
Chapter 2

Random variables

Exercise 2.1 (Uniform distribution)

Let X be uniformly distributed on 0, 1, . . . , 99. Calculate P(X ≥ 25).

Solution of Exercise 2.1 : We have

P(X ≥ 25) = 1− P(X ≤ 24) = 1− F (24) = 1− 25

100
=

3

4
.

Alternative solution:

P (X ≥ 25) =

99∑
x=25

P (X = x) = 75
1

100
=

3

4
.

Exercise 2.2 (Binomial distribution)

Assume the probability of winning a game is 1
10 . If you play the game 10 times,

what is the probability that you win at most once?

Solution of Exercise 2.2 : Let X be the number of wins. This game represents a
binomial situation with n = 10 and p = 1

10 . We interpret win at most once as
meaning X ≤ 1. Then

P (X ≤ 1) = P (X = 0)+P (X = 1) =

(
10

0

)(
1

10

)0(
9

10

)10

+

(
10

1

)(
1

10

)1(
9

10

)9

=

(
9

10

)9(
19

10

)
≡ 0.736099.

Exercise 2.3 (Binomial distribution)

If X is binomial with parameters n and p, find an expression for P [X ≤ 1].
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Solution of Exercise 2.3 :

P [X ≤ 1] = P [X = 0] + P [X = 1]

=

(
n

0

)
p0(1− p)n +

(
n

1

)
p1(1− p)n−1

= (1− p)n + np(1− p)n−1 = (1− p)n−1((1− p) + np)

= (1− p)n−1(1 + (n− 1)p).

Exercise 2.4 (Geometric distribution)

Consider a biased coin with the probability of ”head” equal to 3
5 . We are

throwing until the ”head” is reached. What is the probability pZ(5) that the
head is reach in the 5th throw?

Solution of Exercise 2.4 : The corresponding sequence of outcomes is TTTTH.

Probability of this sequence is pZ(5) =
(
2
5

)4 3
5 .

Exercise 2.5 (Geometric distribution)

1. Calculate the aforementioned probability pZ(i) for a general success prob-
ability p and a general number of throws i.

2. Verify that
∑∞

i=1 pZ(i) = 1.

3. Determine the distribution function FZ(t).

Solution of Exercise 2.5 :

1. The geometric probability distribution origins from Bernoulli trials as
well, but this time we count the number of trials until the first ’success’
occurs. The sample space consists of binary strings of the form S =
{0i−11|i ∈ N}.
We define the random variable Z : {0i1|i ∈ N0} → R as Z(0i−11)

def
= i. Z

is the number of trials up to and including the first success. The outcome
0i−11 arises from a sequence of independent Bernoulli trials, thus we have

pZ(i) = (1− p)i−1p. (2.1)

2. We use the formula for the sum of geometric series to obtain (verify
property (p2))

∞∑
i=1

pZ(i) =

∞∑
i=1

p(1− p)i−1 =
p

1− (1− p)
=

p

p
= 1.

We require that p 6= 0, since otherwise the probabilities do not sum to 1.

3. The corresponding probability distribution function is defined by (for
t ≥ 0)

FZ(t) =

btc∑
i=1

p(1− p)i−1 = 1− (1− p)btc.
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Exercise 2.6 (Geometric distribution)

Suppose that X has a geometric probability distribution with p = 4/5. Com-
pute the probability that 4 ≤ X ≤ 7 or X > 9.

Solution of Exercise 2.6 : We need the following(
F (7)− F (3)

)
+ [1− F (9)] =

=
((

1− (1− p)7
)
−
(
1− (1− p)3

))
+ 1−

(
1− (1− p)9

)
=

= (1− p)9 + (1− p)3 − (1− p)7.

Exercise 2.7 (Hypergeometric distribution)

Professor R. A. Bertlmann (http://homepage.univie.ac.at/reinhold.bertlmann/)
is going to a attend a conference in Erice (Italy) and wants to pack 10 socks.
He draws them randomly from a box with 20 socks. However, prof. Bertlmann
likes to wear a sock of different color (and pattern) on each leg.

1. What is the probability that he draws out exactly 5 red socks given that
there are 7 red socks in the box?

2. Calculate the same probability of obtaining exactly 5 red socks, when
drawing 10 socks randomly and the probability to get the red one p = 7

20
is the same in each trial and trials are independent.

Solution of Exercise 2.7 :

1. This situation is close in its interpretation to the binomial probability
distribution except that we consider sampling without replacement. Let
us suppose we have two kinds of objects - e.g. r red and n−r black socks
in a basket. We have the probability r/n to select a red sock in the first
trial. However, the probability of selecting red sock in the second trial is
(r − 1)/(n − 1) if red sock was selected in the first trial, or r/(n − 1) if
black sock was selected in the first trial. It follows that the assumption
of constant probability of every outcome in all trials, as required by the
binomial distribution, does not hold. Also, the trials are not independent.

In this case we are facing the hypergeometric distribution h(k;m, r, n)
defined as the probability that there are k red objects in a set of m ob-
jects chosen randomly without replacement from n objects containing r
red objects.

There are
(
n
m

)
sample points. The k red socks can be selected from r red

socks in
(
r
k

)
ways and m − k black socks can be selected from n − r in(

n−r
m−k

)
ways. The sample of m socks with k red ones can be selected in(

r

k

)(
n− r

m− k

)
ways. Assuming uniform probability distribution on the sample space,
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the required probability is

h(k;m, r, n) =

(
r
k

)(
n−r
m−k

)(
n
m

) , k = 1, 2, . . .min{r,m}

In our concrete case we get

h(5; 10, 7, 20) =

(
7
5

)(
13
5

)(
20
10

) ≈ 0.14628

2. Good approximation of the hypergeometric distribution for large n (rel-
atively to m) is the binomial distribution h(k;m, r, n) ' b(k;m, r/n).
In our concrete case

b

(
5; 10,

7

20

)
=

(
7

20

)5(
13

20

)5(
10

5

)
≈ 0.15357.

Exercise 2.8 (Banach’s matchbox problem, negative bino-
mial distribution)

Suppose a mathematician carries two matchboxes in his pocket. He chooses
either of them with the probability 0.5 when taking a match. Consider the
moment when he reaches an empty box in his pocket. Assume there were R
matches initially in each matchbox. What is the probability that there are
exactly N matches in the nonempty matchbox?

Solution of Exercise 2.8 : Let start with the case when the empty matchbox is in
the left pocket. Denote choosing the left pocket as a “success” and choosing the
right pocket as a “failure”. Then we want to know the probability that there
were exactly R−N failures until the (R + 1)st success.

Let us consider the negative binomial distribution. It is close in its inter-
pretation to the geometric distribution, we calculate the number of trials until
the rth success occurs (in contrast to the 1st success in geometric distribution).

Let Tr be the random variable representing this number. Let us define the
following events

• A =’Tr = n’.

• B =’Exactly (r − 1) successes occur in n− 1 trials.’

• C =’the nth trial results in a success.’

We have that A = B ∩ C, and B and C are independent giving P (A) =
P (B)P (C). Consider a particular sequence of n− 1 trials with r − 1 successes
and n− 1− (r − 1) = n− r failures. The probability associated with each such
sequence is pr−1(1− p)n−r and there are

(
n−1
r−1
)

such sequences. Therefore

P (B) =

(
n− 1

r − 1

)
pr−1(1− p)n−r.
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Since P (C) = p we have

pTr
(n) =P (Tr = n) = P (A)

=

(
n− 1

r − 1

)
pr(1− p)n−r, n = r, r + 1, r + 2, . . .

In our case we want to calculate how many matches were removed from the
other pocket. We want to calculate the number of failures until the rth success
occurs. This is the modified negative binomial distribution describing the
number of failures until the rth success occurs. The probability distribution is

pZ(n) =

(
n + r − 1

r − 1

)
pr(1− p)n, n ≥ 0.

(For r = 1 we obtain the modified geometric distribution.)

We apply the modified negative binomial distribution to get the probability

pleft =
(
R−N+R

R

) (
1
2

)(R+1) ( 1
2

)R−N
. The symmetric event (when the matchbox

in the right pocket becomes empty) is disjoint, thus the probability of finishing
one matchbox when having exactly N, 0 < N ≤ R matches in the other one is

p = 2pleft =

(
R−N + R

R

)
2N−2R.

Exercise 2.9

Random variables X1, X2, . . . , Xr with probability distributions pX1
, pX2

, . . . , pXr

are mutually independent if for all x1 ∈ Im(X1), x2 ∈ Im(X2), ..., xr ∈ Im(Xr)

pX1,X2,...,Xr (x1, x2, . . . , xr) = pX1(x1)pX2(x2) · · · , pXr (xr).

Does this imply that for any q ≤ r and any set i1, i2 . . . iq ∈ {1, 2 . . . r} of distinct
indices we have

pXi1 ,Xi2 ,...,Xiq
(xi1 , xi2 , . . . , xiq ) = pXi1

(xi1)pXi2
(xi2) · · · , pXiq

(xiq )?

Solution of Exercise 2.9 : Yes. We only prove the particular case for q = r − 1,
the rest follows (I hope :-)). Let j be the index such that j 6= ik for any k. We
have

pX1,...,Xj−1,Xj+1,...,Xr
(x1, . . . xj−1, xj+1, . . . xr) =

= P(X1 = x1, . . . , Xj−1 = xj−1, Xj+1 = xj+1, . . . Xr = xr)
=
∑

y P(X1 = x1, . . . Xj−1 = xj−1, Xj = y,Xj+1 = xj+1, . . . Xr = xr)

=
∑

y pX1(x1) · · · pXj−1(xj−1)pXj (y)pXj+1(xj+1) · · · pXr (xr)

=
(∑

y pXj
(y)
)
pX1

(x1) · · · pXj−1
(xj−1)pXj+1

(xj+1) · · · pXr
(xr)

= pX1
(x1) · · · pXj−1

(xj−1)pXj+1
(xj+1) · · · pXr

(xr)
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Exercise 2.10

Let n ∈ N and let

f(x) =

{
c2x, x = 0, 1, 2, . . . , n

0, otherwise

Find the value of c such that f is a probability distribution.

Solution of Exercise 2.10 : We need to find c > 0 such that
∑n

x=0 c2
x = 1. Recall

that the geometric series sums as
∑n

x=0 y
x = yn+1−1

y−1 for y 6= 1. We proceed as
follows:

1 =

n∑
x=0

c2x = c

n∑
x=0

2x = c(2n+1 − 1),

what gives c = 1
2n+1−1 .

Exercise 2.11

Prove that
(
n−1
r−1
)
pr(1− p)n−r =

( −r
n−r
)
(−1)n−rpr(1− p)n−r.

Solution of Exercise 2.11 : We need to prove
(
n−1
r−1
)

=
( −r
n−r
)
(−1)n−r. For all a,b

we have
(
a
b

)
=
(

a
a−b
)

and if a ≤ 0 and b ≥ 0, then
(−a

b

)
= (−1)b

(
a+b−1

b

)
from

definition.
Using the latter, we have

( −r
n−r
)
(−1)n−r =

(
r+n−r−1

n−r
)

=
(
n−1
n−r
)

and using the

first, we obtain
(
n−1
n−r
)

=
(

n−1
n−1−(n−r)

)
=
(
n−1
r−1
)
.

Exercise 2.12

Use the previous Exercise to show that probabilities of the negative binomial
distribution sum to 1.

Solution of Exercise 2.12 : We want to show that for every r

∞∑
n=r

pTr (n) =

∞∑
n=r

(
n− 1

r − 1

)
pr(1− p)n−r = 1. (2.2)

Previous exercise shows that

pTr (n) = pr
(
−r

n− r

)
(−1)n−r(1− p)n−r. (2.3)

We use the Taylor expansion of (1− t)−r for −1 < t < 1:

(1− t)−r =

∞∑
n=r

(
−r

n− r

)
(−t)n−r.

and the substitution t = (1− p) to get

p−r =

∞∑
n=r

(
−r

n− r

)
(−1)n−r(1− p)n−r. (2.4)
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Substituting Eq. (2.4) and Eq. (2.3) into Eq. (2.2) gives the desired result

1 =

∞∑
n=r

pr
(
−r

n− r

)
(−1)n−r(1− p)n−r.

Note that the summation from r is correct since clearly pTr
(n) = 0 for n < r.


