

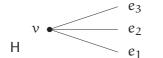
1 Definition

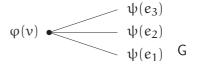
Motivation: Exploring the two graphs locally, we cannot see any difference...

A graph H is a *cover* of a graph G if there exists a pair of onto mappings

(a projection)
$$\phi: V(H) \rightarrow V(G), \quad \psi: E(H) \rightarrow E(G)$$

 $\begin{array}{ll} \mbox{such that } \psi \mbox{ maps the edges incident with each vertex } \nu \mbox{ in } H \\ \mbox{ bijectively} & \mbox{onto the edges incident with } \phi(\nu) \mbox{ in } G. \end{array}$





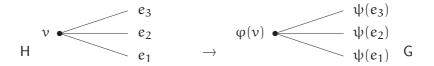
1 Definition

Motivation: Exploring the two graphs locally, we cannot see any difference...

A graph H is a *cover* of a graph G if there exists a pair of onto mappings

(a projection)
$$\phi: V(H) \rightarrow V(G), \quad \psi: E(H) \rightarrow E(G)$$

 $\begin{array}{ll} \mbox{such that } \psi \mbox{ maps the edges incident with each vertex } \nu \mbox{ in } H \\ \mbox{ bijectively} & \mbox{onto the edges incident with } \phi(\nu) \mbox{ in } G. \end{array}$



Remark. The edge $\psi(uv)$ has always ends $\varphi(u), \varphi(v)$, and hence only

 $\phi: V(H) \rightarrow V(G)$, the vertex projection,

is enough to be specified for simple graphs.

Petr Hliněný, TGT 20, Nov 26 2008

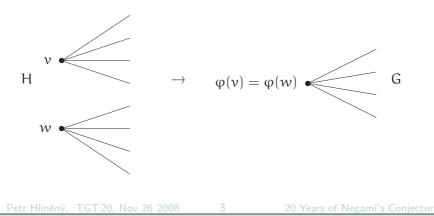
2 Useful basic properties

 $\begin{array}{ll} \mbox{$A$ graph H is a cover of a graph G if there exists a pair of onto mappings} \\ \mbox{$(a$ projection)$} & \mbox{$\phi:V(H) \to V(G)$}, & \mbox{$\psi:E(H) \to E(G)$} \end{array}$

s.t. ψ maps the edges inc. with ν in H bijectively onto the edges inc. with $\phi(\nu)$ in G.

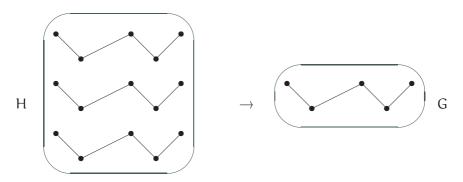
Degree preservation

• $d_H(\nu) = d_G(\phi(\nu))$ for each vertex $\nu \in V(H)$.



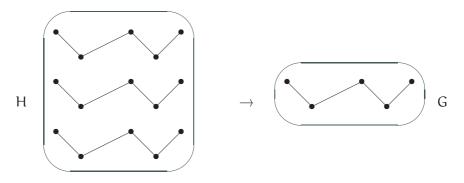
Lifting a path

If G' is a subgraph of G, then the subgraph H' with the vertex set $\varphi^{-1}(V(G'))$ and the edge set $\psi^{-1}(E(G'))$ is called a *lifting of* G' *into* H.



Lifting a path

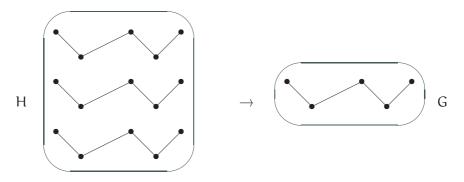
If G' is a subgraph of G, then the subgraph H' with the vertex set $\varphi^{-1}(V(G'))$ and the edge set $\psi^{-1}(E(G'))$ is called a *lifting of* G' *into* H.



• Lifting of a path from G into H consists of a collection of disjoint isomorphic paths.

Lifting a path

If G' is a subgraph of G, then the subgraph H' with the vertex set $\varphi^{-1}(V(G'))$ and the edge set $\psi^{-1}(E(G'))$ is called a *lifting of* G' *into* H.



- Lifting of a path from G into H consists of a collection of disjoint isomorphic paths.
- Consequently, if G is connected, then $|\phi^{-1}(v)| = k$ is a constant.

We then speak about a k-fold cover.

Petr Hliněný, TGT 20, Nov 26 2008

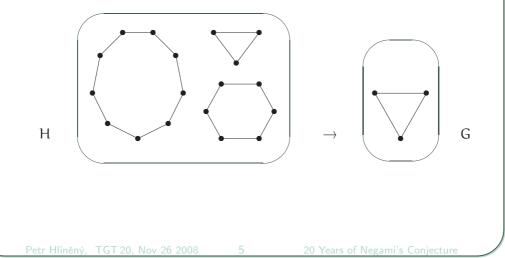
4

• Lifting of a tree into H consists of a collection of disjoint isom. trees.

• Lifting of a tree into H consists of a collection of disjoint isom. trees.

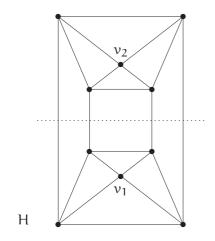
Lifting a cycle

 Lifting of a cycle Cℓ of G into H consists of a collection of disjoint cycles whose lengths are divisible by ℓ.

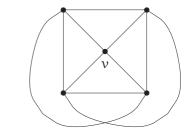


Planar cover

We speak about a *planar cover* if H is a finite planar graph.



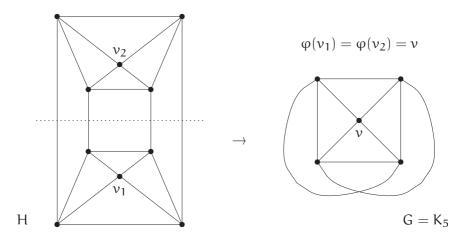
$$\phi(\nu_1) = \phi(\nu_2) = \nu$$



 $G = K_5$

Planar cover

We speak about a *planar cover* if H is a finite planar graph.



• Graph embedded in the *projective plane* has a double planar cover, via the universal covering map from the sphere onto the projective plane.

Petr Hliněný, TGT 20, Nov 26 2008

20 Years of Negami's Conjecture

Cover preservation

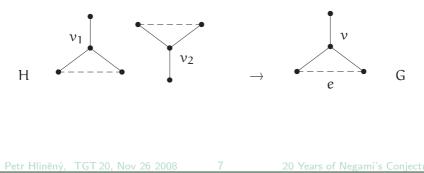
• If G has a planar cover, then so does every minor of G.

7

Cover preservation

• If G has a planar cover, then so does every minor of G.

Consider e between two neighbours of a cubic vertex. If G - e has a planar cover, then so does G.



Cover preservation

• If G has a planar cover, then so does every minor of G.

Consider e between two neighbours of a cubic vertex. If G - e has a planar cover, then so does G.



• Therefore, if G has a planar cover, and G' is obtained from G by Y Δ -transformations, then G' has a planar cover, too.

Petr Hliněný, TGT 20, Nov 26 2008

-7

3 Interest in planar covers

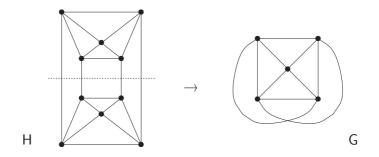
• Raised by Negami [1986] in relation to enumeration of projective embeddings of 3-connected graphs.

3 Interest in planar covers

- Raised by Negami [1986] in relation to enumeration of projective embeddings of 3-connected graphs.
- Independently, *planar emulators* considered by Fellows in his CS-oriented thesis [1985] ("embedding graphs in graphs").

3 Interest in planar covers

- Raised by Negami [1986] in relation to enumeration of projective embeddings of 3-connected graphs.
- Independently, *planar emulators* considered by Fellows in his CS-oriented thesis [1985] ("embedding graphs in graphs").



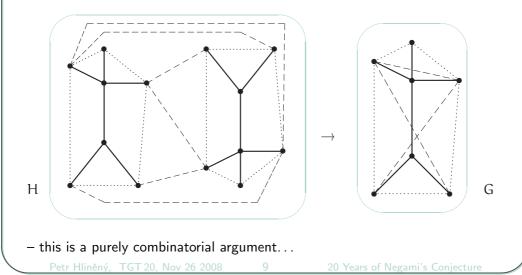
Theorem 1 (Negami, 1986) A connected graph has a double planar cover if and only if it embeds in the projective plane.

Petr Hliněný, TGT 20, Nov 26 2008

20 Years of Negami's Conjecture

Theorem 1 (Negami, 1986) A connected graph has a double planar cover if and only if it embeds in the projective plane.

Proof sketch. If a 3-connected planar graph H is a double cover of a graph G, then G embeds with at most one crosscap:



Negami's planar cover conjecture

A cover $\phi:V(H)\to V(G)$ is regular

if there is a subgroup $A \subseteq Aut(H)$ such that $\varphi(u) = \varphi(v)$ for $u, v \in V(H)$ if, and only if $\tau(u) = v$ for some $\tau \in A$.

Theorem 2 (Negami, 1988) A connected graph has a finite regular planar cover if and only if it embeds in the projective plane.

Negami's planar cover conjecture

A cover $\phi:V(H)\to V(G)$ is regular

if there is a subgroup $A \subseteq Aut(H)$ such that $\varphi(u) = \varphi(v)$ for $u, v \in V(H)$ if, and only if $\tau(u) = v$ for some $\tau \in A$.

Theorem 2 (Negami, 1988) A connected graph has a finite regular planar cover if and only if it embeds in the projective plane.

And now an immediate generalization reads...

Conjecture 3 (Negami, 1988)

A connected graph has a finite regular planar cover if and only if it embeds in the projective plane.

Petr Hliněný, TGT 20, Nov 26 2008

A connected graph has a finite planar cover if and only if it embeds in the projective plane.

We recall the above basic properties of covers...

• Assume a projective graph G. Then G has a double planar cover.

A connected graph has a finite planar cover if and only if it embeds in the projective plane.

We recall the above basic properties of covers...

- Assume a projective graph G. Then G has a double planar cover.
- Conversely, assume connected G is not projective. Then G contains some F of the *forbidden minors* for the projective plane. We just have to show that this F has no finite planar cover.

A connected graph has a finite planar cover if and only if it embeds in the projective plane.

We recall the above basic properties of covers...

- Assume a projective graph G. Then G has a double planar cover.
- Conversely, assume connected G is not projective. Then G contains some F of the *forbidden minors* for the projective plane. We just have to show that this F has no finite planar cover.
- Furthermore, it is enough to consider only those F which are $Y\Delta$ -transforms of some forbidden minor in G.

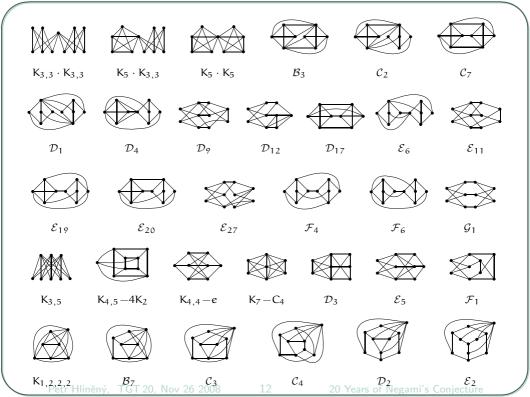
A connected graph has a finite planar cover if and only if it embeds in the projective plane.

We recall the above basic properties of covers...

- Assume a projective graph G. Then G has a double planar cover.
- Conversely, assume connected G is not projective. Then G contains some F of the *forbidden minors* for the projective plane. We just have to show that this F has no finite planar cover.
- Furthermore, it is enough to consider only those F which are $Y\Delta$ -transforms of some forbidden minor in G.

Does this sound like a piece of cake now?

Unfortunately, the difficulties are just coming. . .



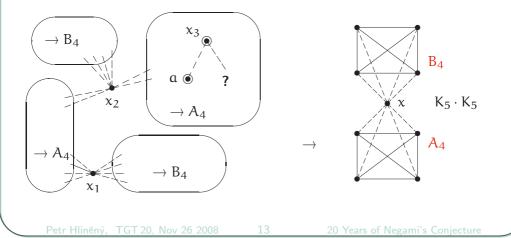
Disjoint k-graphs

Theorem 4 (Negami / Archdeacon, 1988) Neither of the graphs $K_{3,3} \cdot K_{3,3}$, $K_5 \cdot K_{3,3}$, $K_5 \cdot K_5$, \mathcal{B}_3 , \mathcal{C}_2 , \mathcal{C}_7 , \mathcal{D}_1 , \mathcal{D}_4 , \mathcal{D}_9 , \mathcal{D}_{12} , \mathcal{D}_{17} , \mathcal{E}_6 , \mathcal{E}_{11} , \mathcal{E}_{19} , \mathcal{E}_{20} , \mathcal{E}_{27} , \mathcal{F}_4 , \mathcal{F}_6 , \mathcal{G}_1 have a finite planar cover.

Disjoint k-graphs

Theorem 4 (Negami / Archdeacon, 1988) Neither of the graphs $K_{3,3} \cdot K_{3,3}$, $K_5 \cdot K_{3,3}$, $K_5 \cdot K_5$, \mathcal{B}_3 , \mathcal{C}_2 , \mathcal{C}_7 , \mathcal{D}_1 , \mathcal{D}_4 , \mathcal{D}_9 , \mathcal{D}_{12} , \mathcal{D}_{17} , \mathcal{E}_6 , \mathcal{E}_{11} , \mathcal{E}_{19} , \mathcal{E}_{20} , \mathcal{E}_{27} , \mathcal{F}_4 , \mathcal{F}_6 , \mathcal{G}_1 have a finite planar cover.

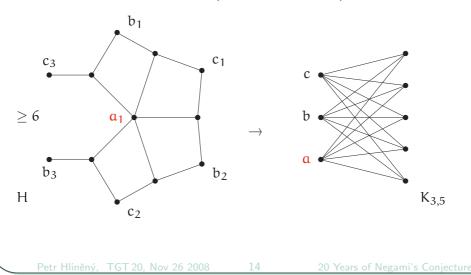
Proof sketch. We choose the $K_5 \cdot K_5$ case for an illustration...



Discharging technique

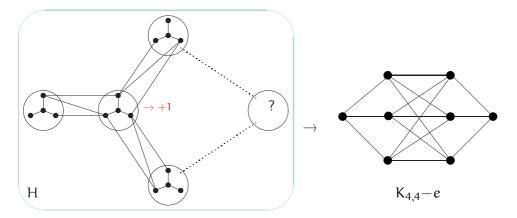
Theorem 5 (?? 1988, 1993) The graph K_{3,5} has no finite planar cover.

Proof sketch. Assuming H is a finite planar cover of $K_{3,5}$, we shall derive a contradiction to Euler's formula (or, easy *discharging*)...



Theorem 6 (PH, 1998) The graph $K_{4,4}-e$ has no finite planar cover.

Brief idea. Form "thick" metavertices from the 3-stars in a supposed cover H.



This metagraph is planar bipartite, and so it has a degree-3 vertex. Here we apply *discharging* to get a contradiction again...

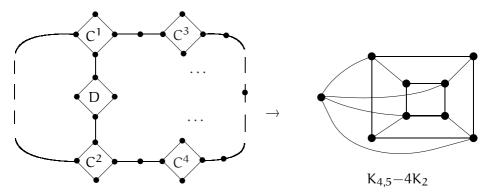
Petr Hliněný, TGT 20, Nov 26 2008

15

"Necklace" argument

Theorem 7 (Archdeacon 1988, 2002) (indep. Thomas and PH 1999) *The graphs* K_7-C_4 *and* $K_{4,5}-4K_2$ *have no finite planar covers.*

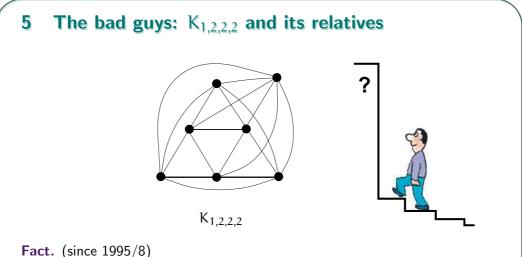
Brief idea. Find the shortest "necklace" (a *reduced semi-cover*), and shorten it further...



At the end, we reduce the (length-2) necklace to a projective embedding!

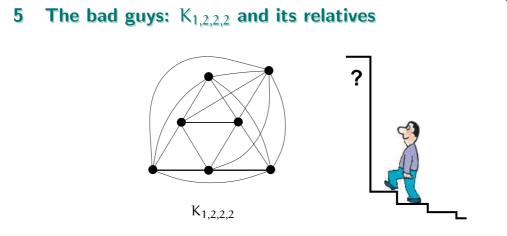
Petr Hliněný, TGT 20, Nov 26 2008





If $K_{1,2,2,2}$ had no finite planar cover, then Negami's conjecture would be proved. However;

• We are being stuck at this last step for more than 10 years now!



Fact. (since 1995/8)

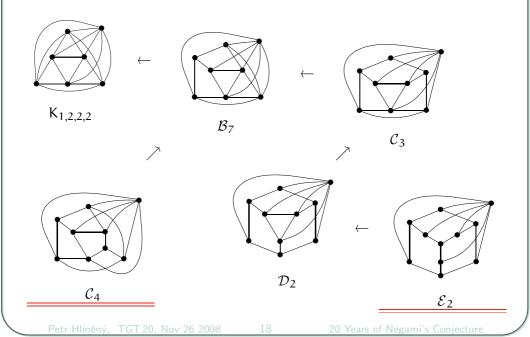
If $K_{1,2,2,2}$ had no finite planar cover, then Negami's conjecture would be proved. *However*;

- We are being stuck at this last step for more than 10 years now!
- Fortunately, some finer development "under the surface" is possible and has actually happened. . .

Petr Hliněný, TGT 20, Nov 26 2008

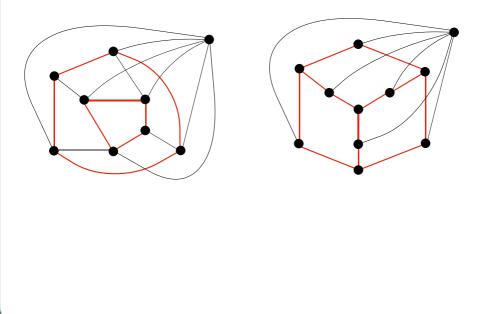
20 Years of Negami's Conjecture

Fact. Among all the forbidden minors for the projective plane, five more Y Δ -transform to K_{1,2,2,2}:



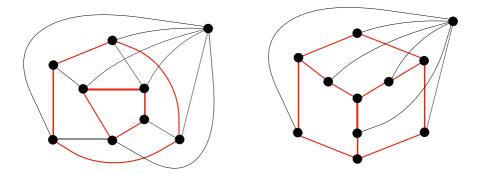
Theorem 8 (PH 1999, 2001)

Both the "bottom" graphs C_4 and \mathcal{E}_2 have no finite planar covers.



Theorem 8 (PH 1999, 2001)

Both the "bottom" graphs C_4 and \mathcal{E}_2 have no finite planar covers.



- While the left-hand case appears "structural" we manage to apply a necklace argument, generalizing Theorem 7,
- the right-hand case is a "counting" one we get a specialized discharging contradiction.

6 Deeper look – possible counterexamples?

While we are not able to climb the last step $K_{1,2,2,2}$ directly ...

... we should perhaps try some detour?!

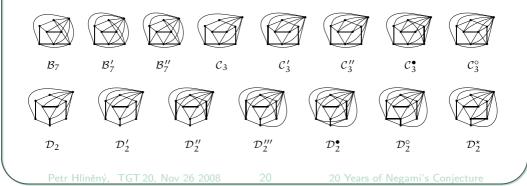
6 Deeper look – possible counterexamples?

While we are not able to climb the last step $K_{1,2,2,2}$ directly ...

... we should perhaps try some detour?!

Theorem 9 (Thomas and PH 1999, 2004)

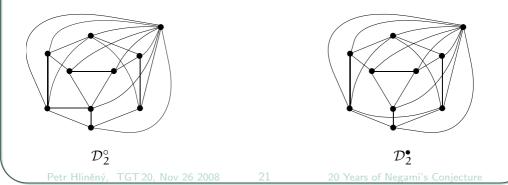
If a connected graph G has a finite planar cover but no projective embedding, then G is a planar expansion of $K_{1,2,2,2}$ or some graph from:



The following scheme orders the possible counterexamples by their "difficulty"

$$\mathsf{K}_{1,2,2,2} \ \leftarrow \ \mathcal{B}_7 \ \leftarrow \ \mathcal{B}_7' \ \leftarrow \ \mathcal{B}_7'' \ \leftarrow \ \mathcal{C}_3 \ \leftarrow \ \mathcal{C}_3' \ \leftarrow \ \mathcal{C}_3'' -$$

and so one should try one of the two new "bottom" cases:



Related recent research

• [Negami, Watanabe, 2002] The conjecture is true for cubic graphs.

Related recent research

- [Negami, Watanabe, 2002] The conjecture is true for cubic graphs.
- [Negami 2003] Composite planar coverings, [Negami 2005] Projective planar double coverings.

Related recent research

- [Negami, Watanabe, 2002] The conjecture is true for cubic graphs.
- [Negami 2003] Composite planar coverings, [Negami 2005] Projective planar double coverings.
- [Rieck, Yamashita, preprint 2006] Extending the regular-cover theorem.

Related recent research

- [Negami, Watanabe, 2002] The conjecture is true for cubic graphs.
- [Negami 2003] Composite planar coverings, [Negami 2005] Projective planar double coverings.
- [Rieck, Yamashita, preprint 2006] Extending the regular-cover theorem.

Surface extensions

• Is it true that a graph has a finite cover embeddable on a given nonorientable surface iff it embeds there?

cf. [PH 1999], [Negami 2005]

Planar emulators (branched planar covers)

- Introduced by [Fellows 1985], considered also by [Kitakubo 1991].
- Can we prove a graph has a finite planar emulator

iff it has a finite planar cover?

(Not studied much so far, to our knowledge.)

Planar emulators (branched planar covers)

- Introduced by [Fellows 1985], considered also by [Kitakubo 1991].
- Can we prove a graph has a finite planar emulator

iff it has a finite planar cover?

(Not studied much so far, to our knowledge.)

ACCOTA 2004

• One surprising announcement, but no proof has appeared since...

Planar emulators (branched planar covers)

- Introduced by [Fellows 1985], considered also by [Kitakubo 1991].
- Can we prove a graph has a finite planar emulator

iff it has a finite planar cover?

(Not studied much so far, to our knowledge.)

ACCOTA 2004

• One surprising announcement, but no proof has appeared since...

So, who wants to be a millionaire the conjecture solver?