An Approach to Similarity Search for Mathematical Expressions using MathML

University of Tokyo Keisuke Yokoi University of Tokyo National Institute of Informatics Akiko Aizawa

The Purpose of the Research

 Building a search system for mathematical expressions which returns *similar* ones with a query.

- Background
- Methods
 - Mathematical Markup Language
 - Subpath Set
 - Transformation of MathML
- Experiments
- Conclusion

- Background
- Methods
 - Mathematical Markup Language
 - Subpath Set
 - Transformation of MathML
- Experiments
- Conclusion

Background

- Mathematical expressions have their own unique structures.
 - It is not an easy task for traditional search systems targeting natural languages to deal with them.
 - A new search scheme is required that takes their structures into consideration.

- Background
- Methods
 - Mathematical Markup Language
 - Subpath Set
 - Transformation of MathML
- Experiments
- Conclusion

Mathematical Markup Language (MathML)

- Worldwide standard to describe mathematical contents
- A kind of XML
- Two representations
 - Presentation Markup
 - Formatting and displaying
 - Content Markup
 - Semantic construction

Example expression

Presentation Markup

<math> <mrow> < mi > x < /mi ><mo> + </mo> <mfrac> <mn> 3 </mn> <mi> a </mi> </mfrac> </mrow>

Example expression

Content Markup

<apply> <plus/> <ci>x</ci> <apply> <divide/> <cn>3</cn> <ci>a</ci> </apply> </apply>

Characteristics of tree constructions

- Presentation Markup
 - broaden width
- Content Markup
 - broaden height

Example expression

Presentation Markup
Content Markup

- Adeel et al. [2008]
 - Math GO!
 - Generating keywords
 - By using regular expressions
 - Throwing them to conventional search systems

Template Rules	Mapped Keyword	
<mo>[\(\[]</mo> \s*(<mrow>)?\s*(<mtable>\s*</mtable></mrow>	Matrix	
$((\s^*\s^*\p{Graph}+\s^*){2,}\s^*){2,}$		
\s*)\s*()?\s* <mo>[\)\]]+</mo>		
<m(?:sqrt root)>\s*(?:(<mrow>\s*)?<mn[^>]*></mn[^></mrow></m(?:sqrt root)>	Root	
\d+\s*(\s*)?)+		

• Adeel et al. [2008]

- Using conventional search systems

- Scalability and Compatibility
- Difficulty
 - narrow down the answer expressions

Template Rules	Mapped Keyword	
<mo>[\(\[]</mo> \s*(<mrow>)?\s*(<mtable>\s*</mtable></mrow>	Matrix	
$((\s^<\s^\p{Graph}+\s^){2,}\s^){2,}$		
\s*)\s*()?\s* <mo>[\)\]]+</mo>		
<m(?:sqrt root)>\s*(?:(<mrow>\s*)?<mn[^>]*></mn[^></mrow></m(?:sqrt root)>	Root	
\d+\s*(\s*)?)+		

- Otagiri et al. [2008]
 - Using their own query language
 - Searching by matching tree constructions

- Otagiri et al. [2008]
 - Flexible queries
 - Only equations that exactly matching the query

- Background
- Methods
 - Mathematical Markup Language
 - Subpath Set
 - Transformation of MathML
- Experiments
- Conclusion

Subpath Set

- A similarity measure originally proposed by [Ichikawa '05]
- Subpath: the path from the root to the leaves and all the subpaths of that

/a, /b, /c, /d, /e, /f /a/b, /b/c, /c/d, /c/e, /d/f /a/b/c, /b/c/d, /b/c/e, /c/d/f /a/b/c/d, /a/b/c/e, /b/c/d/f /a/b/c/d/f

Subpath Set

• In this experiments, Jaccard coefficient is used for scoring the overlap of the Subpath Sets.

$$\begin{array}{ll} \text{Jaccard coefficient:} & \frac{\left\|S(t_1) \cap S(t_2)\right\|}{\left\|S(t_1) \cup S(t_2)\right\|} & \begin{array}{l} t_i : \text{a tree} \\ S(t_i) : \text{Subpath Set of } t_i \end{array}$$

- Background
- Methods
 - Mathematical Markup Language
 - Subpath Set
 - Transformation of MathML
- Experiments
- Conclusion

Transformation of Content-Based MathML

- The "apply" symbol
 - To apply an operator which is their first child to arguments
 - To be used whenever any functions and operators are used
 - Merit
 - Useful to know the range a function or operation applies
 - But in search, they cause
 - Memory consumption
 - Disguise meaningful sequences of function operators on the sub-paths
- Original Content Markup -> apply-free Content Markup

Transformation of Content-Based MathML

 The first children of the "apply" symbols replace their parents while other children remain the same position.

- Background
- Methods
 - Mathematical Markup Language
 - Subpath Set
 - Transformation of MathML
- Experiments
- Conclusion

Experiments

- 155,607 mathematical expressions were used as targeted formulas.
 - Crawled from The Wolfram Functions Site (http://functions.wolfram.com/)

Experiments

- 1. Search results of example queries
 - Efficiency of Subpath Set
- 2. Evaluation by the rank of expected expressions
 - Superiority of *Apply-free* Content Markup

Experiments (1)

- Search results of example queries
 - Select a few sample queries
 - Check top-5 rankings
 - Use the *apply-free* Content Markup

Experiments (1)

rank		Results
Query	$\sin(a+b) = \sin a \cos b + \cos a \sin b$	$\tan(z) = \frac{\sinh(iz)}{\sinh(i\pi/2 + iz)}$
1	$\sin(a+b) = \\ \sin a \cos b + \cos a \sin b$	$\tan(z) = \frac{\sinh(iz)}{\sinh(i\pi/2 + iz)}$
2	$\sin(a-b) = \\ \sin a \cos b - \cos a \sin b$	$\tan(z) = \frac{\sinh(iz)}{\sinh(i\pi/2 - iz)}$
3	$\sin(a+ib) = \\ \sin a \cosh b + i\cos a \sin b$	$\sec(z) = \frac{i}{\sinh(i\pi/2 + iz)}$
4	$\cos(a-b) = \cos a \cos b + \sin a \sin b$	$\sec(z) = \frac{i}{\sinh(i\pi/2 - iz)}$
5	$\cos(a+b) = \\ \cos a \cos b - \sin a \sin b$	$\cot(z) = \frac{\sinh(i\pi/2 + iz)}{\sinh(iz)}$

Experiments (2)

- Evaluation by the rank of expected expressions
 - Compare different forms of tree constructions
 - Presentation Markup
 - Content Markup
 - Apply-free Content Markup
 - Select an 'expected' answer manually for each query
 - Examine their ranks of them

Experiments (2)

Query	Expected Answer	Present	Content	Apply- free
$\sin(a+b) = \\ \sin a \cos b + \cos a \sin b$	$\sin(a-b) = \\ \sin a \cos b - \cos a \sin b$	x	6	2
$\int \sin z dz = -\cos z$	$\int \sin(az)dz = -\frac{\cos(az)}{a}$	x	39	23
$\int z e^{az} dz = \frac{e^{az}(-1+az)}{a^2}$	$\int z^3 e^{az} dz = \frac{e^{az}(-6 + 6az + 3a^2z^2 + a^3z^3)}{a_{\underline{\qquad}}^4}$	x	17	5
$\int (e^{cz})^{\nu} dz = \frac{(e^{cz})^{\nu}}{c\nu}$	$\int \sqrt{e^{cz}} dz = \frac{2\sqrt{e^{cz}}}{c}$	x	5	2
$\sin^{-1} z = \frac{3\pi}{4} - \frac{1}{2} \tan^{-1} \left(\frac{1 - 2z^2}{2z\sqrt{1 - z^2}} \right)$	$\cos^{-1} z = -\frac{\pi}{4} + \frac{1}{2} \tan^{-1} \left(\frac{1 - 2z^2}{2z\sqrt{1 - z^2}} \right)$	33	79	16

Results (1)

• Search result of example queries

 Those proposed methods are capable of evaluating structural similarity of the trees.

Results (2)

- Evaluation by the rank of expected expressions
 - Presentation Markup is not suitable.
 - "mo"
 - short Subpath
 - Apply-free Content Markup showed slightly-better performance than other forms.
 - The system using Content Markups answered some unexpected expressions near the top.

- Background
- Methods
 - Mathematical Markup Language
 - Subpath Set
 - Transformation of MathML
- Experiments
- Conclusion

Conclusion

- Proposed a similarity search scheme for mathematical expressions
 - Similarity measure based on Subpath Set
 - A MathML conversion which is suitable for math search
- Demonstrated these techniques' effectiveness

Future Works

- Scalability
 - The similarity calculation may become the bottleneck.
- Consideration of symbol values
 - My search systems does not perceive the actual values.
- Difficulty in evaluation
 - The type of searching is different from previous works.

Thank you for listening!

mailto: kei-yoko@nii.ac.jp