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Motivation: Exploring the two graphs locally, we cannot see any difference. . .

A graph H is a cover of a graph G if there exists a pair of onto mappings

(a projection) ϕ : V(H)→ V(G), ψ : E(H)→ E(G)

such that ψ maps the edges incident with each vertex v in H
bijectively onto the edges incident with ϕ(v) in G.
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Motivation: Exploring the two graphs locally, we cannot see any difference. . .

A graph H is a cover of a graph G if there exists a pair of onto mappings

(a projection) ϕ : V(H)→ V(G), ψ : E(H)→ E(G)

such that ψ maps the edges incident with each vertex v in H
bijectively onto the edges incident with ϕ(v) in G.

H

sv

e1

e2

e3

→
sϕ(v)

ψ(e1)

ψ(e2)

ψ(e3)

G

Remark. The edge ψ(uv) has always ends ϕ(u), ϕ(v), and hence only

ϕ : V(H)→ V(G), the vertex projection,

is enough to be specified for simple graphs.
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• We speak about a planar cover if H is a finite planar graph.
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H s s

ss

s s
ss
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s

v1

v2

→ s s

ss
s
v

ϕ(v1) = ϕ(v2) = v

G = K5

• Graph embedded in the projective plane has a double planar cover,

via the universal covering map from the sphere onto the proj. plane.
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Petr Hliněný, Eurocomb, Pisa, 2013 5 / 16 Planar Emulators Conjecture for Cubic . . .

Planar emulatorsPlanar emulators

• ϕ : V(H) → V(G), an emulator vs. a cover:

. . . map the edges inc. with v in H surjectively
onto the edges inc. with ϕ(v) in G.

H s s
s

s
ss

s
s

s
a1

b1

c1

a2

b2c2

a3

b3

c3

→
s s

s
a b

c

G = K3

• Could a planar emulator be “more than” a planar cover?

• Not really, at least until 2008. . .
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Conjecture 1 (Negami, 1988)

A connected graph has a finite planar cover

⇐⇒ it embeds in the projective plane.
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Petr Hliněný, Eurocomb, Pisa, 2013 6 / 16 Planar Emulators Conjecture for Cubic . . .

2 Fellows’ planar emulator conjecture2 Fellows’ planar emulator conjecture

Conjecture 1 (Negami, 1988)

A connected graph has a finite planar cover

⇐⇒ it embeds in the projective plane.

Fact. A planar cover is also a planar emulator.

Why a planar emulator should be “more than” a planar cover?

• We only use “more edges” – takes us farther away from planarity!

• Until the end of 2008, most people perhaps considered planar emu-
lators just as a curious redefinition of planar covers. . .

Conjecture 2 (Fellows, 1989)

A connected graph has a finite planar emulator

⇐⇒ it has a finite planar cover.
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Slow progress, and a sudden surpriseSlow progress, and a sudden surprise

Long-term development around Negami’s conjecture led to. . .

Theorem 3 (A+N+F+H, since 1998)
If K1,2,2,2 had no finite planar cover, then Negami’s conj. would be proved.

. . . and then. . . Suddenly, Fellows’ conjecture falls down. . .

Fact. The graph K4,5−4K2 has no finite planar cover.

Theorem 4 (Rieck and Yamashita 2008)
The graphs K1,2,2,2 and K4,5−4K2 do have finite planar emulators!!!

• Now we know that the class of graphs having finite planar emulators

– is different from the class of graphs having finite planar covers,

– and different from the class of projective planar graphs, too.

• So, let us study this class. . .
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K4,5−4K2K4,5−4K2

←

(A picture by Yamashita.)
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3 What graphs do have planar emulators?3 What graphs do have planar emulators?

Recall. . .

K3,3·K3,3 K5 · K3,3 K5 · K5 B3 C2 C7

D1 D4 D9 D12 D17 E6 E11

E19 E20 E27 F4 F6 G1

K3,5 K4,5−4K2 K4,4−e K7−C4 D3 E5 F1

K1,2,2,2 B7 C3 C4 D2 E2
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Among the projective listAmong the projective list

E20 K3,5
NO emulators (proved)

• the case of “two disjoint k-graphs”,

• a sporadic proof for K3,5 extends as well (nontrivial),

but none of the other proofs from covers works for emulators.

YES emulators

• all projective-planar graphs, but those are the trivial ones,

• K1,2,2,2 and K4,5−4K2 by [Rieck and Yamashita, 2008],

• C4 and E2 by [PH and Chimani, 2009],

and hence consequently the whole rich “family of K1,2,2,2”,

• and K7−C4 and its whole family by [Klusáček, 2011].



page.16
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4 The cubic case4 The cubic case

• Although we do not much understand the whole class of non-
projective planar-emulable graphs

— is it essentially finite or infinite ? —

• it appears significant that no such cubic graph has been found.

• We can thus use this easier ground to perhaps train our techniques
before attacking the full problem. . .

Theorem. If a cubic nonprojective graph H has a finite planar emulator,
then H is a planar expansion of one of the following two graphs:
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• The two graphs – [Glover and Huneke, 1975]
– two out of all six cubic obstructions for projective embeddability;
while the other four have two disjoint k-graphs.



page.16
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Proof:Proof:

G1 G2

• The two graphs – [Glover and Huneke, 1975]
– two out of all six cubic obstructions for projective embeddability;
while the other four have two disjoint k-graphs.

• Any nonproj. planar emul. graph H must contain a subdiv. of those.

• Cubic H ⇒ H = Gi + bridges

where all the bridge legs subdivide the edges of Gi.

• Even a single bridge having legs on non-incident edges of Gi

⇒ two disjoint k-graphs or a K3,5 minor. [computer] OK
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All bridges trivial (i.e., on incident legs)All bridges trivial (i.e., on incident legs)

H = Gi + bridges

• Assign each trivial bridge to its Gi-vertex or edge. . .

• Must handle overlapping – conflict of bridges:

Any conflict ⇒ another subdivision gives a non-trivial bridge.

• Hence the assign. of bridges to vert./edges of Gi is rigorous. OK
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Trivial bridges are localTrivial bridges are local

H = Gi + bridges

• Non-conflicting trivial bridges at any given vertex;

either planar expansion (left), or K2,3 in the fragment (twice right),

⇒ two disjoint k-graphs. OK

• End of proof. 2
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Petr Hliněný, Eurocomb, Pisa, 2013 16 / 16 Planar Emulators Conjecture for Cubic . . .

5 Conclusion5 Conclusion

• Resolve the two cubic graphs (everything else is now finished!).

• Any idea for a new hypothesis concerning (non-cubic) graphs?

• Prove that the required fold number is finite for planar emulators?

• And, of course, do not forget still open Negami’s conjecture!

• Lastly, a structural question – for which graph class G;

{
G-emulable/coverable

}
= G ?

– Holds true for G = outerplanar (so, k-outerplanar?),

– Negami ⇐⇒ true for G =projective (and so false with emul.),

– other classes, e.g., G = other nonorientable surface?
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