Chapter 6

Information Theory

Exercise 6.1

Let us consider a random variable X given by

 $X = \begin{cases} a & \text{with probability } 1/2 \\ b & \text{with probability } 1/4 \\ c & \text{with probability } 1/8 \\ d & \text{with probability } 1/8 \end{cases}$

Calculate entropy of X.

Exercise 6.2

Let (X, Y) have the following joint distribution:

	X = 1	X = 2	X = 3	X = 4
Y = 1	$\frac{1}{8}$	$\frac{1}{16}$	$\frac{1}{32}$	$\frac{1}{32}$
Y = 2	$\frac{1}{16}$	$\frac{1}{8}$	$\frac{1}{32}$	$\frac{1}{32}$
Y = 3	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$
Y = 4	$\frac{1}{4}$	0	0	0

Compute H(X), H(Y) and H(X|Y).

Exercise 6.3

Let $A = \{0, 1\}$ and consider two distributions p and q on A. Let p(0) = 1 - r, p(1) = r, and let q(0) = 1 - s, and q(1) = s. Compute $D(p \parallel q)$ and $D(q \parallel p)$ for r = s and for $r = \frac{1}{2}, s = \frac{1}{4}$.

Exercise 6.4

Let (X, Y) have the same distribution as in Exercise 6.2. Compute their mutual information I(X; Y).

Exercise 6.5

Let (X, Y) have the following joint distribution:

	X = 1	X = 2
Y = 1 $Y = 2$	$\begin{array}{c} 0\\ \frac{1}{8} \end{array}$	$\frac{\frac{3}{4}}{\frac{1}{8}}$

Compute H(X), H(X|Y = 1), H(X|Y = 2) and H(X|Y).

Exercise 6.6

Find random variables X, Y and $y \in \mathcal{Y}$ such that $H(X) < H(X \mid Y = y)$.

Exercise 6.7

What is the minimum entropy for $H(p_1, p_2, \ldots, p_n) = H(\vec{p})$ as \vec{p} ranges over all probability vectors? Find all possible values of \vec{p} which achieve this minimum.

Exercise 6.8

What is the general inequality relation between H(X) and H(Y) if

- 1. $Y = 2^X$
- 2. $Y = \cos X$

Exercise 6.9

Show that whenever $H(Y \mid X) = 0$, Y is a function of X.

Exercise 6.10

A metric ρ on a set X is a function $\rho: X \times X \to \mathbb{R}$. For all $x, y, z \in X$, this function is required to satisfy the following conditions:

- 1. $\rho(x, y) \ge 0$
- 2. $\rho(x, y) = 0$ if and only if x = y
- 3. $\rho(x, y) = \rho(y, x)$
- 4. $\rho(x,z) \leq \rho(x,y) + \rho(y,z)$

For the metric $\rho(X, Y) = H(X|Y) + H(Y|X)$, show that conditions 1, 3 and 4 hold. Should we define X = Y iff there exists a bijection f such that X = f(y), show that 2 holds as well.