

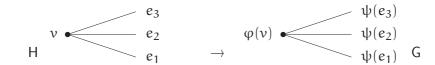
1 Definition

 ${\it Motivation: Exploring the two graphs locally, we cannot see any difference.} \ldots$

A graph H is a *cover* of a graph G if there exists a pair of onto mappings

(a projection)
$$\varphi: V(H) \to V(G), \qquad \psi: E(H) \to E(G)$$

such that ψ maps the edges incident with each vertex ν in H bijectively onto the edges incident with $\phi(\nu)$ in G.



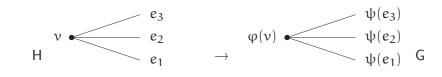
Definition

Motivation: Exploring the two graphs locally, we cannot see any difference...

A graph H is a *cover* of a graph G if there exists a pair of onto mappings

(a projection)
$$\phi: V(H) \to V(G), \qquad \psi: E(H) \to E(G)$$

such that ψ maps the edges incident with each vertex v in H bijectively onto the edges incident with $\varphi(v)$ in G.



Remark. The edge $\psi(uv)$ has always ends $\varphi(u)$, $\varphi(v)$, and hence only $\varphi: V(H) \to V(G)$, the vertex projection,

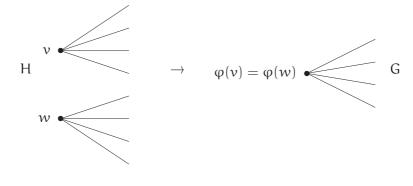
Useful basic properties

A graph H is a cover of a graph G if there exists a pair of onto mappings $\text{$(a projection)} \qquad \phi: V(H) \to V(G), \qquad \psi: E(H) \to E(G)$

s.t. ψ maps the edges inc. with ν in H bijectively onto the edges inc. with $\phi(\nu)$ in G.

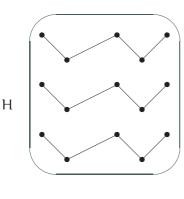
Degree preservation

• $d_H(v) = d_G(\phi(v))$ for each vertex $v \in V(H)$.



Lifting a path

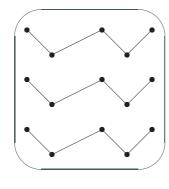
If G' is a subgraph of G, then the subgraph H' with the vertex set $\phi^{-1}(V(G'))$ and the edge set $\psi^{-1}(E(G'))$ is called a *lifting of* G' *into* H.



Lifting a path

Н

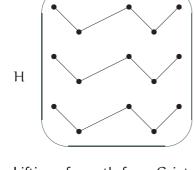
If G' is a subgraph of G, then the subgraph H' with the vertex set $\phi^{-1}(V(G'))$ and the edge set $\psi^{-1}(E(G'))$ is called a *lifting of* G' *into* H.

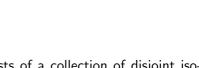


• Lifting of a path from G into H consists of a collection of disjoint isomorphic paths.

Lifting a path

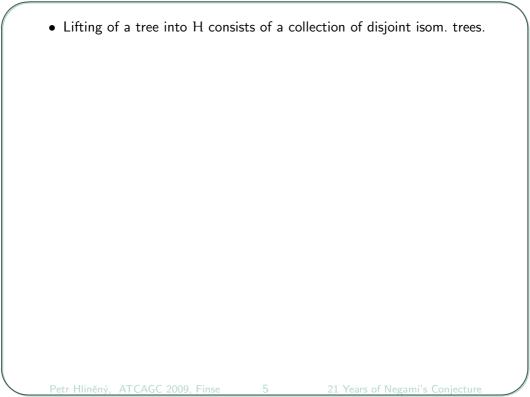
If G' is a subgraph of G, then the subgraph H' with the vertex set $\phi^{-1}(V(G'))$ and the edge set $\psi^{-1}(E(G'))$ is called a *lifting of* G' *into* H.





- Lifting of a path from G into H consists of a collection of disjoint isomorphic paths.
- Consequently, if G is connected, then $|\varphi^{-1}(v)| = k$ is a constant.

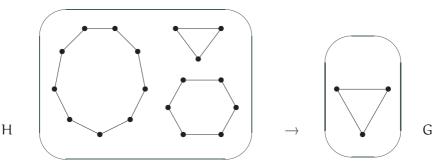
We then speak about a k-fold cover.



• Lifting of a tree into H consists of a collection of disjoint isom. trees.

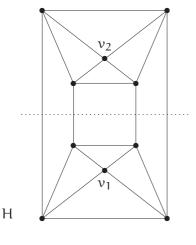
Lifting a cycle

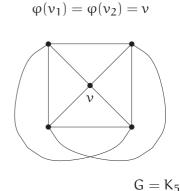
• Lifting of a cycle C_ℓ of G into H consists of a collection of disjoint cycles whose lengths are divisible by ℓ .



Planar cover

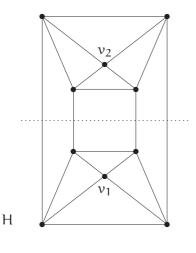
We speak about a planar cover if H is a finite planar graph.

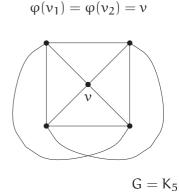




Planar cover

We speak about a planar cover if H is a finite planar graph.





• Graph embedded in the *projective plane* has a double planar cover, via the universal covering map from the sphere onto the projective plane.

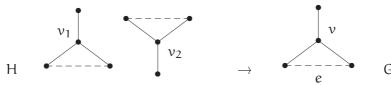
Cover preservation

• If G has a planar cover, then so does every minor of G.

Cover preservation

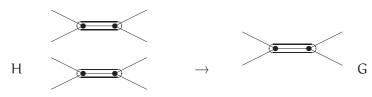
• If G has a planar cover, then so does every minor of G.

Consider e between two neighbours of a cubic vertex. If G-e has a planar cover, then so does G.

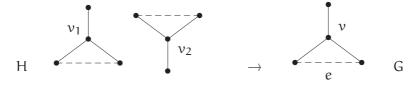


Cover preservation

• If G has a planar cover, then so does every minor of G.



Consider e between two neighbours of a cubic vertex. If G-e has a planar cover, then so does G.



• Therefore, if G has a planar cover, and G' is obtained from G by $Y\Delta$ -transformations, then G' has a planar cover, too.

Interest in planar covers

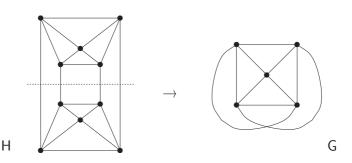
Raised by Negami [1986] in relation to enumeration of projective embeddings of 3-connected graphs.

Interest in planar covers

- Raised by Negami [1986] in relation to enumeration of projective embeddings of 3-connected graphs.
- Independently, *planar emulators* considered by Fellows in his CS-oriented thesis [1985] ("embedding graphs in graphs").

Interest in planar covers

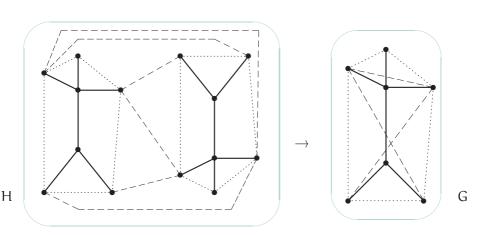
- Raised by Negami [1986] in relation to enumeration of projective embeddings of 3-connected graphs.
- Independently, *planar emulators* considered by Fellows in his CS-oriented thesis [1985] ("embedding graphs in graphs").



Theorem 1 (Negami, 1986) A connected graph has a double planar cover if and only if it embeds in the projective plane.

Theorem 1 (Negami, 1986) A connected graph has a double planar cover if and only if it embeds in the projective plane.

Proof sketch. If a 3-connected planar graph H is a double cover of a graph G, then G embeds with at most one crosscap:



- this is a purely combinatorial argument...

Negami's planar cover conjecture

A cover $\varphi: V(H) \to V(G)$ is regular

if there is a subgroup $A \subseteq Aut(H)$ such that $\varphi(u) = \varphi(v)$ for $u, v \in V(H)$ if, and only if $\tau(u) = v$ for some $\tau \in A$.

Theorem 2 (Negami, 1988) A connected graph has a finite regular planar cover if and only if it embeds in the projective plane.

Negami's planar cover conjecture

A cover $\varphi: V(H) \to V(G)$ is regular

if there is a subgroup $A\subseteq Aut(H)$ such that $\phi(u)=\phi(\nu)$ for $u,\nu\in V(H)$ if, and only if $\tau(u)=\nu$ for some $\tau\in A$.

Theorem 2 (Negami, 1988) A connected graph has a finite regular planar cover if and only if it embeds in the projective plane.

And now an immediate generalization reads...

Conjecture 3 (Negami, 1988)

A connected graph has a finite regular planar cover if and only if it embeds in the projective plane.

A connected graph has a finite planar cover if and only if it embeds in the projective plane.

We recall the above basic properties of covers. . .

• Assume a projective graph G. Then G has a double planar cover.

A connected graph has a finite planar cover if and only if it embeds in the projective plane.

We recall the above basic properties of covers. . .

- Assume a projective graph G. Then G has a double planar cover.
- Conversely, assume connected G is not projective.
 Then G contains some F of the forbidden minors for the projective plane.
 We just have to show that this F has no finite planar cover.

A connected graph has a finite planar cover if and only if it embeds in the projective plane.

We recall the above basic properties of covers. . .

- Assume a projective graph G. Then G has a double planar cover.
- Conversely, assume connected G is not projective.
 Then G contains some F of the forbidden minors for the projective plane.
 We just have to show that this F has no finite planar cover.
- Furthermore, it is enough to consider only those F which are ΥΔ-transforms of some forbidden minor in G.

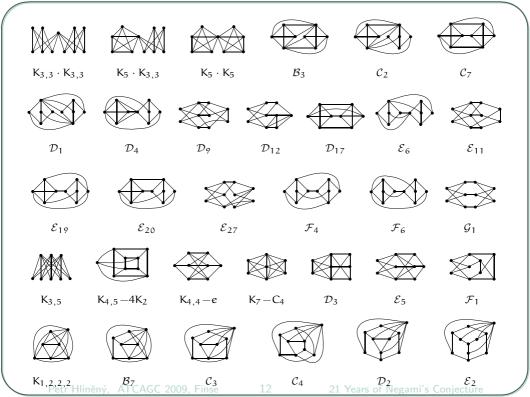
A connected graph has a finite planar cover if and only if it embeds in the projective plane.

We recall the above basic properties of covers. . .

- Assume a projective graph G. Then G has a double planar cover.
- Conversely, assume connected G is not projective.
 Then G contains some F of the forbidden minors for the projective plane.
 We just have to show that this F has no finite planar cover.
- Furthermore, it is enough to consider only those F which are ΥΔ-transforms of some forbidden minor in G.

Does this sound like a piece of cake now?

Unfortunately, the difficulties are just coming...



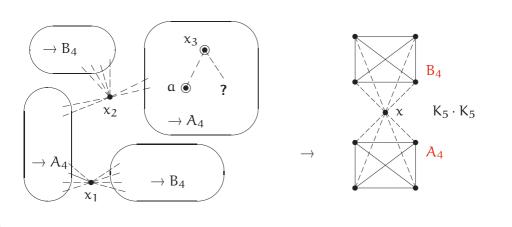
Disjoint k-graphs

Theorem 4 (Negami / Archdeacon, 1988) Neither of the graphs $K_{3,3} \cdot K_{3,3}$, $K_5 \cdot K_{3,3}$, $K_5 \cdot K_5$, \mathcal{B}_3 , \mathcal{C}_2 , \mathcal{C}_7 , \mathcal{D}_1 , \mathcal{D}_4 , \mathcal{D}_9 , \mathcal{D}_{12} , \mathcal{D}_{17} , \mathcal{E}_6 , \mathcal{E}_{11} , \mathcal{E}_{19} , \mathcal{E}_{20} , \mathcal{E}_{27} , \mathcal{F}_4 , \mathcal{F}_6 , \mathcal{G}_1 have a finite planar cover.

Disjoint k-graphs

Theorem 4 (Negami / Archdeacon, 1988) Neither of the graphs $K_{3,3} \cdot K_{3,3}$, $K_5 \cdot K_3$, $K_5 \cdot K_5$, \mathcal{B}_3 , \mathcal{C}_2 , \mathcal{C}_7 , \mathcal{D}_1 , \mathcal{D}_4 , \mathcal{D}_9 , \mathcal{D}_{12} , \mathcal{D}_{17} , \mathcal{E}_6 , \mathcal{E}_{11} , \mathcal{E}_{19} , \mathcal{E}_{20} , \mathcal{E}_{27} , \mathcal{F}_4 , \mathcal{F}_6 , \mathcal{G}_1 have a finite planar cover.

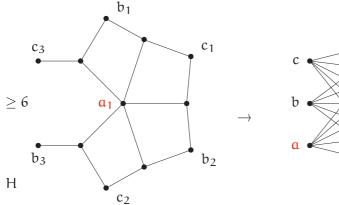
Proof sketch. We choose the $K_5 \cdot K_5$ case for an illustration. . .

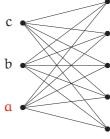


Discharging technique

Theorem 5 (?? 1988, 1993) The graph $K_{3,5}$ has no finite planar cover.

Proof sketch. Assuming H is a finite planar cover of $K_{3,5}$, we shall derive a contradiction to Euler's formula (or, easy *discharging*)...

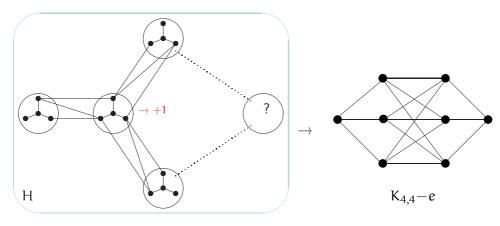




 $K_{3.5}$

Theorem 6 (PH, 1998) The graph $K_{4,4}-e$ has no finite planar cover.

Brief idea. Form "thick" metavertices from the 3-stars in a supposed cover H.

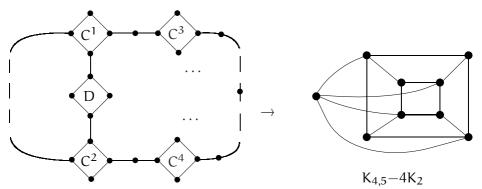


This metagraph is planar bipartite, and so it has a degree-3 vertex. Here we apply *discharging* to get a contradiction again. . .

"Necklace" argument

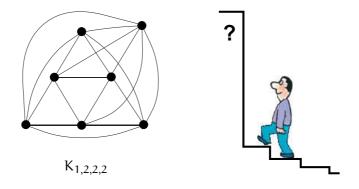
Theorem 7 (Archdeacon 1988, 2002) (indep. Thomas and PH 1999) The graphs K_7-C_4 and $K_{4,5}-4K_2$ have no finite planar covers.

Brief idea. Find the shortest "necklace" (a *reduced semi-cover*), and shorten it further...



At the end, we reduce the (length-2) necklace to a projective embedding!

The bad guys: $K_{1,2,2,2}$ and its relatives



Fact. (since 1995/8) If $K_{1,2,2,2}$ had no finite planar cover, then Negami's conjecture would be proved. However;

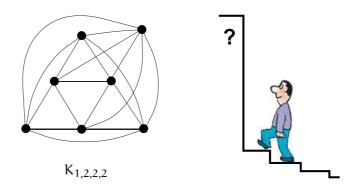
The bad guys: $K_{1,2,2,2}$ and its relatives



Fact. (since 1995/8) If $K_{1,2,2,2}$ had no finite planar cover, then Negami's conjecture would be proved. However,

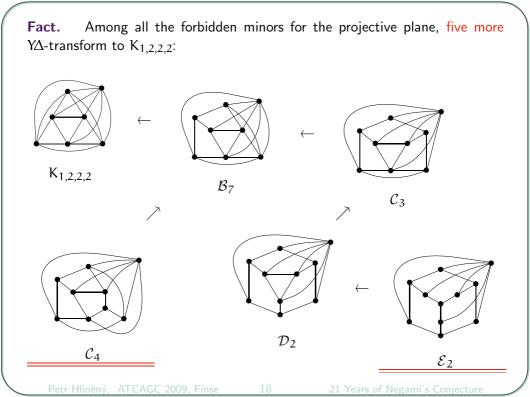
• We are being stuck at this last step for more than 10 years now!

The bad guys: $K_{1,2,2,2}$ and its relatives

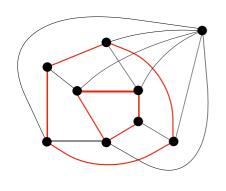


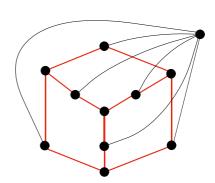
Fact. (since 1995/8) If $K_{1,2,2,2}$ had no finite planar cover, then Negami's conjecture would be proved. However,

- We are being stuck at this last step for more than 10 years now!
- Fortunately, some finer development "under the surface" is possible and has actually happened...



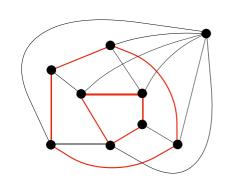
Theorem 8 (PH 1999, 2001) Both the "bottom" graphs C_4 and E_2 have no finite planar covers.

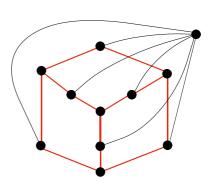




Theorem 8 (PH 1999, 2001)

Both the "bottom" graphs C_4 and E_2 have no finite planar covers.





- While the left-hand case appears "structural" we manage to apply a necklace argument, generalizing Theorem 7,
- the right-hand case is a "counting" one we get a specialized discharging contradiction.

Deeper look – possible counterexamples?

While we are not able to climb the last step $K_{1,2,2,2}$ directly . . .

... we should perhaps try some detour?!

Deeper look – possible counterexamples?

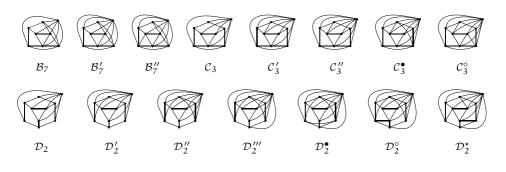
While we are not able to climb the last step $K_{1,2,2,2}$ directly . . .

?

... we should perhaps try some detour?!

Theorem 9 (Thomas and PH 1999, 2004)

If a connected graph G has a finite planar cover but no projective embedding, then G is a planar expansion of $K_{1,2,2,2}$ or some graph from:



The following scheme orders the possible counterexamples by their "difficulty" $K_{1,2,2,2} \leftarrow \mathcal{B}_7 \leftarrow \mathcal{B}_7' \leftarrow \mathcal{B}_7'' \leftarrow \mathcal{C}_3 \leftarrow \mathcal{C}_3' \leftarrow \mathcal{C}_3'' -$

Petr Hliněný, ATCAGC 2009, Finse 21 21 Years of Negami's Conjecture

 \mathcal{D}_2°

Surface extensions

• Is it true that a graph has a finite cover embeddable on a given nonorientable surface iff it embeds there?

cf. [PH 1999], [Negami 2005]

Surface extensions

• Is it true that a graph has a finite cover embeddable on a given nonorientable surface iff it embeds there?

cf. [PH 1999], [Negami 2005]

ACCOTA 2004

• One surprising announcement, but no proof has appeared since. . .

Surface extensions

• Is it true that a graph has a finite cover embeddable on a given nonorientable surface iff it embeds there?

cf. [PH 1999], [Negami 2005]

ACCOTA 2004

• One surprising announcement, but no proof has appeared since. . .

Related recent research

• [Negami and Watanabe, 2002] The conjecture is true for cubic graphs.

Surface extensions

• Is it true that a graph has a finite cover embeddable on a given nonorientable surface iff it embeds there?

cf. [PH 1999], [Negami 2005]

ACCOTA 2004

• One surprising announcement, but no proof has appeared since. . .

Related recent research

- [Negami and Watanabe, 2002] The conjecture is true for cubic graphs.
- [Negami 2003] Composite planar coverings,
 [Negami 2005] Projective planar double coverings.

Surface extensions

• Is it true that a graph has a finite cover embeddable on a given nonorientable surface iff it embeds there?

cf. [PH 1999], [Negami 2005]

ACCOTA 2004

• One surprising announcement, but no proof has appeared since. . .

Related recent research

- [Negami and Watanabe, 2002] The conjecture is true for cubic graphs.
- [Negami 2003] Composite planar coverings, [Negami 2005] Projective planar double coverings.
- [Rieck and Yamashita, preprint 2006] Extending the regular-cover thm.

Surface extensions

• Is it true that a graph has a finite cover embeddable on a given nonorientable surface iff it embeds there?

cf. [PH 1999], [Negami 2005]

ACCOTA 2004

• One surprising announcement, but no proof has appeared since. . .

Related recent research

- [Negami and Watanabe, 2002] The conjecture is true for cubic graphs.
- [Negami 2003] Composite planar coverings, [Negami 2005] Projective planar double coverings.
- [Rieck and Yamashita, preprint 2006] Extending the regular-cover thm. and a very recent NEW: [Rieck and Yamashita, preprint 2008]...

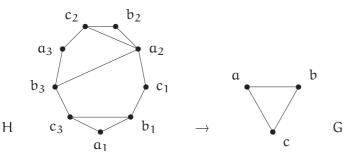
Planar emulators

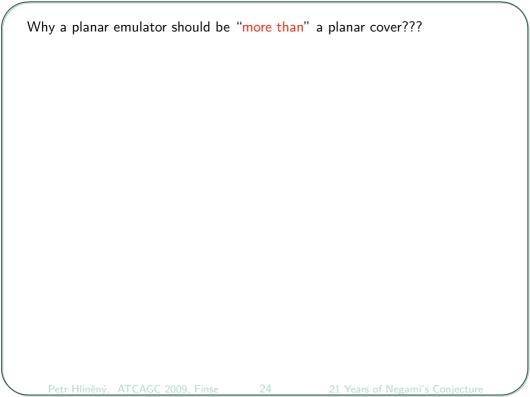
- Introduced by [Fellows 1985], independently of Negami, and considered also by [Kitakubo 1991] as *branched planar covers*.
- Not many remarkable results until 2008... Interesting at all?

Planar emulators

- Introduced by [Fellows 1985], independently of Negami, and considered also by [Kitakubo 1991] as branched planar covers.
- Not many remarkable results until 2008... Interesting at all?
- $\bullet \ \phi: V(H) \rightarrow V(G)$, an emulator vs. a cover:

... map the edges inc. with v in H surjectively onto the edges inc. with $\varphi(v)$ in G.





Why a planar emulator should be "more than" a planar cover??? • We only "use more edges" - this takes us farther away from planarity!

- Why a planar emulator should be "more than" a planar cover???
 - We only "use more edges" this takes us farther away from planarity!
 - Until the end of 2008, most people considered planar emulators just as a strange redefinition of covers. . . [Fellows 1985], [Kitakubo 1991]

... and then...

Why a planar emulator should be "more than" a planar cover???

- We only "use more edges" this takes us farther away from planarity!
- Until the end of 2008, most people considered planar emulators just as a strange redefinition of covers. . . [Fellows 1985], [Kitakubo 1991]

... and then...

Theorem 10 (Rieck and Yamashita 2008)

The graphs $K_{1,2,2,2}$ and $K_{4,5}$ — $4K_2$ do have finite planar emulators.

Why a planar emulator should be "more than" a planar cover???

- We only "use more edges" this takes us farther away from planarity!
- Until the end of 2008, most people considered planar emulators just as a strange redefinition of covers... [Fellows 1985], [Kitakubo 1991]

... and then...

Theorem 10 (Rieck and Yamashita 2008)

The graphs $K_{1,2,2,2}$ and $K_{4,5}-4K_2$ do have finite planar emulators.

- Now we know that the class of graphs having finite planar emulators
 - is different from the class of graphs having finite planar covers,
 - and from the class of *projective planar* graphs.
- So, let us study this class...!

