
Chapter 3

Expectation, inequalities
and laws of large numbers

3.1 Expectation and Variance

Indicator random variable

Let us suppose that the event A partitions the sample space S, i.e. A ∪A = S.
The indicator of an event A is the (indicator) random variable IA defined by

IA(s) =

{
1 if s ∈ A
0 if s 6∈ A

The event A occurs if and only if IA = 1. The probability distribution is

pIA(0) = P (A) = 1− P (A)

pIA(1) = P (A).

The corresponding distribution function reads

FIA(x) =


0 for x < 0

P (A) for 0 ≤ x < 1

1 for x ≥ 1.

Exercise 3.1 (Indicator random variable)

Consider a probabilistic space over a set S. Show that for every event A ⊆ S and
its indicator IA it holds E (IA) = P(A). (An indicator is defined as IA(w) = 1
for all w ∈ A and IA(w) = 0 for all w /∈ A.)

Solution of Exercise 3.1 :

E (IA) =
∑
w∈S

P(w)IA(w) =
∑
w∈A
P(w)+

∑
w∈(SrA)

P(w)0 = P

( ⋃
w∈A
{w}

)
+0 = P(A).

1
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Exercise 3.2

Consider two discrete random variables X, Y such that ∀w ∈ S : X(w) ≤ Y (w).
Prove that E (X) ≤ E (Y ).

Solution of Exercise 3.2 :

E (Y )− E (X) =
∑
w∈S

P(w)Y (w)−
∑
w∈S

P(w)X(w) =
∑
w∈S

P(w)[Y (w)−X(w)] ≥

≥
∑
w∈S

P(w)0 = 0.

Exercise 3.3

Suppose that after a long night n drunken sailors return to the ship and they
sequentially, independently at random enter one of r cabins and fall asleep.
Assuming they select each cabin with uniform probability distribution (and
ignore any other sailors already present inside), what is the expected number of
empty cabins?

Solution of Exercise 3.3 : Let Xi = 1 if cabin i is empty and let Xi = 0 otherwise.
The number of empty cabins is X =

∑r
i=1Xi and we want to calculate E(X).

Using the fact that the expectation of a sum is the sum of expectations (even
for not independent random variables), we have

E(X) = E

(
r∑
i=1

Xi

)
=

r∑
i=1

E(Xi).

We have to compute E (Xi). Probability that i-th cabin is empty is (1 − 1
r )n

(this follows from the negative binomial probability distribution where one of
the parameters is equal to 0). We have E (Xi) =

(
1− 1

r

)n
and

E(X) = r

(
1− 1

r

)n
.

Exercise 3.4

Let X be uniformly distributed on {0, 1, . . . , n}. Find the mean and variance of
X.

Solution of Exercise 3.4 :

1. Mean:

E (X) =

n∑
i=0

i
1

n+ 1
=

1

n+ 1

n∑
i=1

i =
1

n+ 1

n(n+ 1)

2
=
n

2
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2. Variance:

V ar(X) = E(X2)− (E(X))2 =

(∑
i=0

i2
1

n+ 1

)
−
(n

2

)2
=

=
1

n+ 1

n(n+ 1)(2n+ 1)

6
−
(n

2

)2
=

=
n(2n+ 1)

6
− n2

4
=

4n2 + 2n− 3n2

12
=
n2 + 2n

12

Exercise 3.5

Having two dice, let the random variable X be the outcome of the first die and Y
be the maximum of their outcomes. Compute E(X), E(Y ), V ar(X), Cov(X,Y )
and the joint distribution of X and Y .

Solution of Exercise 3.5 :

E(X) =

6∑
i=1

6
1

36
i =

1

6

6∑
i=1

i =
7

2

E(Y ) =

6∑
i=1

(i+ (i− 1))
1

36
i =

1

36
(1 + 6 + 15 + 28 + 45 + 66) =

161

36

E(X2) =

6∑
i=1

6
1

36
i2 =

1

6

6∑
i=1

i2 =
91

6

V ar(X) = E(X2)− E(X)2 =
91

6
−
(

21

6

)2

=
546− 441

36
=

35

12

We can use the equation:

P (X = i ∧ Y = j) = P (Y = j|X = i)P (X = i)

For probability P (X = i), we have for each i ∈ 1, . . . , 6 that P (X = i) = 1
6 .

Conditional probability is given by

P (Y = j|X = i) =


0 j < i
i
6 j = i
1
6 j < i

Thus we get the joint distribution:
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Y \X 1 2 3 4 5 6

1 1
36 0 0 0 0 0

2 1
36

2
36 0 0 0 0

3 1
36

1
36

3
36 0 0 0

4 1
36

1
36

1
36

4
36 0 0

5 1
36

1
36

1
36

1
36

5
36 0

6 1
36

1
36

1
36

1
36

1
36

6
36

E(XY ) =

n∑
i=0

n∑
j=0

ijPr(X = i, Y = j) =

=

n∑
j=0

1jPr(X = 1, Y = j) + · · ·+
n∑
j=0

6jPr(X = 6, Y = j) =

=
21

36
+

44

36
+

72

36
+

108

36
+

155

36
+

216

36
=

616

36

Cov(X,Y ) = E(XY )− E(X)E(Y ) =
616

36
− 21

6

161

36
=

35

24

Exercise 3.6

Suppose a box contains 3 balls labeled 1,2,3. Two balls are selected without
replacement from the box. Let X be the number on the first ball and let Y be
the number on the second ball. Compute Cov(X,Y ) and %(X,Y ).

Solution of Exercise 3.6 : We have

Cov(X,Y ) = E ((X − E (X) (Y − E (Y )) =
∑
i,j

pxi,yj

(
xi−E (X)

)(
yj−E (Y )

)
.

Note that X and Y have identical marginal distributions. Since E (X) =
E (Y ) = 2, and pxi,yj = 1

6 for all i,j, we obtain∑
i,j

pxi,yj

(
xi − E (X)

)(
yj − E (Y )

)
=

1

6

=
1

6

(
(1− 2)(2− 2) + (1− 2)(3− 2) + (2− 2)(1− 2) + (2− 2)(3− 2)+

+ (3− 2)(1− 2) + (3− 2)(2− 2)
)

=

=
1

6

(
− 1 + (−1)

)
= −1

3
.

Also, we have V ar(Y ) = V ar(X) = E(X2)−(E(X))2 = 1
3 (1+4+9)−(2)2 =
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2
3 and thus

%(X,Y ) =
− 1

3√
2
3
2
3

= −1

2

Exercise 3.7

Suppose X and Y are two independent random variables such that E
(
X4
)

= 2,

E
(
Y 2
)

= 1, E
(
X2
)

= 1 and E (Y ) = 0. Compute Var(X2Y ).

Solution of Exercise 3.7 :

Var(X2Y ) = E
((
X2Y − E(X2Y )

)2)
= E

((
X2Y − E(X2)E(Y )

)2)
= E

(
(X2Y − 1 · 0)2

)
= E(X4Y 2) = E(X4)E(Y 2) = 2

Exercise 3.8

A p-random graph on v vertices is an unoriented graph where between every
distinct vertices i < j there is an edge with probability p. Compute the expected
value and the variance of the number of all edges in the graph.

Solution of Exercise 3.8 : Denote X the number of all edges and Xi,j the in-
dicator of the event that there is an edge between i and j. Observe that
X =

∑
i<j Xi,j . Then

E (X) =
∑
i<j

E (Xi,j) =

(
v

2

)
· p.

Since all Xi,j are mutually independent, we know, that

Var(X) =
∑
i<j

Var(Xi,j) =

(
v

2

)
· (p− p2).

In fact, we have just calculated the expectation and variance of the binomial
distribution, if you substitute n =

(
v
2

)
.

Exercise 3.9

Let X have the binomial distribution with parameters n and p. Find E (X).

Solution of Exercise 3.9 : Here we provide a direct calculation of the expectation,
in contrast to the Exercise 3.8, where we used the linearity of expectation.

We have pk = (X = k) = pX(k) =
(
n
k

)
pk(1−p)n−k and E (X) =

∑
i xif(xi).

The the binomial distribution assigns positive probabilities to 0, 1, . . . n Thus,

E (X) =

n∑
i=0

i

(
n

k

)
pk(1− p)n−k.



6CHAPTER 3. EXPECTATION, INEQUALITIES AND LAWSOF LARGE NUMBERS

To calculate this quantity we observe that

i

(
n

i

)
=

in!

i!(n− i)!

=
n(n− 1)!

(i− 1)!
(
(n− 1)− (i− 1)

)
!

= n

(
n− 1

i− 1

)
Thus

E (X) = n

n−1∑
i=1

(
n− 1

i− 1

)
pi(1− p)n−i.

Making the substitution i = `+ 1 we see that

E (X) = np

n−1∑
`=0

(
n− 1

`

)
p`(1− p)n−`−1

By the binomial theorem

n−1∑
`=0

(
n− 1

`

)
pi(1− p)n−`−1 =

(
p+ (1− p)

)n−1
= 1

so we see that

E (X) = np.

Exercise 3.10

Find V ar(X) for X from the previous example.

Solution of Exercise 3.10 : Here we provide a direct calculation of the expecta-
tion, in contrast to the Exercise 3.8, where we used the linearity of expectation.

We have

V ar(X) = E
(
X2
)
−
(
E (X)

)2
We use again the identity k

(
n
k

)
= n

(
n−1
k−1
)

and get

E
(
X2
)

=

n∑
k=0

k2
(
n

k

)
pk(1− p)n−k = n

n∑
k=0

k

(
n− 1

k − 1

)
pk(1− p)n−k.

We put m = n− 1 and s = k − 1 and obtain

E
(
X2
)

= np

m∑
s=0

(s+1)

(
m

s

)
ps(1−p)m−s = np

(
m∑
s=0

s

(
m

s

)
ps(1− p)m−s +

m∑
s=0

(
m

s

)
ps(1− p)m−s

)
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The first sum is equal to mp (see Exercise 3.9), the second is equal to 1 from
the binomial theorem.

E
(
X2
)

= np(mp+ 1) = np
(
(n− 1)p+ 1) = np(np− p+ 1)

We obtain

Var(X) = E
(
X2
)
− (E (X))2 = np(np− p+ 1)− (np)2 = np(1− p)

Exercise 3.11

Consider a group of n people. A special day is a day such that exactly k people
in the group have a birthday. What is the expected number of special days in
a year? (Assume all years are non-leap.)

Solution of Exercise 3.11 : We will define a family of random variables X1, X2,
. . . , X365 as follows.

Xi =

{
1, if exactly k people have their birthday on the i-th day of a year,
0, otherwise

In other words, Xi = 1 if and only if i is a special day. Let’s compute the
probability of Xi = 1.

P (Xi = 1) =

(
n

k

)(
1

365

)k (
364

365

)n−k
Note, that although all 365 random variables have the same probability distri-
bution, they still denote different random variables. In addition, these random
variables are not independent!

Let us now define another variable X =
∑365
i=1Xi. It can be seen that X = m

if there are m special days in a year. Since we are interested in the expected
number of special days, we will calculate E (X).

E (X) = E

(
365∑
i=1

Xi

)
=

365∑
i=1

E (Xi) =

365∑
i=1

P (Xi = 1)

= 365 ·
(
n

k

)(
1

365

)k (
364

365

)n−k

Exercise 3.12

Consider the same group of n people. What is the expected number of days
such that at least two people have a birthday? How large should be n to make
this expectation exceed 1?

Solution of Exercise 3.12 : Note that this exercise is almost the same as the
previous one, only the definition of a special day has changed. The solution can
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therefore be found in the same manner as above. We will once again define a
family of random variables X1, X2, . . . , X365 as follows.

Xi =

{
1, if two people have their birthday on the i-th day of a year,
0, otherwise

Now to calculate the probability distribution of Xi and the expectation of∑365
i=1Xi.

P (Xi = 0) =

(
364

365

)n
+ n · 1

365
·
(

364

365

)n−1
P (Xi = 1) = 1− P (Xi = 0)

E

(
365∑
i=1

Xi

)
=

365∑
i=1

E (Xi) =

365∑
i=1

P (Xi = 1)

= 365 ·

(
1−

(
364

365

)n
− n · 1

365
·
(

364

365

)n−1)

= 365 ·

(
1−

(
364

365

)n
− n · 1

365
·
(

364

365

)n−1)

Exercise 3.13

Let X have a geometric distribution with parameter p. Find E (X).

Solution of Exercise 3.13 : The expectation of the geometric distribution is

E (X) =

∞∑
j=0

jp(1− p)j−1

= p

∞∑
j=0

j(1− p)j−1

= −p
∞∑
j=0

d

dp
(1− p)j

Since a power series can be differentiated term by term, it follows that

E (X) = −p d
dp

∞∑
j=0

(1− p)j

Using the formula for the sum of a geometric progression, we can see that

E (X) = −p d
dp

1

p
= −p−1

p2
=

1

p

Exercise 3.14



3.2. MARKOV AND CHEBYSHEV INEQUALITY; CHERNOFF BOUNDS9

Let the random variable X be representable as a sum of random variables X =∑n
i=1Xi. Show that, if E[XiXj ] = E[Xi]E[Xj ] for every pair of i and j with

1 ≤ i < j ≤ n, then var[X] =
∑n
i=1 var[Xi]

Solution of Exercise 3.14 : First we have

var(X) = E(X2)− (E(X))2

= E((

n∑
i=1

Xi)
2)− (E(

n∑
i=1

Xi))
2

= E(

n∑
j=1

n∑
i=1

XiXj)− (E(

n∑
i=1

Xi))
2

By the linearity of expectation we have

var(

n∑
i=1

Xi) =

n∑
j=1

n∑
i=1

E(XiXj)− (

n∑
i=1

E(Xi))
2 (3.1)

=

n∑
j=1

n∑
i=1

E(XiXj)−
n∑
j=1

n∑
i=1

E(Xj)E(Xi) (3.2)

(3.3)

Using the assumption we get

var(

n∑
i=1

Xi) =

n∑
i=1

E(X2
i )− (E(Xi))

2 =

n∑
i=1

var(Xi)

3.2 Markov and Chebyshev inequality; Chernoff
bounds

Exercise 3.15

Suppose we flip a fair coin n times to obtain n random bits. Consider all m =
(
n
2

)
pairs of these bits in some order. Let Yi be the exclusive–or of the ith pair of
bits, and let Y =

∑m
i=1 Yi be the number of Yi that equal 1.

1. Show that each Yi is 0 with probability 1/2 and 1 with probability 1/2.

2. Show that Yi are not mutually independent.

3. Show that Yi satisfy the property E[YiYj ] = E[Yi]E[Yj ].

4. Using previous exercise find V ar[Y ]

5. Using Chebyshev’s inequality prove a bound on Pr[|Y − E(Y )| ≥ n]
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Solution of Exercise 3.15 :

1. Straightforward.

2. Consider n = 3 and probability Pr(Y1 = 1, Y2 = 1, Y3 = 1). If Yi were
mutually independent, Pr(Y1 = 1, Y2 = 1, Y3 = 1) would be equal to 1

8 .
In fact it is equal to zero (consider all 3-bit strings to see this).

3. First we will show, that Yi are pairwise independent. Consider 2 possibil-
ities.

1.) Yi and Yj do not share a bit position. They are obviously independent.
2.) Yi and Yj share a bit position. Consider all 3-bit strings to confirm
the independence.

4.

V ar[Y ]
pairwise independence

=

m∑
i=1

V ar(Yi)

=

m∑
i=1

E(Y 2
i )− E(Yi)

2

=

m∑
i=1

(02
1

2
+ 12

1

2
)− (0

1

2
+ 1

1

2
)2

=

m∑
i=1

1

4
=
m

4

5. Chebyshev has the form

Pr[|Y − E(Y )| ≥ n] ≤ V ar(Y )

n2
=

1

8

n(n− 1)

n2
≤ 1

8
.

Exercise 3.16

Suppose that Y has the geometric distribution with parameter p = 3/4. Com-
pute the exact value and the Chebyshev bound for the probability that Y is
at least 2 standard deviations away from the mean. Note: If Y has geometric
distribution, E(Y ) = 1

p and var(Y ) = 1−p
p2 .

Solution of Exercise 3.16 : E(Y ) = 4/3 and var(Y ) = 4/9 and σ(Y ) = 2
3

We need to compute Pr[Y ≤ 4
3 −

4
3 ] + Pr[Y ≥ 4

3 + 4
3 ] = 0 + Pr[Y ≥ 3] =

1− FY (2) = 1− (1− (1/4)2) = 1/16.
By Chebyshev inequality

Pr[|Y − E(Y )| ≥ 4

3
] ≤ 4/9

16/9
=

1

4



3.2. MARKOV AND CHEBYSHEV INEQUALITY; CHERNOFF BOUNDS11

Exercise 3.17

Alice and Bob play checkers often. Alice is a better player, so the probability
that she wins any given game is .6, independent of all other games. They decide
to play a tournament of n games. Bound the probability that Alice loses the
tournament using a Chernoff bound.

Solution of Exercise 3.17 : Alice looses the game is she wins less than half of
the games, i.e. we want the probability P (X ≤ n−1

2 ). We will use the Chernoff
bound

Pr(X ≤ (1− δ)µ) ≤ e−µδ
2/2.

To bound our probability from above, we have to solve (for µ = 3n/5) the
inequality

(1− δ)µ ≥n− 1

2

(1− δ)(3n/5) ≥n− 1

2

δ ≤1− 5

6

n− 1

n

what gives e.g. δ ≤ 1/3 for n ≥ 5. In fact, we can use δ ≤ ε for any ε > 1/6 and
sufficiently large n. We get

Pr(X ≤ (n− 1)/2) ≤ Pr(X ≤ (1− δ)µ) ≤ e−µδ
2/2 = e−(3n/5)(1/9)/2 = e−n/30.

Exercise 3.18

We have a standard six-sided die. Let X be the number of times that a 6
occurs over n throws of the die. Let p be the probability of the event X ≥
n/4. Compare the best upper bounds on p that you can obtain using Markov’s
inequality, Chebyshev’s inequality and the Chernoff bounds.

Solution of Exercise 3.18 :

Chernoff states that

p = Pr(X ≥ n/4) = Pr(X ≥ (1 + δ)µ) ≤ e−µδ
2/3.

Observing that E(X) = µ = n
6 , we solve (1 + δ)µ = n/4 to get δ = 1/2.

Consequently, we can bound p as p ≤ e−(n/6)(1/4)/3 = e−n/72.

Markov states that

P (X ≥ t) ≤
(
E(X)

t

)
where E(X) = E (

∑
Xi) = n/6. We can deduce that

p = P (X ≥ n/4) ≤
(
n/6

n/4

)
= 2/3.



12CHAPTER 3. EXPECTATION, INEQUALITIES AND LAWSOF LARGE NUMBERS

Chebyshev states that

P (X ≥ t) ≤ P (|X − E(X)| ≥ t) ≤ var(X)

t2
.

Noting that var(X)= nq(1− q), we have

P (X ≥ n/4) ≤ P (|X − E(X)| ≥ n/4) ≤
n 1

6
5
6

(n/4)2
=

20

9n
.

Exercise 3.19

We plan to conduct an opinion poll to find out the percentage of people in
a community who want its president impeached. Assume that every person
answers either yes or no. If the actual fraction of people who want the president
impeached is p, we want to find and estimate X of p such that

Pr(|X − p| ≤ εp) > 1− δ

for a given ε and δ, with ε > 0 and δ < 1.

Solution of Exercise 3.19 :
Find X such that

Pr(|X − p| ≤ εp) > 1− δ.

This is equivalent to Pr(|nX − np| ≤ εpn) > 1 − δ. This holds if (but is not
necessarily equivalent) Pr(|nX − np| < εpn) > 1 − δ. Finally, we can replace
this by

Pr(|nX − np| ≥ εpn) ≤ δ.

It remains to solve apply a suitable Chernoff bound

Pr(|Y − µ| ≥ εµ) ≤ 2e−µε
2/3.

For µ = np we solve 2e−µε
2/3 ≤ δ to get

3 ln 2
δ

pε2
≤ n.

Exercise 3.20

Consider a collection X1, . . . , Xn of n independent integers chosen uniformly
from the set {0, 1, 2}. Let X =

∑n
i=1Xi and 0 < δ < 1. Derive a Chernoff

bound for Pr(X ≥ (1 + δ)n) and Pr(X ≤ (1 + δ)n).

Solution of Exercise 3.20 :

MXi = E(etXi) =
1

3
(e2t + et + 1) ≤ ee

2t+et .
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Then

MX(t) =

n∏
i=1

MXi
(t) ≤ en(e

2t+et).

Setting t = ln(1 + δ) we get

Pr(X ≥ (1 + δ)n) < . . .


