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Part I

Motivation and definition
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Random variable - motivation

In many situation outcomes of a random experiment are numbers.

In other situations we want to assign to each outcome a number (in
addition to probability).

It may e.g. quantify financial or energetic cost of a particular
outcome.

We will define the random variable to to develop methods for studying
random experiments with outcomes that can be described numerically.

E.g. in case of Bernoulli trials we may be interested only in number of
’successes’ and not in actual sequence of ’successes’ and ’failures’.

Almost all real probabilistic computation is done using random
variables.
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Random variable - definition

A random variable is a rule that assigns a numerical value to each
outcome of an experiment.

Definition

A random variable X on a sample space S is a function X : S → R that
assigns a real number X(s) to each sample point s ∈ S.

We define the image of a random variable X as the set
Im(X) = {X(s)|s ∈ S}. This definition is similar to image of any other
function.
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Random variable - definition

A random variable partitions the sample space into a set of mutually
exclusive and collectively exhaustive events. For a random variable X and
a real number x we define the event Ax = ”X = x” (sometimes called the
inverse image of the set {x}) to be the set of all events from S to which
X assigns the value x

Ax = {s ∈ S|X(s) = x}.

Whenever you are not sure what some operation with random variable
means, always recall the basic definition of the random variable. In
example, the statement X ≤ Y means that X and Y are defined on the
same sample space S and for every sample point s ∈ S it holds that
X(s) ≤ Y(s).
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Random variable - definition

Obviously Ax ∩ Ay = ∅ iff x 6= y and⋃
x∈R

Ax = S .

Therefore the set of events {Ax}x∈R defines an event space and we will
often prefer to work in this event space rather than in the original sample
space. We usually abbreviate Ax as [X = x ].
The image of a discrete random variable (this is the case in this course) is
at most countable.
Following the definition of Ax = [X = x ] we calculate its probability as

P([X = x ]) = P({s|X (s) = x}) =
∑

X (s)=x

P(s).
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Random variable - probability distribution

Definition

Probability distribution of a random variable X is a function
pX : R→ [0, 1] satisfying the properties:

(p1) 0 ≤ pX (x) ≤ 1 for all x ∈ R
(p2) For a discrete random variable X , the set {x |pX (x) > 0} is a finite or

countable infinite subset of real numbers. Let us denote it by
{x1, x2, . . . }. We require that∑

i

pX (xi ) = 1.

A real valued function pX (x) defined on R is a probability distribution of
some random variable if it satisfies properties (p1) and (p2).
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Random variable - probability distribution

When the random variable is clear from the context, we denote the
probability distribution as p(x).
Do not mistake the probability distribution with the distribution
function, which is a non-decreasing function which tends to 0 as
x → −∞ and to 1 as x →∞.
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Distribution functions

We often are interested in computing the probability of the set
{s|X (s) ∈ A} for some subset A ⊆ R. We know that

{s|X (s) ∈ A} =
⋃
xi∈A
{s|X (s) = xi}

def
= [X ∈ A].

If −∞ < a < b <∞ and A is an interval A = (a, b), we usually write
P(a < X < b) instead of P(X ∈ (a, b)). If A = (a, b], then P(X ∈ A) will
be written as P(a < X ≤ b). Of special interest is the infinite interval
A = (−∞, x ] and we denote it by [X ≤ x ]. We calculate the probability of
A as

P(X ∈ A) =
∑
xi∈A

pX (xi ).
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Probability distribution function

Definition

The probability distribution function (or simply distribution function)
of a random variable X is

FX (t) = P(−∞ < X ≤ t) = P(X ≤ t) =
∑
x≤t

pX (x), −∞ < t <∞.

It follows that

P(a < X ≤ b) = P(X ≤ b)− P(X ≤ a) = F (b)− F (a).

If X is an integer-valued random variable, then

F (t) =
∑

−∞<x≤btc

pX (x).
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Probability distribution function - properties

(F1) 0 ≤ F (x) ≤ 1 for −∞ < x <∞
(F2) F (x) is a monotone increasing function of x , that is if x1 ≤ x2, then

F (x1) ≤ F (x2). It is easy to see that (−∞, x1] ⊆ (−∞, x2] if x1 ≤ x2

and we have

P(−∞ < X ≤ x1) ≤ P(−∞ < X ≤ x2)

giving F (x1) ≤ F (x2).
(F3) limx→−∞ F (x) = 0, and limx→∞ F (x) = 1. If the random variable X

has a finite image, then there exist u, v ∈ R such that F (x) = 0 for all
x < u and F (x) = 1 for all x ≥ v .

(F4) F (x) has a positive increase equal to pX (xi ) at i = 1, 2, . . . and in the
interval [xi , xi+1) it has a constant value. Thus

F (x) = F (xi ) for xi ≤ x < xi+1

and
F (xi+1) = F (xi ) + pX (xi+1).
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Probability distribution function

Any function satisfying properties (F1)-(F4) is the distribution
function of some discrete random variable.

In most cases we simply forget the theoretical background (random
experiment, sample space, events,. . . ) and examine random variables,
probability distributions and probability distribution functions.

Often the initial information is we have a random variable X with the
probability distribution pX (x). We can construct probability space
consistent with the random variable as follows. Let S = R, X (s) = s
for s ∈ S , F is a union of inverse images Ax of all subsets {x} and

P(A) =
∑
x∈A

pX (x).
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Part II

Examples of probability distributions
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Examples of probability distributions

Examples of probability distributions

In this part of the lecture we introduce the most common probability
distributions occurring in practical situations. In fact, we can always derive
the distributions and all related results ourselves, however, it is anyway
useful to remember these distributions and situations they describe both as
examples and to speed up our calculations. These probability distributions
are so important that they have specific names and sometimes also
notation.
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Examples of probability distributions

Constant random variable

For c ∈ R the function defined for all s ∈ S by X (s) = c is a discrete
random variable with P(X = c) = 1.

The probability distribution of this variable is

pX (x) =

{
1 if x = c

0 otherwise.

Such a random variable is called the constant random variable.

The corresponding distribution function is

FX (x) =

{
0 for x < c

1 for x ≥ c .
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Examples of probability distributions

Discrete uniform probability distribution

Let X be a discrete random variable with a finite image {x1, x2 . . . xn}
and let us assign to all elements of the image the same probability
pX (xi ) = p.

From the requirement that the probabilities must sum to 1 we have

1 =
n∑

i=1

pX (xi ) =
n∑

i=1

p = np

and the probability is

pX (xi ) =

{
1/n xi ∈ Im(X )

0 otherwise.

Such a random variable is said to have the uniform probability
distribution.

This concept cannot be extended to random variable with countably
infinite image.

Jan Bouda (FI MU) Lecture 2 - Random Variables March 27, 2012 16 / 51



Examples of probability distributions

Discrete uniform probability distribution

If Im(X ) = {1, 2, . . . n} with pX (i) = 1/n, 1 ≤ i ≤ n, the probability
distribution function is

FX (x) =

bxc∑
i=1

pX (i) =
bxc
n
, 1 ≤ x ≤ n.
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Examples of probability distributions

Bernoulli probability distribution

The Bernoulli probability distribution of a random variable X origins
from the random experiment consisting of a single bernoulli trial (e.g.
a coin toss).

The only possible values of the random variable X are 0 and 1 (often
denoted as failure and success, respectively).

The distribution is given by

pX (0) =p0 = P(X = 0) = q

pX (1) =p1 = P(X = 1) = p = 1− q

The corresponding probability distribution function is

F (x) =


0 for x < 0

q for 0 ≤ x < 1

1 for x ≥ 1.
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Examples of probability distributions

Bernoulli probability distribution

Example

Let X be a Bernoulli random variable with parameter p and image {0, 1}.
X is the indicator of the event

A = {s|X (s) = 1}

and its probability distribution is pX (0) = 1− p and PX (1) = p.

Jan Bouda (FI MU) Lecture 2 - Random Variables March 27, 2012 19 / 51



Examples of probability distributions

Binomial probability distribution

The Binomial probability distribution of a random variable Yn is the
number of successes (outcomes 1) in n consecutive Bernoulli trial
with the same fixed probability p of success in each trial.

The domain of the random variable Yn are all n–tuples of 0s and 1s.
The image is {0, 1, 2, . . . n}.
As already demonstrated in the previous lecture, the probability
distribution of Yn is

pk =P(Yn = k) = pYn(k)

=

{(n
k

)
pk(1− p)n−k for 0 ≤ k ≤ n

0 otherwise.

The binomial distribution is often denoted as b(k ; n, p) = pk and
represents the probability that there are k successes in a sequence of
n bernoulli trials with probability of success p.

In example, b(3; 5, 0.5) =
(5

3

)
(1/2)3(1/2)2 = 0.3125
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Examples of probability distributions

Binomial probability distribution

After specifying the distribution of a random variable we should verify that
this function is a valid probability distribution, i.e. to verify properties (p1)
and (p2). While (p1) is usually clear (it is easy to see that the function is
nonnegative), the property (p2) may be not so straightforward and should
be verified explicitly.
We can apply the binomial model when the following conditions hold:

Each trial has exactly two mutually exclusive outcomes.

The probability of ’success’ is constant on each trial.

The outcomes of successive trials are mutually independent.
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Examples of probability distributions

Binomial probability distribution

The name ’binomial’ comes from the equation verifying that the
probabilities sum to 1

n∑
i=0

pi =
n∑

i=0

(
n

i

)
pi (1− p)n−i

=[p + (1− p)]n = 1.

The corresponding distribution function, denoted by B(t; n, p) is
given by

B(t; n, p) = FYn(t) =

btc∑
i=0

(
n

i

)
pi (1− p)n−i .
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Part III

Discrete random vectors
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Discrete random vectors

Suppose we want to study relationship between two or more random
variables defined on a given sample space.

Let X1,X2, . . .Xr be r discrete random variables defined on a sample
space S .

For each sample point s ∈ S , each of the random variables
X1,X2, . . .Xr takes on one of its possible values

X1(s) = x1,X2(s) = x2, . . .Xr (s) = xr .

The random vector X = (X1,X2, . . .Xr ) is an r -dimensional
vector-valued function X : S → Rr with X(s) = x = (x1, x2, . . . xr ).
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Discrete random vectors

Definition

The joint (or compound) probability distribution of a random vector X
is defined to be

pX(x) = P(X = x) = P(X1 = x1,X2 = x2, . . .Xr = xr ).

The properties of random vectors are

(j1) pX(x) ≥ 0, x ∈ Rr .

(j2) {x|px(x) 6= 0} is a finite or countably infinite subset of Rr , which will
be denoted as {x1, x2, . . . }.

(j3) P(X ∈ A) =
∑

x∈A pX(x).

(j4)
∑

i pX(xi ) = 1.
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Marginal probability distributions

In situation when we are examining more that one random variable,
the probability distribution of a single variable, e.g. pX (x), is referred
to as marginal probability distribution (in contrast to joint
probability distribution).
Considering joint probability distribution pX ,Y (x , y) of random
variables X and Y we can calculate the marginal probability
distribution of X as

pX (x) =P(X = x) = P

⋃
j

{X = x ,Y = yj}


=
∑
j

P(X = x ,Y = yj) =
∑
j

pX ,Y (x , yj).

Similarly we obtain the marginal probability distribution of Y

pY (y) =
∑
i

pX ,Y (xi , y).
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Marginal probability distributions

While it is relatively easy to calculate the marginal probability
distributions from the joint distribution, in general there is no way
how to determine the joint distribution from corresponding marginal
distributions.

The only exception are independent random variables (see below),
when the joint probability distribution is the product of marginal
distributions.
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Multinomial probability distribution

Interesting example of joint probability distribution is the multinomial
distribution.

Consider a sequence of n generalized bernoulli trials, where each of
them has a finite number r of outcomes having probabilities
p1, p2, . . . , pr .

Let us define the random vector X = (X1,X2, . . .Xr ) such that Xi is
the number of trials that resulted in ith outcome.

Then the compound probability distribution of X is

pX(n) =P(X1 = n1,X2 = n2, . . .Xr = nr )

=

(
n

n1, n2, . . . nr

)
pn1

1 pn2
2 . . . pnr

r ,

where n = (n1, n2, . . . , nr ) and
∑r

i=1 ni = n.
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Multinomial probability distribution

The marginal probability distribution of Xi may be computed by

pXi
(ni ) =

∑
n:[(

∑
j 6=i nj)=n−ni ]

(
n

n1, n2 . . . nr

)
pn1

1 pn2
2 . . . pnr

r

=
n!pni

i

(n − ni )!ni !

∑
n:[(

∑
j 6=i nj)=n−ni ]

(n − ni )!pn1
1 . . . p

ni−1

i−1 p
ni+1

i+1 . . . p
nr
r

n1!n2! . . . ni−1!ni+1! . . . nr !

=

(
n

ni

)
pni
i (p1 + · · ·+ pi−1 + pi+1 + · · ·+ pr )n−ni

=

(
n

ni

)
pni
i (1− pi )

n−ni .

Jan Bouda (FI MU) Lecture 2 - Random Variables March 27, 2012 29 / 51



Part IV

Independent random variables
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Independent random variables

Definition

Two discrete random variables are independent provided their joint
probability distribution is a product of the marginal probability
distributions, i.e.

pX ,Y (x , y) = pX (x)pY (y) for all x and y .

If X and Y are two independent random variables, then for any two
subsets A,B ⊆ R the events X ∈ A and Y ∈ B are independent:

P(X ∈ A ∩ Y ∈ B) = P(X ∈ A)P(Y ∈ B)

To see this

P(X ∈ A ∩ Y ∈ B) =
∑
x∈A

∑
y∈B

pX ,Y (x , y)

=
∑
x∈A

∑
y∈B

pX (x)pY (y)

=
∑
x∈A

pX (x)
∑
y∈B

pY (y)

=P(X ∈ A)P(Y ∈ B).

Let us assume that on a particular performance of a random
experiment we observe the event [Y = y ]. Since X and Y are
independent, we obtain (as desired)

P(X = x |Y = y) =
P(X = x ∩ Y = y)

pY (y)
=

pX ,Y (x , y)

pY (y)

=
pX (x)pY (y)

pY (y)
= pX (x).
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Independent random variables

Definition

Let X1,X2, . . .Xr be discrete random variables with probability
distributions pX1 , pX2 , . . . pXr . These random variables are pairwise
independent if

∀1 ≤ i < j ≤ r , ∀xi ∈ Im(Xi ), xj ∈ Im(Xj), pXi ,Xj
(xi , xj) = pXi

(xi )pXj
(xj).

Definition

Let X1,X2, . . .Xr be discrete random variables with probability
distributions pX1 , pX2 , . . . pXr . These random variables are mutually
independent if for all x1 ∈ Im(X1), x2 ∈ Im(X2), . . . , xr ∈ Im(Xr )

pX1,X2,...Xr (x1, x2, . . . xr ) = pX1(x1)pX2(x2) . . . pXr (xr ).

Note that pairwise independence of a set of random variables does not
imply their mutual independence.
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Independent random variables

Let X and Y be non-negative independent random variables. Then
the probability distribution of the random variable Z = X + Y is

pZ (t) = pX+Y (t) =
t∑

x=0

pX (x)pY (t − x).

In case X and Y can also take negative values, the sum should go
from −∞ instead of 0.
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Independent random variables

Theorem

Let X1,X2, . . .Xr be mutually independent. If Xi has the binomial
distribution with parameters ni and p, then

∑r
i=1 Xi has the binomial

distribution with parameters n1 + n2 + · · ·+ nr and p.
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Part V

Functions of a random variable
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Functions of a random variable

Given a random variable X and a function Φ : R→ R we define the
transformed random variable Y = Φ(X) as

Random variables X and Y are defined on the same sample space,
moreover, Dom(X) = Dom(Y).

Im(Y) = {Φ(x)|x ∈ Im(X)}.
The probability distribution of Y is given by

pY(y) =
∑

x∈Im(X);Φ(x)=y

pX(x).

In fact, we may define it by Φ(X) = Φ ◦ X, where ◦ is the usual function
composition.
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Part VI

Expectation

Jan Bouda (FI MU) Lecture 2 - Random Variables March 27, 2012 37 / 51



Expectation

The probability distribution or probability distribution function
completely characterize properties of a random variable.
Often we need description that is less accurate, but much shorter -
single number, or a few numbers.
First such characteristic describing a random variable is the
expectation, also known as the mean value.

Definition

Expectation of a random variable X is defined as

E (X ) =
∑
i

xip(xi )

provided the sum is absolutely (!) convergent. In case the sum is
convergent, but not absolutely convergent, we say that no finite
expectation exists. In case the sum is not convergent the expectation has
no meaning.
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Median; Mode

The median of a random variable X is any number x such that
P(X < x) ≤ 1/2 and P(X > x) ≥ 1/2.

The mode of a random variable X is the number x such that

p(x) = max
x ′∈Im(X )

p(x ′).
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Expectation of a functional transformation

Theorem

Let X1,X2, . . .Xn be random variables defined on the same probability
space and let Y = Φ(X1,X2, . . .Xn). Then

E (Y ) =
∑
x1

∑
x2

· · ·
∑
xn

Φ(x1, x2, . . . , xn)p(x1, x2, . . . , xn).

Theorem (Linearity of expectation)

Let X and Y be random variables. Then

E (X + Y ) = E (X ) + E (Y ).

Jan Bouda (FI MU) Lecture 2 - Random Variables March 27, 2012 40 / 51



Linearity of expectation (proof)

Linearity of expectation.

E (X + Y ) =
∑
i

∑
j

(xi + yj)p(xi , yj) =

=
∑
i

xi
∑
j

p(xi , yj) +
∑
j

yj
∑
i

p(xi , yj) =

=
∑
i

xipX (xi ) +
∑
j

yjpY (yj) =

=E (X ) + E (Y ).
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Linearity of expectation

The linearity of expectation can be easily generalized for any linear
combination of n random variables, i.e.

Theorem (Linearity of expectation)

Let X1,X2, . . .Xn be random variables and a1, a2, . . . an ∈ R constants.
Then

E

(
n∑

i=1

aiXi

)
=

n∑
i=1

aiE (Xi ).

Proof is left as a home exercise :-).
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Expectation of independent random variables

Theorem

If X and Y are independent random variables, then

E (XY ) = E (X )E (Y ).

Proof.

E (XY ) =
∑
i

∑
j

xiyjp(xi , yj) =

=
∑
i

∑
j

xiyjpX (xi )pY (yj) =

=
∑
i

xipX (xi )
∑
j

yjpY (yj) =

=E (X )E (Y ).
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Expectation of independent random variables

The expectation of independent random variables can be easily generalized
for any n–tuple X1,X2, . . .Xn of mutually independent random variables:

E

(
n∏

i=1

Xi

)
=

n∏
i=1

E (Xi ).

If Φ1,Φ2, . . .Φn are functions, then

E

[
n∏

i=1

Φi (Xi )

]
=

n∏
i=1

E [Φi (Xi )].
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Part VII

Jensen’s inequality

Jan Bouda (FI MU) Lecture 2 - Random Variables March 27, 2012 45 / 51



Convex and concave functions

Before introducing Jensen’s inequality, let us briefly refresh definitions of
convex and concave function, which are crucial in this part.

Definition

A function f (x) is said to be convex on a set S if for every x1, x2 ∈ S and
0 ≤ λ ≤ 1

f (λx1 + (1− λ)x2) ≤ λf (x1) + (1− λ)f (x2).

A function is strictly convex if the equality holds only if λ = 0 or λ = 1.
A function f is concave if −f is convex. A function f is strictly concave
if −f is strictly convex.

Theorem

If the function has a second derivative which is nonnegative (positive)
everywhere, then the function is convex (strictly convex).
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Convex and Concave Functions

Proof.

We use the Taylor series expansion of the function around x0

f (x) = f (x0) + f ′(x0)(x − x0) +
f ′′(x∗)

2
(x − x0)2,

where x∗ lies between x0 and x . By our initial assumption the term f ′′(x∗) is
always nonnegative and the same holds for the last addend. Let
x0 = λx1 + (1− λ)x2, λ ∈ [0, 1] and x = x1 and we have

f (x1) ≥ f (x0) + f ′(x0)[(1− λ)(x1 − x2)]. (1)

Similarly, taking x = x2 we obtain

f (x2) ≥ f (x0) + f ′(x0)[λ(x2 − x1)]. (2)

Multiplying (1) by λ and (2) by (1− λ) and adding we obtain the convexity.
The proof for the strict convexity is analogous.
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Convex and Concave Functions

Proof.

Multiplying (1) by λ and (2) by (1−λ) and adding we obtain the convexity

λf (x1) + (1− λ)f (x2) ≥
≥λ(f (x0) + f ′(x0)[(1− λ)(x1−x2)]) + (1−λ)(f (x0) + f ′(x0)[λ(x2−x1)]) =

=λf (x0)+(1−λ)f (x0)+λf ′(x0)[(1−λ)(x1−x2)]−(1−λ)f ′(x0)[λ(x1−x2)] =

=f (x0) = f (λx1 + (1− λ)x2).

The proof for the strict convexity is analogous.
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Jensen’s Inequality

Last theorem shows immediately the strict convexity for x2, ex and x log x
for x ≥ 0, and the strict concavity of log x and

√
x for x ≥ 0.

The following inequality is behind most of the fundamental theorems in
information theory and in mathematics in general.

Theorem (Jensen’s inequality)

If f is a convex function and X is a random variable, then

E [f (X )] ≥ f (E (X )). (3)

Moreover, if f is strictly convex, the equality in (3) implies that X = E (X )
occurs with probability 1, i.e. X is a constant.
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Jensen’s Inequality

Proof.

We prove this inequality by induction on the number of elements in
Im(X ). For probability distribution on two points we have

E (f (X )) = p1f (x1) + p2f (x2) ≥ f (p1x1 + p2x2) = f (E (X )) (4)

what follows directly from convexity. Suppose the theorem holds for k − 1
points. Then we put p′i = pi/(1− pk) for i = 1, 2 . . . , k − 1 and we have

E (f (X )) =
k∑

i=1

pi f (xi ) =pk f (xk) + (1− pk)
k−1∑
i=1

p′i f (xi ) ≥

≥pk f (xk) + (1− pk)f

(
k−1∑
i=1

p′ixi

)
≥

(5)
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Jensen’s Inequality

Proof.

≥f

(
pkxk + (1− pk)

k−1∑
i=1

p′ixi

)
=

=f

(
k∑

i=1

pixi

)
= f (E (X )),

where the first inequality follows from the induction hypothesis and the
second one from convexity of f .

Jan Bouda (FI MU) Lecture 2 - Random Variables March 27, 2012 51 / 51


	Motivation and definition
	Examples of probability distributions
	Examples of probability distributions

	Discrete random vectors
	Independent random variables
	Functions of a random variable
	Expectation
	Jensen's inequality

