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Part I

Cryptosystem
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Cryptosystem

The traditional main goal of cryptography is to preserve secrecy of the
message, i.e. to transform it in the way that no unauthorized person
can read the message while it is easily readable by authorized persons.

First applications of message secrecy are known from ancient times
and served to keep secret military and diplomatic secrets,
craftsmanship methods and also love letters.

Craftsmanship secrets on earthen tablets in Ancient Summer.

Secret love letters in Kamasutra.

Spartian Scytale.

Secrets hidden in a wax table or under hair of a slave.

Caesar cipher.
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Cryptosystem

Definition

A encryption system (cipher) is a five-tuple (P,C,K,E,D), where

1 P is a finite set of possible plaintexts

2 C is a finite set of possible ciphertexts

3 K is a finite set of possible keys

4 For each k ∈ K there is an encryption rule ek ∈ E and a
corresponding decryption rule dk ∈ D. Each ek : P→ C and
dk : C→ P are functions such that dk(ek(x)) = x for every x ∈ P.
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Shift Cryptosystem

Example

Example is e.g. the shift cryptosystem, sometimes known as the Caesar
cipher. In this case P = C = K = Z26. For 0 ≤ k ≤ 25 we define

ek(x) = (x + k) mod 26 (1)

and
dk(y) = (y − k) mod 26 (2)

for x , y ∈ Z26.
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Perfect Secrecy

To derive a definition of perfect secret we assume that there is some a
priori distribution on plaintexts described by the random variable X with
distribution P(X = x). The key is chosen independently from the plaintext
and described by the random variable K . Finally, ciphertext is described by
the random variable Y that will be derived from X and K . Also, for k ∈ K
we define Ck = {ek(x)|x ∈ X} as the set of all ciphertexts provided k is
the key.
Now we can explicitly calculate the probability distribution of Y as

P(Y = y) =
∑

k:y∈Ck

P(K = k)P(X = dk(y)). (3)

Another quantity of interest is the probability of a particular ciphertext
given a particular plaintex, easily derived as

P(Y = y |X = x) =
∑

k:x=dk (y)

P(K = k). (4)
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Perfect Secrecy

Definition

We say that the cryptosystem (P,C,K,E,D) achieves perfect
(unconditional) secrecy if and only if for every x ∈ X and y ∈ Y it holds
that

P(X = x |Y = y) = P(X = x). (5)

In words, the a posteriori probability distribution of plaintext given the
knowledge of ciphertext is the same as the a priori probability distribution
of the plaintext.

Following our previous analysis we calculate the conditional probability of a
(possibly insecure) cryptosystem as

P(X = x |Y = y) =
P(X = x)

∑
k:x=dk (y)

P(K = k)∑
k:y∈Ck

P(K = k)P(X = dk(y))
. (6)
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Perfect Secrecy

Theorem

Suppose the 26 keys in the Shift cipher are used with equal probability
1/26. Then for any plaintext distribution the Shift cipher achieves perfect
secrecy.

Proof.

Recall that P = C = K = Z26. First we compute the distribution of
ciphertexts as

P(Y = y) =
∑
k∈Z26

P(K = k)P(X = dk(y))

=
∑
k∈Z26

1

26
P(X = y − k)

=
1

26

∑
k∈Z26

P(X = y − k).

(7)
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Perfect Secrecy

Proof.

For fixed y the values (y − k) mod 26 are a permutation of Z26 and we
have that ∑

k∈Z26

P(X = y − k) =
∑
x∈Z26

P(X = x) = 1. (8)

Thus for any y ∈ Y we have

P(Y = y) =
1

26
.

Next, we have that

P(Y = y |X = x) = P(K ≡ (y − x) (mod 26)) =
1

26

for every x and y .
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Perfect Secrecy

Proof.

Using the Bayes’ theorem we have

P(X = x |Y = y) =
P(X = x)P(Y = y |X = x)

P(Y = y)
=

P(X = x) 1
26

1
26

=p(X = x)

(9)

what completes the proof.

The previous result shows that the shift cipher is unbreakable provided we
use an independent key for each plaintext character.
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Perfect Secrecy

If P(X = x0) = 0 for some x0 ∈ P, then we trivially obtain
P(X = x0|Y = y) = P(X = x0). Therefore we consider only elements
such that P(X = x) > 0.

For such plaintexts we observe that P(X = x |Y = y) = P(X = x) is
equivalent to P(Y = y |X = x) = P(Y = y).

Let us suppose that P(Y = y) > 0 for all y ∈ C. Otherwise y can be
excluded from C since it is useless.

Fix x ∈ P. For each y ∈ C we have
P(Y = y |X = x) = P(Y = y) > 0. Therefore for each y ∈ C there
must be some key k ∈ K such that y = ek(x). It follows that
|K| ≥ |C|.
The encryption is injective giving |C| ≥ |P|.
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Perfect Secrecy

Theorem (Shannon)

Let (P,C,K,E,D) be a cryptosystem such that |P| = |C| = |K|. Then the
cryptosystem provides perfect secrecy if and only if every key is used with
equal probability 1/|K|, and for every x ∈ P and every y ∈ C, there is a
unique key k such that ek(x) = y.

Proof.

Let us suppose the given cryptosystem achieves a perfect secrecy. As
argued above for each x and y there must be at least one key such that
ek(x) = y . We have the inequalities

|C| = |{ek(x) : k ∈ K}| ≤ |K|. (10)
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Perfect Secrecy

Proof.

We assume that |C| = |K| and therefore

|{ek(x) : k ∈ K}| = |K|

giving there do not exist two different keys k1, k2 ∈ K such that
ek1(x) = ek2(x) = y . hence, for every x and y there is exactly one k such
that ek(x) = y .
Denote n = |K|, let P = {xi |1 ≤ i ≤ n} and fix a ciphertext element y .
We can name keys k1, k2, . . . , kn in the way that eki (xi ) = y . Using Bayes’
theorem we have

P(X = xi |Y = y) =
P(Y = y |X = xi )P(X = xi )

P(Y = y)

=
P(K = ki )P(X = xi )

P(Y = y)
.

(11)
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Perfect Secrecy

Proof.

The perfect secrecy condition gives P(X = xi |Y = y) = P(X = xi ) and
we have P(K = ki ) = P(Y = y). This gives that all keys are used with
the same probability. Since there are |K| keys, the probability is 1/|K|.
Conversely, suppose the conditions are satisfied and we want to show
perfect secrecy. The proof is analogous to the proof of perfect secrecy of
the Shift cipher.
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