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0 Planarity and Beyond0 Planarity and Beyond

As everybody knows. . .

Can this crossing be avoided? NO?
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Let us try. . . ?Let us try. . . ?

Oh NO!

This is nasty cheating.
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One more try. . .One more try. . .

Yes, it works, somehow.

Not bad but not good either. . . We would like to stay in the plane!
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Yet, a small miracle can happen. . .Yet, a small miracle can happen. . .

– turning nonplanar into planar!
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Origins and brief overviewOrigins and brief overview

• The question originated in mid-80’s.

Actually; two similar and independently discovered notions. . .

• Planar covers by [Seyia Negami]

– the more restrictive notion of the two,

– originally investigated in connection with flexibility of projective
embeddings of 3-connected graphs.

• Planar emulators by [Michael Fellows]

– the less restrictive notion of the two,

– inv. in connection with modeling of graphs in other graphs.

• Full definitions to follow. . .
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1 Planar Covers of Graphs1 Planar Covers of Graphs

Motivation: Represent a nonplanar graph G by planar H such that;
exploring the two graphs locally, we cannot see any difference. . .

• Having seen this for K3,3, what about K5—the other obstruction?
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Even more: Planar covering K6Even more: Planar covering K6
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Limits of planar coveringLimits of planar covering

• The covering relation preserves degrees of correspondent vertices.

• The multiplicity of covering vertices for each covered one is the same;
we speak about a k-fold cover (double covers in the prev. examples).

• The complete graph K7 has no finite planar cover:

– the cover would have to have all vertex degrees 6, but a planar
graph must contain a vertex of degree ≤ 5.

• Likewise, the complete bipart. graph K4,4 has no finite planar cover:

– the cover would have to have all vertex degrees 4, but a planar
triangle-free graph must contain a vertex of degree ≤ 3.
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Formal definitionFormal definition

A graph H is a cover of a graph G if there exists a pair of onto mappings

(a projection) ϕ : V(H) → V(G), ψ : E(H) → E(G)

such that ψ maps the edges incident with each vertex v in H
bijectively onto the edges incident with ϕ(v) in G.

H
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sϕ(v)

ψ(e1)

ψ(e2)

ψ(e3)

G

We speak about a planar cover if H is a finite planar graph.

Remark. The edge ψ(uv) has always ends ϕ(u), ϕ(v), and hence only

ϕ : V(H) → V(G), the vertex projection,

is enough to be specified for simple graphs

(ϕ is then a locally bijective homomorphism).
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Back to examples of coveringBack to examples of covering

• Revisiting a planar cover of K5:
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• In general;

any graph embedded in the projective plane has a double planar cover,

via the universal covering map from the sphere onto the proj. plane.
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The projective planeThe projective plane

• The projective plane can be defined from the sphere as follows:

– the points are the antipodal pairs (of points) of the sphere;

– this “works” as the usual Eucl. plane, except at the equator.

• Can see the proj. plane as the usual plane with the “line at infinity”;

• or, topologically, as the plane with a special region of a “crosscap”.
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Projective to double coverProjective to double cover
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2 Negami’s Planar Cover Conjecture2 Negami’s Planar Cover Conjecture

Theorem 1 (Negami, 1986)

A connected graph has a double planar cover

⇐⇒ it embeds in the projective plane.

Conjecture 2 (Negami, 1988)

A connected graph has a finite planar cover

⇐⇒ it embeds in the projective plane.

How to approach Negami’s conjecture?

• The direction “projective → double pl. cover” is already known.

• We have to prove “not projective → no finite pl. cover”!

• For the latter, we have got a “Kuratowski thm. for the projective
plane” [Archdeacon, 1981]. . .→ we can test the obstructions.
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The 32 conn. obstructions for the proj. planeThe 32 conn. obstructions for the proj. plane

K3,3·K3,3 K5 · K3,3 K5 · K5 B3 C2 C7

D1 D4 D9 D12 D17 E6 E11

E19 E20 E27 F4 F6 G1

K3,5 K4,5−4K2 K7−C4 D3 E5 F1 K4,4−e

K1,2,2,2 B7 C3 C4 D2 E2
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Known partial resultsKnown partial results

Around 10-years early development in Negami’s conjecture led to. . .

Theorem 3 (Archdeacon, Fellows, Negami, PH; till 1998)
The following graphs cannot have finite planar covers:

• the first 19 of the proj. obstructions (“two disjoint k-graphs”),

• the graph K3,5,

• the graphs K4,5−4K2, and K7−C4 with its “Y∆ family”,

• the graph K4,4−e.

Corollary 4 If one proved that the graph
K1,2,2,2 had no finite planar cover, then
Negami’s conjecture would be proved as well.

K1,2,2,2
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Sample proof: K3,5Sample proof: K3,5

Theorem 5 (?? 1988, 1993) The graph K3,5 has no finite planar cover.

Proof sketch. Assuming H is an n-fold planar cover of K3,5, we shall de-
rive a contradiction to Euler’s formula (#vert.+#faces−#edges = 2). . .
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Current state of the artCurrent state of the art

For the last 15 years research has stalled, since the following finding:

Theorem 6 (Thomas and PH 1999, 2004)
If a connected graph G has a finite planar cover but no projective embed-
ding, then G is a planar expansion of K1,2,2,2 or some graph from:

B7 B ′
7 B ′′

7 C3 C ′
3 C ′′

3 C•
3 C◦

3

D2 D ′
2 D ′′

2 D ′′′
2 D•

2 D◦
2 D⋆

2

Corollary 7 Negami’s conjecture holds true for cubic graphs.
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3 Planar Emulators: more relaxed3 Planar Emulators: more relaxed

• ϕ : V(H) → V(G), an emulator vs. a cover:

. . . map the edges inc. with v in H surjectively
onto the edges inc. with ϕ(v) in G.

H

sv
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sϕ(v)
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ψ(e3) = ψ(e4)

G

• A nontrivial example:
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Fellows’ Planar Emulator ConjectureFellows’ Planar Emulator Conjecture

Conjecture 8 (Fellows, 1989 – unpublished manuscript)

A connected graph has a finite planar emulator

⇐⇒ it has a finite planar cover.

Comparing Negami and Fellows

• Every planar cover is a planar emulator, too.

• Conv., some of the “no-planar-cover” args. extend to emulators:

– the previous proof for K3,5, via a clever trick, and

– a proof for the first 19 of the proj. obstructions, too.

• So far, showing no example of an emulator that would not lead to
a double planar cover (the only possibility by Negami’s conjecture).

• How could one, actually, gain anything by using an emulator with du-
plicate neighbour? More edges take us only “away from planarity”!
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Sample proof: two disjoint k-graphsSample proof: two disjoint k-graphs

The first 19 of the connected projective obstructions fall into the same
category—of two non-outerplanar pieces well-connected together. . .

K3,3·K3,3 K5 · K3,3 K5 · K5 B3 C2 C7

D1 D4 D9 D12 D17 E6 E11

E19 E20 E27 F4 F6 G1

All of these graphs present the same deep obstruction to planar emulability,
as we will show next.



page.35
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Theorem 9 (Negami / Archdeacon, 1988)
Neither of the graphs K3,3 · K3,3, K5 · K3,3, K5 · K5, B3, C2, C7, D1, D4, D9,
D12, D17, E6, E11, E19, E20, E27, F4, F6, G1 have a finite planar cover.

Proof sketch. We choose the K5 · K5 case for an illustration. . .
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Each of A4, B4 is non-outerplanar by itself, and so the “pieces” of the
assumed emulator mapping to A4 and to B4 are not outerplanar, too.

The latter is a big problem for connections to x. . . 2
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4 Surprising Fall of Fellows’ Conjecture4 Surprising Fall of Fellows’ Conjecture

Fact. The graph K4,5−4K2 has no finite planar cover.

Theorem 10 (Rieck and Yamashita, 2008)
The graphs K1,2,2,2 and K4,5−4K2 do have finite planar emulators!!!

→

(A picture by Yamashita.)
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Constructing more counterexamplesConstructing more counterexamples

Theorem 11 (Chimani, Derka, Klusáček, and PH, 2011)
The graphs B7, C3, C4, D2, E2, and K7−C4, D3, E5, F1 do have finite
planar emulators, too.

Consequently, there remains only one out of the 32 connected projective
obstructions for which planar emulability is not decided yet.

• Now we know that the class of graphs having finite planar emulators

– is different from the class of graphs having finite planar covers,

– and different from the class of projective planar graphs, too.

• So, let us study this class. . .

In particular, how big is this difference?



page.35
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GraphicallyGraphically
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Time for a Replacement Conjecture?Time for a Replacement Conjecture?

Conjecture 12 (Derka and PH)
There is a finite set F of graphs such that the following holds:

If a connected graph G has a finite planar emulator but no projective
embedding, then G is a planar expansion of one of the members in F .

Remarks:

• This is dir. inspired by Theorem 6 (possible counterex. to Negami).

We know that F must be nonempty, though!

• With suitable high-level tools of structural graph theory, namely a

splitter theorem for internally 4-connected graphs,

this is just a finite computer search. . .

• Although, the search turned out very long and complex,

and the available “splitter theorem” failed at some points.
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5 The cubic case5 The cubic case

• Although we do not much understand the whole class of non-
projective planar-emulable graphs

— is it essentially finite or infinite ? —

• it appears significant that no such cubic graph has been found.

• We can thus use this easier ground to perhaps train our techniques
before attacking the full problem. . .

Theorem 13 (Derka and PH, 2013)
If a cubic nonprojective graph H has a finite planar emulator, then H is a
planar expansion of one of the following two graphs:
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What about the remaining two graphs?What about the remaining two graphs?

Trying a better picture. . .
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And the second one. . .
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ConclusionConclusion

• We do not seem to know enough about the planar emulability prop-
erty to proceed with solving our conjecture. . .

• Besides the lack of a suitable splitter theorem,

we mainly miss good methods to prove that a graph is

not planar-emulable.

• The previous two graphs seem to be a good training ground for that

– they do not seem to be planar-emulable, and

– there are quite short proofs that they are not planar-coverable.

• At last, one should also look at the question whether the graph
K4,4−e has a finite planar emulator or not.
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