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Part I

Uncertainty and entropy
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Uncertainty

Given a random experiment it is natural to ask how uncertain we are
about an outcome of the experiment.
Compare two experiments - tossing an unbiased coin and throwing a
fair six-sided dice. First experiment attains two outcomes and the
second experiment has six possible outcomes. Both experiments have
the uniform probability distribution. Our intuition says that we are
more uncertain about an outcome of the second experiment.
Let us compare tossing of an ideal coin and a binary message source
emitting 0 and 1 both with probability 1/2. Intuitively we should
expect that the uncertainty about an outcome of each of these
experiments is the same. Therefore the uncertainty should be based
only on the probability distribution and not on the concrete sample
space.
Therefore, the uncertainty about a particular random experiment can
be specified as a function of the probability distribution
{p1, p2, . . . , pn} and we will denote it as H(p1, p2, . . . , pn).
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Uncertainty - requirements

1 Let us fix the number of outcomes of an experiment and compare the
uncertainty of different probability distributions. Natural requirement
is that the most uncertain is the experiment with the uniform
probability distribution, i.e. H(p1, . . . pn) is maximal for
p1 = · · · = pn = 1/n.

2 Permutation of probability distribution does not change the
uncertainty, i.e. for any permutation π : {1 . . . n} → {1 . . . n} it holds
that H(p1, p2, . . . , pn) = H(pπ(1), pπ(2) . . . , pπ(n)).

3 Uncertainty should be nonnegative and equals to zero if and only if
we are sure about the outcome of the experiment.
H(p1, p2, . . . , pn) ≥ 0 and it is equal if and only of pi = 1 for some i .

4 If we include into an experiment an outcome with zero probability, this
does not change our uncertainty, i.e. H(p1, . . . , pn, 0) = H(p1, . . . , pn)
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Uncertainty - requirements

5 As justified before, having the uniform probability distribution on n
outcomes cannot be more uncertain than having the uniform
probability distribution on n + 1 outcomes, i.e.

H(

n×︷ ︸︸ ︷
1/n, . . . , 1/n) ≤ H(

(n+1)×︷ ︸︸ ︷
1/(n + 1), . . . , 1/(n + 1)).

6 H(p1, . . . , pn) is a continuous function of its parameters.

7 Uncertainty of an experiment consisting of a simultaneous throw of m
and n sided die is as uncertain as an independent throw of m and n
sided die implying

H(

mn×︷ ︸︸ ︷
1/(mn), . . . , 1/(mn)) = H(

m×︷ ︸︸ ︷
1/m, . . . , 1/m) + H(

n×︷ ︸︸ ︷
1/n, . . . , 1/n).
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Entropy and uncertainty

8 Let us consider a random choice of one of n + m balls, m being red
and n being blue. Let p =

∑m
i=1 pi be the probability that a red ball

is chosen and q =
∑m+n

i=m+1 pi be the probability that a blue one is
chosen. Then the uncertainty which ball is chosen is the uncertainty
whether red of blue ball is chosen plus weighted uncertainty that a
particular ball is chosen provided blue/red ball was chosen. Formally,

H(p1, . . . , pm, pm+1, . . . , pm+n) =

=H(p, q) + pH

(
p1

p
, . . . ,

pm

p

)
+ qH

(
pm+1

q
, . . . ,

pm+n

q

)
.

(1)

It can be shown that any function satisfying Axioms 1− 8 is of the form

H(p1, . . . , pm) = −(loga 2)
m∑
i=1

pi log2 pi (2)

showing that the function is defined uniquely up to multiplication by a
constant, which effectively changes only the base of the logarithm.
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Entropy and uncertainty

Alternatively, we may show that the function H(p1, . . . , pm) is uniquely
specified through axioms

1 H(1/2, 1/2) = 1.

2 H(p, 1− p) is a continuous function of p.

3 H(p1, . . . , pm) = H(p1 + p2, p3, . . . , pm) + (p1 + p2)H( p1
p1+p2

, p2
p1+p2

)

as in Eq. (2).
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Entropy

The function H(p1, . . . , pn) we informally introduced is called the (Shannon)
entropy and, as justified above, it measures our uncertainty about an
outcome of an experiment.

Definition

Let X be a random variable with probability distribution p(x). Then the
(Shannon) entropy of the random variable X is defined as

H(X ) = −
∑

x∈Im(X )

p(X = x) log P(X = x).

In the definition we use the convention that 0 log 0 = 0, what is justified by
limx→0 x log x = 0. Alternatively, we may sum only over nonzero
probabilities.
As explained above, all required properties are independent of
multiplication by a constant what changes the base of the logarithm in the
definition of the entropy. Therefore, in the rest of this part we will use
logarithm without explicit base. In case we want to measure information in
bits, we should use logarithm base 2.
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Entropy

Let φ : R→ R be a function. Let us recall that the expectation of the
transformed random variable is E [φ(X )] =

∑
x∈Im(X ) φ(x)P(X = x).

Using this formalism we may write most of the information-theoretic
quantities. In particular, the entropy can be expressed as

H(X ) = E

[
log

1

p(X )

]
,

where p(x) = P(X = x).

Lemma

H(X ) ≥ 0.

Proof.

0 < p(x) ≤ 1 implies log(1/p(x)) ≥ 0.
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Part II

Joint and Conditional entropy
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Joint entropy

In order to examine an entropy of more complex random experiments
described by correlated random variables we have to introduce the entropy
of a pair (or n–tuple) of random variables.

Definition

Let X and Y be random variables distributed according to the probability
distribution p(x , y) = P(X = x ,Y = y). We define the joint (Shannon)
entropy of random variables X and Y as

H(X ,Y ) = −
∑

x∈Im(X )

∑
y∈Im(Y )

p(x , y) log p(x , y),

or, alternatively,

H(X ,Y ) = −E [log p(X ,Y )] = E

[
1

log p(X ,Y )

]
.
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Conditional entropy

Important question is how uncertain we are about an outcome of a
random variable X given an outcome of a random variable Y . Naturally,
our uncertainty about an outcome of X given Y = y is

H(X |Y = y) = −
∑

x∈Im(X )

P(X = x |Y = y) log P(X = x |Y = y). (3)

The uncertainty about an outcome of X given an (unspecified) outcome of
Y is naturally defined as a sum of equations (3) weighted according to
P(Y = y), i.e.
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Conditional Entropy

Definition

Let X and Y be random variables distributed according to the probability
distribution p(x , y) = P(X = x ,Y = y). Let us denote
p(x |y) = P(X = x |Y = y). The conditional entropy of X given Y is

H(X |Y ) =
∑

y∈Im(Y )

p(y)H(X |Y = y) =

=−
∑

y∈Im(Y )

p(y)
∑

x∈Im(X )

p(x |y) log p(x |y) =

=−
∑

x∈Im(X )

∑
y∈Im(Y )

p(x , y) log p(x |y)

=− E [log p(X |Y )].

(4)
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Conditional Entropy

Using the previous definition we may raise the question how much
information we learn on average about X given an outcome of Y .
Naturally, we may interpret it as the decrease of our uncertainty about X
when we learn outcome of Y , i.e. H(X )− H(X |Y ). Analogously, the
amount of information we obtain when we learn the outcome of X is
H(X ).

Theorem (Chain rule of conditional entropy)

H(X ,Y ) = H(Y ) + H(X |Y ).
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Chain rule of conditional entropy

Proof.

H(X ,Y ) =−
∑

x∈Im(X )

∑
y∈Im(Y )

p(x , y) log p(x , y) =

=−
∑

x∈Im(X )

∑
y∈Im(Y )

p(x , y) log[p(y)p(x |y)] =

=−
∑

x∈Im(X )
y∈Im(Y )

p(x , y) log p(y)−
∑

x∈Im(X )
y∈Im(Y )

p(x , y) log p(x |y) =

=−
∑

y∈Im(Y )

p(y) log p(y)−
∑

x∈Im(X )
y∈Im(Y )

p(x , y) log p(x |y) =

=H(Y ) + H(X |Y ).

(5)
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Chain rule of conditional entropy

Proof.

Alternatively we may use log p(X ,Y ) = log p(Y ) + log p(X |Y ) and take
the expectation on both sides to get the desired result.

Corollary (Conditioned chain rule)

H(X ,Y |Z ) = H(Y |Z ) + H(X |Y ,Z ).

Note that in general H(Y |X ) 6= H(X |Y ). On the other hand,
H(X )− H(X |Y ) = H(Y )− H(Y |X ) showing that information is
symmetric.
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Part III

Relative Entropy and Mutual Information
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Relative entropy

Let us start with the definition of the relative entropy, which measures
inefficiency of assuming that a given distribution is q(x) when the true
distribution is p(x).

Definition

The relative entropy or Kullback-Leibler distance between two
probability distributions p(x) and q(x) is defined as

D(p‖q) =
∑

x∈Im(X )

p(x) log
p(x)

q(x)
= E

[
log

p(X )

q(X )

]
.

In the definition we use the convention that 0 log 0
q = 0 and p log p

0 =∞.
Important is that the relative entropy is always nonnegative and it is zero
if and only if p(x) = q(x). It is not a distance in the mathematical sense
since it is not symmetric in its parameters and it does not satisfy the
triangle inequality.
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Mutual information

Mutual information measures information one random variable contains
about another random variable. It is the decrease of the uncertainty about
an outcome of a random variable given an outcome of another random
variable, as already discussed above.

Definition

Let X and Y be random variables distributed according to the probability
distribution p(x , y). The mutual information I (X ; Y ) is the relative
entropy between the joint distribution and the product of marginal
distributions

I (X ; Y ) =
∑

x∈Im(X )

∑
y∈Im(Y )

p(x , y) log
p(x , y)

p(x)p(y)

=D(p(x , y)‖p(x)p(y)) = E

[
log

p(X ,Y )

p(X )p(Y )

]
.

(6)
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Mutual Information and Entropy

Theorem

I (X ; Y ) = H(X )− H(X |Y ).

Proof.

I (X ; Y ) =
∑
x ,y

p(x , y) log
p(x , y)

p(x)p(y)
==

∑
x ,y

p(x , y) log
p(x |y)

p(x)
=

=−
∑
x ,y

p(x , y) log p(x) +
∑
x ,y

p(x , y) log p(x |y) =

=−
∑
x ,y

p(x) log p(x)−

(
−
∑
x ,y

p(x , y) log p(x |y)

)
=

=H(X )− H(X |Y ).

(7)
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Mutual information

From symmetry we get also I (X ; Y ) = H(Y )− H(Y |X ). X says about Y
as much as Y says about X . Using H(X ,Y ) = H(X ) + H(Y |X ) we get

Theorem

I (X ; Y ) = H(X ) + H(Y )− H(X ,Y ).

Note that I (X ; X ) = H(X )− H(X |X ) = H(X ).
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Part IV

Properties of Entropy and Mutual Information
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General Chain Rule for Entropy

Theorem

Let X1,X2, . . . ,Xn be random variables. Then

H(X1,X2, . . . ,Xn) =
n∑

i=1

H(Xi |Xi−1, . . . ,X1).

Proof.

We use repeated application of the chain rule for a pair of random variables

H(X1,X2) =H(X1) + H(X2|X1),

H(X1,X2,X3) =H(X1) + H(X2,X3|X1) =

=H(X1) + H(X2|X1) + H(X3|X2,X1),

...

(8)
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General Chain Rule for Entropy

Proof.

...

H(X1,X2, . . . ,Xn) =H(X1) + H(X2|X1) + · · ·+ H(Xn|Xn−1, . . . ,X1) =

=
n∑

i=1

H(Xi |Xi−1, . . . ,X1).
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Conditional Mutual Information

Definition

The conditional mutual information between random variables X and Y
given Z is defined as

I (X ; Y |Z ) = H(X |Z )− H(X |Y ,Z ) = E

[
log

p(X ,Y |Z )

p(X |Z )p(Y |Z )

]
,

where the expectation is taken over p(x , y , z).

Theorem (Chain rule for mutual information)

I (X1,X2, . . . ,Xn; Y ) =
∑n

i=1 I (Xi ; Y |Xi−1, . . . ,X1)
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Conditional Relative Entropy

Definition

The conditional relative entropy is the average of the relative entropies
between the conditional probability distributions p(y |x) and q(y |x)
averaged over the probability distribution p(x). Formally,

D
(
p(y |x)‖q(y |x)

)
=
∑
x

p(x)
∑
y

p(y |x) log
p(y |x)

q(y |x)
= E

[
log

p(Y |X )

q(Y |X )

]
.

The relative entropy between two joint distributions can be expanded as
the sum of a relative entropy and a conditional relative entropy.

Theorem (Chain rule for relative entropy)

D(p(x , y)‖q(x , y)) = D(p(x)‖q(x)) + D(p(y |x)‖q(y |x)).
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Chain Rule for Relative Entropy

Proof.

D(p(x , y)‖q(x , y)) =
∑
x

∑
y

p(x , y) log
p(x , y)

q(x , y)
=

=
∑
x

∑
y

p(x , y) log
p(x)p(y |x)

q(x)q(y |x)
=

=
∑
x ,y

p(x , y) log
p(x)

q(x)
+
∑
x ,y

p(x , y) log
p(y |x)

q(y |x)
=

=D(p(x)‖q(x)) + D(p(y |x)‖q(y |x)).

(9)
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Part V

Information inequality
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Information Inequality

Theorem (Information inequality)

Let p(x) and q(x), x ∈ X, be two probability distributions. Then

D(p‖q) ≥ 0

with equality if and only if p(x) = q(x) for all x.
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Information Inequality

Proof.

Let A = {x |p(x) > 0} be the support set of p(x). Then

−D(p‖q) =−
∑
x∈A

p(x) log
p(x)

q(x)
=

=
∑
x∈A

p(x) log
q(x)

p(x)
≤

(∗)
≤ log

∑
x∈A

p(x)
q(x)

p(x)
=

= log
∑
x∈A

q(x) ≤ log
∑
x∈X

q(x) =

= log 1 = 0,

(10)

where (∗) follows from Jensen’s inequality.
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Information Inequality

Proof.

Since log t is a strictly concave function (implying − log t is strictly convex)
of t, we have equality in (∗) if and only if q(x)/p(x) = 1 everywhere, i.e.
p(x) = q(x). Also, if p(x) = q(x) the second inequality also becomes
equality.

Corollary (Nonnegativity of mutual information)

For any two random variables X , Y

I (X ; Y ) ≥ 0

with equality if and only if X and Y are independent.

Proof.

I (X ; Y ) = D(p(x , y)‖p(x)p(y)) ≥ 0 with equality if and only if
p(x , y) = p(x)p(y), i.e. X and Y are independent.
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Consequences of Information Inequality

Corollary

D(p(y |x)‖q(y |x)) ≥ 0

with equality if and only if p(y |x) = q(y |x) for all y and x with p(x) > 0.

Corollary

I (X ; Y |Z ) ≥ 0

with equality if and only if X and Y are conditionally independent given Z.

Theorem

H(X ) ≤ log |Im(X )| with equality if and only if X has a uniform
distribution over Im(X ).
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Consequences of Information Inequality

Proof.

Let u(x) = 1/|Im(X )| be a uniform probability distribution over Im(X )
and let p(x) be the probability distribution of X . Then

D(p‖u) =
∑

p(x) log
p(x)

u(x)
=

=−
∑

p(x) log u(x)−
(
−
∑

p(x) log p(x)
)

= log |Im(X )| − H(X ).

Theorem (Conditioning reduces entropy)

H(X |Y ) ≤ H(X )

with equality if and only if X and Y are independent.
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Consequences of Information Inequality

Proof.

0 ≤ I (X ; Y ) = H(X )− H(X |Y ).

Previous theorem says that on average knowledge of a random variable Y
reduces our uncertainty about other random variable X . However, there
may exist y such that H(X |Y = y) > H(X ).

Theorem (Independence bound on entropy)

Let X1,X2, . . . ,Xn be drawn according to p(x1, x2, . . . , xn). Then

H(X1,X2, . . . ,Xn) ≤
n∑

i=1

H(Xi )

with equality if and only if Xi ’s are mutually independent.
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Consequences of Information Inequality

Proof.

We use the chain rule for entropy

H(X1,X2, . . . ,Xn) =
n∑

i=1

H(Xi |Xi−1, . . . ,X1)

≤
n∑

i=1

H(Xi ),

(11)

where the inequality follows directly from the previous theorem. We have
equality if and only if Xi is independent of all Xi−1, . . . ,X1.

Jan Bouda (FI MU) Lecture 5 - Information theory May 18, 2012 35 / 42



Part VI

Log Sum Inequality and Its Applications
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Log Sum Inequality

Theorem (Log sum inequality)

For a nonnegative numbers a1, a2, . . . , an and b1, b2, . . . , bn it holds that

n∑
i=1

ai log
ai
bi
≥

(
n∑

i=1

ai

)
log

∑n
i=1 ai∑n
i=1 bi

with equality if and only if ai/bi = const.

In the theorem we used again the convention that 0 log 0 = 0,
a log(a/0) =∞ if a > 0 and 0 log(0/0) = 0.
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Log Sum Inequality

Proof.

Assume WLOG that ai > 0 and bi > 0. The function f (t) = t log t is
strictly convex since f ′′(t) = 1

t log e > 0 for all positive t. We use the
Jensen’s inequality to get

∑
i

αi f (ti ) ≥ f

(∑
i

αi ti

)

for αi ≥ 0,
∑

i αi = 1. Setting αi = bi/
∑n

j=1 bj and ti = ai/bi we obtain

∑
i

ai∑
j bj

log
ai
bi
≥

(∑
i

ai∑
j bj

)
log
∑
i

ai∑
j bj

,

what is the desired result.
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Consequences of Log Sum Inequality

Theorem

D(p‖q) is convex in the pair (p, q), i.e. if (p1, q1) and (p2, q2) are two
pairs of probability distributions, then

D(λp1 + (1− λ)p2‖λq1 + (1− λ)q2) ≤ λD(p1‖q1) + (1− λ)D(p2‖q2)

for all 0 ≤ λ ≤ 1.

Theorem (Concavity of entropy)

H(p) is a concave function of p

Theorem

Let (X ,Y ) ∼ p(x , y) = p(x)p(y |x). The mutual information I (X ; Y ) is a
concave function of p(x) for fixed p(y |x) and a convex function of p(y |x)
for fixed p(x).
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Part VII

Data Processing inequality
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Data Processing Inequality

Theorem

X → Y → Z is a Markov chain if and only if X and Z are independent
when conditioned by Y , i.e.

p(x , z |y) = p(x |y)p(z |y).

Note that X → Y → Z implies Z → Y → X . Also, if Z = f (Y ), then
X → Y → Z .

Theorem (Data processing inequality)

If X → Y → Z , then I (X ; Y ) ≥ I (X ; Z ).
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Data Processing Inequality

Proof.

We expand mutual information using the chain rule in two different ways as

I (X ; Y ,Z ) =I (X ; Z ) + I (X ; Y |Z )

=I (X ; Y ) + I (X ; Z |Y ).
(12)

Since X and Z are conditionally independent given Y we have
I (X ; Z |Y ) = 0. Since I (X ; Y |Z ) ≥ 0 we have

I (X ; Y ) ≥ I (X ; Z ).
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