How NOT to Characterize Planar-emulable Graphs

Petr Hliněný

Faculty of Informatics Masaryk University

Botanická 68a, 602 00 Brno, Czech Rep.

e-mail: hlineny@fi.muni.cz

* Joint work with Markus Chimani, Univ. Jena, Matěj Klusáček and Martin Derka, FI MU Brno.

Definitions

Motivation: Exploring the two graphs locally, we cannot see any difference... A graph H is a cover of a graph G if there exists a pair of onto mappings (a projection) $\varphi: V(H) \rightarrow V(G), \quad \psi: E(H) \rightarrow E(G)$ such that all maps the edges incident with each vertex u in H

such that ψ maps the edges incident with each vertex ν in H bijectively onto the edges incident with $\varphi(\nu)$ in G.

Definitions

Motivation: Exploring the two graphs locally, we cannot see any difference... A graph H is a cover of a graph G if there exists a pair of onto mappings (a projection) $\varphi: V(H) \rightarrow V(G), \quad \psi: E(H) \rightarrow E(G)$

such that ψ maps the edges incident with each vertex ν in H bijectively onto the edges incident with $\varphi(\nu)$ in G.

Remark. The edge $\psi(uv)$ has always ends $\varphi(u), \varphi(v)$, and hence only $\varphi: V(H) \rightarrow V(G)$, the vertex projection,

is enough to be specified for simple graphs.

Planar covers

• We speak about a *planar cover* if H is a finite planar graph.

$$\phi(\nu_1)=\phi(\nu_2)=\nu$$

Planar covers

• We speak about a *planar cover* if H is a finite planar graph.

• Graph embedded in the *projective plane* has a double planar cover, *via the universal covering map from the sphere onto the proj. plane.*

Planar emulators

• $\phi: V(H) \rightarrow V(G)$, an *emulator* vs. a cover:

... map the edges inc. with v in H surjectively onto the edges inc. with $\varphi(v)$ in G.

• Can a planar emulator be "more than" a planar cover?

Planar emulators

• $\phi: V(H) \to V(G)$, an *emulator* vs. a cover:

... map the edges inc. with v in H surjectively onto the edges inc. with $\varphi(v)$ in G.

- Can a planar emulator be "more than" a planar cover?
- Not many remarkable results until 2008... Interesting at all?

Conjecture 1 (Negami, 1988)

A connected graph has a finite planar cover

⇒ it embeds in the projective plane.

Conjecture 1 (Negami, 1988)

A connected graph has a finite planar cover

⇔ it embeds in the projective plane.

Fact. A planar cover is also a planar emulator.

Why a planar emulator should be "more than" a planar cover?

Conjecture 1 (Negami, 1988)

A connected graph has a finite planar cover

<⇒ it embeds in the projective plane.

Fact. A planar cover is also a planar emulator.

Why a planar emulator should be "more than" a planar cover?

• We only use "more edges" - takes us farther away from planarity!

Conjecture 1 (Negami, 1988)

A connected graph has a finite planar cover

⇐⇒ it embeds in the projective plane.

Fact. A planar cover is also a planar emulator.

Why a planar emulator should be "more than" a planar cover?

- We only use "more edges" takes us farther away from planarity!
- Until the end of 2008, most people perhaps considered planar emulators just as a curious redefinition of planar covers...

Conjecture 1 (Negami, 1988)

A connected graph has a finite planar cover

it embeds in the projective plane.

Fact. A planar cover is also a planar emulator.

Why a planar emulator should be "more than" a planar cover?

- We only use "more edges" takes us farther away from planarity!
- Until the end of 2008, most people perhaps considered planar emulators just as a curious redefinition of planar covers...

Conjecture 2 (Fellows, 1989)

A connected graph has a finite planar emulator

 \Rightarrow it has a finite planar cover.

Conjecture 1 (Negami, 1988)

A connected graph has a finite planar cover

it embeds in the projective plane.

Fact. A planar cover is also a planar emulator.

Why a planar emulator should be "more than" a planar cover?

- We only use "more edges" takes us farther away from planarity!
- Until the end of 2008, most people perhaps considered planar emulators just as a curious redefinition of planar covers...

Conjecture 2 (Fellows, 1989)

A connected graph has a finite planar emulator

 \Rightarrow it has a finite planar cover.

3 Some useful properties

• If G has a planar cover, then so does every minor of G.

3 Some useful properties

• If G has a planar cover, then so does every minor of G.

Consider e between two neighbours of a cubic vertex. If G - e has a planar cover, then so does G.

3 Some useful properties

• If G has a planar cover, then so does every minor of G.

 Therefore, if G has a planar cover, and G' is obtained from G by YΔ-transformations, then G' has a planar cover, too.

• If G has a *planar emulator*, then so does every minor of G.

- If G has a *planar emulator*, then so does every minor of G.
- If G has a planar emulator, and ν is a cubic vertex of G, then some planar emulator H of G has all vertices in φ⁻¹(ν) also cubic.

- If G has a *planar emulator*, then so does every minor of G.
- If G has a planar emulator, and ν is a cubic vertex of G, then some planar emulator H of G has all vertices in φ⁻¹(ν) also cubic.

- If G has a *planar emulator*, then so does every minor of G.
- If G has a planar emulator, and ν is a cubic vertex of G, then some planar emulator H of G has all vertices in φ⁻¹(ν) also cubic.

Therefore, if G has a planar emulator, and G' is obtained from G by $Y\Delta$ -*transformations*, then G' has a planar emulator, too.

4 Approaching the conjectures

A connected graph has a finite planar cover / emulator if, and only if, it embeds in the projective plane.

We recall the above basic properties...

• Assume a *projective graph* G. Then G has a double planar cover / emulator.

4 Approaching the conjectures

A connected graph has a finite planar cover / emulator if, and only if, it embeds in the projective plane.

We recall the above basic properties...

- Assume a *projective graph* G. Then G has a double planar cover / emulator.
- Conversely, assume connected G is not projective.
 Then G contains some F of the *forbidden minors* for the projective plane. We just have to show that this connected F has no finite planar cover / emulator.

4 Approaching the conjectures

A connected graph has a finite planar cover / emulator if, and only if, it embeds in the projective plane.

We recall the above basic properties...

- Assume a *projective graph* G. Then G has a double planar cover / emulator.
- Conversely, assume connected G is not projective.
 Then G contains some F of the *forbidden minors* for the projective plane. We just have to show that this connected F has no finite planar cover / emulator.
- Furthermore, it is enough to consider only those F which are $Y\!\Delta$ -transforms of some forbidden minor in G.

[Archdeacon]

Long-term development around Negami's conjecture led to...

Theorem 3 (A+N+F+H, since 1998)

If $K_{1,2,2,2}$ had no finite planar cover, then Negami's c. would be proved.

Long-term development around Negami's conjecture led to...

Theorem 3 (A+N+F+H, since 1998)

If $K_{1,2,2,2}$ had no finite planar cover, then Negami's c. would be proved.

... and then...

Long-term development around Negami's conjecture led to...

Theorem 3 (A+N+F+H, since 1998)

If $K_{1,2,2,2}$ had no finite planar cover, then Negami's c. would be proved.

... and then... Suddenly, Fellows' conjecture falls down...

Fact. The graph $K_{4,5}$ -4 K_2 has no finite planar cover.

Theorem 4 (Rieck and Yamashita 2008) The graphs K_{1,2,2,2} and K_{4,5}-4K₂ do have finite planar emulators!!!

Long-term development around Negami's conjecture led to...

Theorem 3 (A+N+F+H, since 1998) If K_{1,2,2,2} had no finite planar cover, then Negami's c. would be proved.

... and then... Suddenly, Fellows' conjecture falls down... Fact. The graph $K_{4,5}$ -4 K_2 has no finite planar cover.

Theorem 4 (Rieck and Yamashita 2008) The graphs $K_{1,2,2,2}$ and $K_{4,5}$ — $4K_2$ do have finite planar emulators!!!

- Now we know that the class of graphs having finite *planar emulators*
 - is different from the class of graphs having finite *planar covers*,
 - and different from the class of *projective planar* graphs, too.
- So, let us study this class...!

(A picture by Yamashita.)

So, what next?

• Recall the "closest approach" to Negami's conjecture... (based on the notion of *internal* 4-*connectivity*)

So, what next?

• Recall the "closest approach" to Negami's conjecture... (based on the notion of *internal 4-connectivity*)

Theorem 5 (Thomas and PH 1999, 2004) If a connected graph G had a finite planar cover but no projective embedding, then G would be a planar expansion of $K_{1,2,2,2}$ or one of:

Starting from the whole K_{1,2,2,2} family, or from K_{4,5}-4K₂, carry out an "add-and-split" process based on [Johnson and Thomas, 2002] splitter theorem for internally 4-connected graphs...

Actually, tried both versions of the theorem.

- Starting from the whole K_{1,2,2,2} family, or from K_{4,5}-4K₂, carry out an "add-and-split" process based on [Johnson and Thomas, 2002] splitter theorem for internally 4-connected graphs...
 Actually, tried both versions of the theorem.
- Only hundreds of potential exceptions generated (how nice!),

- Starting from the whole K_{1,2,2,2} family, or from K_{4,5}-4K₂, carry out an "add-and-split" process based on [Johnson and Thomas, 2002] splitter theorem for internally 4-connected graphs...
 Actually, tried both versions of the theorem.
- Only hundreds of potential exceptions generated (how nice!), but not counting those with K_{4,5}-4K₂- or *E*₂-minor. [Derka 2010]
- There are technical problems with finishing the "add-and-split" processes starting from $K_{4,5}{-}4K_2$ or ${\cal E}_2,$

but we believe it is still a finite set of potential exceptions.

- Starting from the whole K_{1,2,2,2} family, or from K_{4,5}-4K₂, carry out an "add-and-split" process based on [Johnson and Thomas, 2002] splitter theorem for internally 4-connected graphs...
 Actually, tried both versions of the theorem.
- Only hundreds of potential exceptions generated (how nice!), but not counting those with K_{4,5}-4K₂- or *E*₂-minor. [Derka 2010]
- There are technical problems with finishing the "add-and-split" processes starting from $K_{4,5}-4K_2$ or \mathcal{E}_2 ,

but we believe it is still a finite set of potential exceptions.

• But wait!!! another surprise (at least to us)...

- Starting from the whole K_{1,2,2,2} family, or from K_{4,5}-4K₂, carry out an "add-and-split" process based on [Johnson and Thomas, 2002] splitter theorem for internally 4-connected graphs...
 Actually, tried both versions of the theorem.
- Only hundreds of potential exceptions generated (how nice!), but not counting those with K_{4,5}-4K₂- or *E*₂-minor. [Derka 2010]
- There are technical problems with finishing the "add-and-split" processes starting from K_{4,5}-4K₂ or *E*₂,
 but we believe it is still a finite set of potential exceptions.

but we believe it is still a finite set of potential exceptions.

 But wait!!! another surprise (at least to us)... The graph K₇-C₄ also has a planar emulator! [Klusáček, 2011] and it is not internally 4-connected.

Compared to planar covers, the situation suddenly gets very rich.

NO emulators

• the case of "two disjoint k-graphs",

Compared to planar covers, the situation suddenly gets very rich.

 $\ensuremath{\text{NO}}$ emulators

- the case of "two disjoint k-graphs",
- a sporadic proof for K_{3,5} extends as well (nontrivial), but none of the other proofs from covers works for emulators.

Compared to planar covers, the situation suddenly gets very rich.

NO emulators

- the case of "two disjoint k-graphs",
- a sporadic proof for K_{3,5} extends as well (nontrivial), but none of the other proofs from covers works for emulators.

YES emulators

• all projective-planar graphs, but those are the trivial ones,

Compared to planar covers, the situation suddenly gets very rich.

NO emulators

- the case of "two disjoint k-graphs",
- a sporadic proof for K_{3,5} extends as well (nontrivial), but none of the other proofs from covers works for emulators.

YES emulators

- all projective-planar graphs, but those are the trivial ones,
- $K_{1,2,2,2}$ and $K_{4,5}-4K_2$ by [Rieck and Yamashita, 2008],

Compared to planar covers, the situation suddenly gets very rich.

NO emulators

- the case of "two disjoint k-graphs",
- a sporadic proof for K_{3,5} extends as well (nontrivial), but none of the other proofs from covers works for emulators.

YES emulators

- all projective-planar graphs, but those are the trivial ones,
- $K_{1,2,2,2}$ and $K_{4,5}-4K_2$ by [Rieck and Yamashita, 2008],
- C₄ and E₂ by [PH and Chimani, 2009], hence consequently the whole rich "family of K_{1,2,2,2}",

Compared to planar covers, the situation suddenly gets very rich.

NO emulators

- the case of "two disjoint k-graphs",
- a sporadic proof for K_{3,5} extends as well (nontrivial), but none of the other proofs from covers works for emulators.

YES emulators

- all projective-planar graphs, but those are the trivial ones,
- $K_{1,2,2,2}$ and $K_{4,5}-4K_2$ by [Rieck and Yamashita, 2008],
- C₄ and E₂ by [PH and Chimani, 2009], hence consequently the whole rich "family of K_{1,2,2,2}",
- and new $K_7 C_4$ and its whole family! by [Klusáček, 2011].

• Give your students difficult exercises (not saying it is hard!).

- Give your students difficult exercises (not saying it is hard!).
- Study the strange class of those grahs having finite planar emulators:
 - Though this class orig. looked quite similar to the projectiveplanar graphs, now ("after Klusáček") all has changed...

- Give your students difficult exercises (not saying it is hard!).
- Study the strange class of those grahs having finite planar emulators:
 - Though this class orig. looked quite similar to the projectiveplanar graphs, now ("after Klusáček") all has changed...
 - Any idea for a new hypothesis?

- Give your students difficult exercises (not saying it is hard!).
- Study the strange class of those grahs having finite planar emulators:
 - Though this class orig. looked quite similar to the projectiveplanar graphs, now ("after Klusáček") all has changed...
 - Any idea for a *new hypothesis*?
 - Any idea for a general structural result saying that the class of graphs having no minor in the "green picture" and possessing certain connectivity (*internally* 4-connected enough? / maybe even (5,3)-connectivity would work?) is finite?

- Give your students difficult exercises (not saying it is hard!).
- Study the strange class of those grahs having finite planar emulators:
 - Though this class orig. looked quite similar to the projectiveplanar graphs, now ("after Klusáček") all has changed...
 - Any idea for a *new hypothesis*?
 - Any idea for a general structural result saying that the class of graphs having no minor in the "green picture" and possessing certain connectivity (*internally* 4-connected enough? / maybe even (5,3)-connectivity would work?) is finite?
 - Can you, at least, prove that the required *fold number* is finite for planar emulators?

- Give your students difficult exercises (not saying it is hard!).
- Study the strange class of those grahs having finite planar emulators:
 - Though this class orig. looked quite similar to the projectiveplanar graphs, now ("after Klusáček") all has changed...
 - Any idea for a *new hypothesis*?
 - Any idea for a general structural result saying that the class of graphs having no minor in the "green picture" and possessing certain connectivity (*internally* 4-connected enough? / maybe even (5,3)-connectivity would work?) is finite?
 - Can you, at least, prove that the required *fold number* is finite for planar emulators?
- And, of course, do not forget about Negami's conjecture!