Markov Chains

Jan Bouda
FI MU
May 3, 2012

Objectives

- Introduce Markov Chains
- powerful tool for special random processes
- Stationary Distribution
- Random Walks

Stochastic Process

Definition (Stochastic Process)

A collection of random variables $X=\left\{X_{t} \mid t \in T\right\}$ is called a stochastic process. The index t often represents time; X_{t} is called the state of X at time t.

Example

A gambler is playing a fair coin-flip game: wins 1 Kč if head, loses 1 Kč if tail. Let

- X_{0} denote a gambler's initial money
- X_{t} denote a gambler's money after t flips $\Rightarrow\left\{X_{t} \mid t \in\{0,1,2, \ldots\}.\right\}$ is a stochastic process

Stochastic Process

Definition
 If X_{t} assumes values from a finite set, then the process is a finite stochastic process.

Definition

If T (where the index t is chosen) is countably infinite, the process is a discrete time process.

Question:

In the previous example about a gambler's money, is the process finite? Is the process discrete time?

Markov Chain

Definition

A discrete time stochastic process $X=\left\{X_{0}, X_{1}, X_{2}, \ldots\right\}$ is a Markov chain if

$$
\begin{aligned}
\operatorname{Pr}\left(X_{t}=a \mid X_{t-1}\right. & \left.=b, X_{t-2}=a_{t-2}, \ldots, X_{0}=a_{0}\right) \\
& =\operatorname{Pr}\left(X_{t}=a \mid X_{t-1}=b\right)=P_{b, a}
\end{aligned}
$$

That is, the value of X_{t} depends on the value of X_{t-1}, but not on the history of how we arrived at X_{t-1} with that value

Question:

In the example about a gambler's money is the process a Markov chain?

Markov Chain

In other words, if X is a Markov chain, then

$$
\begin{aligned}
& \operatorname{Pr}\left(X_{1}=a \mid X_{0}=b\right)=P_{b, a} \\
& \operatorname{Pr}\left(X_{2}=a \mid X_{1}=b\right)=P_{b, a} \\
& \cdots \\
\Rightarrow P_{b, a} \quad & =\operatorname{Pr}\left(X_{1}=a \mid X_{0}=b\right) \\
& =\operatorname{Pr}\left(X_{2}=a \mid X_{1}=b\right) \\
& =\operatorname{Pr}\left(X_{3}=a \mid X_{2}=b\right)=\ldots
\end{aligned}
$$

Markov Chain

- Next, we focus our study on Markov chain whose state space (the set of values that X_{t} can take) is finite
- So, without loss of generality, we label the states in the state space by $0,1,2, \ldots, n$
- The probability $P_{i, j}=\operatorname{Pr}\left(X_{t}=j \mid X_{t-1}=i\right)$ is the probability that the process moves from state i to state j in one step

Transition Matrix

- The definition of Markov chain implies that we can define it using a one-step transition matrix P with

$$
P_{i, j}=\operatorname{Pr}\left(X_{t}=j \mid X_{t-1}=i\right)
$$

Question: For a particular i, what is $\sum_{j} P_{i, j}$?

Transition Matrix

- The transition matrix representation of a Markov chain is very convenient for computing the distribution of future states of the process
- Let $p_{i}(t)$ denote the probability that the process is at state i at time t

Question: Can we compute $p_{i}(t)$ from the transition matrix P assuming we know $p_{0}(t-1), p_{1}(t-1), \ldots$?

Transition Matrix

The value of $p_{i}(t)$ can be expressed as

$$
p_{i}(t):=p_{0}(t-1) P_{0, i}+p_{1}(t-1) P_{1, i}+\cdots+p_{n}(t-1) P_{n, i}
$$

In other words, let $\langle p(t)\rangle$ denote the vector

$$
\langle p(t)\rangle=\left(p_{0}(t), p_{1}(t), \ldots, p_{n}(t)\right)
$$

Then, we have

$$
\langle p(t)\rangle=\langle p(t-1)\rangle P
$$

Transition Matrix

- For any m, we define the m-step transition matrix

$$
P_{i, j}^{(m)}=\operatorname{Pr}\left(X_{t+m}=j \mid X_{t}=i\right)
$$

which is the probability that we move from state i to state j in exactly m steps

- It is easy to check that $P^{(2)}=P^{2}, P^{(3)}=P \cdot P^{(2)}=P^{3}$, and in general, $P^{(m)}=P^{m}$

Thus, for any $t \geq 0$ and $m \geq 1$ we have,

$$
\langle p(t+m)\rangle=\langle p(t)\rangle P^{m}
$$

Directed Graph Representation

Markov chain can also be expressed by a directed weighted graph (V, E) such that

- V denotes the state space
- E denotes transition between states with weight of edge (i, j) equal to $P_{i, j}$

Example: Markov Chain \& Graph Representation

$$
P=\left[\begin{array}{cccc}
0 & 1 / 4 & 0 & 3 / 4 \\
1 / 2 & 0 & 1 / 3 & 1 / 6 \\
0 & 0 & 1 & 0 \\
0 & 1 / 2 & 1 / 4 & 1 / 4
\end{array}\right]
$$

Consider the probability of going from state 0 to state 3 in exactly 3 steps. From the graph, all possible paths are

$$
0-1-0-3,0-1-3-3,0-3-1-3, \text { and } 0-3-3-3
$$

Probability of success for each path is: $3 / 32,1 / 96,1 / 16$ and $3 / 64$ respectively. Summing up the probabilities we find the total probability is 41/192.

Example: Markov Chain \& Graph Representation

Alternatively, we can compute

$$
P^{3}=\left[\begin{array}{cccc}
3 / 16 & 7 / 48 & 29 / 64 & 41 / 192 \\
5 / 48 & 5 / 24 & 79 / 144 & 5 / 36 \\
0 & 0 & 1 & 0 \\
1 / 16 & 13 / 96 & 107 / 192 & 47 / 192
\end{array}\right]
$$

The entry $P_{0,3}^{3}=41 / 192$ gives the correct answer.

Gambler's Ruin

- Discuss Gambler's ruin
- A study of the game between two gamblers until one is ruined (no money left)
- Introduce stationary distribution
- and a sufficient condition when a Markov chain has a stationary distribution
- Analyze random walks on a graph

The Game

- Consider two players, one has $L_{1} \mathrm{~K}$ č and the other has L_{2} Kč. Player 1 will continue to throw a fair coin, such that
- if head appears, he wins 1 Kč
- if tails appears, he loses 1 Kč
- Suppose the game is played until one player goes bankrupt. What is the probability that Player 1 survives?

The Markov Chain Model

The previous game can be modelled by the following Markov chain:

The Markov Chain Model

- Initially, the chain is at state 0 .
- Let $P_{j}^{(t)}$ denote the probability that after t steps, the chain is at state j
- Also, let q be the probability that the game ends with Player 1 winning $L_{2} K c ̌$
- We can see that
(i) $\lim _{t \rightarrow \infty} P_{j}^{(t)}=0$ for $j \neq-L_{1}, L_{2}$
(ii) $\lim _{t \rightarrow \infty} P_{j}^{(t)}=1-q$ for $j=-L_{1}$
(iii) $\lim _{t \rightarrow \infty} P_{j}^{(t)}=q$ for $j=L_{2}$

The Analysis

- Now, let W_{t} denote the money Player 1 has won after t steps
- By linearity of expectation,

$$
E\left[W_{t}\right]=0
$$

- On the other hand,

$$
E\left[W_{t}\right]=\sum_{j} j P_{j}^{(t)}=0
$$

The Analysis

- By taking limits, we have

$$
\begin{aligned}
0 & =\lim _{t \rightarrow \infty} E\left[W_{t}\right] \\
& =\lim _{t \rightarrow \infty} \sum_{j} j P_{j}^{(t)} \\
& =\left(-L_{1}\right)(1-q)+0+0+\cdots+0+\left(L_{2}\right) q
\end{aligned}
$$

- Re-arranging terms, we obtain

$$
q=L_{1} /\left(L_{1}+L_{2}\right)
$$

- That is, the probability of winning (or losing) is proportional to the amount of money a player is willing to lose (or win)

Stationary Distribution

Consider the following Markov chain:

- Let $p_{j}(t)$ denote the probability that the chain is at state j at time t, and let $\langle p(t)\rangle=\left(p_{0}(t), p_{1}(t), p_{2}(t)\right)$
- Suppose that $\langle p(t)\rangle=(0.4,0.2,0.4)$

Question: In this case, what will $\langle p(t+1)\rangle$ be?

Stationary Distribution

- After some calculations, we get

$$
\langle p(t+1)\rangle=(0.4,0.2,0.4)
$$

which is the same as $\langle p(t)\rangle$!

- We can see that in the previous example, the Markov chain has entered an 'equilibrium' condition at time t, where

$$
\langle p(n)\rangle \text { remains }(0.4,0.2,0.4) \text { for all } n \geq t
$$

\rightarrow this probability distribution is called a Stationary Distribution

Stationary Distribution

Precisely, let P be the transition matrix of a Markov chain. Then,

Definition

If $\langle p(t+1)\rangle=\langle p(t)\rangle P=\langle p(t)\rangle$, then $\langle p(t)\rangle$ is a stationary distribution of the Markov chain?

Question:

How many stationary distributions can a Markov chain have? Can it be more than one? Can it be none?

Stationary Distribution

Ans. It can be more that one. For example,

In this case both $(1,0,0, \ldots, 0)$ and $(0,0, \ldots, 0,1)$ are stationary distributions

Stationary Distribution

Ans. It can also be none. For example,

Here, no stationary distributions exists

Question:

Are there some conditions that can be used to tell whether a Markov chain has a unique stationary distribution?

Special Markov Chains

Definition

A Markov chain is irreducible if its directed representation is a strongly connected component. That is, every state j can reach any state k

For example:

irreducible

not irreducible

Special Markov Chains

Definition

A Markov chain is periodic if there exists some state j and some integer $d>1$ such that

$$
\operatorname{Pr}\left(X_{t+s}=j \mid X_{t}=j\right)=0
$$

unless s is divisible by d

In other words, once we start at state j, we can only return to j after a multiple of d steps

If a Markov chain is not periodic, then it is called aperiodic

Special Markov Chains

For example:

aperiodic

periodic

Sufficient Conditions

Theorem

Suppose a Markov chain is finite with states $0,1, \ldots, n$. If it is irreducible and aperiodic, then

- The chain has a unique stationary distribution $\langle\pi\rangle=\left(\pi_{0}, \pi_{1}, \ldots, \pi_{n}\right)$;
- $\pi_{k}=1 / h_{k, k}$ where $h_{k, k}$ is the expected number of steps to return to state k, when starting at state k

Computing the Stationary Distribution

One way to compute the stationary distribution of a finite Markov chain is to solve the system of linear equations

$$
\langle\pi\rangle P=\langle\pi\rangle
$$

For example, given the transition matrix

$$
P=\left[\begin{array}{cccc}
0 & 1 / 4 & 0 & 3 / 4 \\
1 / 2 & 0 & 1 / 3 & 1 / 6 \\
0 & 0 & 1 & 0 \\
0 & 1 / 2 & 1 / 4 & 1 / 4
\end{array}\right]
$$

we have five equations for the four unknowns $\pi_{0}, \pi_{1}, \pi_{2}$ and π_{3} given by $\langle\pi\rangle P=\langle\pi\rangle$ and $\sum \pi_{i}=1$

Another technique is to study the cut-sets of a Markov chain

Stationary Distribution \& Cut-sets

For any state i of the Markov chain, we have

$$
\sum_{j \neq i}^{n} \pi_{j} P_{j, i}=\sum_{j \neq i}^{n} \pi_{i} P_{i, j}
$$

That is, in the stationary distribution the probability that a chain leaves a state equals the probability that it enters a state

Stationary Distribution \& Cut-sets

Example:

This Markov chain is used to represent bust errors in communication transmission. The corresponding transition matrix is

$$
P=\left[\begin{array}{cc}
1-q & p \\
q & 1-q
\end{array}\right]
$$

Solving $\langle\pi\rangle P=\langle\pi\rangle$ yields to system

$$
\begin{aligned}
\pi_{0}(1-p)+\pi_{1} q & =\pi_{0} \\
\pi_{0} p+\pi_{1}(1-q) & =\pi_{1} \\
\pi_{0}+\pi_{1} & =1
\end{aligned}
$$

Stationary Distribution \& Cut-sets

Example cont'd:
For these equations, we find the second redundant. The solution is

$$
\pi_{0}=q /(p+q) \text { and } \pi_{1}=p /(p+q)
$$

When $p=.005$ and $q=.1$ in the stationary distribution more that 95% of the bits are received uncorrupted

Using the cut-set formula, we have in the stationary distribution the probability of leaving state 0 must equal the probability of entering 0 . Hence

$$
\pi_{0} p=\pi_{1} q
$$

Using $\pi_{0}+\pi_{1}=1$ yields

$$
\pi_{0}=q /(p+q) \text { and } \pi_{1}=p /(p+q)
$$

Stationary Distribution \& Cut-sets

We can summarize this result in the following:
Theorem (10)
Consider a finite, irreducible Markov chain with transition matrix P. If there are nonnegative numbers $\langle\pi\rangle=\left(\pi_{0}, \pi_{1}, \ldots, \pi_{n}\right)$ such that $\sum_{j=0}^{n} \pi_{i}=1$ and if for any pair of states i, j

$$
\pi_{i} P_{i, j}=\pi_{j} P_{j, i}
$$

then $\langle\pi\rangle$ is the stationary distribution corresponding to P

Random Walk

- Let G be a finite, undirected and connected graph
- Let $D(G)$ be a directed graph formed by replacing each undirected edge $\{u, v\}$ of G by two directed edges (u, v) and (v, u)

Definition

A random walk on G is a Markov chain whose directed representation is $D(G)$, and for each edge (u, v), the transition probability is $1 / \operatorname{deg}(u)$

Random Walk

For example:

G

Representation random walk on G

Random Walk

- Since G is connected, it is easy to check that $D(G)$ is strongly connected
- The lemma below gives a simple criterion for a random walk on G to be aperiodic

Lemma

A random walk on G is aperiodic if and only if G is not bipartite

Random Walk

Consider a random walk on a finite, undirected, connected and non-bipartite graph G. Then G satisfies the conditions of Theorem (10) and leads to a stationary distribution

The following result shows that this distribution depends only on the degree sequence of the graph!

Theorem

If $G=(V, E)$ is not bipartite, the random walk on G has a unique stationary distribution $\langle\pi\rangle$. Moreover, for the vertex v, the corresponding probability in $\langle\pi\rangle$ is:

$$
\pi_{v}=\operatorname{deg}(v) /(2|E|)
$$

Material covered:

- Markov chains
- Definitions, Gambler's ruin, Graph representation
- Stationary distributions
- computing the distribution, cut-set technique
- Random Walks
- Graph representation, definition as Markov chain, implications for the stationary distribution

