Lecture 8 - Message Authentication and Universal Hashing

Jan Bouda

FI MU
April 28, 2010

Part I

k-wise independent random variables

k-wise independence

Definition

Random variables $X_{1}, X_{2}, \ldots, X_{n}$ are k-wise independent iff for any $I \subseteq\{1, \ldots, n\}$ with $|I| \leq k$ and for any values $x_{i}, i \in I$, it holds that

$$
\begin{equation*}
\mathcal{P}\left(\bigwedge_{i \in I} X_{i}=x_{i}\right)=\prod_{i \in I} \mathcal{P}\left(X_{i}=x_{i}\right) \tag{1}
\end{equation*}
$$

For $k=2$ we say that random variables are pairwise independent.
Advantage of pairwise independent random variables is that they require much less randomness to construct, in contrast to independent random variables.

Constructing Pairwise Independent Bits

Let X_{1}, \ldots, X_{b} be uniformly distributed independent random variables on $\{0,1\}$. Let $S_{j} \subseteq\{1, \ldots, b\}, S_{j} \neq \emptyset$ be a nonempty set of indices, there are $2^{b}-1$ such subsets. Let us define random variables

$$
\begin{equation*}
Y_{j}=\bigoplus_{i \in S_{j}} X_{i} \tag{2}
\end{equation*}
$$

as the XOR of X_{i} 's.
Theorem
Random variables $Y_{1}, Y_{2}, \ldots, Y_{2^{b}-1}$ are uniform and pairwise independent.

Constructing Pairwise Independent Bits

Proof.

First we have to show that Y_{j} is uniform for any j. We will do so using the principle of deferred decision. Let $z=\max S_{j}$. Then

$$
\begin{equation*}
Y_{j}=\left(\bigoplus_{i \in S_{j} \backslash\{z\}} X_{i}\right) \oplus X_{z} . \tag{3}
\end{equation*}
$$

Suppose we know values of all $X_{i}, i \in S_{j} \backslash\{z\}$. Then the value of Y_{j} is determined by the value of X_{z}, and the probabilities are $\mathcal{P}\left(Y_{j}=0\right)=\mathcal{P}\left(Y_{j}=1\right)=1 / 2$.

Constructing Pairwise Independent Bits

Proof.

Next we have to show the pairwise independence. Consider any Y_{k} and Y_{l} together with the corresponding index sets S_{k} and $S_{/}$. Assume WLOG that $z \in S_{l} \backslash S_{k}$ and let us calculate

$$
\begin{equation*}
\mathcal{P}\left(Y_{I}=d \mid Y_{k}=c\right) \tag{4}
\end{equation*}
$$

for any $c, d \in\{0,1\}$. We use again the principle of deferred decision. Suppose that we know all values of $X_{i}, i \in\left(S_{k} \cup S_{l}\right) \backslash\{z\}$. This completely determines the value of S_{k}, but we need X_{z} to determine the value of S_{I}. This gives

$$
\begin{equation*}
\mathcal{P}\left(Y_{l}=d \mid Y_{k}=c\right)=\mathcal{P}\left(Y_{l}=d\right)=\frac{1}{2} \tag{5}
\end{equation*}
$$

for any $c, d \in\{0,1\}$ showing the pairwise independence.

Constructing Pairwise Independent Integers

In a much analogous way we may construct pairwise independent random variables $Y_{0}, Y_{1}, \ldots, Y_{p-1}$ uniformly taking integer values modulo p (for some prime p). We need two independent uniform random variables X_{1} and X_{2} over $\{1, \ldots, p-1\}$ and set

$$
\begin{equation*}
Y_{i}=X_{1}+i X_{2} \bmod p \text { for } i=0, \ldots, p-1 \tag{6}
\end{equation*}
$$

Theorem
Random variables $Y_{0}, Y_{1}, \ldots, Y_{p-1}$ are uniform and pairwise independent.

Constructing Pairwise Independent Integers

Proof.

By the principle of deferred decisions, random variables Y_{i} are uniform. Given X_{2}, all uniformly distributed values of X_{1} imply uniform distribution on all possible values of Y_{i}.
Consider any pair of random variables Y_{i} and Y_{j}. We would like to show that, for any $a, b \in\{1, \ldots, p-1\}$,

$$
\begin{equation*}
\mathcal{P}\left(Y_{i}=a \vee Y_{j}=b\right)=\frac{1}{p^{2}} \tag{7}
\end{equation*}
$$

The event $\left[Y_{i}=a\right] \cup\left[Y_{j}=b\right]$ is equivalent to

$$
\begin{equation*}
X_{1}+i X_{2} \equiv a \quad(\bmod p) \text { and } X_{1}+j X_{2} \equiv b \quad(\bmod p) \tag{8}
\end{equation*}
$$

Constructing Pairwise Independent Integers

Proof.

We have a system of two linear equations with the unique solution

$$
\begin{equation*}
X_{2}=\frac{b-a}{j-i} \bmod p \text { and } X_{1}=a-\frac{i(b-a)}{j-i} \bmod p . \tag{9}
\end{equation*}
$$

X_{1} and X_{2} are uniform and independent, determining the probability of this event to be $\frac{1}{p^{2}}$ as desired.

This proof can be easily extended to show that it suffices to have

Part II

Graphs: Finding Large Cuts

Probabilistic method

The following theorem is a special case of the probabilistic method. It establishes the fact, that there is at least one value in $\operatorname{Im}(X)$ greater or equal to $E(X)$ and at least one value smaller or equal to $E(X)$.

Theorem
Suppose we have a random variable X with $E(X)=\mu$. Then $\mathcal{P}(X \leq \mu)>0$ and $\mathcal{P}(X \geq \mu)>0$.

Probabilistic Method

Proof.

Recall that

$$
\mu=E(X)=\sum_{x \in \operatorname{lm}(X)} x \mathcal{P}(X=x)
$$

If $\mathcal{P}(X \geq \mu)=0$, we have

$$
\begin{aligned}
\mu & =\sum_{x \in \operatorname{lm}(x)} x \mathcal{P}(X=x)=\sum_{x \in \operatorname{lm}(X), x<\mu} x \mathcal{P}(X=x) \\
& <\sum_{x \in \operatorname{lm}(X), x<\mu} \mu \mathcal{P}(X=x)=\mu
\end{aligned}
$$

obtaining a contradiction.

Probabilistic Method

Proof.

Similarly for $\mathcal{P}(X \leq \mu)=0$ we have

$$
\begin{aligned}
\mu & =\sum_{x \in \operatorname{lm}(x)} x \mathcal{P}(X=x)=\sum_{x \in \operatorname{lm}(X), x>\mu} x \mathcal{P}(X=x) \\
& >\sum_{x \in \operatorname{lm}(X), x>\mu} \mu \mathcal{P}(X=x)=\mu,
\end{aligned}
$$

Existence of Large Cuts

Given a (not oriented) graph $G=(V, E, f)$ a cut of the graph is a partitioning V into two sets A and $B=V \backslash A$. Weight of the cut is the sum of weights of edges connecting A and B, i.e.

$$
\sum_{\substack{\{u, v\} \in E \\ u \in A, v \in B}} f(\{u, v\})
$$

Here we assume that the weight of every edges is equal to 1 . The problem of finding maximum cut is NP-hard.
We show, using the probabilistic method, that the values of the maximal cut is at least $|E| / 2$.

Theorem

Given a graph $G=(V, E)$ with n nodes and m edges, there is partitioning of V into two disjoint sets A and B such that $m / 2$ edges connect a node in A and a node in B.

Existence of Large Cuts

Proof.

Construct sets A and B in the way that you assign each node in V independently and and uniformly either to A or to B. Let $\left\{e_{1}, e_{2}, \ldots e_{m}\right\}$ be arbitrary enumeration of the edges of G. For $i=1, \ldots, m$ we define

$$
X_{i}= \begin{cases}1 & \text { if edge } i \text { connects } \mathrm{A} \text { to } \mathrm{B}, \tag{10}\\ 0 & \text { otherwise }\end{cases}
$$

The probability that a particular edge connects A and B is $1 / 2$ giving

$$
\begin{equation*}
E\left(X_{i}\right)=\frac{1}{2} \tag{11}
\end{equation*}
$$

since for $e_{i}=\{u, v\}$

$$
E\left(X_{i}\right)=\mathcal{P}\left(X_{i}=1\right)=\mathcal{P}(u \in A \wedge v \in B)+\mathcal{P}(u \in B \wedge v \in A) .
$$

Using independence of the node assignment we have $\mathcal{P}(u \in A \wedge v \in B)=\mathcal{P}(u \in B \wedge v \in A)=\mathcal{P}(u \in A) \mathcal{P}(v \in B)=1 / 4$.

Existence of Large Cuts

Proof.

Let $c(A, B)$ be a random variable (function of A and B) denoting the value of the cut corresponding to A and B. Then

$$
\begin{equation*}
E(c(A, B))=E\left(\sum_{i=1}^{m} X_{i}\right)=\sum_{i=1}^{m} E\left(X_{i}\right)=\frac{m}{2} . \tag{12}
\end{equation*}
$$

Using the previous theorem we obtain the required result.
A Las Vegas algorithm is a randomized algorithm that always gives correct results. We will use the last theorem to design a Las Vegas algorithm that finds a cut of the size at least $m / 2$.

Finding Large Cuts

Require: Graph $G=(V, E), V=\left\{v_{1}, \ldots, v_{n}\right\}$
1: repeat
2: $\quad A \leftarrow \emptyset$
3: $\quad B \leftarrow \emptyset$
4: $\quad r=\left(r_{1}, \ldots, r_{n}\right)$ independently and randomly $\{0,1\}^{n}$
5: \quad for $i=1, \ldots, n$ do
6: \quad if $r_{i}=0$ then
7: $\quad A \leftarrow A \cup\{v\}$
8: \quad else
9: $\quad B \leftarrow B \cup\{v\}$
10: end if
11: end for
12: until $c(A, B) \geq m / 2 \quad \triangleright c(A, B)$ can be evaluated in polynomial time

Finding Large Cuts

Theorem
The expected number E of the repeat cycle executions is at most $\lceil m / 2\rceil$.
Proof.
Let

$$
\begin{equation*}
p=\mathcal{P}\left(c(A, B) \geq \frac{m}{2}\right) . \tag{13}
\end{equation*}
$$

Then

$$
\begin{aligned}
\frac{m}{2} & =E(c(A, B)) \\
& =\sum_{i \leq m / 2-1} i \mathcal{P}(c(A, B)=i)+\sum_{i \geq m / 2} i \mathcal{P}(c(A, B)=i) \\
& \leq(1-p)\left(\frac{m}{2}-1\right)+p m .
\end{aligned}
$$

Finding Large Cuts

Proof.

Finally,

$$
\begin{equation*}
p \geq \frac{1}{m / 2+1} . \tag{15}
\end{equation*}
$$

Recalling that we are looking for the expected value of a geometric distribution we have

$$
\begin{equation*}
E=\frac{1-p}{p} \leq \frac{m / 2}{m / 2+1} \frac{m / 2+1}{1}=m / 2 \tag{16}
\end{equation*}
$$

Derandomizing the algorithm

Consider now a modified version of the algorithm, where the bits r_{i} are chosen pairwise independently, but (not necessarily) independently.

- Recall that the only place where we use independence of respective bits r_{i} is Equation (11), where pairwise independence is sufficient.
- The aforementioned algorithm works with pairwise independent bits as well.
- Let the pairwise independent bits r_{1}, \ldots, r_{n} be generated from uniform random bits X_{1}, \ldots, X_{b}, with $b=\left\lceil\log _{2}(n+1)\right\rceil$, using the aforementioned procedure.
- The algorithm with this random input finds cut of size at least $m / 2$ with probability at least $p \geq \frac{1}{m / 2+1}$.
- Using the probabilistic method principle, there is an assignment of values x_{1}, \ldots, x_{b} to X_{1}, \ldots, X_{b} such that the algorithm with this assignment returns a cut of the desired size.
Finally, it suffices to run algorithm sequentially for all $2^{\left[\log _{2}(n+1)\right\rceil}$ possible inputs. Therefore, such an algorithm runs in time $O(m n)$.

Part III

Variance of Pairwise Independent Random Variables

Variance of a Sum

Lemma

$$
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)+2 \sum_{i<j} \operatorname{Cov}\left(X_{i}, X_{j}\right) .
$$

Variance of a Sum

Proof.

We know that this equation holds for $\mathrm{n}=2$. Let us assume that it holds for $n \leq n_{0}$ and we will show that it holds for $n_{0}+1$.

$$
\begin{aligned}
& \operatorname{Var}\left(\sum_{i=1}^{n_{0}+1} x_{i}\right)=E\left(\left[\sum_{i=1}^{n_{0}} x_{i}+X_{n_{0}+1}-E\left(\sum_{i=1}^{n_{0}} X_{i}+X_{n_{0}+1}\right)\right]^{2}\right) \\
& =E\left(\left[\sum_{i=1}^{n_{0}} x_{i}+X_{n_{0}+1}-E\left(\sum_{i=1}^{n_{0}} x_{i}\right)-E\left(X_{n_{0}+1}\right)\right]^{2}\right) \\
& =E\left(\left[\sum_{i=1}^{n_{0}} X_{i}-E\left(\sum_{i=1}^{n_{0}} x_{i}\right)+X_{n_{0}+1}-E\left(X_{n_{0}+1}\right)\right]^{2}\right) \\
& =\cdots=\operatorname{Var}\left(\sum_{i=1}^{n_{0}} X_{i}\right)+\operatorname{Var}\left(X_{n_{0}+1}\right)+2 \operatorname{Cov}\left(\sum_{i=1}^{n_{0}} X_{i}, X_{n_{0}+1}\right) .
\end{aligned}
$$

Variance of a Sum

Proof.

To complete the proof, observe that

$$
\begin{equation*}
\operatorname{Cov}\left(\sum_{i=1}^{n_{0}} X_{i}, X_{n_{0}+1}\right)=\sum_{i=1}^{n_{0}} \operatorname{Cov}\left(X_{i}, X_{n_{0}+1}\right) \tag{17}
\end{equation*}
$$

Variance and Pairwise Independence

Theorem

Let $X=\sum_{i=1}^{n} X_{i}$, where X_{i} are pairwise independent. Then

$$
\begin{equation*}
\operatorname{Var}(X)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right) \tag{18}
\end{equation*}
$$

Theorem directly follows from the fact that the covariance
$\operatorname{Cov}\left(X_{i}, X_{j}\right)=0$ for (pairwise) independent random variables X_{i} and X_{j}.

Part IV

Wegman-Carter Hashing

Universal hashing

Definition

Let A and B be sets such that $|A|>|B|$. A family H of hash functions $h: A \rightarrow B$ is k-universal iff for any $x_{1}, x_{2}, \ldots, x_{k} \in A$ and a hash function $h \in H$ randomly and uniformly chosen from H it holds that

$$
\begin{equation*}
\mathcal{P}\left(h\left(x_{1}\right)=h\left(x_{2}\right)=\cdots=h\left(x_{k}\right)\right) \leq \frac{1}{|B|^{k-1}} . \tag{19}
\end{equation*}
$$

Applications of k-universal classes are mainly in database hashing and randomness extractors (see later lectures).

Definition

Let A and B be sets such that $|A|>|B|$. A family H of hash functions $h: A \rightarrow B$ is strongly k-universal iff for any $x_{1} \neq x_{2} \neq \cdots \neq x_{k} \in A$, any $y_{1}, y_{2}, \ldots, y_{k} \in B$ and a hash function $h \in H$ randomly and uniformly chosen from H it holds that

Universal hashing

For any fixed elements $a_{1} \neq a_{2} \neq \cdots \neq a_{k} \in A$ and h selected uniformly from some strongly k-universal hashing family, we have that the induced random variables $X_{i}=h\left(a_{i}\right), i=1, \ldots, k$ are k-wise independent.
Following this the strongly k-universal classes are sometimes called k-wise independent classes of hash functions. The original name of (strongly) k-universal classes introduce by Wegman and Carter is (strongly) universal ${ }_{k}$, but we find the k-universal to be more preferable.
The most important application of strongly k-universal classes is that they establish a perfectly secure message authentication (details provided during the practice lectures).
Note that any strongly k-universal H is k-universal as well. Also, strongly k-universal H is strongly l-universal for any $I \leq k$ and k-universal H is l-universal for any $I \leq k$.

Universal Hashing: Example

Let $A=\{0,1, \ldots, m-1\}$ and $B=\{0,1, \ldots, n-1\}$ with $m \geq n$. Let $p \geq m$ be some prime. Consider the class of hash functions

$$
\begin{equation*}
h_{a, b}(x)=((a x+b) \bmod p) \bmod n . \tag{21}
\end{equation*}
$$

Let

$$
\begin{equation*}
H=\left\{h_{a, b} \mid 1 \leq a \leq p-1,0 \leq b \leq p\right\}, \tag{22}
\end{equation*}
$$

stressing that $a \neq 0$.
Theorem
H is 2-universal.

Universal Hashing: Example

Proof.

We count the number of function from H for which two distinct elements x_{1} and x_{2} from A collide. $x_{1} \neq x_{2}$ implies

$$
a x_{1}+b \not \equiv a x_{2}+b \quad(\bmod p),
$$

since the opposite occurs only if $a\left(x_{1}-x_{2}\right) \equiv 0(\bmod p)$. However, we know that neither $a \equiv 0(\bmod p)$ nor $x_{1}-x_{2} \equiv 0(\bmod p)$, what implies the equation.
With fixed x_{1} and x_{2}, For every pair $u \neq v \in B$ there exists exactly one pair a, b such that $a x_{1}+b \equiv u(\bmod p)$ and $a x_{2}+b \equiv v(\bmod p)$.

Universal Hashing: Example

Proof.

Solving the system of two linear equations we obtain the unique solution

$$
\begin{align*}
& a=\frac{v-u}{x_{2}-x_{1}} \bmod p \tag{23}\\
& b=u-a x_{1} \bmod p . \tag{24}
\end{align*}
$$

Since there is exactly one hash function for each pair (a, b), we have there is exactly one hash function in H such that

$$
a x_{1}+b \equiv u \quad(\bmod p) \text { and } a x_{2}+b \equiv v \quad(\bmod p) .
$$

We have that the number of collisions equals to the number of pairs (u, v) from $\{0, \ldots, p-1\}$ satisfying $u \neq v$ and $u \equiv v(\bmod n)$. For each choice of u there are at most $\lceil p / n\rceil-1$ possible values of v.

Universal Hashing: Example

Proof.

Together we have that there are at most

$$
p(\lceil p / n\rceil-1) \leq p\left(\frac{p+(n-1)}{n}-\frac{n}{n}\right)=\frac{p(p-1)}{n} .
$$

such pairs. Therefore, the collision probability is

$$
P\left(h_{a, b}\left(x_{1}\right)=h_{a, b}\left(x_{2}\right)\right) \leq \frac{p(p-1) / n}{p(p-1)}=\frac{1}{n} .
$$

