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Part I

The Asymptotic Notation
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The Asymptotic Notation: Big-O

In many applications of computer science we have to compare two
functions to decide which one grows faster with the input, or whether they
are approximately the same.

Definition

Let f (x) and g(x) be two functions defined on some subset of the real
numbers. We say that

f (x) ∈ O(g(x))

if and only if there exists a positive real number M and a real number x0
such that

|f (x)| ≤ M|g(x)| for all x > x0.

The big-O establishes that f (x) does not grow faster that g(x) (up to a
constant multiplication).
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The Asymptotic Notation: Little-o

Definition

Let f (x) and g(x) be two functions defined on some subset of the real
numbers. We say that

f (x) ∈ o(g(x))

(read as ”f (x) is little-o of g(x)”) if for every (small) positive constant ε
there exists a constant N such that

|f (n)| ≤ ε|g(n)| for all n ≥ N .

Intuitively, it means that g(x) grows much faster than f(x), or similarly, the
growth of f(x) is nothing compared to that of g(x).
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The Asymptotic Notation: Little-o

Note the difference between definition for the big-O notation, and the
definition of little-o: while the former has to be true for at least one
constant M the latter must hold for every positive constant ε, however
small.
If g(x) is nonzero, or at least becomes nonzero beyond a certain point, the
relation f (x) ∈ o(g(x)) is equivalent to

lim
x→∞

f (x)

g(x)
= 0.

Jan Bouda (FI MU) Lecture 4 - The Probabilistic Method March 27, 2012 5 / 60



The Asymptotic Notation: Big Omega

Definition

Let f (x) and g(x) be two functions defined on some subset of the real
numbers. We say that

f (x) ∈ Ω(g(x))

if f (x) is bounded below by g(x) (up to constant factor) asymptotically,
i.e. ∃k > 0 and ∃n0 s.t.

∀n > n0 g(n)k ≤ f (n)
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The Asymptotic Notation: Big Theta

Definition

Let f (x) and g(x) be two functions defined on some subset of the real
numbers. We say that

f (x) ∈ Θ(g(x))

if f (x) is bounded both above and below by g(x) asymptotically, i.e.
∃k1 > 0, ∃k2 > 0 and ∃n0 s.t.

∀n > n0 g(n)k1 ≤ f (n) ≤ g(n)k2
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The Asymptotic Notation: Small Omega

Definition

Let f (x) and g(x) be two functions defined on some subset of the real
numbers. We say that

f (x) ∈ ω(g(x))

if f (x) dominates g(x) asymptotically, i.e. ∀k > 0 there ∃n0 s.t.

∀n > n0 g(n)k ≤ f (n)
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The Asymptotic Notation

Definition

Let f (x) and g(x) be two functions defined on some subset of the real
numbers. We say that

f (x) ∼ g(x)

if f (x) is of the order of g(x), i.e.

∀ε > 0 ∃n0 ∀n > n0

∣∣∣∣ f (n)

g(n)
− 1

∣∣∣∣ < ε
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Part II

Basic Counting Argument
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Probabilistic method

The probabilistic method is a way of proving existence of objects with
certain properties.

The basic technique is to construct a probabilistic space of objects
(and a way to sample a random object). The next step is to show
that our desired object will be sampled with nonzero probability, i.e.
it exists.

This construction often samples he object with high probability
establishing thus a randomized algorithm to construct it.

The proof of existence as well as randomized algorithms can
sometimes be derandomized.
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Basic Counting Argument

To prove existence of an object with certain properties, we first
construct a suitable probability space and then show that the desired
object is sampled with nonzero probability.

We want to find a edge-coloring of a graph using two colors so that there
no large cliques with all edges of the same color.
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Monochromatic k-cliques

Theorem

For any n, k ∈ N such that
(n
2

)
2−(k2)+1 < 1 it is possible to color edges of

Kn (complete graph on n vertices) with two colors so that it has no
monochromatic Kk subgraph.

Proof.

The sample space consists of all 2(n2) possible colorings of Kn.

Assume each of the colorings is chosen with the uniform probability,

i.e. 2−(n2).

We randomly construct the coloring in the way that to each edge we
independently assign one of the colors with probability 1/2.
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Monochromatic k-cliques

Proof.

Fix an arbitrary ordering on the k-cliques of Kn, and let Ai (i = 1, . . . ,
(n
k

)
)

be the event that the i-th clique is monochromatic. Note that once the
first edge of the clique is (randomly) colored, all remaining edges must be
given the same color.

P(Ai ) = 2−(k2)+1.

We get the bound

P

(nk)⋃
i=1

Ai

 ≤ (nk)∑
i=1

P(Ai ) =

(
n

k

)
2−(k2)+1 < 1

using the assumption of the theorem.
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Monochromatic k-cliques

Proof.

We have

P

(nk)⋂
i=1

Ai

 = 1− P

(nk)⋃
i=1

Ai

 > 0

Since the probability of choosing a coloring with no monochromatic
k-clique is strictly greater than zero, there must exists such coloring.
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Monochromatic k-cliques: Example

As a particular instance consider 2-coloring K1000 so that there is no
monochromatic K20 clique. We will use the following observation to bound
the probability: for n ≤ 2k/2 and k ≥ 3(

n

k

)
2−(k2)+1 ≤ nk

k!
2−(k(k−1)/2)+1 ≤ 2k/2+1

k!
< 1.

Observing that 1000 ≤ 210 = 2k/2 we see that there is such coloring.

Jan Bouda (FI MU) Lecture 4 - The Probabilistic Method March 27, 2012 16 / 60



Monochromatic k-cliques: Algorithm

The key question is: How many samples we have to generate before
we obtain the desired result?

Assuming we obtain the desired sample with probability p, this is the
geometric probability distribution with the expected value 1/p.

1/p must be polynomial in the input parameters.

Considering a Monte Carlo algorithm, it is incorrect with probability 1− p.
For the class of inputs satisfying n ≤ 2k/2 the probability is bounded by
2k/2+1

k! , hence the error is in o(1).
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Monochromatic k-cliques: Algorithm

We can turn the previous Monte Carlo algorithm into a Las Vegas, if
be bound the k so that it does grow with n.

For the probability of success p, it takes on average 1/p rounds of
computation to find the result.

Each round takes
(n
2

)
≤ n2/2 steps to generate the coloring, and at

most k
(n
k

)
≤ nk+1 steps to verify that all cliques are monochromatic.

Provided p does not drop faster than polynomially, and k does not
grow with n, we have an efficient algorithm.
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Part III

The Expectation Argument
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The Expectation Argument

Sometimes easier way to prove an existence of an object is to use the
expectation argument.

The main idea behind is that in a discrete probability space, random
variable must with nonzero probability assume at least one value not
greater than its expectation and one value not smaller than its
expectation.

If the average price for a cinema ticket is 160 CZK, there must be at
least one ticket for at most 160 CZK, and at least one ticket for at
least 160 CZK.
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The Expectation Argument

Theorem

Suppose we have a discrete random variable X such that E (X ) = µ. Then
P(X ≥ µ) > 0 and P(X ≤ µ) > 0.

Proof.

If P(X ≥ µ) = 0 we have that

µ =
∑
x

xP(X = x) =
∑
x<µ

xP(X = x) <
∑
x<µ

µP(X = x) = µ

giving a contradiction. Similarly for P(X ≤ µ) = 0.
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Finding a Large Cut

We use the expectation argument to show that in each graph there exists
a cut with at least 1/2 of the edges of the graph.

Theorem

Given an undirected graph G = (V ,E ) with n vertices and m edges, there
is a partition of V into two disjoint sets A,B such that at least m/2 edges
connect a vertex in A to a vertex in B, i.e. the cut value is at least m/2.

Proof.

Construct A and B by randomly and independently assigning each vertex
either to A or to B. Let e1, . . . , em be an arbitrary enumeration of edges in
G . For i = 1, . . . ,m we define

Xi =

{
1 if edge i connects A to B

0 otherwise.

Jan Bouda (FI MU) Lecture 4 - The Probabilistic Method March 27, 2012 22 / 60



Finding a Large Cut

Proof.

The probability that a particular edge connect A and B is 1/2. Hence,

E (Xi ) =
1

2
.

Let C (A,B) denotes the number of edges in the cut defined by A and B.
Then

E (C (A,B)) = E

(
m∑
i=1

Xi

)
=

m∑
i=1

E (Xi ) =
m

2
.

Since the expecttaion of C (A,B) is m/2, there must be partition A,B with
at least m/2 edges connecting the sets, i.e. there is a cut of size m/2.
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Finding a Large Cut: Algorithm

We want to design a Las Vegas algorithm. To verify that it is efficient, we
need an estimate of the success probability in the aforementioned sampling.
Let

p = P(C (A,B) ≥ m

2
).

Using that C (A,B) ≤ m we get

m

2
=E (C (A,B))

=
∑

i≤m/2−1

iP(C (A,B) = i) +
∑

i≥m/2

iP(C (A,B) = i)

≤(1− p)
(m

2
− 1
)

+ pm,

what gives

p ≥ 1

m/2 + 1
.

The expected number of samplings is at most m/2 + 1. Each sampling
takes O(n) steps. To verify whether the cut size is at least m/2 is done by
counting the number of edges crossing the cut in O(m) ≤ O(n2).
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MAX-SAT

The goal of the MAX-SAT problem is to satisfy (i.e. find a truth
assignment of variables such that the clause is true) as many clauses as
possible, given a formula in the conjunctive normal form, e.g.

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3) ∧ (x1 ∨ x2 ∨ x4).

We assume that no clause contains a variable and its complement, since
such a clause is always satisfied.

Theorem

Given a set of m clauses, let ki be the number of literals in the ith clause,
for i = 1, . . . ,m. Let k = minm

i=1 ki . Then there is a truth assignment that
satisfies at least

m∑
i=1

(1− 2−ki ) ≥ m(1− 2−k)

clauses.
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MAX-SAT

Proof.

Assign to each variable independently and uniformly either True or False.
The probability that ith clause (with ki literals) is satisfied is (1− 2−ki ).
Let Xi = 1 if the ith clause is satisfied, and 0 otherwise. The number of
satisfied clauses is X =

∑m
i=1 Xi and the expected value of satisfied

clauses is

E (X ) =
m∑
i=1

E (Xi ) =
m∑
i=1

(1− 2−ki ) ≥ m(1− 2−k)

and there must be an assignment that satisfies at least as many
clauses.

Jan Bouda (FI MU) Lecture 4 - The Probabilistic Method March 27, 2012 26 / 60



Part IV

Derandomization Using Conditional

Expectations
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Derandomization Using Conditional Expectations

Our next goal is to derandomize the algorithm for finding cut of size m/2.

The technique of the algorithm is to assign randomly and
independently each vertex to set A or B.

Imagine we do this deterministically, in an arbitrary order on vertices
v1, . . . , vn, with xi being the set to which we assigned vi .

Suppose that we have placed the first k vertices deterministically, and
we want to place the rest randomly.

We calculate the expected value of such a cut given the location of
the first k vertices, i.e.

E (C (A,B)|x1, . . . , xk).
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Derandomization Using Conditional Expectations

We want to find a method to place the (k + 1)st vertex so that the
expectation does not decrease, i.e.

E (C (A,B)|x1, . . . , xk) ≤ E (C (A,B)|x1, . . . , xk+1).

It follows that

m/2 ≤ E (C (A,B)) ≤ E (C (A,B)|x1, . . . , xn).
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Derandomization Using Conditional Expectations

We design and prove the algorithm by induction. The base case is easy,
since it does not matter where we place the first vertex

E (C (A,B)|x1) = E (C (A,B)).

In the induction step we have to find an algorithm that satisfies

E (C (A,B)|x1, . . . , xk) ≤ E (C (A,B)|x1, . . . , xk+1).

Assume we choose the next vertex randomly, as in the original randomized
algorithm. Let Yk+1 be the random variable representing the set where
vk+1 is placed. Then

E (C (A,B)|x1, . . . , xk) =
1

2
E (C (A,B)|x1, . . . , xk ,Yk+1 = A)

+
1

2
E (C (A,B)|x1, . . . , xk ,Yk+1 = B).
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Derandomization Using Conditional Expectations

We see that

max
{

E (C (A,B)|x1, . . . , xk ,Yk+1 = A),E (C (A,B)|x1, . . . , xk ,Yk+1 = B)
}

≥ E (C (A,B)|x1, . . . , xk).

To design the algorithm, it remains to calculate the conditional
expectations

E (C (A,B)|x1, . . . , xk ,Yk+1 = A)

E (C (A,B)|x1, . . . , xk ,Yk+1 = B)

and then place the vertex into the set giving the higher conditional
expectation.
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Derandomization Using Conditional Expectations

Having fixed the placement of the first (k + 1) vertices, we can calculate
the expectation as follows

1 We calculate the number of edges connecting the (k + 1) vectors that
connect A and B. We can calculate this in time linear in m.

2 Each of the remaining edges has the probability 1/2 to connect A and
B. We can calculate this in time linear in m as well.

In fact, it satisfies to decide whether vk+1 has more neighbors already
assigned to A or B and place it accordingly.
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Derandomization Using Conditional Expectations: The
Algorithm

1 Fix an arbitrary order of edges.

2 Place the first vertex arbitrarily to A or B.

3 For each successive vertex, determine whether it has more neighbors
in A (and place it to B) or in B (and place it to A).
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Part V

Sample and Modify
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Derandomization Using Conditional Expectations

In the previous part of the lecture we demonstrated how to construct
random structures directly.
Here we present a two-stage procedure to construct the desired object

1 First we sample an object, that does not have yet the desired
properties, but that can be (easily) modified to have them.

2 We modify the sampled object so that we obtain the desired object.
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Independent Sets

An independent set in a graph is a set of vertices with no edges connecting
them. Finding the largest independent set is an NP-hard problem. We will
bound the size of the largest independent set.

Theorem

Let G = (V ,E ) be a graph on n vertices with m edges. The G has an
independent set with at least n2/(4m) vertices.

Proof.

Let d = 2m/n be the average degree of the vertices in G . Consider the
following algorithm:

1 Delete each vertex of G (together with its incident edges)
independently with probability 1− 1/d .

2 For each remaining edge, remove it and one of its adjacent vertices.
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Independent Sets

Proof.

The remaining vertices clearly form an independent set, since all edges
have been removed.
This is an example of the sample and modify technique. We first sample
the vertices, and then we modify the remaining graph.
Let X be the number of vertices that survive the first step of the
algorithm. Since the graph has n vertices and each of them survives with
probability 1/d , we have

E (X ) =
n

d
.

Let Y be the number of edges that survive the first step. There are nd/2
edges in the graph, and each survives if and only if both adjacent vertices
survive. Thus

E (Y ) =
nd

2

(
1

d

)2

=
n

2d
.
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Independent Sets

Proof.

The second step removes all edges and at most Y vertices. Thus, the size
of the final set is at least X − Y with the expectation

E (X − Y ) =
n

d
− n

2d
=

n

2d
.

The expected size of the independent set is n/(2d) = n2/(4m).
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Graphs with Large Girth

The girth of a graph is the length of its smallest circle. Counterintuitively,
we will show that there exists dense graphs with relatively large girth.

Theorem

For any integer k ≥ 3 there is a graph with n node, at least 1
4n1+1/k

edges, and a girth at least k.

Proof.

We first sample a p-random graph with p = n1/k−1. Let X be the number
of edges in G . Then

E (X ) = p

(
n

2

)
=

1

2

(
1− 1

n

)
n1/k+1.

Let Y be the number of cycles in the graph of length at most (k − 1). Any
concrete cycle of length i (3 ≥ i ≤ k − 1) occurs with probability pi .
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Graphs with Large Girth

Proof.

There are
(n
i

) (i−1)!
2 possible cycles of length i : i vertices, all possible

orders, reversing a particular order gives the same cycle.
Hence,

E (Y ) =
k−1∑
i=3

(
n

i

)
(i − 1)!

2
pi ≤

k−1∑
i=3

nipi =
k−1∑
i=3

ni/k < kn(k−1)/k .

We modify the original randomly chosen graph by removing one edge from
each cycle of length up to (k − 1). The modified graph has girth at least
k .
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Graphs with Large Girth

Proof.

When n is sufficiently large, the expected number of edges in the final
graph is

E (X − Y ) ≥ 1

2

(
1− 1

n

)
n1/k+1 − kn(k−1)/k ≥ 1

4
n1/k+1.

Hence, there exists a graph with so many edges and girth at least k.

Jan Bouda (FI MU) Lecture 4 - The Probabilistic Method March 27, 2012 41 / 60



Part VI

The Second Moment Method
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The Second Moment Method

This method usually uses a derivation of the Chebyshev inequality:

Theorem

If X is a non-negative integer-valued random variable, then

P(X = 0) ≤ Var(X )

(E (X ))2
.

Proof.

P(X = 0) ≤ P(|X − E (X )| ≥ E (X )) ≤ Var(X )

(E (X ))2
.
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Threshold behavior in Random Graphs

We will use the method to prove a certain threshold property in a
p-random graph.
In general,there is a threshold function f such that

when p is less than f , then almost no graph has the property

when p is larger than f , then almost all graphs have the property.

Theorem

Let G be a p-random graph with n vertices and p = f (n) and
f (n) = o(n−2/3). Then for any ε > 0 and for sufficiently large n, then the
probability that a random graph has a clique of size 4 or more is less than
ε. Similarly, if f (n) ∈ ω(n−2/3), then for sufficiently large n the probability
that a random graph does not have a clique with 4 or more vertices is less
than ε.
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Threshold behavior in Random Graphs

Before proving the theorem, we need to establish the following lemma

Lemma

Let Yi (i = 1, . . . ,m) be a random variable with outputs 0 and 1, and let
Y =

∑m
i=1 Yi . Then

Var(Y ) ≤ E (Y ) +
∑

1≤i ,j≤m;i 6=j

Cov(Yi ,Yj).

Proof of the lemma.

For any sequence of random variables Y1, . . . ,Ym

Var

(
m∑
i=1

Yi

)
=

m∑
i=1

Var(Yi ) +
∑

1≤i ,j≤m;i 6=j

Cov(Yi ,Yj).
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Threshold behavior in Random Graphs

Proof of the lemma.

When Yi attains only values 0 or 1, E (Y 2
i ) = E (Yi ) and

Var(Yi ) = E (Y 2
i )− (E (Yi ))2 ≤ E (Yi ),

what completes the proof.
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Threshold behavior in Random Graphs

Now we can prove the theorem.

Proof of the theorem.

We consider first p = f (n) ∈ o(n−2/3). Let C1, . . . ,C(n4)
be any

enumeration of 4 vertex subsets in G . Let

Xi =

{
1 if Ci is a 4-clique,

0 otherwise.

Let

X =

(n4)∑
i=1

Xi ,

to get

E (X ) =

(
n

4

)
p6.
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Threshold behavior in Random Graphs

Proof of the theorem.

We have E (X ) = o(1), i.e. E (X ) < ε for sufficiently large n. Recall that
X is a non-negative integer random variable to get using the Markov
inequality

P(X ≥ 1) ≤ E (X ) < ε,

what completes this part of the proof.
Let us consider the case when p = f (n) ∈ ω(n−2/3). In this case
E (X )→∞ as n grows. However, this is not a sufficient evidence that with
a high probability a random graph has a clique of size 4 or more (why :-)?)!
On the other hand, it suffices to show that Var(X ) ∈ o((E (X ))2) and use
the second moment method.
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Threshold behavior in Random Graphs

Proof of the theorem.

We want to calculate

Var(X ) = Var

 (n4)∑
i=1

 .

To use the lemma we introduced before this proof, we need to calculate
the covariances of Xi ,Xj .

If Ci ∩ Cj = ∅, then Xi and Xj are independent and the covariance is
0. The same holds if |Ci ∩ Cj | = 1.
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Threshold behavior in Random Graphs

Proof of the theorem.

If |Ci ∩ Cj | = 2, the corresponding cliques share exactly one edge. For
both cliques to appear in the graph, all corresponding 11 edges must
appear in the graph. Hence,

E (XiXj)− E (Xi )E (Xj) ≤ E (XiXj) ≤ p11

The are
(n
6

)
ways to choose the 6 vertices defining the two cliques,

and
( 6
2,2,2

)
ways to split them into Ci and Cj .
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Threshold behavior in Random Graphs

Proof of the theorem.

If |Ci ∩ Cj | = 3, the corresponding cliques share exactly three edges.
For both cliques to appear in the graph, all corresponding 9 edges
must appear in the graph. Hence,

E (XiXj)− E (Xi )E (Xj) ≤ E (XiXj) ≤ p9

The are
(n
5

)
ways to choose the 6 vertices defining the two cliques,

and
( 5
3,1,1

)
ways to split them into Ci and Cj .
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Threshold behavior in Random Graphs

Proof of the theorem.

To conclude the proof, recall that E (X ) =
(n
4

)
p6 and

p = f (n) ∈ ω(n−2/3). Therefore,

Var(X ) ≤
(

n

4

)
p6 +

(
n

6

)(
6

2, 2, 2

)
p11 +

(
n

5

)(
5

3, 1, 1

)
p9 = o(n8p12)

=o((E (X ))2),

since

(E (X ))2 =

((
n

4

)
p6

)2

= Θ(n8p12).

Finally, we can apply the method of second moments to get that
P(X = 0) ∈ o(1).
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Part VII

The Conditional Expectation Inequality
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The Conditional Expectation Inequality

Imposing the additional restriction that the random variables attain only
values 0 or 1, we get a method easier to apply than the second moment
method.

Theorem

Let X =
∑n

i=1 Xi , where each Xi attains only values 0 and 1. Then

P(X > 0) ≥
n∑

i=1

P(Xi = 1)

E (X |Xi = 1)
.

Notice that XI do not have to be independent.

Proof.

Let Y = 1/X if X > 0, and Y = 0 otherwise. Then

P(X > 0) = E (XY ).
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The Conditional Expectation Inequality

Proof.

However,

E (XY ) = E

(
n∑

i=1

XiY

)
=

n∑
i=1

E (XiY )

=
n∑

i=1

(
E (XiY |Xi = 1)P(Xi = 1) + E (XiY |Xi = 0)P(Xi = 0)

)
=

n∑
i=1

E (Y |Xi = 1)P(Xi = 1) =
n∑

i=1

E (1/X |Xi = 1)P(Xi = 1)

Jensen’s inequality
≥

n∑
i=1

P(Xi = 1)

E (X |Xi = 1)
.
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Threshold behavior in Random Graphs

We can use the previous theorem to get a more simple analysis of the
4-clique problem.

We will show that if p = f (n) = ω(n−2/3), then for arbitrary ε > 0
there exists a sufficiently large n such that the probability of a
p-random graph to not have a clique of sice 4 or more is less than ε.

Let X =
∑(n4)

i=1 Xi , where Xi is 1 if the corresponding four vertex subset is
a clique, and 0 otherwise. For each particular Xj we have P(Xj = 1) = p6.
We use the linearity of expectation

E (X |Xj = 1) = E

 (n4)∑
i=1

Xi

∣∣Xj = 1

 =

(n4)∑
i=1

E (Xi |Xj = 1).
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The Conditional Expectation Inequality

Observe that
E (Xi |Xj = 1) = P(Xi = 1|Xj = 1).

There are
(n−4

4

)
sets of vertices Ci that do not intersect a particular

Cj . Each corresponding Xi = 1 with probability p6.

Xi = 1 with probability p6 for all 4
(n−4

3

)
sets Ci that have one vertex

in common with Cj .

2 vertices: P(Xi = 1) = p5, there are
(4
2

)(n−4
2

)
such sets.

3 vertices: P(Xi = 1) = p3, there are
(4
3

)(n−4
1

)
such sets.
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The Conditional Expectation Inequality

We have

E (X |Xj = 1) =

(n4)∑
i=1

E (Xi |Xj = 1)

= 1 +

(
n − 4

4

)
p6 + 4

(
n − 4

3

)
p6 + 6

(
n − 4

2

)
p5 + 4

(
n − 4

1

)
p3

We use the last theorem to get

P(X > 0) ≥
(n
4

)
p6

1 +
(n−4

4

)
p6 + 4

(n−4
3

)
p6 + 6

(n−4
2

)
p5 + 4

(n−4
1

)
p3
,

which approaches 1 as n grows large.
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Part VIII

The Lovasz Local Lemma
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The Conditional Expectation Inequality
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