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Faculty of InformaticsFaculty of Informatics
Masaryk UniversityMasaryk University
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1 Definitions1 Definitions

Motivation: Exploring the two graphs locally, we cannot see any difference. . .

A graph H is a cover of a graph G if there exists a pair of onto mappings

(a projection) ϕ : V(H) → V(G), ψ : E(H) → E(G)

such that ψ maps the edges incident with each vertex v in H
bijectively onto the edges incident with ϕ(v) in G.

H

sv

e1

e2

e3

→
sϕ(v)

ψ(e1)

ψ(e2)

ψ(e3)

G
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1 Definitions1 Definitions

Motivation: Exploring the two graphs locally, we cannot see any difference. . .

A graph H is a cover of a graph G if there exists a pair of onto mappings

(a projection) ϕ : V(H) → V(G), ψ : E(H) → E(G)

such that ψ maps the edges incident with each vertex v in H
bijectively onto the edges incident with ϕ(v) in G.

H

sv

e1

e2

e3

→
sϕ(v)

ψ(e1)

ψ(e2)

ψ(e3)

G

Remark. The edge ψ(uv) has always ends ϕ(u), ϕ(v), and hence only

ϕ : V(H) → V(G), the vertex projection,

is enough to be specified for simple graphs.
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Planar coversPlanar covers

• We speak about a planar cover if H is a finite planar graph.

H s s

ss

s s
ss

s

s

v1

v2

→ s s

ss
s
v

ϕ(v1) = ϕ(v2) = v

G = K5
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Planar coversPlanar covers

• We speak about a planar cover if H is a finite planar graph.

H s s

ss

s s
ss

s

s

v1

v2

→ s s

ss
s
v

ϕ(v1) = ϕ(v2) = v

G = K5

• Graph embedded in the projective plane has a double planar cover,

via the universal covering map from the sphere onto the projective plane.
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Planar emulatorsPlanar emulators

• ϕ : V(H) → V(G), an emulator vs. a cover:

. . . map the edges inc. with v in H surjectively
onto the edges inc. with ϕ(v) in G.

H s s
s

s
ss

s
s

s
a1

b1

c1

a2

b2c2

a3

b3

c3 →

s s
s

a b

c
G 2

• Can a planar emulator be “more than” a planar cover?
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Planar emulatorsPlanar emulators

• ϕ : V(H) → V(G), an emulator vs. a cover:

. . . map the edges inc. with v in H surjectively
onto the edges inc. with ϕ(v) in G.

H s s
s

s
ss

s
s

s
a1

b1

c1

a2

b2c2

a3

b3

c3 →

s s
s

a b

c
G 2

• Can a planar emulator be “more than” a planar cover?

• Not many remarkable results until 2008. . . Interesting at all?
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2 Fellows’ planar emulator conjecture2 Fellows’ planar emulator conjecture

Fact. A planar cover is also a planar emulator.

Why a planar emulator should be “more than” a planar cover?



'

&

$

%

'

&

$
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2 Fellows’ planar emulator conjecture2 Fellows’ planar emulator conjecture

Fact. A planar cover is also a planar emulator.

Why a planar emulator should be “more than” a planar cover?

• We only “use more edges” – this takes us farther away from planarity!
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%Petr Hliněný, ATCAGC 2011, Krá̌l. Studňa 5 New Development in Planar Emulators

2 Fellows’ planar emulator conjecture2 Fellows’ planar emulator conjecture

Fact. A planar cover is also a planar emulator.

Why a planar emulator should be “more than” a planar cover?

• We only “use more edges” – this takes us farther away from planarity!

• Until the end of 2008, most people considered planar emulators just as a
strange redefinition of covers. . .
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2 Fellows’ planar emulator conjecture2 Fellows’ planar emulator conjecture

Fact. A planar cover is also a planar emulator.

Why a planar emulator should be “more than” a planar cover?

• We only “use more edges” – this takes us farther away from planarity!

• Until the end of 2008, most people considered planar emulators just as a
strange redefinition of covers. . .

Conjecture 1 (Fellows, 1989)

A connected graph has a finite planar emulator
if and only if

it has a finite planar cover.
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2 Fellows’ planar emulator conjecture2 Fellows’ planar emulator conjecture

Fact. A planar cover is also a planar emulator.

Why a planar emulator should be “more than” a planar cover?

• We only “use more edges” – this takes us farther away from planarity!

• Until the end of 2008, most people considered planar emulators just as a
strange redefinition of covers. . .

Conjecture 1 (Fellows, 1989)

A connected graph has a finite planar emulator
if and only if

it has a finite planar cover.

And via Negami’s planar cover conjecture. . .

Conjecture 2 (Kitakubo, 1991) A connected graph has a finite planar emu-
lator if and only if it embeds in the projective plane.
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3 Some useful properties3 Some useful properties

• If G has a planar cover, then so does every minor of G.

H

s s
s s →

s s
G
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3 Some useful properties3 Some useful properties

• If G has a planar cover, then so does every minor of G.

H

s s
s s →

s s
G

Consider e between two neighbours of a cubic vertex.
If G− e has a planar cover, then so does G.

H

ss s
s

ss s
s

v1

v2
→

ss s
s

e

v

G
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3 Some useful properties3 Some useful properties

• If G has a planar cover, then so does every minor of G.

H

s s
s s →

s s
G

Consider e between two neighbours of a cubic vertex.
If G− e has a planar cover, then so does G.

H

ss s
s

ss s
s

v1

v2
→

ss s
s

e

v

G

• Therefore, if G has a planar cover, and G ′ is obtained from G by
Y∆-transformations, then G ′ has a planar cover, too.
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Extending to emulators

• If G has a planar emulator, then so does every minor of G.
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Extending to emulators

• If G has a planar emulator, then so does every minor of G.

• If G has a planar emulator, and v is a cubic vertex of G, then some planar
emulator H of G has all vertices in ϕ−1(v) also cubic.

s
s

s
s sv1

b1

c1

a1a1 →

s
s

s
s v

b

c

a
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Extending to emulators

• If G has a planar emulator, then so does every minor of G.

• If G has a planar emulator, and v is a cubic vertex of G, then some planar
emulator H of G has all vertices in ϕ−1(v) also cubic.

s
s

s
s sv1

b1

c1

a1a1 →

s
s

s
s v

b

c

a

s
s

s
s s sv1 v2

b1

c1

a1a1 →

s
s

s
s v

b

c

a
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Extending to emulators

• If G has a planar emulator, then so does every minor of G.

• If G has a planar emulator, and v is a cubic vertex of G, then some planar
emulator H of G has all vertices in ϕ−1(v) also cubic.

s
s

s
s sv1

b1

c1

a1a1 →

s
s

s
s v

b

c

a

s
s

s
s s sv1 v2

b1

c1

a1a1 →

s
s

s
s v

b

c

a

Therefore, if G has a planar emulator, and G ′ is obtained from G by
Y∆-transformations, then G ′ has a planar emulator, too.
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4 Approaching the conjectures4 Approaching the conjectures

A connected graph has a finite planar cover / emulator if and
only if it embeds in the projective plane.

We recall the above basic properties. . .

• Assume a projective graph G. Then G has a double planar cover / emu-
lator.
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4 Approaching the conjectures4 Approaching the conjectures

A connected graph has a finite planar cover / emulator if and
only if it embeds in the projective plane.

We recall the above basic properties. . .

• Assume a projective graph G. Then G has a double planar cover / emu-
lator.

• Conversely, assume connected G is not projective.
Then G contains some F of the forbidden minors for the projective plane.
We just have to show that this F has no finite planar cover / emulator.
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4 Approaching the conjectures4 Approaching the conjectures

A connected graph has a finite planar cover / emulator if and
only if it embeds in the projective plane.

We recall the above basic properties. . .

• Assume a projective graph G. Then G has a double planar cover / emu-
lator.

• Conversely, assume connected G is not projective.
Then G contains some F of the forbidden minors for the projective plane.
We just have to show that this F has no finite planar cover / emulator.

• Furthermore, it is enough to consider only those F which are Y∆-
transforms of some forbidden minor in G.
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K3,3 · K3,3 K5 · K3,3 K5 · K5 B3 C2 C7

D1 D4 D9 D12 D17 E6 E11

E19 E20 E27 F4 F6 G1

K3,5 K4,5−4K2 K4,4−e K7−C4 D3 E5 F1

K1,2,2,2 B7 C3 C4 D2 E2
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Known results (and a big surprise)Known results (and a big surprise)

Long-term development around Negami’s conjecture led to. . .

Theorem 3 (since 1998)
If K1,2,2,2 had no finite planar cover, then Negami’s conjecture would be proved.
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Known results (and a big surprise)Known results (and a big surprise)

Long-term development around Negami’s conjecture led to. . .

Theorem 3 (since 1998)
If K1,2,2,2 had no finite planar cover, then Negami’s conjecture would be proved.

. . . and then. . .
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Known results (and a big surprise)Known results (and a big surprise)

Long-term development around Negami’s conjecture led to. . .

Theorem 3 (since 1998)
If K1,2,2,2 had no finite planar cover, then Negami’s conjecture would be proved.

. . . and then. . . Suddenly, Fellows’ conjecture falls down. . .

Fact. The graph K4,5−4K2 has no finite planar cover.

Theorem 4 (Rieck and Yamashita 2008)
The graphs K1,2,2,2 and K4,5−4K2 do have finite planar emulators!!!
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%Petr Hliněný, ATCAGC 2011, Krá̌l. Studňa 10 New Development in Planar Emulators

Known results (and a big surprise)Known results (and a big surprise)

Long-term development around Negami’s conjecture led to. . .

Theorem 3 (since 1998)
If K1,2,2,2 had no finite planar cover, then Negami’s conjecture would be proved.

. . . and then. . . Suddenly, Fellows’ conjecture falls down. . .

Fact. The graph K4,5−4K2 has no finite planar cover.

Theorem 4 (Rieck and Yamashita 2008)
The graphs K1,2,2,2 and K4,5−4K2 do have finite planar emulators!!!

• Now we know that the class of graphs having finite planar emulators

– is different from the class of graphs having finite planar covers,

– and different from the class of projective planar graphs, too.

• So, let us study this class. . . !
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5 What graphs do have planar emulators?5 What graphs do have planar emulators?

Compared to planar covers, the situation suddenly get very rich.

NO emulators

• the case of “two disjoint k-graphs”,
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5 What graphs do have planar emulators?5 What graphs do have planar emulators?

Compared to planar covers, the situation suddenly get very rich.

NO emulators

• the case of “two disjoint k-graphs”,

• a sporadic proof for K3,5,

but none of the other proofs from planar covers works for emulators.
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5 What graphs do have planar emulators?5 What graphs do have planar emulators?

Compared to planar covers, the situation suddenly get very rich.

NO emulators

• the case of “two disjoint k-graphs”,

• a sporadic proof for K3,5,

but none of the other proofs from planar covers works for emulators.

YES emulators

• all projective-planar graphs, but those are the trivial ones,
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• the case of “two disjoint k-graphs”,

• a sporadic proof for K3,5,

but none of the other proofs from planar covers works for emulators.

YES emulators

• all projective-planar graphs, but those are the trivial ones,

• K1,2,2,2 and K4,5−4K2 by [Rieck and Yamashita],
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5 What graphs do have planar emulators?5 What graphs do have planar emulators?

Compared to planar covers, the situation suddenly get very rich.

NO emulators

• the case of “two disjoint k-graphs”,

• a sporadic proof for K3,5,

but none of the other proofs from planar covers works for emulators.

YES emulators

• all projective-planar graphs, but those are the trivial ones,

• K1,2,2,2 and K4,5−4K2 by [Rieck and Yamashita],

• C4 and E2 by [PH and Chimani],

hence consequently the whole “rich family of K1,2,2,2”,
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5 What graphs do have planar emulators?5 What graphs do have planar emulators?

Compared to planar covers, the situation suddenly get very rich.

NO emulators

• the case of “two disjoint k-graphs”,

• a sporadic proof for K3,5,

but none of the other proofs from planar covers works for emulators.

YES emulators

• all projective-planar graphs, but those are the trivial ones,

• K1,2,2,2 and K4,5−4K2 by [Rieck and Yamashita],

• C4 and E2 by [PH and Chimani],

hence consequently the whole “rich family of K1,2,2,2”,

• and NEW K7−C4 and (most of ??) its family! by [Klusáček, 2011].
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6 Conclusion6 Conclusion

• Give ordinary students difficult exercises (without saying how hard it is?).



'

&

$

%

'

&

$
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6 Conclusion6 Conclusion

• Give ordinary students difficult exercises (without saying how hard it is?).

• And then study the strange class of those grahs having finite planar em-
ulators!

– Though the class originally looked quite similar to the projective-
planar graphs, now (“after Klusáček”) all has changed.
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6 Conclusion6 Conclusion

• Give ordinary students difficult exercises (without saying how hard it is?).

• And then study the strange class of those grahs having finite planar em-
ulators!

– Though the class originally looked quite similar to the projective-
planar graphs, now (“after Klusáček”) all has changed.

– Any idea for a new hypothesis?

– Any idea for a general structural result saying that the class of
graphs having no minor in the “green picture” and possesssing cer-
tain connectivity (internally 4-connected enough? / maybe even
(5, 3)-connectivity would work?) is finite?


	Definitions
	Fellows' planar emulator conjecture
	Some useful properties
	Approaching the conjectures
	What graphs do have planar emulators?
	Conclusion

