Finding Branch-decompositions and Rank-decompositions

Petr Hliněný

Faculty of Informatics, Masaryk University Botanická 68a, 60200 Brno, Czech Rep.

$$
\begin{gathered}
\text { e-mail: hlineny@fi.muni.cz } \\
\text { http://www.fi.muni.cz/~hlineny }
\end{gathered}
$$

joint work with Sang-il Oum
Department of Combinatorics and Optimization, University of Waterloo, Canada.

```
e-mail: sangil@math.uwaterloo.ca.
```


Contents

$$
1 \text { Brief Overview of "Widths" } 3
$$Some traditional and new "width" parameters of graphs and other combi-natorial structures.

2 Branch-width, Definition 6
Branch-decomposition of an arbitrary connectivity (symmetric and submod- ular) set function. Graph and matroid branch-width, and graph rank-width.
3 Width (a number) \rightarrow Decomposition 9It is sometimes easier to get the branch-width as a number than a corre-sponding decomposition. How can we construct a decomposition then.
4 Our new Algorithm, a Sketch 12The full integration of above sketched ideas in a new $O\left(n^{3}\right)$ FPT algorithmfor optimal matroid branch-decompositions and graph rank-decompositions.
5 Application to Rank-width 13

1 Brief Overview of "Widths"

Traditional tree-width

- name given by Robertson \& Seymour (1983), but
some ideas (" k-trees") date back to Beineke \& Pippert (1968) and Rose (1974),

1 Brief Overview of "Widths"

Traditional tree-width

- name given by Robertson \& Seymour (1983), but some ideas (" k-trees") date back to Beineke \& Pippert (1968) and Rose (1974),
- the same parameter having various descriptions, e.g. using vertex bags, k-trees, simplicial (elimination) vertex ordering, etc. . .

1 Brief Overview of "Widths"

Traditional tree-width

- name given by Robertson \& Seymour (1983), but some ideas (" k-trees") date back to Beineke \& Pippert (1968) and Rose (1974),
- the same parameter having various descriptions, e.g. using vertex bags, k-trees, simplicial (elimination) vertex ordering, etc. . .
- recent matroid tree-width ("vertex-free") by PH \& Whittle (2003).

1 Brief Overview of "Widths"

Traditional tree-width

- name given by Robertson \& Seymour (1983), but some ideas (" k-trees") date back to Beineke \& Pippert (1968) and Rose (1974),
- the same parameter having various descriptions, e.g. using vertex bags, k-trees, simplicial (elimination) vertex ordering, etc. . .
- recent matroid tree-width ("vertex-free") by PH \& Whittle (2003).

Branch-width -based

- graph branch-width by Robertson \& Seymour (1983), withing a factor of $3 / 2$ of tree-width,

1 Brief Overview of "Widths"

Traditional tree-width

- name given by Robertson \& Seymour (1983), but some ideas (" k-trees") date back to Beineke \& Pippert (1968) and Rose (1974),
- the same parameter having various descriptions, e.g. using vertex bags, k-trees, simplicial (elimination) vertex ordering, etc. . .
- recent matroid tree-width ("vertex-free") by PH \& Whittle (2003).

Branch-width -based

- graph branch-width by Robertson \& Seymour (1983), withing a factor of $3 / 2$ of tree-width,
- definition quite abstract, so having an immediate extension to, e.g. hypergraph or matroid branch-width,

1 Brief Overview of "Widths"

Traditional tree-width

- name given by Robertson \& Seymour (1983), but some ideas (" k-trees") date back to Beineke \& Pippert (1968) and Rose (1974),
- the same parameter having various descriptions, e.g. using vertex bags, k-trees, simplicial (elimination) vertex ordering, etc. . .
- recent matroid tree-width ("vertex-free") by PH \& Whittle (2003).

Branch-width -based

- graph branch-width by Robertson \& Seymour (1983), withing a factor of $3 / 2$ of tree-width,
- definition quite abstract, so having an immediate extension to, e.g. hypergraph or matroid branch-width,
- and then to graph rank-width, by Oum \& Seymour (2003).

1 Brief Overview of "Widths"

Traditional tree-width

- name given by Robertson \& Seymour (1983), but some ideas (" k-trees") date back to Beineke \& Pippert (1968) and Rose (1974),
- the same parameter having various descriptions, e.g. using vertex bags, k-trees, simplicial (elimination) vertex ordering, etc. . .
- recent matroid tree-width ("vertex-free") by PH \& Whittle (2003).

Branch-width -based

- graph branch-width by Robertson \& Seymour (1983), withing a factor of $3 / 2$ of tree-width,
- definition quite abstract, so having an immediate extension to, e.g. hypergraph or matroid branch-width,
- and then to graph rank-width, by Oum \& Seymour (2003).

Other parameters

- hypertree-width variants for hypergraphs, Gottlob, Leone \& Scarcello (2002),

Other parameters

- hypertree-width variants for hypergraphs, Gottlob, Leone \& Scarcello (2002),
- directed tree-width by Johnson, Robertson, Seymour \& Thomas (2001), followed by DAG-width or Kelly-width, etc. . .

Other parameters

- hypertree-width variants for hypergraphs, Gottlob, Leone \& Scarcello (2002),
- directed tree-width by Johnson, Robertson, Seymour \& Thomas (2001), followed by DAG-width or Kelly-width, etc. . .
- graph clique-width defined by Courcelle \& Olariu (2000), which is a rather different, logic-motivated concept; it interests us since clique-width directly motivated graph rank-width,

Other parameters

- hypertree-width variants for hypergraphs, Gottlob, Leone \& Scarcello (2002),
- directed tree-width by Johnson, Robertson, Seymour \& Thomas (2001), followed by DAG-width or Kelly-width, etc. . .
- graph clique-width defined by Courcelle \& Olariu (2000), which is a rather different, logic-motivated concept; it interests us since clique-width directly motivated graph rank-width,
- and few more notions (path-width, bandwidth, cut-width, $* * * * *$).

Algorithmic aspects of "width" parameters

Tree-width

- is NP-hard to compute on graphs, but

Algorithmic aspects of "width" parameters

Tree-width

- is NP-hard to compute on graphs, but
- there is a linear-time FPT algorithm for it by Bodlaender (1996).

Algorithmic aspects of "width" parameters

Tree-width

- is NP-hard to compute on graphs, but
- there is a linear-time FPT algorithm for it by Bodlaender (1996).

Branch-width

- is also NP-hard to compute on graphs, but

Algorithmic aspects of "width" parameters

Tree-width

- is NP-hard to compute on graphs, but
- there is a linear-time FPT algorithm for it by Bodlaender (1996).

Branch-width

- is also NP-hard to compute on graphs, but
- it is fully polynomial on planar graphs, by Seymour \& Thomas (1994),

Algorithmic aspects of "width" parameters

Tree-width

- is NP-hard to compute on graphs, but
- there is a linear-time FPT algorithm for it by Bodlaender (1996).

Branch-width

- is also NP-hard to compute on graphs, but
- it is fully polynomial on planar graphs, by Seymour \& Thomas (1994),
- and having a linear-time FPT algorithm, Bodlaender \& Thilikos (1997).

Algorithmic aspects of "width" parameters

Tree-width

- is NP-hard to compute on graphs, but
- there is a linear-time FPT algorithm for it by Bodlaender (1996).

Branch-width

- is also NP-hard to compute on graphs, but
- it is fully polynomial on planar graphs, by Seymour \& Thomas (1994),
- and having a linear-time FPT algorithm, Bodlaender \& Thilikos (1997).

The hardness results
carry over to matroid branch-width / tree-width, and to graph rank-width.
The FPT results here
can be extended to matroids over finite fields, and to graph rank-width. ...

2 Branch-width, Definition

A ground set E, with a connectivity function λ (arbitr. symm. submod.) \longrightarrow a branch decomposition:

- E decomposed to a sub-cubic tree (degrees ≤ 3), and
- the elements mapped one-to-one to the tree leaves.

2 Branch-width, Definition

A ground set E, with a connectivity function λ (arbitr. symm. submod.) \longrightarrow a branch decomposition:

- E decomposed to a sub-cubic tree (degrees ≤ 3), and
- the elements mapped one-to-one to the tree leaves.
- The tree edges have widths as follows:

$$
\underline{\operatorname{width}(e)}=\lambda(X)=\lambda(E \backslash X),
$$

where X is "displayed" by e in the tree.

2 Branch-width, Definition

A ground set E, with a connectivity function λ (arbitr. symm. submod.) \longrightarrow a branch decomposition:

- E decomposed to a sub-cubic tree (degrees ≤ 3), and
- the elements mapped one-to-one to the tree leaves.
- The tree edges have widths as follows:

$$
\text { width }(e)=\lambda(X)=\lambda(E \backslash X),
$$

where X is "displayed" by e in the tree.
Branch-width $\operatorname{bw}(\lambda)=$ min. of max. edge widths over all decompositions.

Branch-width variants, rank-width

- Graph branch-width:

$$
E=E(G) \text { and } \lambda(X)=\# \text { of vertices "shared" by } X \text { and } E \backslash X \text { in } G \text {. }
$$

Branch-width variants, rank-width

- Graph branch-width:

$E=E(G)$ and $\lambda(X)=\#$ of vertices "shared" by X and $E \backslash X$ in G.
- Matroid branch-width:
$E=E(M)$ and $\lambda(X)=\mathrm{r}_{M}(X)+\mathrm{r}_{M}(E \backslash X)-\mathrm{r}(M)+1$
(The "dimension" of the intersection of spans of X and $E \backslash X$ in M.)

Branch-width variants, rank-width

- Graph branch-width:

$E=E(G)$ and $\lambda(X)=\#$ of vertices "shared" by X and $E \backslash X$ in G.
- Matroid branch-width:
$E=E(M)$ and $\lambda(X)=\mathrm{r}_{M}(X)+\mathrm{r}_{M}(E \backslash X)-\mathrm{r}(M)+1$
(The "dimension" of the intersection of spans of X and $E \backslash X$ in M.)
- Graph rank-width:
(as motivated by clique-width)

$$
A(G) \rightarrow
$$

$E=V(G)$ and $\lambda(X)=\operatorname{rank}(A(G)[X, E \backslash X])$ over $G F(2)$.

Computing branch-width and rank-width

Theorem 1. (Bodlaender \& Thilikos, 1997) There is an $O(n)$-time FPT algorithm that, for each fixed k, either confirms that the branch-width of a given graph G is $>k$, or it finds a branch-decomposition of G of width $\leq \boldsymbol{k}$.

Computing branch-width and rank-width

Theorem 1. (Bodlaender \& Thilikos, 1997) There is an $O(n)$-time FPT algorithm that, for each fixed k, either confirms that the branch-width of a given graph G is $>k$, or it finds a branch-decomposition of G of width $\leq \boldsymbol{k}$.

Theorem 2. ($\mathrm{PH}, 2005$) There is an $O\left(n^{3}\right)$-time FPT algorithm that, for each fixed k, either confirms that the branch-width of a given matroid M represented over a finite field is $>k$, or it confirms that the branch-width is $\leq k$ and finds a branchdecomposition of M of width $\leq 3 k$.

Computing branch-width and rank-width

Theorem 1. (Bodlaender \& Thilikos, 1997) There is an $O(n)$-time FPT algorithm that, for each fixed k, either confirms that the branch-width of a given graph G is $>k$, or it finds a branch-decomposition of G of width $\leq \boldsymbol{k}$.

Theorem 2. ($\mathrm{PH}, 2005$) There is an $O\left(n^{3}\right)$-time FPT algorithm that, for each fixed k, either confirms that the branch-width of a given matroid M represented over a finite field is $>k$, or it confirms that the branch-width is $\leq k$ and finds a branchdecomposition of M of width $\leq 3 k$.

Theorem 3. (Oum \& Seymour / Oum \& Courcelle, 2005/6) There is an $O\left(n^{3}\right)$ time FPT algorithm that, for each fixed k, either confirms that the rank-width of a given graph G is $>k$, or it confirms that the rank-width is $\leq k$ and finds a rankdecomposition of G of width $\leq 3 k$.

Computing branch-width and rank-width

Theorem 1. (Bodlaender \& Thilikos, 1997) There is an $O(n)$-time FPT algorithm that, for each fixed k, either confirms that the branch-width of a given graph G is $>k$, or it finds a branch-decomposition of G of width $\leq \boldsymbol{k}$.

Theorem 2. (PH, 2005) There is an $O\left(n^{3}\right)$-time FPT algorithm that, for each fixed k, either confirms that the branch-width of a given matroid M represented over a finite field is $>k$, or it confirms that the branch-width is $\leq k$ and finds a branchdecomposition of M of width $\leq 3 k$.

Theorem 3. (Oum \& Seymour / Oum \& Courcelle, 2005/6) There is an $O\left(n^{3}\right)$ time FPT algorithm that, for each fixed k, either confirms that the rank-width of a given graph G is $>k$, or it confirms that the rank-width is $\leq k$ and finds a rankdecomposition of G of width $\leq 3 k$.
.......new
Theorem 4. (PH \& Oum, 2007) There is an $O\left(n^{3}\right)$-time FPT algorithm that, for each fixed k, either confirms that the branch-width of a given matroid M over a finite field (rank-width of a given graph G) is $>k$, or it finds a branch-decomposition of M (a rank-decomposition of G) of width $\leq \boldsymbol{k}$.

3 Width (a number) \rightarrow Decomposition

Motivation: There are occasions when getting the branch-width as a number is significantly easier than getting a corresponding decomposition, such as, using "forbiden minor" characterizations.

3 Width (a number) \rightarrow Decomposition

Motivation: There are occasions when getting the branch-width as a number is significantly easier than getting a corresponding decomposition, such as, using "forbiden minor" characterizations.

Our task: Knowing how to determine the exact branch-width, we want to construct an optimal decomposition for it.

3 Width (a number) \rightarrow Decomposition

Motivation: There are occasions when getting the branch-width as a number is significantly easier than getting a corresponding decomposition, such as, using "forbiden minor" characterizations.

Our task: Knowing how to determine the exact branch-width, we want to construct an optimal decomposition for it. Instances to be solved. . .

- Matroids (over finite fields) - there is a computable finite set of forbidden minors for the matroids of branch-width $\leq k$, and we have a decomposition of width $\leq 3 k$ from Theorem 2 .

Hence the branch-width as a number can be determined efficiently, but an optimal decomposition does not follow.

3 Width (a number) \rightarrow Decomposition

Motivation: There are occasions when getting the branch-width as a number is significantly easier than getting a corresponding decomposition, such as, using "forbiden minor" characterizations.

Our task: Knowing how to determine the exact branch-width, we want to construct an optimal decomposition for it. Instances to be solved. . .

- Matroids (over finite fields) - there is a computable finite set of forbidden minors for the matroids of branch-width $\leq k$, and we have a decomposition of width $\leq 3 k$ from Theorem 2.

Hence the branch-width as a number can be determined efficiently, but an optimal decomposition does not follow.

- Same with graph rank-width - there is a computable finite set of forbidden vertex-minors for the graphs of rank-width $\leq k$, and we have a decomposition of width $\leq 3 k$ from Theorem 3 .

How can we get an optimal decomposition?

An idea motivated by Geelen [private communication]. . .

1. Take an arbitrary partition \mathcal{P} of our E, and extend connectivity λ to $\lambda^{\mathcal{P}}$ on \mathcal{P} naturally. Assume the branch-width of $\lambda^{\mathcal{P}}$ is efficiently computable.

An idea motivated by Geelen [private communication]. . .

1. Take an arbitrary partition \mathcal{P} of our E, and extend connectivity λ to $\lambda^{\mathcal{P}}$ on \mathcal{P} naturally. Assume the branch-width of $\lambda^{\mathcal{P}}$ is efficiently computable.
2. If $|\mathcal{P}| \leq 2$, then we have a decomposition. Done.

An idea motivated by Geelen [private communication]...

1. Take an arbitrary partition \mathcal{P} of our E, and extend connectivity λ to $\lambda^{\mathcal{P}}$ on \mathcal{P} naturally. Assume the branch-width of $\lambda^{\mathcal{P}}$ is efficiently computable.
2. If $|\mathcal{P}| \leq 2$, then we have a decomposition. Done.
3. Ranging over all pairs $P_{1}, P_{2} \in \mathcal{P}$, and $\mathcal{P}^{\prime}=\mathcal{P} \backslash\left\{P_{1}, P_{2}\right\} \cup\left\{P_{1} \cup P_{2}\right\}$; whenever $\operatorname{bw}\left(\lambda^{\mathcal{P}^{\prime}}\right) \leq \operatorname{bw}\left(\lambda^{\mathcal{P}}\right)$ happens, go to the next step.

An idea motivated by Geelen [private communication]...

1. Take an arbitrary partition \mathcal{P} of our E, and extend connectivity λ to $\lambda^{\mathcal{P}}$ on \mathcal{P} naturally. Assume the branch-width of $\lambda^{\mathcal{P}}$ is efficiently computable.
2. If $|\mathcal{P}| \leq 2$, then we have a decomposition. Done.
3. Ranging over all pairs $P_{1}, P_{2} \in \mathcal{P}$, and $\mathcal{P}^{\prime}=\mathcal{P} \backslash\left\{P_{1}, P_{2}\right\} \cup\left\{P_{1} \cup P_{2}\right\}$; whenever $\operatorname{bw}\left(\lambda^{\mathcal{P}^{\mathcal{P}}}\right) \leq \operatorname{bw}\left(\lambda^{\mathcal{P}}\right)$ happens, go to the next step.
4. Recursively obtain a branch-decomposition of \mathcal{P}^{\prime}. Split the leaf of $P_{1} \cup P_{2}$ into two new leaves labeled P_{1} and P_{2}. Return.

An idea motivated by Geelen [private communication]...

1. Take an arbitrary partition \mathcal{P} of our E, and extend connectivity λ to $\lambda^{\mathcal{P}}$ on \mathcal{P} naturally. Assume the branch-width of $\lambda^{\mathcal{P}}$ is efficiently computable.
2. If $|\mathcal{P}| \leq 2$, then we have a decomposition. Done.
3. Ranging over all pairs $P_{1}, P_{2} \in \mathcal{P}$, and $\mathcal{P}^{\prime}=\mathcal{P} \backslash\left\{P_{1}, P_{2}\right\} \cup\left\{P_{1} \cup P_{2}\right\}$; whenever $\operatorname{bw}\left(\lambda^{\mathcal{P}^{\prime}}\right) \leq \operatorname{bw}\left(\lambda^{\mathcal{P}}\right)$ happens, go to the next step.
4. Recursively obtain a branch-decomposition of \mathcal{P}^{\prime}. Split the leaf of $P_{1} \cup P_{2}$ into two new leaves labeled P_{1} and P_{2}. Return.

This scheme leads to $O\left(n^{3}\right)$ calls to $\lambda^{\mathcal{P}}$-queries,

An idea motivated by Geelen [private communication]...

1. Take an arbitrary partition \mathcal{P} of our E, and extend connectivity λ to $\lambda^{\mathcal{P}}$ on \mathcal{P} naturally. Assume the branch-width of $\lambda^{\mathcal{P}}$ is efficiently computable.
2. If $|\mathcal{P}| \leq 2$, then we have a decomposition. Done.
3. Ranging over all pairs $P_{1}, P_{2} \in \mathcal{P}$, and $\mathcal{P}^{\prime}=\mathcal{P} \backslash\left\{P_{1}, P_{2}\right\} \cup\left\{P_{1} \cup P_{2}\right\}$; whenever $\operatorname{bw}\left(\lambda^{\mathcal{P}^{\prime}}\right) \leq \operatorname{bw}\left(\lambda^{\mathcal{P}}\right)$ happens, go to the next step.
4. Recursively obtain a branch-decomposition of \mathcal{P}^{\prime}. Split the leaf of $P_{1} \cup P_{2}$ into two new leaves labeled P_{1} and P_{2}. Return.

This scheme leads to $O\left(n^{3}\right)$ calls to $\lambda^{\mathcal{P}}$-queries, but we manage to speed it up to just $O\left(n^{2}\right)$ queries:

- At the top level of recursion, process not only the first admissible pair P_{1}, P_{2} in step 3, but all such pairwise disjoint pairs.

An idea motivated by Geelen [private communication]. . .

1. Take an arbitrary partition \mathcal{P} of our E, and extend connectivity λ to $\lambda^{\mathcal{P}}$ on \mathcal{P} naturally. Assume the branch-width of $\lambda^{\mathcal{P}}$ is efficiently computable.
2. If $|\mathcal{P}| \leq 2$, then we have a decomposition. Done.
3. Ranging over all pairs $P_{1}, P_{2} \in \mathcal{P}$, and $\mathcal{P}^{\prime}=\mathcal{P} \backslash\left\{P_{1}, P_{2}\right\} \cup\left\{P_{1} \cup P_{2}\right\}$; whenever $\operatorname{bw}\left(\lambda^{\mathcal{P}^{\prime}}\right) \leq \operatorname{bw}\left(\lambda^{\mathcal{P}}\right)$ happens, go to the next step.
4. Recursively obtain a branch-decomposition of \mathcal{P}^{\prime}. Split the leaf of $P_{1} \cup P_{2}$ into two new leaves labeled P_{1} and P_{2}. Return.

This scheme leads to $O\left(n^{3}\right)$ calls to $\lambda^{\mathcal{P}}$-queries, but we manage to speed it up to just $O\left(n^{2}\right)$ queries:

- At the top level of recursion, process not only the first admissible pair P_{1}, P_{2} in step 3, but all such pairwise disjoint pairs.
- At deeper levels, process only such pairs that P_{1} of it has been processed one level up.

Gadgets for partitioned matroids

True standing: We do not know how to devise forbidden minor characterizations for the branch-width of partitioned matroids,

Gadgets for partitioned matroids

True standing: We do not know how to devise forbidden minor characterizations for the branch-width of partitioned matroids, but we can replace the parts of \mathcal{P} by appropriate "unbreakable" (titanic) gadgets.

Titanic gadget - for $P \in \mathcal{P}$ and $\ell=\lambda(P)$,
we replace $P \subseteq E$ in M with a copy of the uniform matroid $U_{\ell-1,3 \ell-5}$.
(To "replace" means to use the proper matroid amalgam.)

Gadgets for partitioned matroids

True standing: We do not know how to devise forbidden minor characterizations for the branch-width of partitioned matroids, but we can replace the parts of \mathcal{P} by appropriate "unbreakable" (titanic) gadgets.

Titanic gadget - for $P \in \mathcal{P}$ and $\ell=\lambda(P)$,
we replace $P \subseteq E$ in M with a copy of the uniform matroid $U_{\ell-1,3 \ell-5}$.
(To "replace" means to use the proper matroid amalgam.)
Lemma 5. If $\operatorname{bw}(\lambda) \leq k$, and \mathcal{P} is a titanic partition of width $\leq k$ (i.e. each part $P \in \mathcal{P}$ is titanic of $\lambda(P) \leq k)$; then the branch-width of $\lambda^{\mathcal{P}}$ is $\leq k$.

Gadgets for partitioned matroids

True standing: We do not know how to devise forbidden minor characterizations for the branch-width of partitioned matroids, but we can replace the parts of \mathcal{P} by appropriate "unbreakable" (titanic) gadgets.

Titanic gadget - for $P \in \mathcal{P}$ and $\ell=\lambda(P)$, we replace $P \subseteq E$ in M with a copy of the uniform matroid $U_{\ell-1,3 \ell-5}$.
(To "replace" means to use the proper matroid amalgam.)
Lemma 5. If $\operatorname{bw}(\lambda) \leq k$, and \mathcal{P} is a titanic partition of width $\leq k$ (i.e. each part $P \in \mathcal{P}$ is titanic of $\lambda(P) \leq k)$; then the branch-width of $\lambda^{\mathcal{P}}$ is $\leq k$.

Starting with a partitioned matroid M, \mathcal{P}, we arrive at normalized matroid $M^{\#}$. ($M^{\#}$ may require a slightly larger field to be represented over.)

Theorem 6. The branch-width of $\lambda^{\mathcal{P}}$ on M is equal to $\operatorname{bw}\left(M^{\#}\right)$.

4 Our new Algorithm, a Sketch

We want to "squeeze" the alg. of Section 3 inside the old matroid bw. algorithm...

- Start with a $3 k$-decomposition of $M^{\#}$ (Theorem 2), otherwise NO.

4 Our new Algorithm, a Sketch

We want to "squeeze" the alg. of Section 3 inside the old matroid bw. algorithm...

- Start with a $3 k$-decomposition of $M^{\#}$ (Theorem 2), otherwise NO.
- Now, "merging" parts $P_{1}, P_{2} \in \mathcal{P}$ means adding a new titanic gadget, which can be done linearly while increasing the decomp. width by $<\ell$.

4 Our new Algorithm, a Sketch

We want to "squeeze" the alg. of Section 3 inside the old matroid bw. algorithm. . .

- Start with a $3 k$-decomposition of $M^{\#}$ (Theorem 2), otherwise NO.
- Now, "merging" parts $P_{1}, P_{2} \in \mathcal{P}$ means adding a new titanic gadget, which can be done linearly while increasing the decomp. width by $<\ell$.
- Testing bw. of the merged partition then means checking the appr. forbidden minors, which is again linear using the current decomposition.

4 Our new Algorithm, a Sketch

We want to "squeeze" the alg. of Section 3 inside the old matroid bw. algorithm...

- Start with a $3 k$-decomposition of $M^{\#}$ (Theorem 2), otherwise NO.
- Now, "merging" parts $P_{1}, P_{2} \in \mathcal{P}$ means adding a new titanic gadget, which can be done linearly while increasing the decomp. width by $<\ell$.
- Testing bw. of the merged partition then means checking the appr. forbidden minors, which is again linear using the current decomposition.
- Whenever a "mergeable" pair $P_{1}, P_{2} \in \mathcal{P}$ is found, we must update our decomposition, down to width $\leq 3 k$ again.
This can be done in quadratic time, cf. the proof of Theorem 2.

4 Our new Algorithm, a Sketch

We want to "squeeze" the alg. of Section 3 inside the old matroid bw. algorithm...

- Start with a $3 k$-decomposition of $M^{\#}$ (Theorem 2), otherwise NO.
- Now, "merging" parts $P_{1}, P_{2} \in \mathcal{P}$ means adding a new titanic gadget, which can be done linearly while increasing the decomp. width by $<\ell$.
- Testing bw. of the merged partition then means checking the appr. forbidden minors, which is again linear using the current decomposition.
- Whenever a "mergeable" pair $P_{1}, P_{2} \in \mathcal{P}$ is found, we must update our decomposition, down to width $\leq 3 k$ again.
This can be done in quadratic time, cf. the proof of Theorem 2.
Altogether, we really get $n^{2} \times O(n)+n \times O\left(n^{2}\right)=O\left(n^{3}\right)$ time!

5 Application to Rank-width

How do we translate our matroid-based results to graph rank-width?

5 Application to Rank-width

How do we translate our matroid-based results to graph rank-width?

- bipartite $G, V(G)=U \cup W$:

		W		
	0	1	1	
U	1	0	1	I_{U}
	0	1	0	

Fact. The rank-width of a bipartite graph equals the branch-width of the binary matroid represented by its bipartite adjacency matrix.

5 Application to Rank-width

How do we translate our matroid-based results to graph rank-width?

- bipartite $G, V(G)=U \cup W$:

	W			
	0	1	1	
U	1	0	1	I_{U}
	0	1	0	

Fact. The rank-width of a bipartite graph equals the branch-width of the binary matroid represented by its bipartite adjacency matrix.

- What to do for non-bipartite graphs?

5 Application to Rank-width

How do we translate our matroid-based results to graph rank-width?

- bipartite $G, V(G)=U \cup W$:

		W		
	0	1	1	
U	1	0	1	I_{U}
	0	1	0	

Fact. The rank-width of a bipartite graph equals the branch-width of the binary matroid represented by its bipartite adjacency matrix.

- What to do for non-bipartite graphs?

Fact. We change every graph G to the associated bipartite graph with its canonical vertex partition. The value of rank-width exactly doubles.

