t.col.x FROM tb1 t;
UPDATE tb1 SET col.x = 10; -- illegal
UPDATE scott.tb1 SET scott.tb1.col.x=10; -- illegal
UPDATE tb1 t set t.col.x = 1;
DELETE FROM tb1 WHERE tb1.col.x = 10; -- illegal
DELETE FROM tb1 t WHERE t.col.x = 10;

Calling Subprograms and Methods

D-10 PL/SQL User’s Guide and Reference

■ Row expressions must resolve as references to table aliases. You can pass row

expressions to operators REF and VALUE, and you can use row expressions in

the SET clause of an UPDATE statement. Some examples follow:

CREATE TYPE t1 AS OBJECT (x number);
CREATE TABLE ot1 OF t1; -- object table
SELECT REF(ot1) FROM ot1; -- illegal
SELECT REF(o) FROM ot1 o;
SELECT VALUE(ot1) FROM ot1; -- illegal
SELECT VALUE(o) FROM ot1 o;
DELETE FROM ot1 WHERE VALUE(ot1) = (t1(10)); -- illegal
DELETE FROM ot1 o WHERE VALUE(o) = (t1(10));
UPDATE ot1 SET ot1 = ... -- illegal
UPDATE ot1 o SET o =

The following ways to insert into an object table are legal and do not require an

alias because there is no column list:

INSERT INTO ot1 VALUES (t1(10)); -- no row expression
INSERT INTO ot1 VALUES (10); -- no row expression

Calling Subprograms and Methods
In calls to a parameterless subprogram, an empty parameter list is optional, as the

following examples show:

CREATE FUNCTION func1 RETURN NUMBER AS
BEGIN
 RETURN 10;
END;

CREATE PACKAGE pkg2 AS
 FUNCTION func1 RETURN NUMBER;
 PRAGMA RESTRICT_REFERENCES(func1,WNDS,RNDS,WNPS,RNPS);
END pkg2;

CREATE PACKAGE BODY pkg2 AS
 FUNCTION func1 RETURN NUMBER IS
 BEGIN
 RETURN 20;
 END;
END pkg2;

Calling Subprograms and Methods

Name Resolution D-11

SELECT func1 FROM dual;
SELECT func1() FROM dual;

SELECT pkg2.func1 FROM dual;
SELECT pkg2.func1() FROM dual;

DECLARE
 x NUMBER;
BEGIN
 x := func1;
 x := func1();
 SELECT func1 INTO x FROM dual;
 SELECT func1() INTO x FROM dual;
 SELECT pkg2.func1 INTO x FROM dual;
 SELECT pkg2.func1() INTO x FROM dual;
END;

In calls to a parameterless method, an empty parameter list is optional within

PL/SQL scopes. However, an empty parameter list is required within SQL scopes.

Some examples follow:

CREATE TYPE type1 AS OBJECT (
 a NUMBER,
 MEMBER FUNCTION f RETURN number,
 PRAGMA RESTRICT_REFERENCES(f,WNDS,RNDS,WNPS,RNPS)
);

CREATE TYPE BODY type1 AS
 MEMBER FUNCTION f RETURN number IS
 BEGIN
 RETURN 1;
 END;
END;

CREATE TABLE tab1 (col1 type1);
INSERT INTO tab1 VALUES (type1(10));

SELECT x.col1.f FROM tab1 x; -- illegal
SELECT x.col1.f() FROM tab1 x;

SQL versus PL/SQL

D-12 PL/SQL User’s Guide and Reference

DECLARE
 n NUMBER;
 y type1;
BEGIN
 /* In PL/SQL scopes, an empty parameter list is optional. */
 n := y.f;
 n := y.f();
 /* In SQL scopes, an empty parameter list is required. */
 SELECT x.col1.f INTO n FROM tab1 x; -- illegal
 SELECT x.col1.f() INTO n FROM tab1 x;
 SELECT y.f INTO n FROM dual; -- illegal
 SELECT y.f() INTO n FROM dual;
END;

SQL versus PL/SQL
The name-resolution rules for SQL and PL/SQL are similar. However, there are a

few minor differences, which are not noticeable if you follow the capture avoidance

rules.

For compatibility, the SQL rules are more permissive than the PL/SQL rules. That

is, the SQL rules, which are mostly context sensitive, recognize as legal more

situations and DML statements than the PL/SQL rules do.

PL/SQL Program Limits E-1

E
PL/SQL Program Limits

PL/SQL is designed primarily for high-speed transaction processing. That design

imposes some program limits, which are discussed in this appendix.

Dealing with Size Limits

E-2 PL/SQL User’s Guide and Reference

Dealing with Size Limits
PL/SQL is based on the programming language Ada. As a result, PL/SQL uses a

variant of Descriptive Intermediate Attributed Notation for Ada (DIANA), which is

a tree-structured intermediate language. It is defined using a meta-notation called

Interface Definition Language (IDL). DIANA provides for communication internal

to compilers and other tools.

At compile time, PL/SQL source code is translated into machine-readable m-code.

Both the DIANA and m-code for a procedure or package are stored in the database.

At run time, they are loaded into the shared (memory) pool. The DIANA is used to

compile dependent procedures; the m-code is simply executed.

In the shared pool, a package spec, object type spec, stand-alone subprogram, or

anonymous block is limited to 64K DIANA nodes. The nodes correspond to tokens

such as identifiers, keywords, operators, and so on. The m-code is limited to 64K

compiler-generated temporary variables.

Also, the PL/SQL compiler imposes various limits, some of which are given in

Table E–1. Ordinarily, however, the DIANA size limit is exceeded before any of

those limits.

Table E–1 PL/SQL Compiler Limits

Item Limit

bind variables passed to a program unit 32K

exception handlers in a program unit 64K

fields in a record 64K

levels of block nesting 255

levels of record nesting 32

levels of subquery nesting 254

levels of label nesting 98

magnitude of a BINARY_INTEGER value 2G

magnitude of a PLS_INTEGER value 2G

objects referenced by a program unit 64K

parameters passed to an explicit cursor 64K

parameters passed to a function or procedure 64K

precision of a FLOAT value (binary digits) 126

precision of a NUMBER value (decimal digits) 38

precision of a REAL value (binary digits) 63

size of an identifier (characters) 30

Dealing with Size Limits

PL/SQL Program Limits E-3

To estimate how much memory a program unit requires, you can query the data

dictionary view user_object_size . The column parsed_size returns the size

(in bytes) of the "flattened" DIANA. In the following example, you get the parsed

size of a package (displayed on the package spec line):

CREATE PACKAGE pkg1 AS
 PROCEDURE proc1;
END pkg1;
/

CREATE PACKAGE BODY pkg1 AS
 PROCEDURE proc1 IS
 BEGIN
 NULL;
 END;
END pkg1;
/

SQL> SELECT * FROM user_object_size WHERE name = 'PKG1';

NAME TYPE SOURCE_SIZE PARSED_SIZE CODE_SIZE ERROR_SIZE
--
PKG1 PACKAGE 46 165 119 0
PKG1 PACKAGE BODY 82 0 139 0

size of a string literal (bytes) 32K

size of a CHAR value (bytes) 32K

size of a LONG value (bytes) 32K - 7

size of a LONG RAW value (bytes) 32K - 7

size of a RAW value (bytes) 32K

size of a VARCHAR2 value (bytes) 32K

size of an NCHAR value (bytes) 32K

size of an NVARCHAR2 value (bytes) 32K

size of a BIFLE value (bytes) 4G

size of a BLOB value (bytes) 4G

size of a CLOB value (bytes) 4G

size of an NCLOB value (bytes) 4G

Table E–1 PL/SQL Compiler Limits

Item Limit

Dealing with Size Limits

E-4 PL/SQL User’s Guide and Reference

Unfortunately, you cannot estimate the number of DIANA nodes from the parsed

size. Two program units with the same parsed size might require 1500 and 2000

DIANA nodes, respectively (because, for example, the second unit contains more

complex SQL statements).

When a PL/SQL block, subprogram, package, or object type exceeds a size limit,

you get an error such as program too large. Typically, this problem occurs with

packages or anonymous blocks. With a package, the best solution is to divide it into

smaller packages. With an anonymous block, the best solution is to redefine it as a

group of subprograms, which can be stored in the database.

Reserved Words F-1

F
Reserved Words

The words listed in this appendix are reserved by PL/SQL. That is, they have a

special syntactic meaning to PL/SQL. So, you should not use them to name

program objects such as constants, variables, or cursors. Some of these words

(marked by an asterisk) are also reserved by SQL. So, you should not use them to

name schema objects such as columns, tables, or indexes.

F-2 PL/SQL User’s Guide and Reference

ALL*
ALTER*
AND*
ANY*
ARRAY
AS*
ASC*
AT
AUTHID
AVG
BEGIN
BETWEEN*
BINARY_INTEGER
BODY
BOOLEAN
BULK
BY*
CHAR*
CHAR_BASE
CHECK*
CLOSE
CLUSTER*
COLLECT
COMMENT*
COMMIT
COMPRESS*
CONNECT*
CONSTANT
CREATE*
CURRENT*
CURRVAL
CURSOR
DATE*
DAY
DECLARE
DECIMAL*
DEFAULT*

DELETE*
DESC*
DISTINCT*
DO
DROP*
ELSE*
ELSIF
END
EXCEPTION
EXCLUSIVE*
EXECUTE
EXISTS*
EXIT
EXTENDS
FALSE
FETCH
FLOAT*
FOR*
FORALL
FROM*
FUNCTION
GOTO
GROUP*
HAVING*
HEAP
HOUR
IF
IMMEDIATE*
IN*
INDEX*
INDICATOR
INSERT*
INTEGER*
INTERFACE
INTERSECT*
INTERVAL
INTO*

IS*
ISOLATION
JAVA
LEVEL*
LIKE*
LIMITED
LOCK*
LONG*
LOOP
MAX
MIN
MINUS*
MINUTE
MLSLABEL*
MOD
MODE*
MONTH
NATURAL
NATURALN
NEW
NEXTVAL
NOCOPY
NOT*
NOWAIT*
NULL*
NUMBER*
NUMBER_BASE
OCIROWID
OF*
ON*
OPAQUE
OPEN
OPERATOR
OPTION*
OR*
ORDER*
ORGANIZATION

OTHERS
OUT
PACKAGE
PARTITION
PCTFREE*
PLS_INTEGER
POSITIVE
POSITIVEN
PRAGMA
PRIOR*
PRIVATE
PROCEDURE
PUBLIC*
RAISE
RANGE
RAW*
REAL
RECORD
REF
RELEASE
RETURN
REVERSE
ROLLBACK
ROW*
ROWID*
ROWNUM*
ROWTYPE
SAVEPOINT
SECOND
SELECT*
SEPARATE
SET*
SHARE*
SMALLINT*
SPACE
SQL
SQLCODE

SQLERRM
START*
STDDEV
SUBTYPE
SUCCESSFUL*
SUM
SYNONYM*
SYSDATE*
TABLE*
THEN*
TIME
TIMESTAMP
TO*
TRIGGER*
TRUE
TYPE
UID*
UNION*
UNIQUE*
UPDATE*
USE
USER*
VALIDATE*
VALUES*
VARCHAR*
VARCHAR2*
VARIANCE
VIEW*
WHEN
WHENEVER*
WHERE*
WHILE
WITH*
WORK
WRITE
YEAR
ZONE

Index-1

Index
Symbols
+ addition/identity operator, 2-3

:= assignment operator, 1-4, 2-4

=> association operator, 2-4, 7-13

% attribute indicator, 1-7, 2-3

’ character string delimiter, 2-3

. component selector, 1-6, 2-3

|| concatenation operator, 2-4, 2-47

/ division operator, 2-3

** exponentiation operator, 2-4

(expression or list delimiter, 2-3

) expression or list delimiter, 2-3

: host variable indicator, 2-3

. item separator, 2-3

<< label delimiter, 2-4

>> label delimiter, 2-4

/* multi-line comment delimiter, 2-4

*/ multi-line comment delimiter, 2-4

* multiplication operator, 2-3

" quoted identifier delimiter, 2-3

.. range operator, 2-4, 3-10

= relational operator, 2-3, 2-46

< relational operator, 2-3, 2-46

> relational operator, 2-3, 2-46

<> relational operator, 2-4, 2-46

!= relational operator, 2-4, 2-46

~= relational operator, 2-4, 2-46

^= relational operator, 2-4

<= relational operator, 2-4, 2-46

>= relational operator, 2-4, 2-46

@ remote access indicator, 2-3, 2-36

-- single-line comment delimiter, 2-4

; statement terminator, 2-3, 11-15

- subtraction/negation operator, 2-3

A
abstraction, 7-3, 9-2

ACCESS_INTO_NULL exception, 6-5

actual parameters, 5-8

address, 5-16

aggregate assignment, 2-34

aggregate functions

AVG, 5-3

COUNT, 5-3

GROUPING, 5-3

MAX, 5-3

MIN, 5-3

STDDEV, 5-3

SUM, 5-3

treatment of nulls, 5-3

VARIANCE, 5-3

aliasing, 7-22

ALL row operator, 5-3, 5-5

anonymous PL/SQL block, 7-2

ANY comparison operator, 5-5

apostrophes, 2-9

architecture, 1-17

assignment operator, 1-4

assignment statement

syntax, 11-3

assignments

aggregate, 2-34

character string, B-2

collection, 4-11

cursor variable, 5-32

field, 4-47

record, 4-47

semantics, B-2

association operator, 7-13

Index-2

asterisk (*) row operator, 5-3

asynchronous operations, 8-17

atomically null, 9-23

attribute indicator, 1-7

attributes, 1-7

%ROWTYPE, 2-33

%TYPE, 2-32

cursor, 5-35

object, 9-3, 9-7

AUTHID clause, 7-4, 7-6, 7-31

autonomous transactions, 5-52

advantages, 5-52

controlling, 5-56

autonomous triggers, 5-58

AUTONOMOUS_TRANSACTION pragma, 5-53

syntax, 11-7

AVG aggregate function, 5-3

B
base types, 2-13, 2-25

basic loops, 3-6

BETWEEN comparison operator, 2-46, 5-5

BFILE datatype, 2-22

binary operators, 2-42

BINARY_INTEGER datatype, 2-12

bind argument, 10-3

binding, 4-30

blank-padding semantics, B-3

BLOB datatype, 2-23

blocks

anonymous, 7-2

label, 2-40

PL/SQL, 11-10

structure, 1-2

body

cursor, 5-12

function, 7-7

method, 9-8

object, 9-5

package, 8-8

procedure, 7-4

BOOLEAN datatype, 2-23

Boolean expressions, 2-47

Boolean literals, 2-9

built-in functions, 2-52

bulk binds, 4-29

BULK COLLECT clause, 4-37

bulk fetches, 4-38

bulk returns, 4-39

%BULK_ROWCOUNT cursor attribute, 4-34

by-reference parameter passing, 7-22

by-value parameter passing, 7-22

C
call specification, 8-3

calls

inter-language, 7-44

subprogram, 7-13

carriage returns, 2-2

case sensitivity

identifier, 2-5

string literal, 2-9

CHAR

datatype, 2-15

semantics, B-1

CHAR column

maximum width, 2-15

character literals, 2-8

character sets, 2-2

CHARACTER subtype, 2-15

character values

assigning, B-2

comparing, B-2

inserting, B-4

selecting, B-4

clauses

AUTHID, 7-4, 7-6, 7-31

BULK COLLECT, 4-37

LIMIT, 4-39

client programs, 9-2

CLOB datatype, 2-23

CLOSE statement, 5-11, 5-24

syntax, 11-17

collating sequence, 2-48

collection exceptions

when raised, 4-28

Index-3

collection methods

applying to parameters, 4-27

COUNT, 4-22

DELETE, 4-26, 11-20

EXISTS, 4-22

EXTEND, 4-24

FIRST, 4-23

LAST, 4-23

LIMIT, 4-22

NEXT, 4-23

PRIOR, 4-23

syntax, 11-19

TRIM, 4-25

COLLECTION_IS_NULL exception, 6-5

collections, 4-2

assigning, 4-11

bulk binding, 4-29

comparing, 4-13

constructors, 4-8

declaring, 4-7

defining, 4-5

element types, 4-5

initializing, 4-8

kinds, 4-1

referencing, 4-10

scope, 4-8

syntax, 11-24

column alias, 5-14

when needed, 2-35

COMMENT clause, 5-43

comments, 2-10

restrictions, 2-11

syntax, 11-30

COMMIT statement, 5-43

syntax, 11-31

comparison operators, 2-45, 5-5

comparisons

of character values, B-2

of collections, 4-13

of expressions, 2-47

compiler hint, NOCOPY, 7-17

component selector, 1-6

composite types, 2-11

compound symbols, 2-4

concatenation operator, 2-47

treatment of nulls, 2-51

concurrency, 5-41

conditional control, 3-2

constants

declaring, 2-31

syntax, 11-33

constraints

NOT NULL, 2-32

where not allowed, 7-4

constructors

collection, 4-8

object, 9-12

context

switching, 4-30

transaction, 5-55

control structures, 3-2

conditional, 3-2

iterative, 3-6

sequential, 3-15

conventions

naming, 2-36

conversion functions

when needed, 2-29

conversion, datatype, 2-28

correlated subquery, 5-11

COUNT aggregate function, 5-3

COUNT collection method, 4-22

CURRENT OF clause, 5-49

current row, 1-5

CURRVAL pseudocolumn, 5-3

cursor attributes

%BULK_ROWCOUNT, 4-34

%FOUND, 5-35, 5-39

%ISOPEN, 5-35, 5-39

%NOTFOUND, 5-36

%ROWCOUNT, 5-36, 5-40

implicit, 5-39

syntax, 11-37

values, 5-37

cursor FOR loop

passing parameters to, 5-15

cursor FOR loops, 5-13

Index-4

cursor variables, 5-15

assignment, 5-32

closing, 5-24

declaring, 5-17

fetching from, 5-23

opening, 5-19

restrictions, 5-34

syntax, 11-42

using to reduce network traffic, 5-31

using with dynamic SQL, 10-7

CURSOR_ALREADY_OPEN exception, 6-5

cursors, 1-5, 5-6

analogy, 1-5

closing, 5-11

declaring, 5-7

explicit, 5-6

fetching from, 5-9

implicit, 5-11

opening, 5-8

packaged, 5-12

parameterized, 5-8

RETURN clause, 5-12

scope rules, 5-7

syntax, 11-48

D
dangling refs, 9-33

data

abstraction, 9-2

encapsulation, 1-16

integrity, 5-41

locks, 5-42

database changes

making permanent, 5-43

undoing, 5-44

database character set, 2-20

database triggers, 1-19

autonomous, 5-58

datatypes, 2-11

BFILE, 2-22

BINARY_INTEGER, 2-12

BLOB, 2-23

BOOLEAN, 2-23

CHAR, 2-15

CLOB, 2-23

constrained, 7-4

DATE, 2-24

families, 2-11

implicit conversion, 2-28

LONG, 2-16

LONG RAW, 2-16

national character, 2-20

NCHAR, 2-20

NCLOB, 2-23

NUMBER, 2-13

NVARCHAR2, 2-21

PLS_INTEGER, 2-14

RAW, 2-16

RECORD, 4-42

REF CURSOR, 5-16

ROWID, 2-17

scalar versus composite, 2-11

TABLE, 4-2

UROWID, 2-17

VARCHAR2, 2-19

VARRAY, 4-4

DATE datatype, 2-24

dates

converting, 2-29

TO_CHAR default format, 2-29

DBMS_ALERT package, 8-17

DBMS_OUTPUT package, 8-17

DBMS_PIPE package, 8-18

deadlocks, 5-42

effect on transactions, 5-44

how broken, 5-44

DEC subtype, 2-14

DECIMAL subtype, 2-14

declarations

collection, 4-7

constant, 2-31

cursor, 5-7

cursor variable, 5-17

exception, 6-7

forward, 7-10

object, 9-22

record, 4-43

subprogram, 7-10

variable, 2-30

Index-5

declarative part

of function, 7-7

of PL/SQL block, 1-3

of procedure, 7-4

DECODE function

treatment of nulls, 2-51

DEFAULT keyword, 2-31

default parameter values, 7-20

define variable, 10-3

definer rights, 7-29

versus invoker rights, 7-29

DELETE collection method, 4-26, 11-20

DELETE statement

RETURNING clause, 5-64

syntax, 11-52

delimiters, 2-3

dense collections, 4-3

DEPT database table, xxi

DEREF function, 9-33

dereference, 9-33

DETERMINISTIC hint, 7-6

digits of precision, 2-13

DISTINCT operator, 5-3

DISTINCT row operator, 5-3, 5-6

distributed transactions, 5-42

dot notation, 1-6, 1-7

for collection methods, 4-21

for global variables, 3-13

for object attributes, 9-24

for object methods, 9-26

for package contents, 8-7

for record fields, 2-34

DOUBLE PRECISION subtype, 2-14

DUP_VAL_ON_INDEX exception, 6-5

dynamic FOR-loop range, 3-12

dynamic SQL, 10-2

tips and traps, 10-11

using EXECUTE IMMEDIATE statement, 10-3

using OPEN-FOR-USING statement, 10-7

dynamic string, 10-3

E
elaboration, 2-31

element types, collection, 4-5

ELSE clause, 3-3

ELSIF clause, 3-4

EMP database table, xxi

encapsulation, data, 1-16

END IF reserved words, 3-3

END LOOP reserved words, 3-9

entended rowids, 2-17

error messages

maximum length, 6-18

evaluation, 2-42

short-circuit, 2-45

EXAMPBLD script, A-3

EXAMPLOD script, A-3

exception handlers, 6-15

branching from, 6-17

OTHERS handler, 6-2

using RAISE statement in, 6-15

using SQLCODE function in, 6-18

using SQLERRM function in, 6-18

EXCEPTION_INIT pragma, 6-8

syntax, 11-56

using with raise_application_error, 6-10

exception-handling part

of function, 7-7

of PL/SQL block, 1-3

of procedure, 7-4

exceptions, 6-2

declaring, 6-7

predefined, 6-4

propagation, 6-12

raised in declaration, 6-16

raised in handler, 6-17

raising with RAISE statement, 6-11

reraising, 6-14

scope rules, 6-7

syntax, 11-58

user-defined, 6-7

WHEN clause, 6-15

Index-6

executable part

of function, 7-7

of PL/SQL block, 1-3

of procedure, 7-4

EXECUTE IMMEDIATE statement, 10-3

EXECUTE privilege, 7-35

execution environments, 1-17

EXISTS collection method, 4-22

EXISTS comparison operator, 5-5

EXIT statement, 3-6, 3-14

syntax, 11-65

WHEN clause, 3-7

where allowed, 3-6

explicit cursors, 5-6

expressions

Boolean, 2-47

how evaluated, 2-42

parentheses in, 2-43

syntax, 11-67

EXTEND collection method, 4-24

extensibility, 7-3

external references, 7-31

how resolved, 7-32

external routines, 7-44

F
FALSE value, 2-9

FETCH statement, 5-9, 5-23

syntax, 11-77

fetching

across commits, 5-50

bulk, 4-38

Fibonacci sequence, 7-39

fields, 4-42

file I/O, 8-18

FIRST collection method, 4-23

flag, PLSQL_V2_COMPATIBILITY, 5-69

FLOAT subtype, 2-14

FOR loops, 3-10

cursor, 5-13

dynamic range, 3-12

iteration scheme, 3-10

loop counter, 3-10

nested, 3-14

FOR UPDATE clause, 5-8

restriction on, 5-19

when to use, 5-48

FORALL statement, 4-32

syntax, 11-82

using with BULK COLLECT clause, 4-41

formal parameters, 5-8

format

of functions, 7-6

of packaged subprograms, 7-11

of procedures, 7-3

format masks

when needed, 2-29

forward declarations, 7-10

when needed, 7-10, 7-42

forward references, 2-36

forward type definitions, 9-29

%FOUND cursor attribute, 5-35, 5-39

functions, 7-1, 7-6

body, 7-7

built-in, 2-52

call, 7-7

parameter, 7-6

parts, 7-7

RETURN clause, 7-7

specification, 7-7

syntax, 11-84

G
gigabyte, 2-22

GOTO statement, 3-15

label, 3-15

misuse, 3-17

restriction, 6-17

syntax, 11-89

GROUP BY clause, 5-3

GROUPING aggregate function, 5-3

guess, 2-18

Index-7

H
handlers, exception, 6-2

handling exceptions, 6-1

raised in declaration, 6-16

raised in handler, 6-17

using OTHERS handler, 6-15

handling of nulls, 2-49

hidden declarations, 8-3

hint, DETERMINISTIC, 7-6

hint, NOCOPY, 7-17

host arrays

bulk binds, 4-41

hypertext markup language (HTML), 8-18

hypertext transfer protocol (HTTP), 8-18

I
identifiers

forming, 2-5

maximum length, 2-5

quoted, 2-6

scope rules, 2-38

IF statement, 3-2

ELSE clause, 3-3

ELSIF clause, 3-4

syntax, 11-91

THEN clause, 3-3

implicit cursors, 5-11

attributes, 5-39

implicit datatype conversion, 2-28

effect on performance, 5-68

implicit declarations

cursor FOR loop record, 5-13

FOR loop counter, 3-13

IN comparison operator, 2-47, 5-6

IN OUT parameter mode, 7-16

IN parameter mode, 7-14

incomplete object types, 9-29

index-by tables

versus nested tables, 4-3

infinite loops, 3-6

information hiding, 1-15, 8-5

initialization

collection, 4-8

object, 9-23

package, 8-8

record, 4-44

using DEFAULT, 2-31

variable, 2-41

when required, 2-32

INSERT statement

RETURNING clause, 5-64

syntax, 11-94

instances, 9-4

INT subtype, 2-14

INTEGER subtype, 2-14

inter-language calls, 7-44

INTERSECT set operator, 5-6

INTO clause, 5-23

INTO list, 5-9

INVALID_CURSOR exception, 6-5

INVALID_NUMBER exception, 6-5

invoker rights, 7-29

advantages, 7-30

versus definer rights, 7-29

IS DANGLING predicate, 9-33

IS NULL comparison operator, 2-46, 5-6

%ISOPEN cursor attribute, 5-35, 5-39

iteration

scheme, 3-10

versus recursion, 7-43

iterative control, 3-6

J
joins, 7-41

L
labels

block, 2-40

GOTO statement, 3-15

loop, 3-8

large object (LOB) datatypes, 2-22

LAST collection method, 4-23

LEVEL pseudocolumn, 5-4

lexical units, 2-2

LIKE comparison operator, 2-46, 5-6

LIMIT clause, 4-39

Index-8

LIMIT collection method, 4-22

limitations, PL/SQL, E-1

literals, 2-7

Boolean, 2-9

character, 2-8

numeric, 2-7

string, 2-9

syntax, 11-97

LOB (large object) datatypes, 2-22

lob locators, 2-22

local subprograms, 1-18

locator variables, 6-22

LOCK TABLE statement, 5-49

syntax, 11-100

locks, 5-42

modes, 5-42

overriding, 5-48

using FOR UPDATE clause, 5-48

logical rowids, 2-17

LOGIN_DENIED exception, 6-5

LONG datatype, 2-16

maximum length, 2-16

restrictions, 2-16

LONG RAW datatype, 2-16

converting, 2-30

maximum length, 2-16

LOOP statement, 3-6

forms, 3-6

syntax, 11-102

loops

counters, 3-10

kinds, 3-6

labels, 3-8

M
maintainability, 7-3

map methods, 9-10

MAX aggregate function, 5-3

maximum precision, 2-13

maximum size

CHAR value, 2-15

identifier, 2-5

LOB, 2-22

LONG RAW value, 2-16

LONG value, 2-16

NCHAR value, 2-20

NVARCHAR2 value, 2-21

Oracle error message, 6-18

RAW value, 2-16

VARCHAR2 value, 2-19

membership test, 2-47

method calls, chaining, 9-26

methods

collection, 4-21

COUNT, 4-22

DELETE, 4-26, 11-20

EXISTS, 4-22

EXTEND, 4-24

FIRST, 4-23

LAST, 4-23

LIMIT, 4-22

map, 9-10

NEXT, 4-23

object, 9-3, 9-8

order, 9-10

PRIOR, 4-23

TRIM, 4-25

MIN aggregate function, 5-3

MINUS set operator, 5-6

mixed notation, 7-13

modes, parameter

IN, 7-14

IN OUT, 7-16

OUT, 7-14

modularity, 1-11, 7-3, 8-5

multi-line comments, 2-10

mutual recursion, 7-42

N
name resolution, 2-37, D-1

named notation, 7-13

names

cursor, 5-7

qualified, 2-36

savepoint, 5-45

variable, 2-37

naming conventions, 2-36

national character datatypes, 2-20

Index-9

national character set, 2-20

National Language Support (NLS), 2-20

native dynamic SQL. See dynamic SQL

NATURAL subtype, 2-13

NATURALN subtype, 2-13

NCHAR datatype, 2-20

NCLOB datatype, 2-23

nested tables

manipulating, 4-13

versus index-by tables, 4-3

nesting

block, 1-3

FOR loop, 3-14

object, 9-7

record, 4-43

network traffic

reducing, 1-22

NEXT collection method, 4-23

NEXTVAL pseudocolumn, 5-3

nibble, 2-30

NLS (National Language Support), 2-20

NO_DATA_FOUND exception, 6-5

NOCOPY compiler hint, 7-17

restrictions on, 7-19

non-blank-padding semantics, B-3

NOT logical operator

treatment of nulls, 2-50

NOT NULL constraint

effect on %TYPE declaration, 2-33

effect on performance, 5-67

restriction, 5-7, 7-4

using in collection declaration, 4-6

using in field declaration, 4-44

using in variable declaration, 2-32

NOT_LOGGED_ON exception, 6-5

notation

mixed, 7-13

positional versus named, 7-13

%NOTFOUND cursor attribute, 5-36

NOWAIT parameter, 5-48

NVARCHAR2 datatype, 2-21

NVL function

treatment of nulls, 2-51

null handling, 2-49

in dynamic SQL, 10-13

NULL statement, 3-19

syntax, 11-109

using in a procedure, 7-4

nullity, 2-46

NUMBER datatype, 2-13

numeric literals, 2-7

NUMERIC subtype, 2-14

O
object attributes, 9-3, 9-7

accessing, 9-24

allowed datatypes, 9-7

maximum number, 9-7

object constructors

calling, 9-25

passing parameters to, 9-26

object methods, 9-3, 9-8

calling, 9-26

object tables, 9-30

object types, 9-1, 9-3

advantages, 9-5

defining, 9-12

examples, 9-12

structure, 9-5

syntax, 11-110

object-oriented programming, 9-1

objects, 9-4

declaring, 9-22

initializing, 9-23

manipulating, 9-30

sharing, 9-27

OPEN statement, 5-8

syntax, 11-119

OPEN-FOR statement, 5-19

syntax, 11-121

OPEN-FOR-USING statement, 10-7

syntax, 11-124

operators

comparison, 2-45

precedence, 2-43

relational, 2-46

option, PARALLEL_ENABLE, 7-6

OR keyword, 6-16

order methods, 9-10

Index-10

order of evaluation, 2-43, 2-44

OTHERS exception handler, 6-2, 6-15

OUT parameter mode, 7-14

overloading, 7-24

object method, 9-10

packaged subprogram, 8-15

restrictions, 7-25

using subtypes, 7-26

P
packaged cursors, 5-12

packaged subprograms, 1-18, 7-11

calling, 8-7

overloading, 8-15

packages, 8-1, 8-2

advantages, 8-5

bodiless, 8-6

body, 8-2

initializing, 8-8

private versus public objects, 8-15

product-specific, 8-17

referencing, 8-7

scope, 8-6

serially reusable, 5-65

specification, 8-2

syntax, 11-127

PARALLEL_ENABLE option, 7-6

parameter aliasing, 7-22

parameter passing

by reference, 7-22

by value, 7-22

in dynamic SQL, 10-6

parameters

actual versus formal, 7-12

cursor, 5-8

default values, 7-20

modes, 7-14

SELF, 9-9

parentheses, 2-43

pattern matching, 2-46

performance, 1-21

improving, 5-61

physical rowids, 2-17

pipe, 8-18

placeholders, 10-2

duplicate, 10-12

PLS_INTEGER datatype, 2-14

PL/SQL

advantages, 1-20

architecture, 1-17

block structure, 1-2

execution environments, 1-17

limitations, E-1

performance, 1-21

portability, 1-23

procedural aspects, 1-2

reserved words, F-1

sample programs, A-1

Server Pages (PSPs), 7-45

support for SQL, 1-20

syntax, 11-1

PL/SQL blocks

anonymous, 1-2, 7-2

syntax, 11-10

PL/SQL compiler

how calls are resolved, 7-27

PL/SQL engine, 1-17

in Oracle server, 1-18

in Oracle tools, 1-19

PLSQL_V2_COMPATIBILITY flag, 5-69

pointers, 5-16

portability, 1-23

positional notation, 7-13

POSITIVE subtype, 2-13

POSITIVEN subtype, 2-13

pragmas, 6-8

AUTONOMOUS_TRANSACTION, 5-53

EXCEPTION_INIT, 6-8

RESTRICT_REFERENCES, 5-60, 7-9, 10-15

SERIALLY_REUSABLE, 5-65

precedence, operator, 2-43

precision of digits

specifying, 2-13

predefined exceptions

list of, 6-4

raising explicitly, 6-11

redeclaring, 6-10

predicates, 5-5

PRIOR collection method, 4-23

Index-11

PRIOR row operator, 5-4, 5-6

private objects, 8-15

procedural abstraction, 9-2

procedures, 7-1, 7-3

body, 7-4

calling, 7-5

parameter, 7-3

parts, 7-4

specification, 7-4

syntax, 11-133

productivity, 1-22

program units, 1-11

PROGRAM_ERROR exception, 6-5

propagation, exception, 6-12

pseudocolumns, 5-3

CURRVAL, 5-3

LEVEL, 5-4

NEXTVAL, 5-3

ROWID, 5-4

ROWNUM, 5-5

pseudoinstruction, 6-8

public objects, 8-15

purity rules, 7-9

Q
qualifiers

using subprogram names as, 2-38

when needed, 2-36, 2-40

query work areas, 5-16

quoted identifiers, 2-6

R
RAISE statement, 6-11

syntax, 11-138

using in exception handler, 6-15

raise_application_error procedure, 6-9

raising an exception, 6-11

range operator, 3-10

RAW datatype, 2-16

converting, 2-30

maximum length, 2-16

read consistency, 5-42

READ ONLY parameter, 5-47

readability, 2-2, 3-19

read-only transaction, 5-47

REAL subtype, 2-14

RECORD datatype, 4-42

records, 4-42

%ROWTYPE, 5-13

assigning, 4-47

comparing, 4-49

declaring, 4-43

defining, 4-42

implicit declaration, 5-13

initializing, 4-44

manipulating, 4-49

nesting, 4-43

referencing, 4-45

syntax, 11-140

recursion, 7-39

infinite, 7-39

mutual, 7-42

terminating condition, 7-39

versus iteration, 7-43

REF CURSOR datatype, 5-16

defining, 5-17

REF function, 9-32

REF type modifier, 9-28

reference datatypes, 2-11

references, external, 7-31

refs, 9-27

dangling, 9-33

declaring, 9-28

dereferencing, 9-33

relational operators, 2-46

remote access indicator, 2-36

REPEAT UNTIL structure

mimicking, 3-10

REPLACE function

treatment of nulls, 2-52

reraising an exception, 6-14

reserved words, F-1

misuse of, 2-6

using as quoted identifier, 2-7

resolution, name, 2-37, D-1

Index-12

RESTRICT_REFERENCES pragma, 7-9

syntax, 11-144

using with autonomous functions, 5-60

using with dynamic SQL, 10-15

restricted rowids, 2-17

result set, 1-5, 5-8

RETURN clause

cursor, 5-12

function, 7-7

RETURN statement, 7-8

syntax, 11-147

return type, 5-17, 7-26

return value, function, 7-7

RETURNING clause, 5-64, 9-36

reusability, 7-3

reusable packages, 5-65

REVERSE reserved word, 3-11

rollback segments, 5-42

ROLLBACK statement, 5-44

effect on savepoints, 5-45

syntax, 11-149

rollbacks

implicit, 5-46

of FORALL statement, 4-33

statement-level, 5-44

routines, external, 7-44

row locks, 5-48

row operators, 5-6

%ROWCOUNT cursor attribute, 5-36, 5-40

ROWID datatype, 2-17

ROWID pseudocolumn, 5-4

rowids, 2-17

extended, 2-17

guess, 2-18

logical, 2-17

physical, 2-17

restricted, 2-17

universal, 2-17

ROWIDTOCHAR function, 5-4

ROWNUM pseudocolumn, 5-5

%ROWTYPE attribute, 2-33

syntax, 11-151

ROWTYPE_MISMATCH exception, 6-6

RPC (remote procedure call), 6-12

RTRIM function

using to insert data, B-4

rules, purity, 7-9

run-time errors, 6-1

S
sample database tables

DEPT table, xxi

EMP table, xxi

sample programs, A-1

savepoint names

reusing, 5-45

SAVEPOINT statement, 5-45

syntax, 11-153

scalar datatypes, 2-11

scale

specifying, 2-14

schemes, iteration, 3-10

scientific notation, 2-8

scope, 2-38

collection, 4-8

cursor, 5-7

cursor parameter, 5-7

definition, 2-38

exception, 6-7

identifier, 2-38

loop counter, 3-13

package, 8-6

SELECT INTO statement

syntax, 11-154

selector, 5-21

SELF parameter, 9-9

semantics

assignment, B-2

blank-padding, B-3

CHAR versus VARCHAR2, B-1

non-blank-padding, B-3

string comparison, B-2

separators, 2-3

sequence, 5-3

sequential control, 3-15

serially reusable packages, 5-65

SERIALLY_REUSABLE pragma, 5-65

syntax, 11-159

Index-13

Server Pages, PL/SQL, 7-45

session, 5-41

session-specific variables, 8-11

set operators, 5-6

SET TRANSACTION statement, 5-47

syntax, 11-161

short-circuit evaluation, 2-45

side effects, 7-14

controlling, 7-9

significant characters, 2-5

SIGNTYPE subtype, 2-13

simple symbols, 2-3

single-line comments, 2-10

size limit, varray, 4-5

SMALLINT subtype, 2-14

snapshots, 5-42

SOME comparison operator, 5-5

spaces

where allowed, 2-2

spaghetti code, 3-15

sparse collections, 4-3

specification

call, 8-3

cursor, 5-12

function, 7-7

method, 9-8

object, 9-5

package, 8-6

procedure, 7-4

SQL

comparison operators, 5-5

data manipulation statements, 5-2

dynamic, 10-2

pseudocolumns, 5-3

row operators, 5-6

set operators, 5-6

support in PL/SQL, 1-20

SQL cursor

syntax, 11-163

SQLCODE function, 6-18

syntax, 11-166

SQLERRM function, 6-18

syntax, 11-168

stack, 9-13

standalone subprograms, 1-18

START WITH clause, 5-4

statement terminator, 11-15

statement-level rollbacks, 5-44

statements, PL/SQL

assignment, 11-3

CLOSE, 5-11, 5-24, 11-17

COMMIT, 11-31

DELETE, 11-52

dynamic SQL, 10-2

EXECUTE IMMEDIATE, 10-3

EXIT, 11-65

FETCH, 5-9, 5-23, 11-77

FORALL, 4-32

GOTO, 11-89

IF, 11-91

INSERT, 11-94

LOCK TABLE, 11-100

LOOP, 11-102

NULL, 11-109

OPEN, 5-8, 11-119

OPEN-FOR, 5-19, 11-121

OPEN-FOR-USING, 10-7

RAISE, 11-138

RETURN, 11-147

ROLLBACK, 11-149

SAVEPOINT, 11-153

SELECT INTO, 11-154

SET TRANSACTION, 11-161

UPDATE, 11-172

STDDEV aggregate function, 5-3

STEP clause

mimicking, 3-12

stepwise refinement, 1-2

STORAGE_ERROR exception, 6-6

when raised, 7-39

store tables, 4-4

stored subprograms, 1-18

string comparison semantics, B-2

string literals, 2-9

STRING subtype, 2-19

structure theorem, 3-2

stubs, 3-19, 7-3

Index-14

subprograms, 7-2

advantages, 7-3

declaring, 7-10

how calls are resolved, 7-27

local, 1-18

overloading, 7-24

packaged, 1-18, 7-11

parts, 7-2

procedure versus function, 7-6

recursive, 7-39

standalone, 1-18

stored, 1-18

subquery, 5-11

SUBSCRIPT_BEYOND_COUNT exception, 6-6

SUBSCRIPT_OUTSIDE_LIMIT exception, 6-6

SUBSTR function, 6-19

subtypes, 2-13, 2-25

CHARACTER, 2-15

compatibility, 2-26

constrained versus unconstrained, 2-25

DEC, 2-14

DECIMAL, 2-14

defining, 2-25

DOUBLE PRECISION, 2-14

FLOAT, 2-14

INT, 2-14

INTEGER, 2-14

NATURAL, 2-13

NATURALN, 2-13

NUMERIC, 2-14

overloading, 7-26

POSITIVE, 2-13

POSITIVEN, 2-13

REAL, 2-14

SIGNTYPE, 2-13

SMALLINT, 2-14

STRING, 2-19

VARCHAR, 2-19

SUM aggregate function, 5-3

support for SQL, 5-2

symbols

compound, 2-4

simple, 2-3

syntax

definition, 11-1

diagram reading, 11-2

T
TABLE datatype, 4-2

TABLE operator, 4-18

tabs, 2-2

terminating condition, 7-39

terminator, statement, 2-3

ternary operators, 2-42

THEN clause, 3-3

TIMEOUT_ON_RESOURCE exception, 6-6

TOO_MANY_ROWS exception, 6-6

top-down design, 1-15

trailing blanks

how handled, B-4

transactions, 5-2

autonomous, 5-52

committing, 5-43

context, 5-55

distributed, 5-42

ending properly, 5-46

processing, 5-2, 5-41

read-only, 5-47

rolling back, 5-44

visibility, 5-55

triggers, 1-19

autonomous, 5-58

TRIM collection method, 4-25

TRUE value, 2-9

%TYPE attribute, 2-32

syntax, 11-170

type definitions

collection, 4-5

forward, 9-29

RECORD, 4-42

REF CURSOR, 5-17

Index-15

U
unary operators, 2-42

underscores, 2-5

unhandled exceptions, 6-12, 6-19

uninitialized object

how treated, 9-24

UNION ALL set operator, 5-6

UNION set operator, 5-6

universal rowids, 2-17

UPDATE statement

RETURNING clause, 5-64

syntax, 11-172

URL (uniform resource locator), 8-18

UROWID datatype, 2-17

user session, 5-41

user-defined exceptions, 6-7

user-defined records, 4-42

user-defined subtypes, 2-25

USING clause, 10-3, 11-62

UTL_FILE package, 8-18

UTL_HTTP package, 8-18

V
VALUE function, 9-31

VALUE_ERROR exception, 6-6

VARCHAR subtype, 2-19

VARCHAR2

datatype, 2-19

semantics, B-1

variables

assigning values, 2-41

declaring, 2-30

initializing, 2-41

session-specific, 8-11

syntax, 11-33

VARIANCE aggregate function, 5-3

VARRAY datatype, 4-4

varrays

size limit, 4-5

visibility

of package contents, 8-3

transaction, 5-55

versus scope, 2-38

W
WHEN clause, 3-7, 6-15

WHILE loop, 3-9

wildcards, 2-46

words, reserved, F-1

work areas, query, 5-16

Wrap Utility, C-1

input and output files, C-3

running, C-2

Z
ZERO_DIVIDE exception, 6-6

Index-16

	PDF Directory
	Contents
	Send Us Your Comments
	Preface
	1 Overview
	Main Features
	Block Structure
	Variables and Constants
	Cursors
	Cursor FOR Loops
	Cursor Variables
	Attributes
	Control Structures
	Modularity
	Data Abstraction
	Information Hiding
	Error Handling

	Architecture
	In the Oracle Server
	In Oracle Tools

	Advantages of PL/SQL
	Support for SQL
	Support for Object-Oriented Programming
	Better Performance
	Higher Productivity
	Full Portability
	Tight Integration with SQL
	Tight Security

	2 Fundamentals
	Character Set
	Lexical Units
	Delimiters
	Identifiers
	Literals
	Comments

	Datatypes
	Number Types
	Character Types
	National Character Types
	LOB Types
	Other Types

	User-Defined Subtypes
	Defining Subtypes
	Using Subtypes

	Datatype Conversion
	Explicit Conversion
	Implicit Conversion
	Implicit versus Explicit Conversion
	DATE Values
	RAW and LONG RAW Values

	Declarations
	Using DEFAULT
	Using NOT NULL
	Using %TYPE
	Using %ROWTYPE
	Restrictions

	Naming Conventions
	Synonyms
	Scoping
	Case Sensitivity
	Name Resolution

	Scope and Visibility
	Assignments
	Boolean Values
	Database Values

	Expressions and Comparisons
	Operator Precedence
	Logical Operators
	Comparison Operators
	Concatenation Operator
	Boolean Expressions
	Handling Nulls

	Built-In Functions

	3 Control Structures
	Overview
	Conditional Control: IF Statements
	IF-THEN
	IF-THEN-ELSE
	IF-THEN-ELSIF
	Guidelines

	Iterative Control: LOOP and EXIT Statements
	LOOP
	WHILE-LOOP
	FOR-LOOP

	Sequential Control: GOTO and NULL Statements
	GOTO Statement
	NULL Statement

	4 Collections and Records
	What Is a Collection?
	Understanding Nested Tables
	Nested Tables versus Index-by Tables
	Understanding Varrays
	Varrays versus Nested Tables

	Defining and Declaring Collections
	Declaring Collections

	Initializing and Referencing Collections
	Referencing Collection Elements

	Assigning and Comparing Collections
	Comparing Whole Collections

	Manipulating Collections
	Some Nested Table Examples
	Some Varray Examples
	Manipulating Individual Elements
	Manipulating Local Collections

	Using Collection Methods
	Using EXISTS
	Using COUNT
	Using LIMIT
	Using FIRST and LAST
	Using PRIOR and NEXT
	Using EXTEND
	Using TRIM
	Using DELETE
	Applying Methods to Collection Parameters

	Avoiding Collection Exceptions
	Taking Advantage of Bulk Binds
	How Do Bulk Binds Improve Performance?

	Using the FORALL Statement
	Rollback Behavior of FORALL
	Using %BULK_ROWCOUNT
	Restrictions on FORALL

	Using the BULK COLLECT Clause
	Bulk Fetches
	Bulk Returns
	Restrictions on BULK COLLECT

	Using FORALL and BULK COLLECT Together
	Using Host Arrays
	What Is a Record?
	Defining and Declaring Records
	Declaring Records

	Initializing and Referencing Records
	Referencing Records

	Assigning and Comparing Records
	Comparing Records

	Manipulating Records

	5 Interaction with Oracle
	SQL Support
	Data Manipulation
	Transaction Control
	SQL Functions
	SQL Pseudocolumns
	SQL Operators

	Managing Cursors
	Explicit Cursors
	Implicit Cursors

	Packaging Cursors
	Using Cursor FOR Loops
	Using Subqueries
	Using Aliases
	Passing Parameters

	Using Cursor Variables
	What Are Cursor Variables?
	Why Use Cursor Variables?
	Defining REF CURSOR Types
	Declaring Cursor Variables
	Controlling Cursor Variables
	Example 1
	Example 2
	Example 3
	Example 4
	Reducing Network Traffic
	Avoiding Errors
	Restrictions on Cursor Variables

	Using Cursor Attributes
	Explicit Cursor Attributes
	Implicit Cursor Attributes

	Processing Transactions
	How Transactions Guard Your Database
	Using COMMIT
	Using ROLLBACK
	Using SAVEPOINT
	Implicit Rollbacks
	Ending Transactions
	Using SET TRANSACTION
	Overriding Default Locking

	Using Autonomous Transactions
	Advantages of Autonomous Transactions
	Defining Autonomous Transactions
	Controlling Autonomous Transactions
	Using Autonomous Triggers
	Calling Autonomous Functions from SQL

	Improving Performance
	Use Object Types and Collections
	Use Bulk Binds
	Use Native Dynamic SQL
	Use External Routines
	Use the NOCOPY Compiler Hint
	Use the RETURNING Clause
	Use Serially Reusable Packages
	Use the PLS_INTEGER Datatype
	Avoid the NOT NULL Constraint
	Rephrase Conditional Control Statements
	Avoid Implicit Datatype Conversions

	Ensuring Backward Compatibility

	6 Error Handling
	Overview
	Advantages of Exceptions
	Predefined Exceptions
	User-Defined Exceptions
	Declaring Exceptions
	Scope Rules
	Using EXCEPTION_INIT
	Using raise_application_error
	Redeclaring Predefined Exceptions

	How Exceptions Are Raised
	Using the RAISE Statement

	How Exceptions Propagate
	Reraising an Exception
	Handling Raised Exceptions
	Exceptions Raised in Declarations
	Exceptions Raised in Handlers
	Branching to or from an Exception Handler
	Using SQLCODE and SQLERRM
	Unhandled Exceptions

	Useful Techniques
	Continuing after an Exception Is Raised
	Retrying a Transaction
	Using Locator Variables

	7 Subprograms
	What Are Subprograms?
	Advantages of Subprograms
	Understanding Procedures
	Understanding Functions
	Using the RETURN Statement
	Controlling Sides Effects

	Declaring Subprograms
	Packaging Subprograms
	Actual versus Formal Parameters
	Positional versus Named Notation
	Using Positional Notation
	Using Named Notation
	Using Mixed Notation

	Specifying Parameter Modes
	Using the IN Mode
	Using the OUT Mode
	Using the IN OUT Mode
	Summary of Parameter Modes

	Using the NOCOPY Compiler Hint
	The Trade-Off for Better Performance
	Restrictions on NOCOPY

	Using Parameter Defaults
	Understanding Parameter Aliasing
	Using Overloading
	Restrictions on Overloading

	How Calls Are Resolved
	Invoker Rights versus Definer Rights
	Advantages of Invoker Rights
	Using the AUTHID Clause
	Who Is the Current User?
	How External References Are Resolved
	Overriding Default Name Resolution
	Granting Privileges
	Using Roles
	Using Views and Database Triggers
	Using Database Links
	Using Object Types

	Understanding and Using Recursion
	What Is a Recursive Subprogram?
	Using Mutual Recursion
	Recursion versus Iteration

	Calling External Routines
	Using PL/SQL Server Pages

	8 Packages
	What Is a Package?
	Advantages of Packages
	The Package Spec
	Referencing Package Contents

	The Package Body
	Some Examples
	Private versus Public Items
	Overloading Packaged Subprograms
	Package STANDARD
	Product-specific Packages
	DBMS_ALERT
	DBMS_OUTPUT
	DBMS_PIPE
	UTL_FILE
	UTL_HTTP

	Guidelines

	9 Object Types
	The Role of Abstraction
	What Is an Object Type?
	Why Use Object Types?
	Structure of an Object Type
	Components of an Object Type
	Attributes
	Methods

	Defining Object Types
	Object Type Stack
	Object Type Ticket_Booth
	Object Type Bank_Account
	Object Type Rational

	Declaring and Initializing Objects
	Declaring Objects
	Initializing Objects
	How PL/SQL Treats Uninitialized Objects

	Accessing Attributes
	Calling Constructors
	Calling Methods
	Sharing Objects
	Using Refs
	Forward Type Definitions

	Manipulating Objects
	Selecting Objects
	Inserting Objects
	Updating Objects
	Deleting Objects

	10 Native Dynamic SQL
	What Is Dynamic SQL?
	The Need for Dynamic SQL
	Using the EXECUTE IMMEDIATE Statement
	Some Examples
	Backward Compatibility
	Specifying Parameter Modes

	Using the OPEN-FOR, FETCH, and CLOSE Statements
	Opening the Cursor Variable
	Fetching from the Cursor Variable
	Closing the Cursor Variable
	Some Examples

	Tips and Traps
	Improving Performance
	Passing the Names of Schema Objects
	Using Duplicate Placeholders
	Using Cursor Attributes
	Passing Nulls
	Doing Remote Operations
	Using Invoker Rights
	Using Pragma RESTRICT_REFERENCES
	Avoiding Deadlocks

	11 Language Elements
	Assignment Statement
	AUTONOMOUS_TRANSACTION Pragma
	Blocks
	CLOSE Statement
	Collection Methods
	Collections
	Comments
	COMMIT Statement
	Constants and Variables
	Cursor Attributes
	Cursor Variables
	Cursors
	DELETE Statement
	EXCEPTION_INIT Pragma
	Exceptions
	EXECUTE IMMEDIATE Statement
	EXIT Statement
	Expressions
	FETCH Statement
	FORALL Statement
	Functions
	GOTO Statement
	IF Statement
	INSERT Statement
	Literals
	LOCK TABLE Statement
	LOOP Statements
	NULL Statement
	Object Types
	OPEN Statement
	OPEN-FOR Statement
	OPEN-FOR-USING Statement
	Packages
	Procedures
	RAISE Statement
	Records
	RESTRICT_REFERENCES Pragma
	RETURN Statement
	ROLLBACK Statement
	%ROWTYPE Attribute
	SAVEPOINT Statement
	SELECT INTO Statement
	SERIALLY_REUSABLE Pragma
	SET TRANSACTION Statement
	SQL Cursor
	SQLCODE Function
	SQLERRM Function
	%TYPE Attribute
	UPDATE Statement

	A Sample Programs
	Running the Programs
	Sample 1. FOR Loop
	Input Table
	PL/SQL Block
	Output Table

	Sample 2. Cursors
	Input Table
	PL/SQL Block
	Output Table

	Sample 3. Scoping
	Input Table
	PL/SQL Block
	Output Table

	Sample 4. Batch Transaction Processing
	Input Tables
	PL/SQL Block
	Output Tables

	Sample 5. Embedded PL/SQL
	Input Table
	PL/SQL Block in a C Program
	Interactive Session
	Output Tables

	Sample 6. Calling a Stored Procedure
	Input Table
	Stored Procedure
	Interactive Session

	B CHAR versus VARCHAR2 Semantics
	Assigning Character Values
	Comparing Character Values
	Inserting Character Values
	Selecting Character Values

	C Wrap Utility
	Advantages of Wrapping
	Running the Wrap Utility
	Input and Output Files
	Error Handling
	Version Compatibility

	Guidelines

	D Name Resolution
	What Is Name Resolution?
	Various Forms of References
	Name-Resolution Algorithm
	Finding the Basis

	Understanding Capture
	Inner Capture
	Same-Scope Capture
	Outer Capture

	Avoiding Capture
	Accessing Attributes and Methods
	Calling Subprograms and Methods
	SQL versus PL/SQL

	E PL/SQL Program Limits
	Dealing with Size Limits

	F Reserved Words
	Index

