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Part I

Extracting randomness
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Random Numbers in Computer Science

Random numbers are of crucial importance for a waste number of
computer science applications.

Cryptography is impossible without random numbers.
I Cryptographic keys - encryption, authentication, digital signatures
I Random choices in cryptographic algorithms and protocols - zero

knowledge proofs

Randomized algorithms

Communication protocols

Practically all these applications

inherently require randomness generated uniformly

or their analysis is performed for uniform random numbers.
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Randomness Extraction

Source of
randomness

Randomness
extractor

bit string distributed
according to a bi-
ased distribution

011011

uniformly
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bit string
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Randomness Extraction
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Extraction from Know Probability Distribution

In contrast to our requirements, most available sources of randomness
generate non-uniform output.
We have to partition the set of outputs into set of constant
probability.
Depending on the output probability distribution, this may be
impossible.
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Extraction from Unknown Probability Distribution

The probability distribution of the random number generator output
may vary during the computation.

This might be due to
I low quality of the generator design,
I external hard-to-control effects, such as temperature,
I or an attack of an adversary.

Non-uniform distribution models adversary’s knowledge about the
outcome of a (uniform) random number generator.

Extraction is still possible, given some limitations on the output
probability distributions.
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Von Neumann Extractor

Source produces a sequence of random bits, that are generated
independently according to (an unknown) a fixed probability
distribution.

On each position the source generates independently

0 with probability p

1 with probability (1− p).

Von Neumann extractor divides the bit sequence into pairs and for
each pair of bits it takes action depending on the value

00 outputs nothing

11 outputs nothing

01 outputs 0

10 outputs 1.

Jan Bouda (FI MU) Lecture 9 - Randomness extractors May 18, 2012 8 / 38



Von Neumann Extractor

For the aforementioned source the output is always a sequence of
independent and uniformly distributed bits.

1 1 0 1 0 0 1 0 0 1 1 0 1 1

0 1 0 1
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Part II

Randomness Extractors
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Towards Extractor Definition

The purpose of an extractor is to transform an input (biased)
probability distribution to a probability distribution that is (close to)
uniform distribution.

Assume we have a biased distribution X on X.

A randomness extractor is function e : X→ Y, such that the
distribution Y on Y induced by the distribution X , i.e.

P(Y = y) =
∑

x∈X,e(x)=y

P(X = x),

is close (to be specified later) to the uniform distribution.

Such an extractor has natural limitations, namely for a fixed e, and
two distributions X1 and X2 mapped by e to uniform distribution, for
each y ∈ Y it holds that∑

x∈X,e(x)=y

P(X1 = x) =
∑

x∈X,e(x)=y

P(X2 = x) = P(Y = y).
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Towards extractor definition

This means that e partitions X to pre-images of elements of Y.

e : X→ Y

P(Y = a) 0 0 0 0 0 0 a

P(Y = b)

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 0 1 1

b

...

P(Y = f )
1 1 1 1 1 0

1 1 1 1 1 1
f
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Towards extractor definition

We may overcome this limitation by allowing a (small) auxiliary
uniform input Z .

This would give us the seeded extractor e : X× Z→ Y.

We naturally expect that the extractor should be useful, i.e. to
produce some extra randomness. We require |Y | > |Z |.
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Trace Distance of Probability Distributions

Definition

Let X and Y be random variables defined on the same sample space S
with probability distributions pX and pY , respectively. The trace distance
(or L1 distance) of random variables X and Y is

d(X ,Y ) =
1

2

∑
a∈S
|pX (a)− pY (a)| = max

A⊆S
|P(X ∈ A)− P(Y ∈ A)|. (1)

X and Y are ε-close in L1 iff

d(X ,Y ) ≤ ε. (2)
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Extractor Definition

Definition

Let P(X) be the set of all probability distributions on X, and S ⊂ P(X).
Then e : X× Z→ Y is a (S, ε) (seeded) randomness extractor iff for all
X ∈ S

d(e(X ,UZ ),UY ) ≤ ε, (3)

where UZ is the uniform distribution on Z and UY is the uniform
distribution on Y.

X extractor Y

Z
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Part III

Sources of Randomness
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Randomness Extractor and min-entropy

Definition

The min–entropy of a probability distribution X is

H∞(X ) = min
x∈X
− log P(X = x) = − log max

x∈X
P(X = x). (4)

It is a good measure of the amount of randomness contained in the input
probability distribution, as demonstrated by the next theorem.

pr
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Min-entropy Bounds Extractor Output

Theorem

Let X be a random variable with image X = {0, 1}n satisfying
H∞(X ) ≤ k − 1 for some k ∈ N. Then there no ({X}, 0) extractor with
Z = {0, 1}d and Y = {0, 1}m such that m ≥ k + d.

Proof.

The fact that H∞(X ) ≤ k − 1 implies that there is some element x such
that P(X = x) ≥ 2−(k−1). Therefore, for any auxiliary input z ∈ Z, the
probability of the corresponding output e(x , z) is at least
2−(k−1)2−d = 2−(k+d−1) > 2−m and therefore the output probability
distribution is not uniform and its distance from the uniform distribution is
bounded by the min-entropy of the input.

Previous theorem shows us that the gain of randomness extraction is
limited by the min–entropy of the source distribution.
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Min-Entropy Source

A first example of an extractable set of probability distributions is the
min-entropy source. We define the source with min-entropy k as
S ⊂ P(X) such that ∀X ∈ S H∞(X ) ≥ k.

(1, 0, 0, 0) (0, 1, 0, 0)

(0, 0, 1, 0)

(0, 0, 0, 1)
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Min-Entropy Extractor

Definition

The function e : X×Z→ Y is a (k, ε) (seeded) randomness extractor iff
for all X with H∞(X ) it holds that

d(e(X ,UZ ),UY ) ≤ ε, (5)

where UZ is the uniform distribution on Z and UY is the uniform
distribution on Y.

Extractor is non-trivial if it extracts more randomness than it
consumes as the auxiliary input, i.e. |Y| > |Z|.
We want to extract as much randomness as possible, i.e.
|Y| 99K 2k |Z|.
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Importance of Seed in Min-Entropy Extractor

Theorem

There is no function e : {0, 1}n → {0, 1} giving a single random bit
(uniform distribution on {0, 1}) as an output for any input random
variable X on n–bit strings satisfying H∞(X ) ≥ n − 1.

Intuitively, an input distribution with min–entropy at least n − 1 contains
much more randomness than necessary to obtain a single random bit.

Proof.

For every function e there is a bit b ∈ {0, 1} such that
|{x ∈ {0, 1}n|e(x) = b}| ≥ 2n−1 since there are 2n inputs in the domain of
e. Let us consider a random variable X uniformly distributed on the set
{x ∈ {0, 1}n|e(x) = b} ⊂ {0, 1}n. Such a random variable obeys
H∞(X ) ≥ n − 1 and yet the output distribution e(X ) is constant, i.e.
P(e(X ) = b) = 1.
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Part IV

Carter-Wegman Hashing

Jan Bouda (FI MU) Lecture 9 - Randomness extractors May 18, 2012 22 / 38



Universal hashing

Definition

Let A and B be sets such that |A| > |B|. A family H of hash functions
h : A→ B is k-universal iff for any x1, x2, . . . , xk ∈ A and a hash function
h ∈ H randomly and uniformly chosen from H it holds that

P(h(x1) = h(x2) = · · · = h(xk)) ≤ 1

|B|k−1
. (6)

Definition

Let A and B be sets such that |A| > |B|. A family H of hash functions
h : A→ B is strongly k-universal iff for any x1 6= x2 6= · · · 6= xk ∈ A, any
y1, y2, . . . , yk ∈ B and a hash function h ∈ H randomly and uniformly
chosen from H it holds that

P(h(x1) = y1 ∧ h(x2) = y2 . . . h(xk) = yk) ≤ 1

|B|k
. (7)
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Universal Hashing: Example

Let A = {0, 1, . . . ,m − 1} and B = {0, 1, . . . , n − 1} with m ≥ n. Let
p ≥ m be some prime. Consider the class of hash functions

ha,b(x) = ((ax + b) mod p) mod n. (8)

Let
H = {ha,b|1 ≤ a ≤ p − 1, 0 ≤ b ≤ p}, (9)

stressing that a 6= 0.

Theorem

H is 2-universal.
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Universal Hashing: Example

Proof.

We count the number of functions from H for which two fixed and distinct
elements x1 and x2 from A collide. x1 6= x2 implies

ax1 + b 6≡ ax2 + b (mod p),

since the opposite occurs only if a(x1 − x2) ≡ 0 (mod p). However, we
know that neither a ≡ 0 (mod p) nor x1 − x2 ≡ 0 (mod p), what implies
the equation.
Fixing x1 and x2, for every pair u 6= v ∈ B there exists exactly one pair
a, b such that ax1 + b ≡ u (mod p) and ax2 + b ≡ v (mod p).
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Universal Hashing: Example

Proof.

Solving the system of two linear equations we obtain the unique solution

a =
v − u

x2 − x1
mod p (10)

b = u − ax1 mod p. (11)

Since there is exactly one hash function for each pair (a, b), we have there
is exactly one hash function in H such that

ax1 + b ≡ u (mod p) and ax2 + b ≡ v (mod p).

We have that the number of collisions equals to the number of pairs (u, v)
from {0, . . . , p − 1} satisfying u 6= v and u ≡ v (mod n). For each choice
of u there are at most dp/ne − 1 possible values of v .
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Universal Hashing: Example

Proof.

Together we have that there are at most

p(dp/ne − 1) ≤ p

(
p + (n − 1)

n
− n

n

)
=

p(p − 1)

n
.

such pairs. Therefore, the collision probability is

P(ha,b(x1) = ha,b(x2)) ≤ p(p − 1)/n

p(p − 1)
=

1

n
.
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Part V

Extractors for Min-entropy Sources
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Min-Entropy Strong Extractor

Definition

The function e : X× Z→ Y is a (k, ε) (seeded) strong randomness
extractor iff for all X with H∞(X ) it holds that

d
(
[Uz , e(X ,UZ )], [UZ ,UY ]

)
≤ ε, (12)

where UZ is the uniform distribution on Z and UY is the uniform
distribution on Y.

The advantage of the strong extractor is that the output is close to
the uniform distribution even if the value of UZ is known.

Next we will show how to implement a strong extractor using
Wegman-Carter hashing.
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Min-Entropy Extractor

Theorem

Let X be a random variable defined on X = {0, 1}n with min-entropy
H∞(X ) ≥ k, H = {h|h : {0, 1}n → {0, 1}k−2e} be a universal2 class of
hash functions. Let x ∈R X be randomly chosen from X according to X
and h be randomly and uniformly chosen from H. Then the distribution of
(h, h(x)) is 2−e close to the uniform distribution in the trace distance, i.e.
application of a function randomly chosen from H is a (k, 2−e) strong
randomness extractor.
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Min-Entropy Extractor

Theorem

Let X1,X2, . . . ,Xl be independent identically distributed random variables
each defined on X = {0, 1}n with min-entropy H∞(X ) ≥ k,
H = {h|h : {0, 1}n → {0, 1}k−2e} be a universal2 class of hash functions.
Let xi ∈R X be randomly chosen from X according to Xi and h be
randomly and uniformly chosen from H. Then the distribution of
(h, h(x1), . . . , h(xl)) is l 2−e close to the uniform distribution in the trace
distance, i.e. l repeated applications of a fixed function randomly chosen
from H is a (k , l 2−e) strong randomness extractor.
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Part VI

Privacy Amplification
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Initial Situation

Alice sends an information to Bob via a channel that can be
(partially) observed by Eve.

After the communication the information between Alice and Bob is
perfectly preserved, described by a random variable X .

Eve has a partial knowledge of X represented by a random variable R.

Alice and Bob want to extract a shorter shared information Y , such
that E contains no information about Y .

Alice Eve Bob

R

X

Y
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Eliminating Eve

Assuming Eve know’s the value of R to be r , her knowledge about X is
the conditional probability distribution

P(X = x |R = r).

Alice and Bob agree publicly on a strong extractor e : X× Z→ Y.

Alice sends x ∈ X to Bob (Eve learns partial information r ∈ R).

Alice chooses randomly and uniformly z ∈ Z and sends it via public
and authenticated channel to Bob (Eve learns it).

Both Alice and Bob compute y = e(x , z).

Eve has no information about y , her prediction is (almost) uniform
distribution over Y.
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Eliminating Eve

This is possible thanks to the properties of the strong extractor:

d
(
[Uz , e(X ,UZ )], [UZ ,UY ]

)
≤ ε, (13)

We have to evaluate the min-entropy of the conditional probability
distribution.

X extractor Y

Z
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Part VII

More Extractors
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Other Types of Sources and Generalized Extractors

von Neumann sources: independence, fixed/limited bias

Santha-Vazirani sources: possibly dependent, limited bias

independent sources
I one source vs. multi-source point of view
I blenders

bit-fixing sources
I cryptographic application
I model e.g. adversary’s knowledge

Condensers - increase of min-entropy.
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Thank You for Your Attention!
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