Finding Branch-decompositions and Rank-decompositions

Petr Hliněný

Faculty of Informatics, Masaryk University Botanická 68a, 602 00 Brno, Czech Rep.

e-mail: hlineny@fi.muni.cz http://www.fi.muni.cz/~hlineny

joint work with **Sang-il Oum** Department of Combinatorics and Optimization, University of Waterloo, Canada. e-mail: sangil@math.uwaterloo.ca.

Contents

1 Brief Overview of "Widths"

Some traditional and new "width" parameters of graphs and other combinatorial structures.

2 Branch-width, Definition

Branch-decomposition of an arbitrary connectivity (symmetric and submodular) set function. Graph and matroid branch-width, and graph rank-width.

3 Width (a number) \rightarrow Decomposition

It is sometimes easier to get the branch-width as a number than a corresponding decomposition. How can we construct a decomposition then.

Our new Algorithm, a Sketch 12 4 The full integration of above sketched ideas in a new $O(n^3)$ FPT algorithm for optimal matroid branch-decompositions and graph rank-decompositions.

5 **Application to Rank-width**

13

Q

6

3

Traditional tree-width

• name given by Robertson & Seymour (1983), but

some ideas ("k-trees") date back to Beineke & Pippert (1968) and Rose (1974),

Traditional tree-width

- name given by Robertson & Seymour (1983), but some ideas ("k-trees") date back to Beineke & Pippert (1968) and Rose (1974),
- the same parameter having various descriptions, e.g. using vertex bags, *k*-trees, simplicial (elimination) vertex ordering, etc...

Traditional tree-width

- name given by Robertson & Seymour (1983), but some ideas ("k-trees") date back to Beineke & Pippert (1968) and Rose (1974),
- the same parameter having various descriptions, e.g. using vertex bags, *k*-trees, simplicial (elimination) vertex ordering, etc...
- recent matroid tree-width ("vertex-free") by PH & Whittle (2003).

Traditional tree-width

- name given by Robertson & Seymour (1983), but some ideas ("k-trees") date back to Beineke & Pippert (1968) and Rose (1974),
- the same parameter having various descriptions, e.g. using vertex bags, *k*-trees, simplicial (elimination) vertex ordering, etc...
- recent matroid tree-width ("vertex-free") by PH & Whittle (2003).

Branch-width-based

 graph branch-width by Robertson & Seymour (1983), withing a factor of 3/2 of tree-width,

Traditional tree-width

- name given by Robertson & Seymour (1983), but some ideas ("k-trees") date back to Beineke & Pippert (1968) and Rose (1974),
- the same parameter having various descriptions, e.g. using vertex bags, *k*-trees, simplicial (elimination) vertex ordering, etc...
- recent matroid tree-width ("vertex-free") by PH & Whittle (2003).

Branch-width-based

- graph branch-width by Robertson & Seymour (1983), withing a factor of 3/2 of tree-width,
- definition quite abstract, so having an immediate extension to, e.g. hypergraph or matroid branch-width,

Traditional tree-width

- name given by Robertson & Seymour (1983), but some ideas ("k-trees") date back to Beineke & Pippert (1968) and Rose (1974),
- the same parameter having various descriptions, e.g. using vertex bags, *k*-trees, simplicial (elimination) vertex ordering, etc...
- recent matroid tree-width ("vertex-free") by PH & Whittle (2003).

Branch-width-based

- graph branch-width by Robertson & Seymour (1983), withing a factor of 3/2 of tree-width,
- definition quite abstract, so having an immediate extension to, e.g. hypergraph or matroid branch-width,
- and then to graph rank-width, by Oum & Seymour (2003).

3

Traditional tree-width

- name given by Robertson & Seymour (1983), but some ideas ("k-trees") date back to Beineke & Pippert (1968) and Rose (1974),
- the same parameter having various descriptions, e.g. using vertex bags, *k*-trees, simplicial (elimination) vertex ordering, etc...
- recent matroid tree-width ("vertex-free") by PH & Whittle (2003).

Branch-width-based

- graph branch-width by Robertson & Seymour (1983), withing a factor of 3/2 of tree-width,
- definition quite abstract, so having an immediate extension to, e.g. hypergraph or matroid branch-width,
- and then to graph rank-width, by Oum & Seymour (2003).

3

 hypertree-width variants for hypergraphs, Gottlob, Leone & Scarcello (2002),

- hypertree-width variants for hypergraphs, Gottlob, Leone & Scarcello (2002),
- directed tree-width by Johnson, Robertson, Seymour & Thomas (2001), followed by DAG-width or Kelly-width, etc...

- hypertree-width variants for hypergraphs, Gottlob, Leone & Scarcello (2002),
- directed tree-width by Johnson, Robertson, Seymour & Thomas (2001), followed by DAG-width or Kelly-width, etc...
- graph clique-width defined by Courcelle & Olariu (2000),
 which is a rather different, logic-motivated concept; it interests us since clique-width directly motivated graph rank-width,

- hypertree-width variants for hypergraphs, Gottlob, Leone & Scarcello (2002),
- directed tree-width by Johnson, Robertson, Seymour & Thomas (2001), followed by DAG-width or Kelly-width, etc...
- graph clique-width defined by Courcelle & Olariu (2000),
 which is a rather different, logic-motivated concept; it interests us since clique-width directly motivated graph rank-width,
- and few more notions (path-width, bandwidth, cut-width, * * * * *).

Tree-width

• is NP-hard to compute on graphs, but

Tree-width

- is NP-hard to compute on graphs, but
- there is a linear-time FPT algorithm for it by Bodlaender (1996).

Tree-width

- is NP-hard to compute on graphs, but
- there is a linear-time FPT algorithm for it by Bodlaender (1996).

Branch-width

• is also NP-hard to compute on graphs, but

Tree-width

- is NP-hard to compute on graphs, but
- there is a linear-time FPT algorithm for it by Bodlaender (1996).

Branch-width

- is also NP-hard to compute on graphs, but
- it is fully polynomial on planar graphs, by Seymour & Thomas (1994),

Tree-width

- is NP-hard to compute on graphs, but
- there is a linear-time FPT algorithm for it by Bodlaender (1996).

Branch-width

- is also NP-hard to compute on graphs, but
- it is fully polynomial on planar graphs, by Seymour & Thomas (1994),
- and having a linear-time FPT algorithm, Bodlaender & Thilikos (1997).

Tree-width

- is NP-hard to compute on graphs, but
- there is a linear-time FPT algorithm for it by Bodlaender (1996).

Branch-width

- is also NP-hard to compute on graphs, but
- it is fully polynomial on planar graphs, by Seymour & Thomas (1994),
- and having a linear-time FPT algorithm, Bodlaender & Thilikos (1997).

The hardness results carry over to matroid branch-width / tree-width, and to graph rank-width. The **FPT results** here can be extended to matroids over finite fields, and to graph rank-width. ...

Petr Hliněný, ESA 2007, Eilat

2 Branch-width, Definition

A ground set E, with a connectivity function λ (arbitr. symm. submod.) \longrightarrow a branch decomposition:

- *E* decomposed to a *sub-cubic tree* (degrees \leq 3), and
- the elements mapped one-to-one to the tree leaves.

2 Branch-width, Definition

A ground set E, with a connectivity function λ (arbitr. symm. submod.) \longrightarrow a branch decomposition:

- *E* decomposed to a *sub-cubic tree* (degrees \leq 3), and
- the elements mapped one-to-one to the tree leaves.
- The tree edges have *widths* as follows:

 $\underline{\mathsf{width}(e) \ = \ \lambda(X)} = \lambda(E \setminus X),$

where X is "displayed" by e in the tree.

2 Branch-width, Definition

A ground set E, with a connectivity function λ (arbitr. symm. submod.) \longrightarrow a branch decomposition:

- *E* decomposed to a *sub-cubic tree* (degrees \leq 3), and
- the elements mapped one-to-one to the tree leaves.
- The tree edges have *widths* as follows:

 $\underline{\mathsf{width}(e) \ = \ \lambda(X)} = \lambda(E \setminus X),$

where X is "displayed" by e in the tree.

Branch-width bw(λ) = min. of max. edge widths over all decompositions.

Petr Hliněný, ESA 2007, Eilat

6

Branch-width variants, rank-width

• Graph branch-width:

E = E(G) and $\lambda(X) = \#$ of vertices "shared" by X and $E \setminus X$ in G.

7

Branch-width variants, rank-width

• Graph branch-width:

E = E(G) and $\lambda(X) = \#$ of vertices "shared" by X and $E \setminus X$ in G.

• Matroid branch-width:

E = E(M) and $\lambda(X) = r_M(X) + r_M(E \setminus X) - r(M) + 1$

(The "dimension" of the intersection of spans of X and $E \setminus X$ in M.)

Branch-width variants, rank-width

• Graph branch-width:

E = E(G) and $\lambda(X) = \#$ of vertices "shared" by X and $E \setminus X$ in G.

• Matroid branch-width:

$$E = E(M)$$
 and $\lambda(X) = r_M(X) + r_M(E \setminus X) - r(M) + 1$

(The "dimension" of the intersection of spans of X and $E \setminus X$ in M.)

• Graph rank-width: (as motivated by clique-width) $A(G) \rightarrow \begin{array}{c|c} V(G) \setminus X \\ \hline & 0 & 1 & 1 \\ X & 1 & 0 & 1 \\ 0 & 1 & 0 \end{array}$

E = V(G) and $\lambda(X) = \operatorname{rank}(A(G)[X, E \setminus X])$ over GF(2).

Theorem 1. (Bodlaender & Thilikos, 1997) There is an O(n)-time FPT algorithm that, for each fixed k, either confirms that the branch-width of a given graph G is > k, or it finds a branch-decomposition of G of width $\leq k$.

Theorem 1. (Bodlaender & Thilikos, 1997) There is an O(n)-time FPT algorithm that, for each fixed k, either confirms that the branch-width of a given graph G is > k, or it finds a branch-decomposition of G of width $\leq k$.

Theorem 2. (PH, 2005) There is an $O(n^3)$ -time FPT algorithm that, for each fixed k, either confirms that the branch-width of a given matroid M represented over a finite field is > k, or it confirms that the branch-width is $\le k$ and finds a branch-decomposition of M of width $\le 3k$.

Theorem 1. (Bodlaender & Thilikos, 1997) There is an O(n)-time FPT algorithm that, for each fixed k, either confirms that the branch-width of a given graph G is > k, or it finds a branch-decomposition of G of width $\leq k$.

Theorem 2. (PH, 2005) There is an $O(n^3)$ -time FPT algorithm that, for each fixed k, either confirms that the branch-width of a given matroid M represented over a finite field is > k, or it confirms that the branch-width is $\le k$ and finds a branch-decomposition of M of width $\le 3k$.

Theorem 3. (Oum & Seymour / Oum & Courcelle, 2005/6) There is an $O(n^3)$ time FPT algorithm that, for each fixed k, either confirms that the rank-width of a given graph G is > k, or it confirms that the rank-width is $\le k$ and finds a rankdecomposition of G of width $\le 3k$.

Theorem 1. (Bodlaender & Thilikos, 1997) There is an O(n)-time FPT algorithm that, for each fixed k, either confirms that the branch-width of a given graph G is > k, or it finds a branch-decomposition of G of width $\leq k$.

Theorem 2. (PH, 2005) There is an $O(n^3)$ -time FPT algorithm that, for each fixed k, either confirms that the branch-width of a given matroid M represented over a finite field is > k, or it confirms that the branch-width is $\le k$ and finds a branch-decomposition of M of width $\le 3k$.

Theorem 3. (Oum & Seymour / Oum & Courcelle, 2005/6) There is an $O(n^3)$ time FPT algorithm that, for each fixed k, either confirms that the rank-width of a given graph G is > k, or it confirms that the rank-width is $\le k$ and finds a rankdecomposition of G of width $\le 3k$.

.....new

Theorem 4. (PH & Oum, 2007) There is an $O(n^3)$ -time FPT algorithm that, for each fixed k, either confirms that the branch-width of a given matroid M over a finite field (rank-width of a given graph G) is > k, or it finds a branch-decomposition of M (a rank-decomposition of G) of width $\leq k$.

Petr Hliněný, ESA 2007, Eilat

Motivation: There are occasions when getting the branch-width as a number is significantly easier than getting a corresponding decomposition, such as, using "forbiden minor" characterizations.

Motivation: There are occasions when getting the branch-width as a number is significantly easier than getting a corresponding decomposition, such as, using "forbiden minor" characterizations.

Our task: Knowing how to determine the exact branch-width, we want to construct an optimal decomposition for it.

Motivation: There are occasions when getting the branch-width as a number is significantly easier than getting a corresponding decomposition, such as, using "forbiden minor" characterizations.

Our task: Knowing how to determine the exact branch-width, we want to construct an optimal decomposition for it.

Instances to be solved...

 Matroids (over finite fields) — there is a computable finite set of forbidden minors for the matroids of branch-width ≤ k, and we have a decomposition of width ≤ 3k from Theorem 2.

Hence the branch-width as a number can be determined efficiently, but an optimal decomposition does not follow.

9

Motivation: There are occasions when getting the branch-width as a number is significantly easier than getting a corresponding decomposition, such as, using "forbiden minor" characterizations.

Our task: Knowing how to determine the exact branch-width, we want to construct an optimal decomposition for it.

Instances to be solved...

 Matroids (over finite fields) — there is a computable finite set of forbidden minors for the matroids of branch-width ≤ k, and we have a decomposition of width ≤ 3k from Theorem 2.

Hence the branch-width as a number can be determined efficiently, but an optimal decomposition does not follow.

 Same with graph rank-width — there is a computable finite set of forbidden vertex-minors for the graphs of rank-width ≤ k, and we have a decomposition of width ≤ 3k from Theorem 3.

How can we get an optimal decomposition?

1. Take an arbitrary partition \mathcal{P} of our E, and extend connectivity λ to $\lambda^{\mathcal{P}}$ on \mathcal{P} naturally. Assume the branch-width of $\lambda^{\mathcal{P}}$ is efficiently computable.

- 1. Take an arbitrary partition \mathcal{P} of our E, and extend connectivity λ to $\lambda^{\mathcal{P}}$ on \mathcal{P} naturally. Assume the branch-width of $\lambda^{\mathcal{P}}$ is efficiently computable.
- 2. If $|\mathcal{P}| \leq 2$, then we have a decomposition. Done.

- 1. Take an arbitrary partition \mathcal{P} of our E, and extend connectivity λ to $\lambda^{\mathcal{P}}$ on \mathcal{P} naturally. Assume the branch-width of $\lambda^{\mathcal{P}}$ is efficiently computable.
- 2. If $|\mathcal{P}| \leq 2$, then we have a decomposition. Done.
- 3. Ranging over all pairs $P_1, P_2 \in \mathcal{P}$, and $\mathcal{P}' = \mathcal{P} \setminus \{P_1, P_2\} \cup \{P_1 \cup P_2\}$; whenever $bw(\lambda^{\mathcal{P}'}) \leq bw(\lambda^{\mathcal{P}})$ happens, go to the next step.

- 1. Take an arbitrary partition \mathcal{P} of our E, and extend connectivity λ to $\lambda^{\mathcal{P}}$ on \mathcal{P} naturally. Assume the branch-width of $\lambda^{\mathcal{P}}$ is efficiently computable.
- 2. If $|\mathcal{P}| \leq 2$, then we have a decomposition. Done.
- 3. Ranging over all pairs $P_1, P_2 \in \mathcal{P}$, and $\mathcal{P}' = \mathcal{P} \setminus \{P_1, P_2\} \cup \{P_1 \cup P_2\}$; whenever $bw(\lambda^{\mathcal{P}'}) \leq bw(\lambda^{\mathcal{P}})$ happens, go to the next step.
- 4. Recursively obtain a branch-decomposition of \mathcal{P}' . Split the leaf of $P_1 \cup P_2$ into two new leaves labeled P_1 and P_2 . Return.

- 1. Take an arbitrary partition \mathcal{P} of our E, and extend connectivity λ to $\lambda^{\mathcal{P}}$ on \mathcal{P} naturally. Assume the branch-width of $\lambda^{\mathcal{P}}$ is efficiently computable.
- 2. If $|\mathcal{P}| \leq 2$, then we have a decomposition. Done.
- 3. Ranging over all pairs $P_1, P_2 \in \mathcal{P}$, and $\mathcal{P}' = \mathcal{P} \setminus \{P_1, P_2\} \cup \{P_1 \cup P_2\}$; whenever $bw(\lambda^{\mathcal{P}'}) \leq bw(\lambda^{\mathcal{P}})$ happens, go to the next step.
- 4. Recursively obtain a branch-decomposition of \mathcal{P}' . Split the leaf of $P_1 \cup P_2$ into two new leaves labeled P_1 and P_2 . Return.

This scheme leads to $O(n^3)$ calls to $\lambda^{\mathcal{P}}$ -queries,

- Take an arbitrary partition P of our E, and extend connectivity λ to λ^P on P naturally. Assume the branch-width of λ^P is efficiently computable.
- 2. If $|\mathcal{P}| \leq 2$, then we have a decomposition. Done.
- 3. Ranging over all pairs $P_1, P_2 \in \mathcal{P}$, and $\mathcal{P}' = \mathcal{P} \setminus \{P_1, P_2\} \cup \{P_1 \cup P_2\}$; whenever $bw(\lambda^{\mathcal{P}'}) \leq bw(\lambda^{\mathcal{P}})$ happens, go to the next step.
- 4. Recursively obtain a branch-decomposition of \mathcal{P}' . Split the leaf of $P_1 \cup P_2$ into two new leaves labeled P_1 and P_2 . Return.

This scheme leads to $O(n^3)$ calls to $\lambda^{\mathcal{P}}$ -queries, but we manage to speed it up to just $O(n^2)$ queries:

• At the top level of recursion, process not only the first admissible pair P_1, P_2 in step 3, but all such pairwise disjoint pairs.

- Take an arbitrary partition P of our E, and extend connectivity λ to λ^P on P naturally. Assume the branch-width of λ^P is efficiently computable.
- 2. If $|\mathcal{P}| \leq 2$, then we have a decomposition. Done.
- 3. Ranging over all pairs $P_1, P_2 \in \mathcal{P}$, and $\mathcal{P}' = \mathcal{P} \setminus \{P_1, P_2\} \cup \{P_1 \cup P_2\}$; whenever $bw(\lambda^{\mathcal{P}'}) \leq bw(\lambda^{\mathcal{P}})$ happens, go to the next step.
- 4. Recursively obtain a branch-decomposition of \mathcal{P}' . Split the leaf of $P_1 \cup P_2$ into two new leaves labeled P_1 and P_2 . Return.

This scheme leads to $O(n^3)$ calls to $\lambda^{\mathcal{P}}$ -queries, but we manage to speed it up to just $O(n^2)$ queries:

- At the top level of recursion, process not only the first admissible pair P_1, P_2 in step 3, but all such pairwise disjoint pairs.
- At deeper levels, process only such pairs that P_1 of it has been processed one level up.

True standing: We do not know how to devise forbidden minor characterizations for the branch-width of partitioned matroids,

True standing: We do not know how to devise forbidden minor characterizations for the branch-width of partitioned matroids, but we can replace the parts of \mathcal{P} by appropriate "unbreakable" (*titanic*) gadgets.

Titanic gadget – for $P \in \mathfrak{P}$ and $\ell = \lambda(P)$,

we replace $P \subseteq E$ in M with a copy of the *uniform matroid* $U_{\ell-1,3\ell-5}$.

(To "replace" means to use the proper *matroid amalgam*.)

True standing: We do not know how to devise forbidden minor characterizations for the branch-width of partitioned matroids, but we can replace the parts of \mathcal{P} by appropriate "unbreakable" (*titanic*) gadgets.

Titanic gadget – for $P \in \mathfrak{P}$ and $\ell = \lambda(P)$,

we replace $P \subseteq E$ in M with a copy of the *uniform matroid* $U_{\ell-1,3\ell-5}$.

(To "replace" means to use the proper *matroid amalgam*.)

Lemma 5. If $bw(\lambda) \le k$, and \mathfrak{P} is a titanic partition of width $\le k$ (i.e. each part $P \in \mathfrak{P}$ is titanic of $\lambda(P) \le k$); then the branch-width of $\lambda^{\mathfrak{P}}$ is $\le k$.

True standing: We do not know how to devise forbidden minor characterizations for the branch-width of partitioned matroids, but we can replace the parts of \mathcal{P} by appropriate "unbreakable" (*titanic*) gadgets.

Titanic gadget – for $P \in \mathfrak{P}$ and $\ell = \lambda(P)$,

we replace $P \subseteq E$ in M with a copy of the *uniform matroid* $U_{\ell-1,3\ell-5}$. (To "replace" means to use the proper *matroid amalgam*.)

Lemma 5. If $bw(\lambda) \le k$, and \mathcal{P} is a titanic partition of width $\le k$ (i.e. each part $P \in \mathcal{P}$ is titanic of $\lambda(P) \le k$); then the branch-width of $\lambda^{\mathcal{P}}$ is $\le k$.

Starting with a partitioned matroid M, \mathcal{P} , we arrive at *normalized* matroid $M^{\#}$. ($M^{\#}$ may require a slightly larger field to be represented over.)

Theorem 6. The branch-width of $\lambda^{\mathcal{P}}$ on M is equal to $bw(M^{\#})$.

We want to "squeeze" the alg. of Section 3 inside the old matroid bw. algorithm...

• Start with a 3k-decomposition of $M^{\#}$ (Theorem 2), otherwise NO.

We want to "squeeze" the alg. of Section 3 inside the old matroid bw. algorithm...

- Start with a 3k-decomposition of $M^{\#}$ (Theorem 2), otherwise NO.
- Now, "merging" parts P₁, P₂ ∈ 𝒫 means adding a new titanic gadget, which can be done linearly while increasing the decomp. width by < ℓ.

We want to "squeeze" the alg. of Section 3 inside the old matroid bw. algorithm...

- Start with a 3k-decomposition of $M^{\#}$ (Theorem 2), otherwise NO.
- Now, "merging" parts P₁, P₂ ∈ 𝒫 means adding a new titanic gadget, which can be done linearly while increasing the decomp. width by < ℓ.
- Testing bw. of the merged partition then means checking the appr. forbidden minors, which is again linear using the current decomposition.

We want to "squeeze" the alg. of Section 3 inside the old matroid bw. algorithm...

- Start with a 3k-decomposition of $M^{\#}$ (Theorem 2), otherwise NO.
- Now, "merging" parts P₁, P₂ ∈ P means adding a new titanic gadget, which can be done linearly while increasing the decomp. width by < ℓ.
- Testing bw. of the merged partition then means checking the appr. forbidden minors, which is again linear using the current decomposition.
- Whenever a "mergeable" pair $P_1, P_2 \in \mathcal{P}$ is found, we must update our decomposition, down to width $\leq 3k$ again.

This can be done in quadratic time, cf. the proof of Theorem 2.

We want to "squeeze" the alg. of Section 3 inside the old matroid bw. algorithm...

- Start with a 3k-decomposition of $M^{\#}$ (Theorem 2), otherwise NO.
- Now, "merging" parts P₁, P₂ ∈ 𝒫 means adding a new titanic gadget, which can be done linearly while increasing the decomp. width by < ℓ.
- Testing bw. of the merged partition then means checking the appr. forbidden minors, which is again linear using the current decomposition.
- Whenever a "mergeable" pair $P_1, P_2 \in \mathcal{P}$ is found, we must update our decomposition, down to width $\leq 3k$ again.

This can be done in quadratic time, cf. the proof of Theorem 2.

Altogether, we really get $n^2 \times O(n) + n \times O(n^2) = O(n^3)$ time!

How do we translate our matroid-based results to graph rank-width?

How do we translate our matroid-based results to graph rank-width?

• bipartite G,
$$V(G) = U \cup W$$
:

Fact. The rank-width of a bipartite graph equals the branch-width of the binary matroid represented by its *bipartite adjacency matrix*.

How do we translate our matroid-based results to graph rank-width?

• bipartite
$$G$$
, $V(G) = U \cup W$:

Fact. The rank-width of a bipartite graph equals the branch-width of the binary matroid represented by its *bipartite adjacency matrix*.

• What to do for non-bipartite graphs?

How do we translate our matroid-based results to graph rank-width?

• bipartite
$$G$$
, $V(G) = U \cup W$

Fact. The rank-width of a bipartite graph equals the branch-width of the binary matroid represented by its *bipartite adjacency matrix*.

• What to do for non-bipartite graphs?

Fact. We change every graph G to the associated bipartite graph with its canonical vertex partition. The value of rank-width exactly doubles.

Petr Hliněný, ESA 2007, Eilat

13