

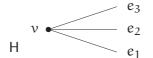
1 Definitions

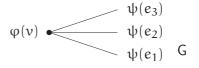
Motivation: Exploring the two graphs locally, we cannot see any difference...

A graph H is a *cover* of a graph G if there exists a pair of onto mappings

(a projection)
$$\phi: V(H) \rightarrow V(G), \quad \psi: E(H) \rightarrow E(G)$$

 $\begin{array}{ll} \mbox{such that } \psi \mbox{ maps the edges incident with each vertex } \nu \mbox{ in } H \\ \mbox{ bijectively} & \mbox{onto the edges incident with } \phi(\nu) \mbox{ in } G. \end{array}$





2

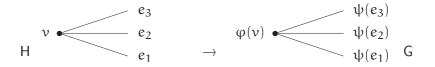
1 Definitions

Motivation: Exploring the two graphs locally, we cannot see any difference...

A graph H is a *cover* of a graph G if there exists a pair of onto mappings

(a projection)
$$\phi: V(H) \rightarrow V(G), \quad \psi: E(H) \rightarrow E(G)$$

 $\begin{array}{ll} \mbox{such that } \psi \mbox{ maps the edges incident with each vertex } \nu \mbox{ in } H \\ \mbox{ bijectively} & \mbox{onto the edges incident with } \phi(\nu) \mbox{ in } G. \end{array}$



Remark. The edge $\psi(uv)$ has always ends $\phi(u), \phi(v)$, and hence only

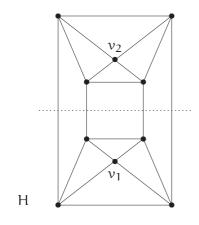
 $\phi: V(H) \rightarrow V(G)$, the vertex projection,

is enough to be specified for simple graphs.

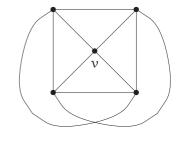
Petr Hliněný, GEMS 2009, Tál

Planar covers

• We speak about a *planar cover* if H is a finite planar graph.

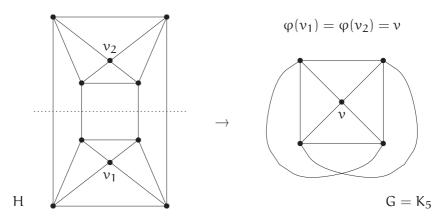


$$\varphi(\nu_1) = \varphi(\nu_2) = \nu$$



Planar covers

• We speak about a *planar cover* if H is a finite planar graph.



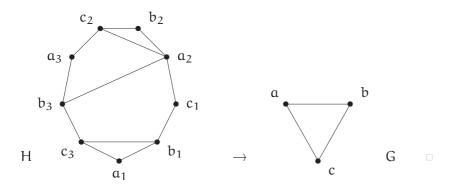
• Graph embedded in the *projective plane* has a double planar cover, via the universal covering map from the sphere onto the projective plane.

3

Planar emulators

• $\phi: V(H) \rightarrow V(G)$, an *emulator* vs. a cover:

... map the edges inc. with v in H surjectively onto the edges inc. with $\varphi(v)$ in G.

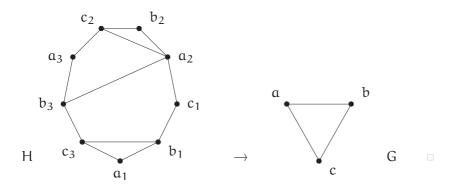


• Can a planar emulator be "more than" a planar cover?

Planar emulators

• $\phi: V(H) \rightarrow V(G)$, an *emulator* vs. a cover:

... map the edges inc. with v in H surjectively onto the edges inc. with $\varphi(v)$ in G.



- Can a planar emulator be "more than" a planar cover?
- Not many remarkable results until 2008... Interesting at all?

2 Interest in planar covers

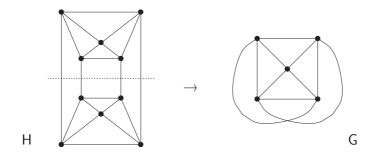
• Raised by Negami [1986] in relation to enumeration of projective embeddings of 3-connected graphs.

2 Interest in planar covers

- Raised by Negami [1986] in relation to enumeration of projective embeddings of 3-connected graphs.
- Independently, *planar emulators* considered by Fellows in his CS-oriented thesis [1985] ("embedding graphs in graphs").

2 Interest in planar covers

- Raised by Negami [1986] in relation to enumeration of projective embeddings of 3-connected graphs.
- Independently, *planar emulators* considered by Fellows in his CS-oriented thesis [1985] ("embedding graphs in graphs").



Theorem 1 (Negami, 1986) A connected graph has a double planar cover if and only if it embeds in the projective plane.

Petr Hliněný, GEMS 2009, Tál

Negami's planar cover conjecture

• A cover $\phi:V(H)\to V(G)$ is regular

if there is a subgroup $A \subseteq Aut(H)$ such that $\varphi(u) = \varphi(v)$ for $u, v \in V(H)$ if, and only if $\tau(u) = v$ for some $\tau \in A$.

Theorem 2 (Negami, 1988) A connected graph has a finite regular planar cover if and only if it embeds in the projective plane.

Negami's planar cover conjecture

• A cover $\phi:V(H)\to V(G)$ is regular

if there is a subgroup $A \subseteq Aut(H)$ such that $\varphi(u) = \varphi(v)$ for $u, v \in V(H)$ if, and only if $\tau(u) = v$ for some $\tau \in A$.

Theorem 2 (Negami, 1988) A connected graph has a finite regular planar cover if and only if it embeds in the projective plane.

And now an immediate generalization reads...

Conjecture 3 (Negami, 1988)

A connected graph has a finite regular planar cover if and only if it embeds in the projective plane.

Fact. A planar cover is also a planar emulator.

Why a planar emulator should be "more than" a planar cover?

Fact. A planar cover is also a planar emulator.

Why a planar emulator should be "more than" a planar cover?

• We only "use more edges" - this takes us farther away from planarity!

Fact. A planar cover is also a planar emulator.

Why a planar emulator should be "more than" a planar cover?

- We only "use more edges" this takes us farther away from planarity!
- Until the end of 2008, most people considered planar emulators just as a strange redefinition of covers...

Fact. A planar cover is also a planar emulator.

Why a planar emulator should be "more than" a planar cover?

- We only "use more edges" this takes us farther away from planarity!
- Until the end of 2008, most people considered planar emulators just as a strange redefinition of covers. . .

Conjecture 4 (Fellows, 1989)

A connected graph has a finite planar emulator if and only if it has a finite planar cover.

Conjecture 5 (Kitakubo, 1991) A connected graph has a finite planar emulator if and only if it embeds in the projective plane.

Petr Hliněný, GEMS 2009, Tál

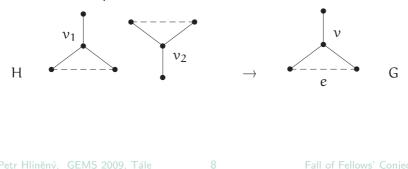
3 Some useful properties

• If G has a planar cover, then so does every minor of G.

3 Some useful properties

• If G has a planar cover, then so does every minor of G.

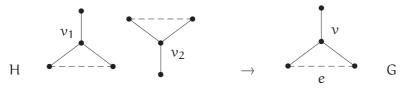
Consider e between two neighbours of a cubic vertex. If G - e has a planar cover, then so does G.



3 Some useful properties

• If G has a planar cover, then so does every minor of G.

Consider e between two neighbours of a cubic vertex. If G - e has a planar cover, then so does G.



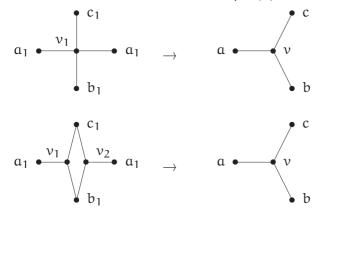
• Therefore, if G has a planar cover, and G' is obtained from G by $Y\Delta$ -transformations, then G' has a planar cover, too.

8

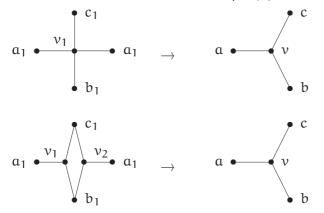
• If G has a *planar emulator*, then so does every minor of G.

- If G has a *planar emulator*, then so does every minor of G.
- If G has a planar emulator, and ν is a cubic vertex of G, then some planar emulator H of G has all vertices in φ⁻¹(ν) also cubic.

- If G has a *planar emulator*, then so does every minor of G.
- If G has a planar emulator, and ν is a cubic vertex of G, then some planar emulator H of G has all vertices in φ⁻¹(ν) also cubic.



- If G has a *planar emulator*, then so does every minor of G.
- If G has a planar emulator, and ν is a cubic vertex of G, then some planar emulator H of G has all vertices in φ⁻¹(ν) also cubic.



Therefore, if G has a planar emulator, and G' is obtained from G by $Y\Delta$ -transformations, then G' has a planar emulator, too.

Petr Hliněný, GEMS 2009, Tál

4 Approaching the conjectures

A connected graph has a finite planar cover / emulator if and only if it embeds in the projective plane.

We recall the above basic properties...

• Assume a *projective graph* G. Then G has a double planar cover / emulator.

4 Approaching the conjectures

A connected graph has a finite planar cover / emulator if and only if it embeds in the projective plane.

We recall the above basic properties...

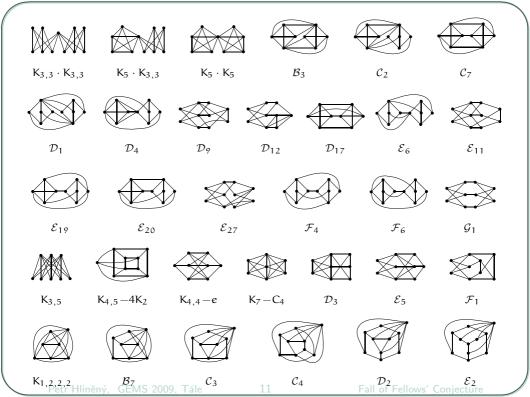
- Assume a *projective graph* G. Then G has a double planar cover / emulator.
- Conversely, assume connected G is not projective.
 Then G contains some F of the *forbidden minors* for the projective plane.
 We just have to show that this F has no finite planar cover / emulator.

4 Approaching the conjectures

A connected graph has a finite planar cover / emulator if and only if it embeds in the projective plane.

We recall the above basic properties...

- Assume a *projective graph* G. Then G has a double planar cover / emulator.
- Conversely, assume connected G is not projective.
 Then G contains some F of the *forbidden minors* for the projective plane.
 We just have to show that this F has no finite planar cover / emulator.
- Furthermore, it is enough to consider only those F which are $Y\Delta$ -transforms of some forbidden minor in G.



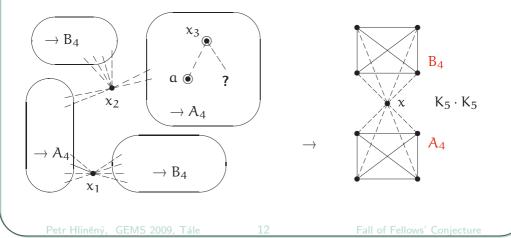
Disjoint k-graphs

Theorem 6 (Negami / Archdeacon 1988, Fellows 1989) Neither of the graphs $K_{3,3} \cdot K_{3,3}$, $K_5 \cdot K_{3,3}$, $K_5 \cdot K_5$, \mathcal{B}_3 , \mathcal{C}_2 , \mathcal{C}_7 , \mathcal{D}_1 , \mathcal{D}_4 , \mathcal{D}_9 , \mathcal{D}_{12} , \mathcal{D}_{17} , \mathcal{E}_6 , \mathcal{E}_{11} , \mathcal{E}_{19} , \mathcal{E}_{20} , \mathcal{E}_{27} , \mathcal{F}_4 , \mathcal{F}_6 , \mathcal{G}_1 have a finite planar emulator.

Disjoint k-graphs

Theorem 6 (Negami / Archdeacon 1988, Fellows 1989) Neither of the graphs $K_{3,3} \cdot K_{3,3}$, $K_5 \cdot K_{3,3}$, $K_5 \cdot K_5$, \mathcal{B}_3 , \mathcal{C}_2 , \mathcal{C}_7 , \mathcal{D}_1 , \mathcal{D}_4 , \mathcal{D}_9 , \mathcal{D}_{12} , \mathcal{D}_{17} , \mathcal{E}_6 , \mathcal{E}_{11} , \mathcal{E}_{19} , \mathcal{E}_{20} , \mathcal{E}_{27} , \mathcal{F}_4 , \mathcal{F}_6 , \mathcal{G}_1 have a finite planar emulator.

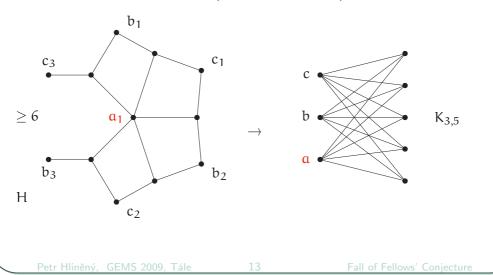
Proof sketch. We choose the $K_5 \cdot K_5$ case for an illustration...



Discharging technique

Theorem 7 (?? 1988 – 1993) The graph K_{3,5} has no finite planar emulator.

Proof sketch. Assuming H is a finite planar cover of $K_{3,5}$, we shall derive a contradiction to Euler's formula (or, easy *discharging*)...



Long-term development around Negami's conjecture led to...

Theorem 8 (since 1998)

If $K_{1,2,2,2}$ had no finite planar cover, then Negami's conjecture would be proved.

Long-term development around Negami's conjecture led to...

Theorem 8 (since 1998)

If $K_{1,2,2,2}$ had no finite planar cover, then Negami's conjecture would be proved.

... and then...

Long-term development around Negami's conjecture led to...

Theorem 8 (since 1998) If $K_{1,2,2,2}$ had no finite planar cover, then Negami's conjecture would be proved.

... and then... Suddenly, Fellows' conjecture falls down...

Fact. The graph $K_{4,5}-4K_2$ has no finite planar cover.

Theorem 9 (Rieck and Yamashita 2008) The graphs K_{1,2,2,2} and K_{4,5}-4K₂ do have finite planar emulators!!!

Long-term development around Negami's conjecture led to...

Theorem 8 (since 1998) If $K_{1,2,2,2}$ had no finite planar cover, then Negami's conjecture would be proved.

... and then... Suddenly, Fellows' conjecture falls down...

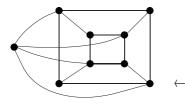
Fact. The graph $K_{4,5}-4K_2$ has no finite planar cover.

Theorem 9 (Rieck and Yamashita 2008) The graphs $K_{1,2,2,2}$ and $K_{4,5}-4K_2$ do have finite planar emulators!!!

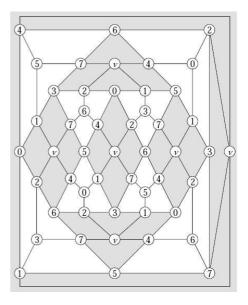
- Now we know that the class of graphs having finite planar emulators
 - is different from the class of graphs having finite planar covers,
 - and different from the class of *projective planar* graphs, too.
- So, let us study this class...!

5 Constructing new planar emulators

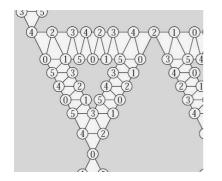
Rieck and Yamashita, 2008

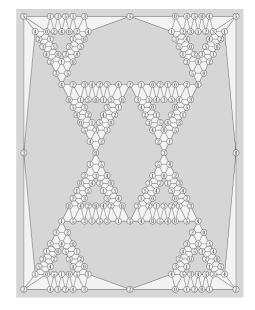


 $K_{4,5} - 4K_2$

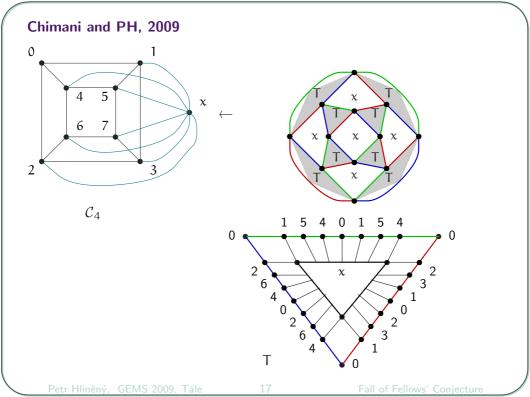


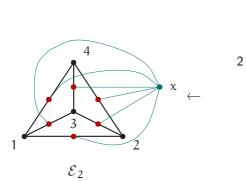
 $K_{1,2,2,2}$

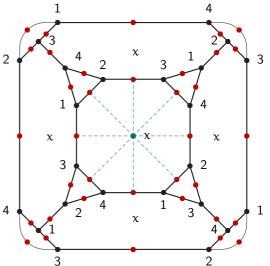




Petr Hliněný, GEMS 2009, Tál







Repeating the previous message...

- Now we know that the class of graphs having finite planar emulators
 - is different from the class of graphs having finite planar covers,
 - and different from the class of *projective planar* graphs, too.

Repeating the previous message...

- Now we know that the class of graphs having finite planar emulators
 - is different from the class of graphs having finite planar covers,
 - and different from the class of *projective planar* graphs, too.
- Many other nontrivial planar emulators can be derived from the ones of Chimani and PH, particularly a small one for $K_{1,2,2,2}$.

Repeating the previous message...

- Now we know that the class of graphs having finite planar emulators
 - is different from the class of graphs having finite planar covers,
 - and different from the class of *projective planar* graphs, too.
- Many other nontrivial planar emulators can be derived from the ones of Chimani and PH, particularly a small one for $K_{1,2,2,2}$.
- Are there finite planar emulators of, say, $K_{4,4}-e$ and K_7-C_4 ?
- Is there an infinite (nontrivial) family of non-projective graphs having finite planar emulators?

Repeating the previous message...

- Now we know that the class of graphs having finite planar emulators
 - is different from the class of graphs having finite *planar covers*,
 - and different from the class of *projective planar* graphs, too.
- Many other nontrivial planar emulators can be derived from the ones of Chimani and PH, particularly a small one for $K_{1,2,2,2}$.
- Are there finite planar emulators of, say, $K_{4,4}-e$ and K_7-C_4 ?
- Is there an infinite (nontrivial) family of non-projective graphs having finite planar emulators?
- Finally, the class of graphs having finite *planar emulators* definitely deserves further study.
 - the subject of ongoing computer-aided research with M. Derka.

Petr Hliněný, GEMS 2009, Tál