
'

&

$

%

'

&

$

%Petr Hliněný, ESA 2007, Eilat 1 Finding Branch-decomposition. . .

Finding Branch-decompositionsFinding Branch-decompositions

and Rank-decompositionsand Rank-decompositions

Petr HliněnýPetr Hliněný

Faculty of Informatics, Masaryk University
Botanická 68a, 602 00 Brno, Czech Rep.

e-mail: hlineny@fi.muni.cz
http://www.fi.muni.cz/~hlineny

joint work with Sang-il Oum

Department of Combinatorics and Optimization,
University of Waterloo, Canada.

e-mail: sangil@math.uwaterloo.ca.

'

&

$

%

'

&

$

%Petr Hliněný, ESA 2007, Eilat 2 Finding Branch-decomposition. . .

ContentsContents

1 Brief Overview of “Widths” 3
Some traditional and new “width” parameters of graphs and other combi-
natorial structures.

2 Branch-width, Definition 6
Branch-decomposition of an arbitrary connectivity (symmetric and submod-
ular) set function. Graph and matroid branch-width, and graph rank-width.

3 Width (a number) → Decomposition 9
It is sometimes easier to get the branch-width as a number than a corre-
sponding decomposition. How can we construct a decomposition then.

4 Our new Algorithm, a Sketch 12
The full integration of above sketched ideas in a new O(n3) FPT algorithm
for optimal matroid branch-decompositions and graph rank-decompositions.

5 Application to Rank-width 13

'

&

$

%

'

&

$

%Petr Hliněný, ESA 2007, Eilat 3 Finding Branch-decomposition. . .

1 Brief Overview of “Widths”1 Brief Overview of “Widths”

Traditional tree-width

• name given by Robertson & Seymour (1983), but

some ideas (“k-trees”) date back to Beineke & Pippert (1968) and Rose (1974),

'

&

$

%

'

&

$

%Petr Hliněný, ESA 2007, Eilat 3 Finding Branch-decomposition. . .

1 Brief Overview of “Widths”1 Brief Overview of “Widths”

Traditional tree-width

• name given by Robertson & Seymour (1983), but

some ideas (“k-trees”) date back to Beineke & Pippert (1968) and Rose (1974),

• the same parameter having various descriptions, e.g. using vertex bags,
k-trees, simplicial (elimination) vertex ordering, etc. . .

'

&

$

%

'

&

$

%Petr Hliněný, ESA 2007, Eilat 3 Finding Branch-decomposition. . .

1 Brief Overview of “Widths”1 Brief Overview of “Widths”

Traditional tree-width

• name given by Robertson & Seymour (1983), but

some ideas (“k-trees”) date back to Beineke & Pippert (1968) and Rose (1974),

• the same parameter having various descriptions, e.g. using vertex bags,
k-trees, simplicial (elimination) vertex ordering, etc. . .

• recent matroid tree-width (“vertex-free”) by PH & Whittle (2003).

'

&

$

%

'

&

$

%Petr Hliněný, ESA 2007, Eilat 3 Finding Branch-decomposition. . .

1 Brief Overview of “Widths”1 Brief Overview of “Widths”

Traditional tree-width

• name given by Robertson & Seymour (1983), but

some ideas (“k-trees”) date back to Beineke & Pippert (1968) and Rose (1974),

• the same parameter having various descriptions, e.g. using vertex bags,
k-trees, simplicial (elimination) vertex ordering, etc. . .

• recent matroid tree-width (“vertex-free”) by PH & Whittle (2003).

Branch-width -based

• graph branch-width by Robertson & Seymour (1983),

withing a factor of 3/2 of tree-width,

'

&

$

%

'

&

$

%Petr Hliněný, ESA 2007, Eilat 3 Finding Branch-decomposition. . .

1 Brief Overview of “Widths”1 Brief Overview of “Widths”

Traditional tree-width

• name given by Robertson & Seymour (1983), but

some ideas (“k-trees”) date back to Beineke & Pippert (1968) and Rose (1974),

• the same parameter having various descriptions, e.g. using vertex bags,
k-trees, simplicial (elimination) vertex ordering, etc. . .

• recent matroid tree-width (“vertex-free”) by PH & Whittle (2003).

Branch-width -based

• graph branch-width by Robertson & Seymour (1983),

withing a factor of 3/2 of tree-width,

• definition quite abstract, so having an immediate extension to, e.g. hy-
pergraph or matroid branch-width,

'

&

$

%

'

&

$

%Petr Hliněný, ESA 2007, Eilat 3 Finding Branch-decomposition. . .

1 Brief Overview of “Widths”1 Brief Overview of “Widths”

Traditional tree-width

• name given by Robertson & Seymour (1983), but

some ideas (“k-trees”) date back to Beineke & Pippert (1968) and Rose (1974),

• the same parameter having various descriptions, e.g. using vertex bags,
k-trees, simplicial (elimination) vertex ordering, etc. . .

• recent matroid tree-width (“vertex-free”) by PH & Whittle (2003).

Branch-width -based

• graph branch-width by Robertson & Seymour (1983),

withing a factor of 3/2 of tree-width,

• definition quite abstract, so having an immediate extension to, e.g. hy-
pergraph or matroid branch-width,

• and then to graph rank-width, by Oum & Seymour (2003).

'

&

$

%

'

&

$

%Petr Hliněný, ESA 2007, Eilat 3 Finding Branch-decomposition. . .

1 Brief Overview of “Widths”1 Brief Overview of “Widths”

Traditional tree-width

• name given by Robertson & Seymour (1983), but

some ideas (“k-trees”) date back to Beineke & Pippert (1968) and Rose (1974),

• the same parameter having various descriptions, e.g. using vertex bags,
k-trees, simplicial (elimination) vertex ordering, etc. . .

• recent matroid tree-width (“vertex-free”) by PH & Whittle (2003).

Branch-width -based

• graph branch-width by Robertson & Seymour (1983),

withing a factor of 3/2 of tree-width,

• definition quite abstract, so having an immediate extension to, e.g. hy-
pergraph or matroid branch-width,

• and then to graph rank-width, by Oum & Seymour (2003).

'

&

$

%

'

&

$

%Petr Hliněný, ESA 2007, Eilat 4 Finding Branch-decomposition. . .

Other parameters

• hypertree-width variants for hypergraphs, Gottlob, Leone & Scarcello
(2002),

'

&

$

%

'

&

$

%Petr Hliněný, ESA 2007, Eilat 4 Finding Branch-decomposition. . .

Other parameters

• hypertree-width variants for hypergraphs, Gottlob, Leone & Scarcello
(2002),

• directed tree-width by Johnson, Robertson, Seymour & Thomas (2001),

followed by DAG-width or Kelly-width, etc. . .

'

&

$

%

'

&

$

%Petr Hliněný, ESA 2007, Eilat 4 Finding Branch-decomposition. . .

Other parameters

• hypertree-width variants for hypergraphs, Gottlob, Leone & Scarcello
(2002),

• directed tree-width by Johnson, Robertson, Seymour & Thomas (2001),

followed by DAG-width or Kelly-width, etc. . .

• graph clique-width defined by Courcelle & Olariu (2000),

which is a rather different, logic-motivated concept; it interests us since
clique-width directly motivated graph rank-width,

'

&

$

%

'

&

$

%Petr Hliněný, ESA 2007, Eilat 4 Finding Branch-decomposition. . .

Other parameters

• hypertree-width variants for hypergraphs, Gottlob, Leone & Scarcello
(2002),

• directed tree-width by Johnson, Robertson, Seymour & Thomas (2001),

followed by DAG-width or Kelly-width, etc. . .

• graph clique-width defined by Courcelle & Olariu (2000),

which is a rather different, logic-motivated concept; it interests us since
clique-width directly motivated graph rank-width,

• and few more notions (path-width, bandwidth, cut-width, * * * * *).

'

&

$

%

'

&

$

%Petr Hliněný, ESA 2007, Eilat 5 Finding Branch-decomposition. . .

Algorithmic aspects of “width” parametersAlgorithmic aspects of “width” parameters

Tree-width

• is NP-hard to compute on graphs, but

'

&

$

%

'

&

$

%Petr Hliněný, ESA 2007, Eilat 5 Finding Branch-decomposition. . .

Algorithmic aspects of “width” parametersAlgorithmic aspects of “width” parameters

Tree-width

• is NP-hard to compute on graphs, but

• there is a linear-time FPT algorithm for it by Bodlaender (1996).

'

&

$

%

'

&

$

%Petr Hliněný, ESA 2007, Eilat 5 Finding Branch-decomposition. . .

Algorithmic aspects of “width” parametersAlgorithmic aspects of “width” parameters

Tree-width

• is NP-hard to compute on graphs, but

• there is a linear-time FPT algorithm for it by Bodlaender (1996).

Branch-width

• is also NP-hard to compute on graphs, but

'

&

$

%

'

&

$

%Petr Hliněný, ESA 2007, Eilat 5 Finding Branch-decomposition. . .

Algorithmic aspects of “width” parametersAlgorithmic aspects of “width” parameters

Tree-width

• is NP-hard to compute on graphs, but

• there is a linear-time FPT algorithm for it by Bodlaender (1996).

Branch-width

• is also NP-hard to compute on graphs, but

• it is fully polynomial on planar graphs, by Seymour & Thomas (1994),

'

&

$

%

'

&

$

%Petr Hliněný, ESA 2007, Eilat 5 Finding Branch-decomposition. . .

Algorithmic aspects of “width” parametersAlgorithmic aspects of “width” parameters

Tree-width

• is NP-hard to compute on graphs, but

• there is a linear-time FPT algorithm for it by Bodlaender (1996).

Branch-width

• is also NP-hard to compute on graphs, but

• it is fully polynomial on planar graphs, by Seymour & Thomas (1994),

• and having a linear-time FPT algorithm, Bodlaender & Thilikos (1997).

'

&

$

%

'

&

$

%Petr Hliněný, ESA 2007, Eilat 5 Finding Branch-decomposition. . .

Algorithmic aspects of “width” parametersAlgorithmic aspects of “width” parameters

Tree-width

• is NP-hard to compute on graphs, but

• there is a linear-time FPT algorithm for it by Bodlaender (1996).

Branch-width

• is also NP-hard to compute on graphs, but

• it is fully polynomial on planar graphs, by Seymour & Thomas (1994),

• and having a linear-time FPT algorithm, Bodlaender & Thilikos (1997).

The hardness results
carry over to matroid branch-width / tree-width, and to graph rank-width.

The FPT results here
can be extended to matroids over finite fields, and to graph rank-width. . . .

'

&

$

%

'

&

$

%Petr Hliněný, ESA 2007, Eilat 6 Finding Branch-decomposition. . .

2 Branch-width, Definition2 Branch-width, Definition

A ground set E, with a connectivity function λ (arbitr. symm. submod.)
−→ a branch decomposition:

• E decomposed to a sub-cubic tree (degrees ≤ 3), and

• the elements mapped one-to-one to the tree leaves.

'

&

$

%

'

&

$

%Petr Hliněný, ESA 2007, Eilat 6 Finding Branch-decomposition. . .

2 Branch-width, Definition2 Branch-width, Definition

A ground set E, with a connectivity function λ (arbitr. symm. submod.)
−→ a branch decomposition:

• E decomposed to a sub-cubic tree (degrees ≤ 3), and

• the elements mapped one-to-one to the tree leaves.

• The tree edges have widths as follows:

eX E −X

width(e) = λ(X) = λ(E \X),

where X is “displayed” by e in the tree.

'

&

$

%

'

&

$

%Petr Hliněný, ESA 2007, Eilat 6 Finding Branch-decomposition. . .

2 Branch-width, Definition2 Branch-width, Definition

A ground set E, with a connectivity function λ (arbitr. symm. submod.)
−→ a branch decomposition:

• E decomposed to a sub-cubic tree (degrees ≤ 3), and

• the elements mapped one-to-one to the tree leaves.

• The tree edges have widths as follows:

eX E −X

width(e) = λ(X) = λ(E \X),

where X is “displayed” by e in the tree.

Branch-width bw(λ) = min. of max. edge widths over all decompositions.

'

&

$

%

'

&

$

%Petr Hliněný, ESA 2007, Eilat 7 Finding Branch-decomposition. . .

Branch-width variants, rank-widthBranch-width variants, rank-width

• Graph branch-width:

E = E(G) and λ(X) = # of vertices “shared” by X and E \X in G.

'

&

$

%

'

&

$

%Petr Hliněný, ESA 2007, Eilat 7 Finding Branch-decomposition. . .

Branch-width variants, rank-widthBranch-width variants, rank-width

• Graph branch-width:

E = E(G) and λ(X) = # of vertices “shared” by X and E \X in G.

• Matroid branch-width:

E = E(M) and λ(X) = rM (X) + rM (E \X)− r(M) + 1

(The “dimension” of the intersection of spans of X and E \X in M .)

'

&

$

%

'

&

$

%Petr Hliněný, ESA 2007, Eilat 7 Finding Branch-decomposition. . .

Branch-width variants, rank-widthBranch-width variants, rank-width

• Graph branch-width:

E = E(G) and λ(X) = # of vertices “shared” by X and E \X in G.

• Matroid branch-width:

E = E(M) and λ(X) = rM (X) + rM (E \X)− r(M) + 1

(The “dimension” of the intersection of spans of X and E \X in M .)

• Graph rank-width:

(as motivated by clique-width)
A(G) →

V (G)\X
0 1 1

X 1 0 1
0 1 0

E = V (G) and λ(X) = rank(A(G)[X, E \X]) over GF (2).

'

&

$

%

'

&

$

%Petr Hliněný, ESA 2007, Eilat 8 Finding Branch-decomposition. . .

Computing branch-width and rank-widthComputing branch-width and rank-width

Theorem 1. (Bodlaender & Thilikos, 1997) There is an O(n)-time FPT algorithm
that, for each fixed k, either confirms that the branch-width of a given graph G is > k,
or it finds a branch-decomposition of G of width ≤ k.

'

&

$

%

'

&

$

%Petr Hliněný, ESA 2007, Eilat 8 Finding Branch-decomposition. . .

Computing branch-width and rank-widthComputing branch-width and rank-width

Theorem 1. (Bodlaender & Thilikos, 1997) There is an O(n)-time FPT algorithm
that, for each fixed k, either confirms that the branch-width of a given graph G is > k,
or it finds a branch-decomposition of G of width ≤ k.

Theorem 2. (PH, 2005) There is an O(n3)-time FPT algorithm that, for each fixed
k, either confirms that the branch-width of a given matroid M represented over a
finite field is > k, or it confirms that the branch-width is ≤ k and finds a branch-
decomposition of M of width ≤ 3k.

'

&

$

%

'

&

$

%Petr Hliněný, ESA 2007, Eilat 8 Finding Branch-decomposition. . .

Computing branch-width and rank-widthComputing branch-width and rank-width

Theorem 1. (Bodlaender & Thilikos, 1997) There is an O(n)-time FPT algorithm
that, for each fixed k, either confirms that the branch-width of a given graph G is > k,
or it finds a branch-decomposition of G of width ≤ k.

Theorem 2. (PH, 2005) There is an O(n3)-time FPT algorithm that, for each fixed
k, either confirms that the branch-width of a given matroid M represented over a
finite field is > k, or it confirms that the branch-width is ≤ k and finds a branch-
decomposition of M of width ≤ 3k.

Theorem 3. (Oum & Seymour / Oum & Courcelle, 2005/6) There is an O(n3)-
time FPT algorithm that, for each fixed k, either confirms that the rank-width of a
given graph G is > k, or it confirms that the rank-width is ≤ k and finds a rank-
decomposition of G of width ≤ 3k.

'

&

$

%

'

&

$

%Petr Hliněný, ESA 2007, Eilat 8 Finding Branch-decomposition. . .

Computing branch-width and rank-widthComputing branch-width and rank-width

Theorem 1. (Bodlaender & Thilikos, 1997) There is an O(n)-time FPT algorithm
that, for each fixed k, either confirms that the branch-width of a given graph G is > k,
or it finds a branch-decomposition of G of width ≤ k.

Theorem 2. (PH, 2005) There is an O(n3)-time FPT algorithm that, for each fixed
k, either confirms that the branch-width of a given matroid M represented over a
finite field is > k, or it confirms that the branch-width is ≤ k and finds a branch-
decomposition of M of width ≤ 3k.

Theorem 3. (Oum & Seymour / Oum & Courcelle, 2005/6) There is an O(n3)-
time FPT algorithm that, for each fixed k, either confirms that the rank-width of a
given graph G is > k, or it confirms that the rank-width is ≤ k and finds a rank-
decomposition of G of width ≤ 3k.

. new

Theorem 4. (PH & Oum, 2007) There is an O(n3)-time FPT algorithm
that, for each fixed k, either confirms that the branch-width of a given matroid
M over a finite field (rank-width of a given graph G) is > k, or it finds a
branch-decomposition of M (a rank-decomposition of G) of width ≤ k.

'

&

$

%

'

&

$

%Petr Hliněný, ESA 2007, Eilat 9 Finding Branch-decomposition. . .

3 Width (a number) → Decomposition3 Width (a number) → Decomposition

Motivation: There are occasions when getting the branch-width as a number is
significantly easier than getting a corresponding decomposition, such as, using
“forbiden minor” characterizations.

'

&

$

%

'

&

$

%Petr Hliněný, ESA 2007, Eilat 9 Finding Branch-decomposition. . .

3 Width (a number) → Decomposition3 Width (a number) → Decomposition

Motivation: There are occasions when getting the branch-width as a number is
significantly easier than getting a corresponding decomposition, such as, using
“forbiden minor” characterizations.

Our task: Knowing how to determine the exact branch-width, we want to
construct an optimal decomposition for it.

'

&

$

%

'

&

$

%Petr Hliněný, ESA 2007, Eilat 9 Finding Branch-decomposition. . .

3 Width (a number) → Decomposition3 Width (a number) → Decomposition

Motivation: There are occasions when getting the branch-width as a number is
significantly easier than getting a corresponding decomposition, such as, using
“forbiden minor” characterizations.

Our task: Knowing how to determine the exact branch-width, we want to
construct an optimal decomposition for it.

Instances to be solved. . .

• Matroids (over finite fields) — there is a computable finite set of for-
bidden minors for the matroids of branch-width ≤ k, and we have a
decomposition of width ≤ 3k from Theorem 2.

Hence the branch-width as a number can be determined efficiently, but
an optimal decomposition does not follow.

'

&

$

%

'

&

$

%Petr Hliněný, ESA 2007, Eilat 9 Finding Branch-decomposition. . .

3 Width (a number) → Decomposition3 Width (a number) → Decomposition

Motivation: There are occasions when getting the branch-width as a number is
significantly easier than getting a corresponding decomposition, such as, using
“forbiden minor” characterizations.

Our task: Knowing how to determine the exact branch-width, we want to
construct an optimal decomposition for it.

Instances to be solved. . .

• Matroids (over finite fields) — there is a computable finite set of for-
bidden minors for the matroids of branch-width ≤ k, and we have a
decomposition of width ≤ 3k from Theorem 2.

Hence the branch-width as a number can be determined efficiently, but
an optimal decomposition does not follow.

• Same with graph rank-width — there is a computable finite set of for-
bidden vertex-minors for the graphs of rank-width ≤ k, and we have a
decomposition of width ≤ 3k from Theorem 3.

How can we get an optimal decomposition?

'

&

$

%

'

&

$

%Petr Hliněný, ESA 2007, Eilat 10 Finding Branch-decomposition. . .

An idea motivated by Geelen [private communication]. . .

1. Take an arbitrary partition P of our E, and extend connectivity λ to λP

on P naturally. Assume the branch-width of λP is efficiently computable.

'

&

$

%

'

&

$

%Petr Hliněný, ESA 2007, Eilat 10 Finding Branch-decomposition. . .

An idea motivated by Geelen [private communication]. . .

1. Take an arbitrary partition P of our E, and extend connectivity λ to λP

on P naturally. Assume the branch-width of λP is efficiently computable.

2. If |P| ≤ 2, then we have a decomposition. Done.

'

&

$

%

'

&

$

%Petr Hliněný, ESA 2007, Eilat 10 Finding Branch-decomposition. . .

An idea motivated by Geelen [private communication]. . .

1. Take an arbitrary partition P of our E, and extend connectivity λ to λP

on P naturally. Assume the branch-width of λP is efficiently computable.

2. If |P| ≤ 2, then we have a decomposition. Done.

3. Ranging over all pairs P1, P2 ∈ P, and P′ = P \ {P1, P2} ∪ {P1 ∪ P2};
whenever bw(λP′

) ≤ bw(λP) happens, go to the next step.

'

&

$

%

'

&

$

%Petr Hliněný, ESA 2007, Eilat 10 Finding Branch-decomposition. . .

An idea motivated by Geelen [private communication]. . .

1. Take an arbitrary partition P of our E, and extend connectivity λ to λP

on P naturally. Assume the branch-width of λP is efficiently computable.

2. If |P| ≤ 2, then we have a decomposition. Done.

3. Ranging over all pairs P1, P2 ∈ P, and P′ = P \ {P1, P2} ∪ {P1 ∪ P2};
whenever bw(λP′

) ≤ bw(λP) happens, go to the next step.

4. Recursively obtain a branch-decomposition of P′. Split the leaf of P1∪P2

into two new leaves labeled P1 and P2. Return.

'

&

$

%

'

&

$

%Petr Hliněný, ESA 2007, Eilat 10 Finding Branch-decomposition. . .

An idea motivated by Geelen [private communication]. . .

1. Take an arbitrary partition P of our E, and extend connectivity λ to λP

on P naturally. Assume the branch-width of λP is efficiently computable.

2. If |P| ≤ 2, then we have a decomposition. Done.

3. Ranging over all pairs P1, P2 ∈ P, and P′ = P \ {P1, P2} ∪ {P1 ∪ P2};
whenever bw(λP′

) ≤ bw(λP) happens, go to the next step.

4. Recursively obtain a branch-decomposition of P′. Split the leaf of P1∪P2

into two new leaves labeled P1 and P2. Return.

This scheme leads to O(n3) calls to λP-queries,

'

&

$

%

'

&

$

%Petr Hliněný, ESA 2007, Eilat 10 Finding Branch-decomposition. . .

An idea motivated by Geelen [private communication]. . .

1. Take an arbitrary partition P of our E, and extend connectivity λ to λP

on P naturally. Assume the branch-width of λP is efficiently computable.

2. If |P| ≤ 2, then we have a decomposition. Done.

3. Ranging over all pairs P1, P2 ∈ P, and P′ = P \ {P1, P2} ∪ {P1 ∪ P2};
whenever bw(λP′

) ≤ bw(λP) happens, go to the next step.

4. Recursively obtain a branch-decomposition of P′. Split the leaf of P1∪P2

into two new leaves labeled P1 and P2. Return.

This scheme leads to O(n3) calls to λP-queries, but we manage to speed it up
to just O(n2) queries:

• At the top level of recursion, process not only the first admissible pair
P1, P2 in step 3, but all such pairwise disjoint pairs.

'

&

$

%

'

&

$

%Petr Hliněný, ESA 2007, Eilat 10 Finding Branch-decomposition. . .

An idea motivated by Geelen [private communication]. . .

1. Take an arbitrary partition P of our E, and extend connectivity λ to λP

on P naturally. Assume the branch-width of λP is efficiently computable.

2. If |P| ≤ 2, then we have a decomposition. Done.

3. Ranging over all pairs P1, P2 ∈ P, and P′ = P \ {P1, P2} ∪ {P1 ∪ P2};
whenever bw(λP′

) ≤ bw(λP) happens, go to the next step.

4. Recursively obtain a branch-decomposition of P′. Split the leaf of P1∪P2

into two new leaves labeled P1 and P2. Return.

This scheme leads to O(n3) calls to λP-queries, but we manage to speed it up
to just O(n2) queries:

• At the top level of recursion, process not only the first admissible pair
P1, P2 in step 3, but all such pairwise disjoint pairs.

• At deeper levels, process only such pairs that P1 of it has been processed
one level up.

'

&

$

%

'

&

$

%Petr Hliněný, ESA 2007, Eilat 11 Finding Branch-decomposition. . .

Gadgets for partitioned matroidsGadgets for partitioned matroids

True standing: We do not know how to devise forbidden minor characteriza-
tions for the branch-width of partitioned matroids,

'

&

$

%

'

&

$

%Petr Hliněný, ESA 2007, Eilat 11 Finding Branch-decomposition. . .

Gadgets for partitioned matroidsGadgets for partitioned matroids

True standing: We do not know how to devise forbidden minor characteriza-
tions for the branch-width of partitioned matroids, but we can replace the parts
of P by appropriate “unbreakable” (titanic) gadgets.

Titanic gadget – for P ∈ P and ` = λ(P),

we replace P ⊆ E in M with a copy of the uniform matroid U`−1,3`−5.

(To “replace” means to use the proper matroid amalgam.)

'

&

$

%

'

&

$

%Petr Hliněný, ESA 2007, Eilat 11 Finding Branch-decomposition. . .

Gadgets for partitioned matroidsGadgets for partitioned matroids

True standing: We do not know how to devise forbidden minor characteriza-
tions for the branch-width of partitioned matroids, but we can replace the parts
of P by appropriate “unbreakable” (titanic) gadgets.

Titanic gadget – for P ∈ P and ` = λ(P),

we replace P ⊆ E in M with a copy of the uniform matroid U`−1,3`−5.

(To “replace” means to use the proper matroid amalgam.)

Lemma 5. If bw(λ) ≤ k, and P is a titanic partition of width ≤ k (i.e. each
part P ∈ P is titanic of λ(P) ≤ k);

then the branch-width of λP is ≤ k.

'

&

$

%

'

&

$

%Petr Hliněný, ESA 2007, Eilat 11 Finding Branch-decomposition. . .

Gadgets for partitioned matroidsGadgets for partitioned matroids

True standing: We do not know how to devise forbidden minor characteriza-
tions for the branch-width of partitioned matroids, but we can replace the parts
of P by appropriate “unbreakable” (titanic) gadgets.

Titanic gadget – for P ∈ P and ` = λ(P),

we replace P ⊆ E in M with a copy of the uniform matroid U`−1,3`−5.

(To “replace” means to use the proper matroid amalgam.)

Lemma 5. If bw(λ) ≤ k, and P is a titanic partition of width ≤ k (i.e. each
part P ∈ P is titanic of λ(P) ≤ k);

then the branch-width of λP is ≤ k.

Starting with a partitioned matroid M,P, we arrive at normalized matroid M#.

(M# may require a slightly larger field to be represented over.)

Theorem 6. The branch-width of λP on M is equal to bw(M#).

'

&

$

%

'

&

$

%Petr Hliněný, ESA 2007, Eilat 12 Finding Branch-decomposition. . .

4 Our new Algorithm, a Sketch4 Our new Algorithm, a Sketch

We want to “squeeze” the alg. of Section 3 inside the old matroid bw. algorithm. . .

• Start with a 3k-decomposition of M# (Theorem 2), otherwise NO.

'

&

$

%

'

&

$

%Petr Hliněný, ESA 2007, Eilat 12 Finding Branch-decomposition. . .

4 Our new Algorithm, a Sketch4 Our new Algorithm, a Sketch

We want to “squeeze” the alg. of Section 3 inside the old matroid bw. algorithm. . .

• Start with a 3k-decomposition of M# (Theorem 2), otherwise NO.

• Now, “merging” parts P1, P2 ∈ P means adding a new titanic gadget,
which can be done linearly while increasing the decomp. width by < `.

'

&

$

%

'

&

$

%Petr Hliněný, ESA 2007, Eilat 12 Finding Branch-decomposition. . .

4 Our new Algorithm, a Sketch4 Our new Algorithm, a Sketch

We want to “squeeze” the alg. of Section 3 inside the old matroid bw. algorithm. . .

• Start with a 3k-decomposition of M# (Theorem 2), otherwise NO.

• Now, “merging” parts P1, P2 ∈ P means adding a new titanic gadget,
which can be done linearly while increasing the decomp. width by < `.

• Testing bw. of the merged partition then means checking the appr. for-
bidden minors, which is again linear using the current decomposition.

'

&

$

%

'

&

$

%Petr Hliněný, ESA 2007, Eilat 12 Finding Branch-decomposition. . .

4 Our new Algorithm, a Sketch4 Our new Algorithm, a Sketch

We want to “squeeze” the alg. of Section 3 inside the old matroid bw. algorithm. . .

• Start with a 3k-decomposition of M# (Theorem 2), otherwise NO.

• Now, “merging” parts P1, P2 ∈ P means adding a new titanic gadget,
which can be done linearly while increasing the decomp. width by < `.

• Testing bw. of the merged partition then means checking the appr. for-
bidden minors, which is again linear using the current decomposition.

• Whenever a “mergeable” pair P1, P2 ∈ P is found, we must update our
decomposition, down to width ≤ 3k again.

This can be done in quadratic time, cf. the proof of Theorem 2.

'

&

$

%

'

&

$

%Petr Hliněný, ESA 2007, Eilat 12 Finding Branch-decomposition. . .

4 Our new Algorithm, a Sketch4 Our new Algorithm, a Sketch

We want to “squeeze” the alg. of Section 3 inside the old matroid bw. algorithm. . .

• Start with a 3k-decomposition of M# (Theorem 2), otherwise NO.

• Now, “merging” parts P1, P2 ∈ P means adding a new titanic gadget,
which can be done linearly while increasing the decomp. width by < `.

• Testing bw. of the merged partition then means checking the appr. for-
bidden minors, which is again linear using the current decomposition.

• Whenever a “mergeable” pair P1, P2 ∈ P is found, we must update our
decomposition, down to width ≤ 3k again.

This can be done in quadratic time, cf. the proof of Theorem 2.

Altogether, we really get n2 ×O(n) + n×O(n2) = O(n3) time!

'

&

$

%

'

&

$

%Petr Hliněný, ESA 2007, Eilat 13 Finding Branch-decomposition. . .

5 Application to Rank-width5 Application to Rank-width

How do we translate our matroid-based results to graph rank-width?

'

&

$

%

'

&

$

%Petr Hliněný, ESA 2007, Eilat 13 Finding Branch-decomposition. . .

5 Application to Rank-width5 Application to Rank-width

How do we translate our matroid-based results to graph rank-width?

• bipartite G, V (G) = U ∪W :

W

0 1 1
U 1 0 1 IU

0 1 0

Fact. The rank-width of a bipartite graph equals the branch-width of the binary
matroid represented by its bipartite adjacency matrix.

'

&

$

%

'

&

$

%Petr Hliněný, ESA 2007, Eilat 13 Finding Branch-decomposition. . .

5 Application to Rank-width5 Application to Rank-width

How do we translate our matroid-based results to graph rank-width?

• bipartite G, V (G) = U ∪W :

W

0 1 1
U 1 0 1 IU

0 1 0

Fact. The rank-width of a bipartite graph equals the branch-width of the binary
matroid represented by its bipartite adjacency matrix.

• What to do for non-bipartite graphs?

'

&

$

%

'

&

$

%Petr Hliněný, ESA 2007, Eilat 13 Finding Branch-decomposition. . .

5 Application to Rank-width5 Application to Rank-width

How do we translate our matroid-based results to graph rank-width?

• bipartite G, V (G) = U ∪W :

W

0 1 1
U 1 0 1 IU

0 1 0

Fact. The rank-width of a bipartite graph equals the branch-width of the binary
matroid represented by its bipartite adjacency matrix.

• What to do for non-bipartite graphs?

V

V
∗

Fact. We change every graph G to the associated bipartite graph with its
canonical vertex partition. The value of rank-width exactly doubles.

	Brief Overview of ``Widths''
	Branch-width, Definition
	Width (a number) Decomposition
	Our new Algorithm, a Sketch
	Application to Rank-width

