Chapter 2

Random variables

Exercise 2.1

Let X be uniformly distributed on $0,1, \ldots, 99$. Calculate $\mathcal{P}(X \geq 25)$.

Exercise 2.2

Suppose that X has a geometric probability distribution with $p=4 / 5$. Compute the probability that $4 \leq X \leq 7$ or $X>9$.

Exercise 2.3

Let $n \in \mathbb{N}$ and let

$$
f(x)= \begin{cases}c 2^{x}, & x=0,1,2, \ldots, n \\ 0, & \text { otherwise }\end{cases}
$$

Find the value of c such that f is a probability distribution.

Exercise 2.4

Prove that $\binom{n-1}{r-1} p^{r}(1-p)^{n-r}=\binom{-r}{n-r}(-1)^{n-r} p^{r}(1-p)^{n-r}$.

Exercise 2.5

Professor R. A. Bertlmann (http://homepage.univie.ac.at/reinhold.bertlmann/) is going to a attend a conference in Erice (Italy) and wants to pack 10 socks. He draws them randomly from a box with 20 socks. However, prof. Bertlmann likes to wear a sock of different color on each leg. What is the probability that he draws out 3 red socks given that there are 4 red socks in the box?

Exercise 2.6

Consider a probabilistic space over a set \mathbf{S}. Show that for every event $A \subseteq \mathbf{S}$ and its indicator I_{A} it holds $E\left(I_{A}\right)=\mathcal{P}(A)$. (An indicator is defined as $I_{A}(w)=1$
for all $w \in A$ and $I_{A}(w)=0$ for all $w \notin A$.)

Exercise 2.7

In the same space as in Exercise ?? consider two random variables X, Y such that $\forall w \in$
$S s S: X(w) \leq Y(w)$. Prove that $E(X) \leq E(Y)$.

Exercise 2.8 (Banach's matchbox problem)

Suppose a mathematician carries two matchboxes in his pocket. He chooses either of them with the probability 0.5 when taking a match. Consider the moment when he reaches an empty box in his pocket. Assume there were N matches intially in each matchbox. What is the probability that there are exactly r matches in the nonempty matchbox?

Exercise 2.9

Random variables $X_{1}, X_{2}, \ldots, X_{r}$ with probability distributions $p_{X_{1}}, p_{X_{2}}, \ldots, p_{X_{r}}$ are mutually independent if for all $x_{1} \in \operatorname{Im}\left(X_{1}\right), x_{2} \in \operatorname{Im}\left(X_{2}\right), \ldots, x_{r} \in \operatorname{Im}\left(X_{r}\right)$

$$
p_{X_{1}, X_{2}, \ldots, X_{r}}\left(x_{1}, x_{2}, \ldots, x_{r}\right)=p_{X_{1}}\left(x_{1}\right) p_{X_{2}}\left(x_{2}\right) \cdots, p_{X_{r}}\left(x_{r}\right) .
$$

Does this imply that for any set $i_{1}, i_{2} \ldots i_{q} \in\{1,2 \ldots r\}$ of distinct indices we have

$$
p_{X_{i_{1}}, X_{i_{2}}, \ldots, X_{i_{q}}}\left(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{q}}\right)=p_{X_{i_{1}}}\left(x_{i_{1}}\right) p_{X_{i_{2}}}\left(x_{i_{2}}\right) \cdots, p_{X_{i_{q}}}\left(x_{i_{q}}\right) ?
$$

Exercise 2.10

Let $A_{1}, A_{2} \ldots A_{r}$ be events such that we have

$$
\mathcal{P}\left(A_{1} \cap A_{2} \cap \cdots \cap A_{r}\right)=\mathcal{P}\left(A_{1}\right) \mathcal{P}\left(A_{2}\right) \cdots \mathcal{P}\left(A_{r}\right)
$$

Does this imply that for all $i_{1}, i_{2}, \ldots i_{q}$ distinct indices we have

$$
\mathcal{P}\left(A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{q}}\right)=\mathcal{P}\left(A_{i_{1}}\right) \mathcal{P}\left(A_{i_{2}}\right) \cdots \mathcal{P}\left(A_{i_{q}}\right)
$$

