Planar Graph Emulators – Beyond Planarity in the Plane

Petr Hliněný

Faculty of Informatics Masaryk University, Brno, CZ

including results obtained with R. Thomas, M. Chimani, M. Derka, M. Klusáček

0 Planarity and Beyond

As everybody knows...

Can this crossing be avoided? NO?

This is nasty cheating.

Yes, it works, somehow.

Not bad but not good either... We would like to stay in the plane!

4/35

Yet, a small miracle can happen...

- turning nonplanar into planar!

Origins and brief overview

• The question originated in mid-80's.

Actually; two similar and independently discovered notions...

- Planar covers by [Seyia Negami]
 - the more restrictive notion of the two,
 - originally investigated in connection with flexibility of projective embeddings of 3-connected graphs.
- Planar emulators by [Michael Fellows]
 - the less restrictive notion of the two,
 - inv. in connection with modeling of graphs in other graphs.
- Full definitions to follow...

Planar Covers of Graphs

Motivation: Represent a nonplanar graph G by planar H such that; exploring the two graphs locally, we cannot see any difference...

• Having seen this for $K_{3,3}$, what about K_5 —the other obstruction?

Limits of planar covering

- The covering relation preserves degrees of correspondent vertices.
- The multiplicity of covering vertices for each covered one is the same; we speak about a *k-fold cover* (*double covers* in the prev. examples).
- The complete graph K₇ has no finite planar cover:
 - the cover would have to have all vertex degrees 6, but a planar graph must contain a vertex of degree ≤ 5 .
- Likewise, the complete bipart. graph K_{4,4} has no finite planar cover:
 - the cover would have to have all vertex degrees 4, but a planar triangle-free graph must contain a vertex of degree ≤ 3 .

Formal definition

A graph H is a *cover* of a graph G if there exists a pair of onto mappings (a *projection*) $\varphi: V(H) \rightarrow V(G), \quad \psi: E(H) \rightarrow E(G)$ such that ψ maps the edges incident with each vertex ν in H bijectively onto the edges incident with $\varphi(\nu)$ in G.

We speak about a *planar cover* if H is a finite planar graph.

Remark. The edge $\psi(uv)$ has always ends $\phi(u), \phi(v)$, and hence only $\phi: V(H) \rightarrow V(G)$, the vertex projection,

is enough to be specified for simple graphs

(ϕ is then a locally bijective homomorphism).

Back to examples of covering

• Revisiting a planar cover of K₅:

• In general;

any graph embedded in the *projective plane* has a double planar cover, via the universal covering map from the sphere onto the proj. plane.

The projective plane

• The *projective plane* can be defined from the sphere as follows:

- the points are the antipodal pairs (of points) of the sphere;
- this "works" as the usual *Eucl. plane*, except at the equator.
- Can see the proj. plane as the usual plane with the "line at infinity";
- or, topologically, as the plane with a special region of a "crosscap".

Negami's Planar Cover Conjecture

Theorem 1 (Negami, 1986)

A connected graph has a double planar cover

it embeds in the projective plane.

Conjecture 2 (Negami, 1988)

A connected graph has a finite planar cover

it embeds in the projective plane. \iff

How to approach Negami's conjecture?

- The direction "projective \rightarrow double pl. cover" is already known.
- We have to prove "not projective \rightarrow no finite pl. cover"!
- For the latter, we have got a "Kuratowski thm. for the projective *plane*" [Archdeacon, 1981]... \rightarrow we can test the obstructions.

The 32 conn. obstructions for the proj. plane

Petr Hliněný, KAIST CMC Discrete Math, 2014

15 / 35

Known partial results

Around 10-years early development in Negami's conjecture led to...

Theorem 3 (Archdeacon, Fellows, Negami, PH; till 1998) The following graphs cannot have finite planar covers:

- the first 19 of the proj. obstructions ("two disjoint k-graphs"),
- the graph $K_{3,5}$,
- the graphs $K_{4,5}-4K_2$, and K_7-C_4 with its "Y Δ family",
- the graph $K_{4,4}-e$.

Corollary 4 If one proved that the graph $K_{1,2,2,2}$ had no finite planar cover, then Negami's conjecture would be proved as well.

Sample proof: K_{3,5}

Theorem 5 (?? 1988, 1993) The graph $K_{3,5}$ has no finite planar cover. **Proof sketch.** Assuming H is an n-fold planar cover of $K_{3,5}$, we shall derive a contradiction to Euler's formula (#vert.+#faces-#edges=2)...

On the one hand, #faces = 2 + 15n - 8n = 7n + 2.

On the other hand, a_1 in the pict. (and simil. each of b_i, c_i) accounts for $\leq \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{3} = 2 + \frac{1}{3}$ faces, which is altog. $\leq 3n \cdot (2 + \frac{1}{3}) \leq 7n$ faces in H, a contradiction.

Current state of the art

For the last 15 years research has stalled, since the following finding:

Theorem 6 (Thomas and PH 1999, 2004)

If a connected graph G has a finite planar cover but no projective embedding, then G is a planar expansion of $K_{1,2,2,2}$ or some graph from:

Corollary 7 Negami's conjecture holds true for cubic graphs.

3 Planar Emulators: more relaxed

• $\phi: V(H) \to V(G)$, an *emulator* vs. a cover:

... map the edges inc. with v in H surjectively onto the edges inc. with $\varphi(v)$ in G.

• A nontrivial example:

Fellows' Planar Emulator Conjecture

Conjecture 8 (Fellows, 1989 – unpublished manuscript)

A connected graph has a finite planar emulator

⇒ it has a finite planar cover.

Comparing Negami and Fellows

- Every planar cover is a planar emulator, too.
- Conv., some of the "no-planar-cover" args. extend to emulators:
 - the previous proof for $K_{3,5},\, via$ a clever trick, and
 - a proof for the first 19 of the proj. obstructions, too.
- So far, showing no example of an emulator that would not lead to a double planar cover (the only possibility by Negami's conjecture).
- How could one, actually, gain anything by using an emulator with duplicate neighbour? More edges take us only "away from planarity"!

Sample proof: two disjoint k-graphs

The first 19 of the connected projective obstructions fall into the same category—of two non-outerplanar pieces well-connected together...

All of these graphs present the same deep obstruction to planar emulability, as we will show next.

Theorem 9 (Negami / Archdeacon, 1988) Neither of the graphs $K_{3,3} \cdot K_{3,3}, K_5 \cdot K_{3,3}, K_5 \cdot K_5, \mathcal{B}_3, \mathcal{C}_2, \mathcal{C}_7, \mathcal{D}_1, \mathcal{D}_4, \mathcal{D}_9, \mathcal{D}_{12}, \mathcal{D}_{17}, \mathcal{E}_6, \mathcal{E}_{11}, \mathcal{E}_{19}, \mathcal{E}_{20}, \mathcal{E}_{27}, \mathcal{F}_4, \mathcal{F}_6, \mathcal{G}_1$ have a finite planar cover.

Proof sketch. We choose the $K_5 \cdot K_5$ case for an illustration...

Each of A_4 , B_4 is *non-outerplanar* by itself, and so the "pieces" of the assumed emulator mapping to A_4 and to B_4 are not outerplanar, too. The latter is a big problem for connections to x...

4 Surprising Fall of Fellows' Conjecture

Fact. The graph $K_{4,5}$ -4 K_2 has no finite planar cover.

Theorem 10 (Rieck and Yamashita, 2008) The graphs $K_{1,2,2,2}$ and $K_{4,5}$ — $4K_2$ do have finite planar emulators!!!

Constructing more counterexamples

Theorem 11 (Chimani, Derka, Klusáček, and PH, 2011) The graphs \mathcal{B}_7 , \mathcal{C}_3 , \mathcal{C}_4 , \mathcal{D}_2 , \mathcal{E}_2 , and K_7-C_4 , \mathcal{D}_3 , \mathcal{E}_5 , \mathcal{F}_1 do have finite planar emulators, too.

Consequently, there remains only one out of the 32 connected projective obstructions for which planar emulability is not decided yet.

- Now we know that the class of graphs having finite *planar emulators*
 - is different from the class of graphs having finite *planar covers*,
 - and different from the class of *projective planar* graphs, too.
- So, let us study this class...

In particular, how big is this difference?

Graphically

Time for a Replacement Conjecture?

Conjecture 12 (Derka and PH)

There is a finite set \mathcal{F} of graphs such that the following holds:

If a connected graph G has a finite planar emulator but no projective embedding, then G is a planar expansion of one of the members in \mathcal{F} .

Remarks:

- This is dir. inspired by Theorem 6 (possible counterex. to Negami). We know that \mathcal{F} must be nonempty, though!
- With suitable high-level tools of structural graph theory, namely a

splitter theorem for internally 4-connected graphs,

this is just a finite computer search...

• Although, the search turned out very long and complex, and the available "splitter theorem" failed at some points.

5 The cubic case

• Although we do not much understand the whole class of nonprojective planar-emulable graphs

— is it essentially finite or infinite? —

- it appears significant that no such cubic graph has been found.
- We can thus use this easier ground to perhaps train our techniques before attacking the full problem...

Theorem 13 (Derka and PH, 2013)

If a cubic nonprojective graph H has a finite planar emulator, then H is a planar expansion of one of the following two graphs:

What about the remaining two graphs?

Trying a better picture...

And the second one. . .

Conclusion

- We do not seem to know enough about the planar emulability property to proceed with solving our conjecture...
- Besides the lack of a suitable *splitter theorem*, we mainly miss good methods to prove that a graph is *not planar-emulable*.
- The previous two graphs seem to be a good training ground for that
 - they do not seem to be planar-emulable, and
 - there are quite short proofs that they are not planar-coverable.
- At last, one should also look at the question whether the graph $K_{4,4}-e$ has a finite planar emulator or not.

