Chapter 4

The probabilistic method

Exercise 1

Consider an instance of SAT with m clauses, where every clause has exactly k literals.
(a) Give a Las Vegas algorithm that finds an assignment satisfying at least $m\left(1-2^{-k}\right)$ clauses and analyze its expected running time.
(b) Give a derandomization of the randomized algorithm using the method of conditional expectations.

Answer of exercise 1

(a) Assign values independently and uniformly at random to the variables. The probability that the $i^{\text {th }}$-claus with k literals is satisfied is $\left(1-2^{-k}\right)$. Let N_{c} be the random variable indicating the number of satisfied clauses. Then

$$
E\left[N_{c}\right]=\sum_{i=1}^{m}\left(1-2^{-k}\right)=m\left(1-2^{-k}\right) .
$$

Let $p=\operatorname{Pr}\left(N_{c} \geq m\left(1-2^{-k}\right)\right)$, and observe that $N_{c} \leq m$. It then follows that

$$
\begin{aligned}
m\left(1-2^{-k}\right) & =E\left[N_{c}\right] \\
& =\sum_{i \leq m\left(1-2^{-k}\right)-1} i \operatorname{Pr}\left(N_{c}=i\right)+\sum_{i \geq m\left(1-2^{-k}\right)} i \operatorname{Pr}\left(N_{c}=i\right) \\
& \leq(1-p)\left(m\left(1-2^{-k}\right)-1\right)+p m,
\end{aligned}
$$

which implies that

$$
p \geq \frac{1}{1+m 2^{-k}} .
$$

Therefore, the expected number of samples before finding an assignment satisfying at least $m\left(1-2^{-k}\right)$ clauses is $1 / p$, which is at most $1+m 2^{-k}$. Testing to see if $\left(N_{c} \geq m\left(1-2^{-k}\right)\right)$ can be done in $O(k m)$ time. As such the algorithm can be done in polynomial time.
(b) Assign values to the variables deterministically - one at a time - in any order $x_{1}, x_{2}, \ldots, x_{n}$. Suppose that we have assigned the first k variables. Let $y_{1}, y_{2}, \ldots, y_{k}$ be the corresponding assigned values. We compute the the quantities;
(i) $E\left[N_{c} \mid x_{1}=y_{1}, x_{2}=y_{2}, \ldots, x_{k}=y_{k}, x_{k+1}=\mathrm{T}\right]$
(ii) $E\left[N_{c} \mid x_{1}=y_{1}, x_{2}=y_{2}, \ldots, x_{k}=y_{k}, x_{k+1}=\mathrm{F}\right]$.
and then choose the setting with the larger expectation.

Exercise 2

(a) Prove that, for every integer n, there exists a coloring of the edges of the complete graph K_{n} by two colours so that the total number of monochromatics copies of K_{4} is at most $\binom{n}{4} 2^{-5}$.
(b) Give a randomized algorithm for finding a colouring with at most $\binom{n}{4} 2^{-5}$ monochromatic copies of K_{4} that runs in expected time polynomial in n.
(c) Show how to construct such a colouring deterministically in polynomial time using the method of conditional expectations.

Answer of exercise 2

(a) X is the random variable denoting the number of monochromatics copies of K_{4}. The probability that a certain 4 -subset forms a monochromatic K_{4} is 2.2^{-6} - where 2 is for the two different colours. Then

$$
E[X]=\underbrace{\binom{n}{4}}_{\text {choose } 4 \text { vertices from } \mathrm{n}} \cdot 2 . .2^{-6}=\binom{n}{4} 2^{-5}
$$

(b) Colour edges independently and uniformly. Let $p=\operatorname{Pr}\left(X \leq\binom{ n}{4} 2^{-5}\right)$. Then, we have

$$
\begin{aligned}
\binom{n}{4} 2^{-5} & =E[X] \\
& =\sum_{i \leq\binom{ n}{4} 2^{-5}} i \operatorname{Pr}(X=i)+\sum_{i \geq\binom{ n}{4} 2^{-5}} i \operatorname{Pr}(X=i) \\
& \geq p+(1-p)\left(\binom{n}{4} 2^{-5}+1\right),
\end{aligned}
$$

which implies that

$$
\frac{1}{p} \leq\binom{ n}{4} 2^{-5}
$$

Thus, the expected number of samples is at most $\binom{n}{4} 2^{-5}$. Testing this to see if $X \leq\binom{ n}{4} 2^{-5}$ can be done in $O\left(n^{4}\right)$ time. As such the algorithm can be done in polynomial time.
(c) Follow the solution method in 1(b).

Exercise 3

Given an n-vertex undirected graph $G=(V, E)$, consider the following method of generating an independent set. Given a permutation σ of the vertices, define a subset $S(\sigma)$ of the vertices as follows: for each vertex $i, i \in S(\sigma)$ iff no neighbour j of i precedes i in the permutation σ.
(a) Show that each $S(\sigma)$ is an independent set in G.
(b) Suggest a natural randomized algorithm to produce σ for which you can show that the expected cardinality of $S(\sigma)$ is

$$
\sum_{i=1}^{n} \frac{1}{d_{i}+1}
$$

where d_{i} denotes the degree of vertex i.
(c) Prove the G has an independent set of size at least $\sum_{i=1}^{n} \frac{1}{d_{i}+1}$.

Answer of exercise 3

(a) For any edge (i, j), if $i \in S(\sigma)$ then it implies that $(\sigma(i)<\sigma(j))$. If $j \in S(\sigma)$, then it implies that $(\sigma(j)<\sigma(i))$. But it is impossible that these two cases occur at the same time. Therefore $S(\sigma)$ is an independent set in G.
(b) Choose the permutation σ randomly - with respect to the uniform distribution. For any vertex i, let U_{i} be the union of i and its neighbours. As the degree of i is d_{i}, U_{i} has $d_{i}+1$ elements. By definition - of the question $-i \in S(\sigma)$ iff $\sigma(i)$ is 'smallest' among $\sigma(x), x \in U_{i}$. By symmetry, the prob of $i \in S(\sigma)$ is $1 /\left(d_{i}+1\right)$. Therefore, by linearity of expectation, the prob of $i \in S(\sigma)$ is

$$
E[|S(\sigma)|]=\sum_{i=1}^{n} \operatorname{Pr}(i \in S(\sigma))=\sum_{i=1}^{n} \frac{1}{d_{i}+1} .
$$

(c) By an expectation argument, there must be at least one $S(\sigma)$ whose value is at least $E[|S(\sigma)|]$. And then, $S(\sigma)$ is an independent set in G. Therefore, G has an independent set of size at least $\sum_{i=1}^{n} \frac{1}{d_{i}+1}$.

