

Planar Emulators Conjecture Is Nearly True for Cubic Graphs

Petr Hliněný

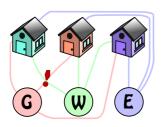
Faculty of Informatics, Masaryk University

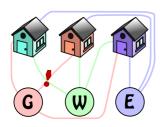
Botanická 68a, 602 00 Brno, Czech Rep.

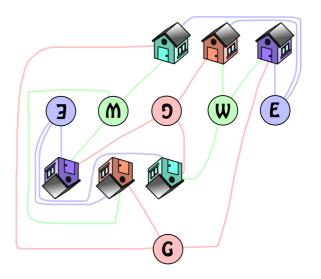
e-mail: hlineny@fi.muni.cz

* Joint work with Martin Derka, FI MU Brno.

- turning nonplanar into planar







1 Definitions

Motivation: Exploring the two graphs locally, we cannot see any difference. . .

1 Definitions

Motivation: Exploring the two graphs locally, we cannot see any difference. . .

A graph H is a cover of a graph G if there exists a pair of onto mappings

(a projection)
$$\phi: V(H) \to V(G), \qquad \psi: E(H) \to E(G)$$

such that ψ maps the edges incident with each vertex ν in H bijectively onto the edges incident with $\phi(\nu)$ in G.

1 Definitions

Motivation: Exploring the two graphs locally, we cannot see any difference. . .

A graph H is a *cover* of a graph G if there exists a pair of onto mappings

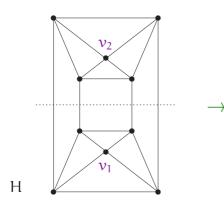
(a projection)
$$\phi: V(H) \to V(G), \qquad \psi: E(H) \to E(G)$$

such that ψ maps the edges incident with each vertex ν in H bijectively onto the edges incident with $\phi(\nu)$ in G.

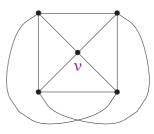
Remark. The edge $\psi(u\nu)$ has always ends $\phi(u), \phi(\nu)$, and hence only $\phi: V(H) \to V(G), \qquad \text{the } \textit{vertex projection},$ is enough to be specified for simple graphs.

Planar covers

• We speak about a *planar cover* if H is a finite planar graph.



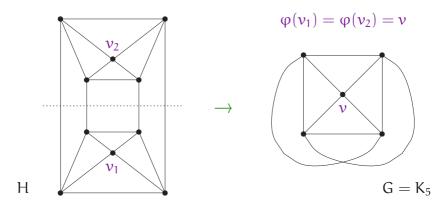
$$\varphi(\nu_1) = \varphi(\nu_2) = \nu$$



 $G = K_5$

Planar covers

• We speak about a *planar cover* if H is a finite planar graph.

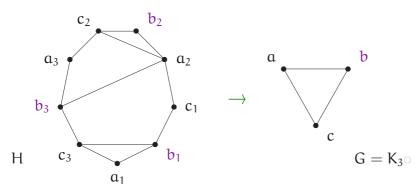


• Graph embedded in the *projective plane* has a double *planar cover*, via the universal covering map from the sphere onto the proj. plane.

Planar emulators

ullet $\phi:V(H)
ightarrow V(G)$, an *emulator* vs. a cover:

...map the edges inc. with ν in H surjectively onto the edges inc. with $\phi(\nu)$ in G.

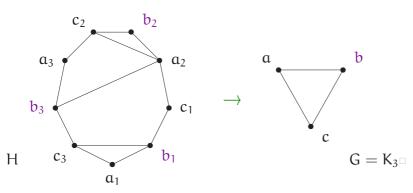


• Could a planar emulator be "more than" a planar cover?

Planar emulators

ullet $\phi:V(H)
ightarrow V(G)$, an *emulator* vs. a cover:

... map the edges inc. with ν in H surjectively onto the edges inc. with $\phi(\nu)$ in G.



- Could a planar emulator be "more than" a planar cover?
- Not really, at least until 2008...

Conjecture 1 (Negami, 1988)

A connected graph has a finite planar cover

Conjecture 1 (Negami, 1988)

A connected graph has a finite planar cover

Fact. A planar cover is also a planar emulator.

Why a planar emulator should be "more than" a planar cover?

Conjecture 1 (Negami, 1988)

A connected graph has a finite planar cover

Fact. A planar cover is also a planar emulator.

Why a planar emulator should be "more than" a planar cover?

• We only use "more edges" – takes us farther away from planarity!

Conjecture 1 (Negami, 1988)

A connected graph has a finite planar cover

Fact. A planar cover is also a planar emulator.

Why a planar emulator should be "more than" a planar cover?

- We only use "more edges" takes us farther away from planarity!
- Until the end of 2008, most people perhaps considered planar emulators just as a curious redefinition of planar covers...

Conjecture 1 (Negami, 1988)

A connected graph has a finite planar cover

Fact. A planar cover is also a planar emulator.

Why a planar emulator should be "more than" a planar cover?

- We only use "more edges" takes us farther away from planarity!
- Until the end of 2008, most people perhaps considered planar emulators just as a curious redefinition of planar covers...

Conjecture 2 (Fellows, 1989)

A connected graph has a finite planar emulator

Conjecture 1 (Negami, 1988)

A connected graph has a finite planar cover

Fact. A planar cover is also a planar emulator.

Why a planar emulator should be "more than" a planar cover?

- We only use "more edges" takes us farther away from planarity!
- Until the end of 2008, most people perhaps considered planar emulators just as a curious redefinition of planar covers...

Conjecture 2 (Fellows, 1989)

A connected graph has a finite planar emulator

Long-term development around Negami's conjecture led to...

Theorem 3 (A+N+F+H, since 1998)

If $K_{1,2,2,2}$ had no finite planar cover, then Negami's conj. would be proved.

Long-term development around Negami's conjecture led to...

Theorem 3 (A+N+F+H, since 1998) If $K_{1,2,2,2}$ had no finite planar cover, then Negami's conj. would be proved.

... and then...

Long-term development around Negami's conjecture led to...

Theorem 3 (A+N+F+H, since 1998)

If $K_{1,2,2,2}$ had no finite planar cover, then Negami's conj. would be proved.

... and then... Suddenly, Fellows' conjecture falls down...

Fact. The graph $K_{4,5}$ – $4K_2$ has no finite planar cover.

Theorem 4 (Rieck and Yamashita 2008)

The graphs $K_{1,2,2,2}$ and $K_{4,5}-4K_2$ do have finite planar emulators!!!

Long-term development around Negami's conjecture led to...

Theorem 3 (A+N+F+H, since 1998)

If $K_{1,2,2,2}$ had no finite planar cover, then Negami's conj. would be proved.

... and then... Suddenly, Fellows' conjecture falls down...

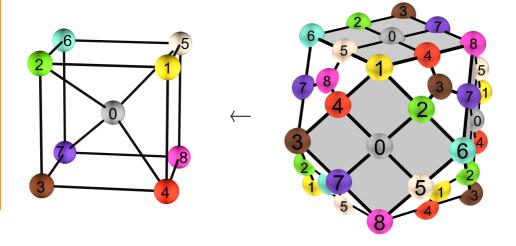
Fact. The graph $K_{4,5}$ – $4K_2$ has no finite planar cover.

Theorem 4 (Rieck and Yamashita 2008)

The graphs $K_{1,2,2,2}$ and $K_{4,5}-4K_2$ do have finite planar emulators!!!

- Now we know that the class of graphs having finite planar emulators
 - is different from the class of graphs having finite *planar covers*,
 - and different from the class of projective planar graphs, too.
- So, let us study this class...

$K_{4,5} - 4K_2$



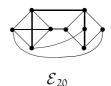
(A picture by Yamashita.)

3 What graphs do have planar emulators?

Recall... $K_{3,3} \cdot K_{3,3}$ $K_5 \cdot K_{3,3}$ $K_5 \cdot K_5$ \mathcal{B}_3 \mathcal{C}_2 C_7 $\mathcal{D}_{12} \\$ \mathcal{D}_1 \mathcal{D}_4 \mathcal{D}_9 \mathcal{D}_{17} \mathcal{E}_{11} \mathcal{E}_{19} \mathcal{E}_{20} \mathcal{E}_{27} \mathcal{F}_4 \mathcal{G}_1 $K_{3,5}$ $K_{4,5}$ $-4K_2$ $K_{4,4} - e$ K_7-C_4 \mathcal{D}_3 \mathcal{E}_5 \mathcal{F}_1

 \mathcal{C}_4

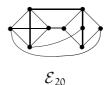
Planar Emulators Conjecture for Cubic



 $K_{3,5}$

NO emulators (proved)

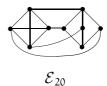
• the case of "two disjoint k-graphs",



 $K_{3,5}$

NO emulators (proved)

- the case of "two disjoint k-graphs",
- a sporadic proof for $K_{3,5}$ extends as well (nontrivial), but none of the other proofs from covers works for emulators.

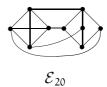


NO emulators (proved)

- the case of "two disjoint k-graphs",
- a sporadic proof for $K_{3,5}$ extends as well (nontrivial), but none of the other proofs from covers works for emulators.

YES emulators

• all projective-planar graphs, but those are the trivial ones,

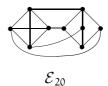


NO emulators (proved)

- the case of "two disjoint k-graphs",
- a sporadic proof for $K_{3,5}$ extends as well (nontrivial), but none of the other proofs from covers works for emulators.

YES emulators

- all projective-planar graphs, but those are the trivial ones,
- $K_{1,2,2,2}$ and $K_{4,5}-4K_2$ by [Rieck and Yamashita, 2008],

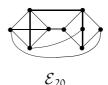


NO emulators (proved)

- the case of "two disjoint k-graphs",
- a sporadic proof for K_{3,5} extends as well (nontrivial),
 but none of the other proofs from covers works for emulators.

YES emulators

- all projective-planar graphs, but those are the trivial ones,
- $K_{1,2,2,2}$ and $K_{4,5}-4K_2$ by [Rieck and Yamashita, 2008],
- C_4 and E_2 by [PH and Chimani, 2009], and hence consequently the whole rich "family of $K_{1,2,2,2}$ ",



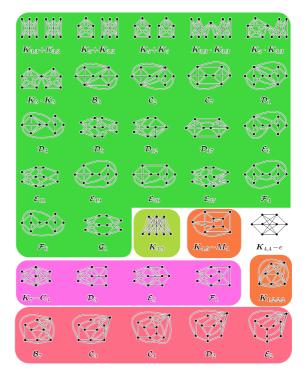
NO emulators (proved)

- the case of "two disjoint k-graphs",
- a sporadic proof for $K_{3,5}$ extends as well (nontrivial), but none of the other proofs from covers works for emulators.

YES emulators

- all projective-planar graphs, but those are the trivial ones,
- $\bullet~K_{1,2,2,2}$ and $K_{4,5}{-}4K_2$ by [Rieck and Yamashita, 2008],
- C_4 and E_2 by [PH and Chimani, 2009], and hence consequently the whole rich "family of $K_{1,2,2,2}$ ",
- and K₇—C₄ and its whole family by [Klusáček, 2011].

Graphically



4 The cubic case

 Although we do not much understand the whole class of nonprojective planar-emulable graphs

— is it essentially finite or infinite? —

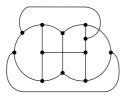
4 The cubic case

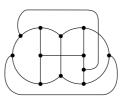
- Although we do not much understand the whole class of nonprojective planar-emulable graphs
 - is it essentially finite or infinite? —
- it appears significant that no such cubic graph has been found.

4 The cubic case

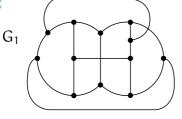
- Although we do not much understand the whole class of nonprojective planar-emulable graphs
 - is it essentially finite or infinite? —
- it appears significant that no such cubic graph has been found.
- We can thus use this easier ground to perhaps train our techniques before attacking the full problem. . .

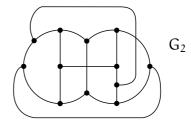
Theorem. If a cubic nonprojective graph H has a finite planar emulator, then H is a *planar expansion* of one of the following two graphs:





Proof:

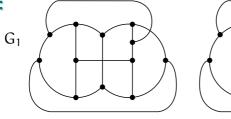


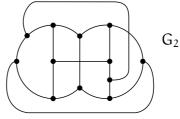


• The two graphs -

- [Glover and Huneke, 1975]
- two out of all *six cubic obstructions* for projective embeddability; while the other four have *two disjoint* k*-graphs*.

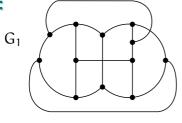
Proof:

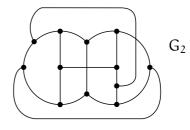




- The two graphs [Glover and Huneke, 1975]
 two out of all six cubic obstructions for projective embeddability;
 while the other four have two disjoint k-graphs.
- Any nonproj. planar emul. graph H must contain a subdiv. of those.

Proof:

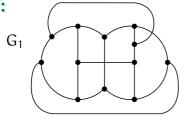


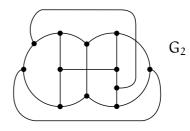


- The two graphs [Glover and Huneke, 1975]
 two out of all six cubic obstructions for projective embeddability; while the other four have two disjoint k-graphs.
- Any nonproj. planar emul. graph H must contain a subdiv. of those.
- Cubic $H \Rightarrow H = G_i + \textit{bridges}$

where all the *bridge legs* subdivide the edges of G_i .

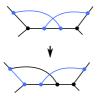
Proof:

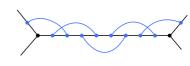




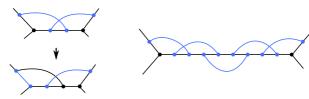
- The two graphs [Glover and Huneke, 1975]
 two out of all six cubic obstructions for projective embeddability; while the other four have two disjoint k-graphs.
- Any nonproj. planar emul. graph H must contain a subdiv. of those.
- Cubic $H \Rightarrow H = G_i + bridges$ where all the *bridge legs* subdivide the edges of G_i .

• Must handle overlapping of bridges:



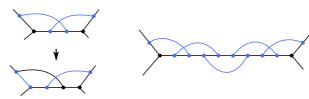


• Must handle overlapping of bridges:



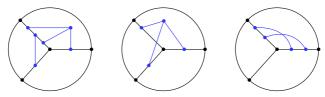
Any conflict \Rightarrow another subdivision gives a non-trivial bridge.

• Must handle overlapping of bridges:



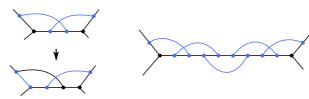
Any conflict \Rightarrow another subdivision gives a non-trivial bridge.

• Non-conflicting trivial bridges at any given vertex:



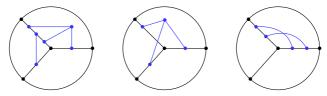
either planar expansion (left), or $K_{2,3}$ in the fragment (twice right).

• Must handle overlapping of bridges:



Any conflict \Rightarrow another subdivision gives a non-trivial bridge.

• Non-conflicting trivial bridges at any given vertex:



either *planar expansion* (left), or $K_{2,3}$ in the fragment (twice right). \Rightarrow two disjoint k-graphs. OK

• Resolve the two cubic graphs (everything else is now finished!).

- Resolve the two cubic graphs (everything else is now finished!).
- Any idea for a new hypothesis concerning (non-cubic) graphs?

15/15

- Resolve the two cubic graphs (everything else is now finished!).
- Any idea for a new hypothesis concerning (non-cubic) graphs?
- Prove that the required *fold number* is finite for planar emulators?

- Resolve the two cubic graphs (everything else is now finished!).
- Any idea for a new hypothesis concerning (non-cubic) graphs?
- Prove that the required *fold number* is finite for planar emulators?
- And, of course, do not forget still open Negami's conjecture!

- Resolve the two cubic graphs (everything else is now finished!).
- Any idea for a new hypothesis concerning (non-cubic) graphs?
- Prove that the required *fold number* is finite for planar emulators?
- And, of course, do not forget still open Negami's conjecture!
- Lastly, a structural question for which graph class G;

$$\{ \mathcal{G}\text{-emulable/coverable } \} = \mathcal{G} ?$$

- Resolve the two cubic graphs (everything else is now finished!).
- Any idea for a new hypothesis concerning (non-cubic) graphs?
- Prove that the required *fold number* is finite for planar emulators?
- And, of course, do not forget still open Negami's conjecture!
- Lastly, a structural question for which graph class G;

$$\{ \mathcal{G}\text{-emulable/coverable } \} = \mathcal{G} ?$$

- Holds true for G = outerplanar (so, k-outerplanar?),

- Resolve the two cubic graphs (everything else is now finished!).
- Any idea for a new hypothesis concerning (non-cubic) graphs?
- Prove that the required *fold number* is finite for planar emulators?
- And, of course, do not forget still open Negami's conjecture!
- Lastly, a structural question for which graph class G;

$$\{ \mathcal{G}\text{-emulable/coverable } \} = \mathcal{G} ?$$

- Holds true for $\mathcal{G} = \text{outerplanar}$ (so, k-outerplanar?),
- Negami \iff true for \mathcal{G} =projective (and so false with emul.),
- other classes, e.g., $\mathcal{G} =$ other nonorientable surface?